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The gauge/string duality, a.k.a. the holographic principle is a profound assertion that emerged
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instances of its more concrete form, the AdS/CFT correspondence, are well-understood. The
most well-studied example is the duality between N=4 SYM, which is a CFT, and type IIB string
theory in AdS5xS5 background. Generalization to less symmetric cases is a must, and the next
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leading to N=2* SYM, the theory we study in this thesis. It is supersymmetric enough to employ
the powerful localization method that reduces its partition function to a matrix model. We will
see that the mass scale causes non-trivial phase structures in its vacuum configuration, visible
in the holographic regime. We will probe them using Wilson loops in different representations
of the gauge group. On the other hand, the dual supergravity background was derived by Pilch-
Warner, making N=2* theory an explicitly testable non-conformal holographic case, which is
a rare example. We will prove that the duality works for the dual observables (string action, D-
branes) we managed to compute, even at a quantum-level.
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1. Introduction

The universe must be self-consistent. This is the basic premise physicists as-
sume in the quest for the ultimate laws that govern our universe. Without it, a
theory would be a mere description of a collection of observed facts.

Despite highly precise experimental corroboration of the Standard Model
of particle physics, which relies on Quantum Field Theory (QFT) with gauge
symmetry, and Einstein’s General Relativity (GR) that describes gravity, these
two frameworks are mutually incompatible. That is without mentioning the
foundational problems of QFT, that the Clay Mathematics Institute urges to
solve with a million-dollar prize incentive1.

Classical physics is elegantly formulated in terms of the least action prin-
ciple. The standard procedure is to encode the dynamics in a quantity called
action, minimize it with respect to the physical variables which gives a set
of differential equations (of motion) to be solved. In quantum physics, we
relax this principle. When quantizing a classical theory in Feynman path inte-
gral formulation, paths that do not minimize the action also contribute to the
dynamics. In strong analogy with statistics, physical quantities are weighted
observables O by the exponential of the classical action2:

〈O〉=
ˆ

Dφ Oe−iS[φ ]/h̄,

where we used the shorthand notation φ for the collection of quantum fields3.
The problem is, however, the lack of a rigorous definition of the measure Dφ .
Very often, we only know how to compute quantum observables in certain
limits, when we can rely on the saddle-point approximation to the integral.
For example, in the classical limit (vanishing Plank constant h̄), the saddle-
point method for the partition function gives us the least action principle:

Z = 〈1〉 ≈ e−iS[φc]/h̄; δS[φc] = 0.

Other examples are the weak coupling limit, such as in Quantum Electrody-
namics (QED), or the thermodynamic limit in quantum many-body systems.
By contrast, we have no established analytical tool to handle strongly-coupled

1 See the link: http://www.claymath.org/millennium-problems/yang%E2%80%
93mills-and-mass-gap
2 The analogy is even closer when we analytically continue the time to pure imaginary time, i.e.
Wick rotate t →−itE , then the action becomes purely imaginary, and the exponential decays.
3 Quantum mechanics can be formulated as a (0+1)-dimensional QFT.
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QFTs, which would explain quark confinement in Quantum Chromodynamics
(QCD), and phases of high-Tc superconductors.

Only very few classes of path integrals are solvable. Besides free theories,
path integrals of topological quantum field theories and some supersymmetric
theories localize exactly at their saddle-points. This highly non-trivial phe-
nomenon is called the localization of path integrals, and it is one of the pillars
our work is based on.

Generalizing point-particles to strings, String Theory might be the best can-
didate for a consistent quantum gravity theory, which would be a unifying
framework for QFT and GR. It is not free of mathematical problems though,
for example the string action in a curved background is not fully known, and
path integral measures are not rigorously defined either. Nevertheless, it is
mathematically rich, with a web of dualities that connect different perturba-
tive string theories (the underlying theory is known as the M-theory). It is
offering us many insights otherwise unsuspected and a very important realiza-
tion is the AdS/CFT correspondence. The most well-studied instance of the
correspondence is the one between weakly-coupled superstring theory living
on AdS5 × S5 space, and a strongly-coupled supersymmetric conformal field
theory (CFT) called N = 4 SYM. Despite much success (and still some is-
sues concerning quantum stringy corrections), the correspondence remains an
unproven conjecture.

An even more general correspondence is the gauge/string (or gauge/gravity)
duality, also known as the holographic principle (so named because the gauge
theory lives in a lower dimensional space than the string theory). If it were
true, it would be revolutionary in many aspects. From a practical point of view,
on one hand we would have a toolbox to solve strongly-coupled gauge theories
using essentially GR, and on the other hand, experiments on quantum gravity
could be done in laboratories by handling systems like cold atoms. From a
conceptual point of view, it could indicate that gravity, and hence spacetime,
are emergent from lower dimensional quantum systems.

We lack the mathematical constructs to even formulate the conjecture in a
precise manner. However, we can generalize what we learned from AdS/CFT
to settings where we still hold some analytical control. A perfect toy model to
investigate non-conformal gauge/string duality is the unique massive deforma-
tion of N = 4 SYM, called N = 2∗ SYM. On one hand, like N = 4 SYM,
supersymmetric localization is applicable and reduces the complicated path
integrals to a manageable matrix model, allowing us to access its strongly-
coupled regime (actually any finite coupling regime). On the other hand,
N = 2∗ SYM is conjectured to be dual to a supergravity solution known as
the Pilch-Warner background. Figure 1.1 shows a graph on the relationship
between different theories that we consider.
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Figure 1.1. Localization applies to theories on the sphere, indicated by a dashed box.
Since the gravity dual of N = 2∗ on S4 is only partially known (indicated by the dot-
ted line arrow), we take the decompactification limit (R → ∞) to obtain N = 2∗ on
R

4. Our research focuses on the dashed arrow, which generalizes the well-established
AdS/CFT correspondence shown in the dashed box below it. The limits will be ex-
plained through out the thesis.

Outline
This thesis has two parts, both aimed at introducing and reviewing some back-
ground material in order to help the readers follow the appended papers. Part
I focuses on the gauge theory side. We start off with the basics of the su-
persymmetric localization technique, then we go on to discuss the action of
N = 4 SYM on R

4 and on S4. We then extend it to N = 2∗ SYM on S4,
and focus on the partition function after localization. We show the common
technique to solve a matrix model, and conclude with the phase diagram of the
theory. The last chapter of this part introduces the Wilson loop observables,
and we review some known results in N = 4 case, and finally, write down
the results we computed for N = 2∗ case. Part II starts with supergravity and
some of its solutions, including AdS5×S5 and Pilch-Warner. Then, we review
the AdS/CFT correspondence and the logic behind its original derivation. In
the end, we talk about holographic Wilson loops and connect our holographic
solutions to the gauge theory results.

Physics is really nothing more than a search for ultimate simplicity, but so far
all we have is a kind of elegant messiness. — Bill Bryson

9





Part I:
Supersymmetric gauge theories





2. Localization

Localization of an integral happens when the integral is exactly equal to its
saddle-point approximation. A trivial example is therefore the Gaussian inte-
gration formula, which the saddle-point method is based on:

ˆ
Rn

dnxe−
1
2 xT Ax =

√
(2π)n

detA
, (2.1)

where A is a positive-definite n×n matrix.
In the case of path integrals in quantum field theories, which are of infinite

dimension, localization, if applicable, reduces them to finite dimensional inte-
grals. This is an exact approach, in contrast to perturbative methods such as
Feynman diagrams, valid only in the weakly-coupled regime. Unfortunately,
very few path integrals are solvable, but there are very specific classes of the-
ories where localization does apply. These are supersymmetric theories and
topological quantum field theories, from which we distinguish two types of
localization: supersymmetric localization and equivariant localization.

Many results of this thesis are based on the supersymmetric localization.
We will review its basic idea and illustrate it explicitly in an example with an
ordinary integral. We refer the reader to [1] and [2] for reviews of the topic.

2.1 Supersymmetric localization
In the path integral formulation of quantum theories, physical observables are
expectation values of operators. Let us consider the path integral (in the Eu-
clidean signature and set h̄ = 1):

〈O〉=
ˆ

DφOe−S[φ ], (2.2)

where O is an operator, built out of the fields of the theory, represented by φ .
Assume we can deform the action S in such a way that it does not affect the

physical quantity, namely

〈O〉t =

ˆ
Dφe−S[φ ]−tQV [φ ], (2.3)

where Q is a fermionic symmetry of the theory, and require

d 〈O〉t
dt

= 0. (2.4)
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Integrating by parts and assuming vanishing boundary terms, we obtain the
following necessary conditions:

Q2 = 0, QS = 0, QO = 0, (2.5)

and that the measure Dφ is also invariant (the symmetry must not be anoma-
lous).

If this deformation were possible, then the deformation parameter t could
be of any value. The most useful case is to take it to be infinitely large, in
order to use the saddle-point approximation. Since by construction the integral
is independent of t, the saddle-point approximation must be exact, hence the
path integral localizes to a set of loci. These are determined by1

(QV )Bosonic = 0 (2.6)

whose solutions—let us denote them by φ∗—belong to the moduli space of
vacua of the theory. This means that some fields acquire a non-zero vacuum
expectation value. Accounting the fluctuations around the vacuum configura-
tion, the localized integral can be formally written as:

〈O〉=
ˆ

Moduli
Dφ∗O(φ∗)e−S(φ∗)Z1-loop, (2.7)

where the integral over φ∗ is analogous to the sum over all the saddle-points,
and Z1-loop is the functional generalization of the Gaussian integral (2.1) for
the fluctuations around the saddle-points. It is thus a functional determinant,
which is divergent in general. In order to obtain a finite result, the theory is
defined in a compact manifold, like a sphere, such that the spectrum of the
operator is discrete, and supersymmetry guarantees the cancellation of diver-
gences between bosons and fermions. Despite conceptual simplicity, the main
challenge of this technique is to find the localization action QV , since no gen-
eral recipe exists.

2.2 A toy example
Consider an ordinary integral

I =
ˆ M

m
dx pg′(x)epg(x), (2.8)

with p being a constant. It can be solved exactly as a total derivative:

I =
ˆ M

m
dx

d
dx

epg(x) = epg(M)− epg(m). (2.9)

1 If the bosonic part is positive-definite. The fermionic contribution of the localization action is
subleading.
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If we were to solve it using the saddle-point approximation for p → ∞, then
the saddle-points must be the endpoints x∗ = {m,M}. Let us consider this case
and expand around the saddle-points:

g(x∗+ξ ) = g(x∗)+
1
2

g′′(x∗)ξ 2 +O(ξ 3). (2.10)

Each saddle-point contributes to the integral as following:

Im = epg(m)

ˆ ∞

0
dξ pg′′(m)ep 1

2 g′′(m)ξ 2
=−epg(m) (2.11)

IM = epg(M)

ˆ 0

−∞
dξ pg′′(M)ep 1

2 g′′(M)ξ 2
= epg(M) (2.12)

valid for ℜ(pg′′)< 0. The sum Im + IM indeed gives the exact result.
Now, let us see how we can use supersymmetric localization to solve it. The

integral I can be rewritten in the supersymmetric form:

I =
ˆ M

m
dx
ˆ

da
ˆ

dbep(g(x)−abg′(x)), (2.13)

where a and b are Grassmann numbers (our fermions), which means they sat-
isfy ab =−ba and a2 = b2 = 0, hence

f (x) =
ˆ

da
ˆ

dbe−a f (x)b. (2.14)

The action S = p(g(x)− abg′(x)) is invariant under the supersymmetry
transformation:

δεx = εx, δεa = 0, δεb = ε, (2.15)

where ε is a Grassmann number. The supersymmetric operator, defined by
εQ = δε , is explicitly

Q = a
∂
∂x

+
∂

∂b
. (2.16)

We can check that, indeed, (2.5) are fulfilled.
Let us deform the integral with a Q-exact term

I(t) =
ˆ M

m
dx
ˆ

da
ˆ

dbep(g(x)−abg′(x))+tQV , (2.17)

where
V (x,a,b) = f (x)b (2.18)

that leads to a non-trivial localization action

QV = f (x)−ab f ′(x). (2.19)

15



This is actually the most general supersymmetric action we can write for this
case. Thus, S is not just Q-closed (i.e. QS= 0), but also Q-exact (i.e. S=QVs).

We require the deformed integral to be independent of the deformation pa-
rameter t:

I′(t) = 0. (2.20)

An explicit and straightforward computation shows

I′(t) =

ˆ M

m
dx
ˆ

da
ˆ

dbeS+tQV QV (2.21)

=

ˆ M

m
dx
ˆ

da
ˆ

dbQ(eS+tQVV ) (2.22)

= epg(x)+t f (x) f (x)
∣∣∣M
m

(2.23)

where we used the supersymmetry condition and nilpotency. In this case, we
must additionally require vanishing boundary conditions

f (m) = f (M) = 0. (2.24)

Now we can take large t to solve the integral using the saddle-point method.
The boundary points here must be either global maxima or global minima of
f (x), for t > 0 or t < 0, in order for the saddle-point integral to be convergent.
In other words, for t negative (positive), the bosonic part of the localization
action is positive (negative) definite, and it vanishes at the saddle-points:

(QV )Bosonic = 0. (2.25)

The saddle-point approximation is exact, in the same fashion as for the large
p case we studied before. This is to be expected, since the deformed integral
is still a total derivative when we integrate out the fermions:

I(t) =
ˆ M

m
dx

d
dx

epg(x)+t f (x) = epg(M)+t f (M)− epg(m)+t f (m). (2.26)

When g(x)= cosx and the integration region is extended to a sphere parametrized
by the polar angle x ∈ [0,π] and the azimuthal angle ϕ ∈ [0,2π], this becomes
a particular example of the Duistermaat-Heckman integration formula, which
is the precursor of the localization of path integrals.
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3. N = 4 SYM

Consider the action of a d-dimensional Yang-Mills (YM) theory with a mass-
less spin- 1

2 field Ψ in the adjoint representation of the gauge group U(N):

S =− 1
g2

Y M

ˆ
ddx tr

(
1
2

FMNFMN − Ψ̄ΓMDMΨ
)
, (3.1)

where FMN = ∑N2

a=1 Fa
MNT a

i j , so that the trace is over the matrix indices i, j =
1, . . . ,N. T a are the generators of the gauge group. More explicitly, the field-
strength and the covariant derivative are

FMN = ∂MAN −∂NAM +[AM,AN ], (3.2)
DM = ∂M +[AM, ·], (3.3)

In Minkowski spacetime R9,1, this action turns out to be invariant under the
supersymmetry transformation:

δεAM = εΓMΨ, (3.4)

δεΨ =
1
2

FMNΓMNε, (3.5)

where ε is a constant Majorana-Weyl spinor that parametrizes the transforma-
tion.

Lower dimensional supersymmetric theories can actually be obtained by
dimensional reduction from the above theory [3]. Let us review how we can
derive the action for the maximally supersymmetric N = 4 SYM on R

4.

3.1 Action on R
4

The dimensional reduction consists of restricting the dependence of the fields
only to 4 dimensions: (x1, . . . ,x4). The original Lorentz symmetry group
Spin(9,1) is then broken to Spin(4)×Spin(5,1)R, that is the Lorentz group in
4d and an internal symmetry group called R-symmetry (hence the superindex
R). These groups are isomorphic to:

Spin(4) = SU(2)L ×SU(2)R (3.6)
Spin(5,1)R = Spin(4)R ×SO(1,1)R (3.7)

= SU(2)R
L ×SU(2)R

R ×SO(1,1)R. (3.8)
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The gauge field AM is reduced to the 4d gauge field and scalars:

Spin(4) : Aμ , μ = 1,2,3,4 (3.9)

Spin(4)R : ΦI , I = 5,6,7,8 (3.10)
SO(1,1)R : ΦI , I = 0,9 (3.11)

where we wrote down the group they transform under.
The fermionic field, which is a Majorana-Weyl spinor, can be decomposed

to 4 Majorana spinors (each having 2 degrees of freedom):

Ψ =

⎡
⎢⎢⎣

ψL
χR
ψR
χL

⎤
⎥⎥⎦ (3.12)

where the spinors with the subindex L (or R) transform in the spin-1
2 represen-

tation of SU(2)L (or SU(2)R). Also, spinors with the name ψ and χ transform
in the spin-1

2 representation of SU(2)R
L and SU(2)R

R from the R-symmetry sub-
group, respectively.

The N = 4 SYM action explicitly written in terms of the 4d bosonic fields
is:

S
R4 =− 1

g2
Y M

ˆ
d4x tr(

1
2

FμνFμν +DμΦIDμΦI +
1
2
[ΦI ,ΦJ] [ΦI ,ΦJ]

−Ψ̄ΓμDμΨ− Ψ̄ΓI [ΦI ,Ψ]),

(3.13)

where we decomposed the 10d gamma matrices as ΓM = Γμ ⊗ΓI .
The action has no mass scale, and it is in fact conformal invariant even

at quantum level [4, 5]. The conformal group extends the Poincaré group
(translation, rotations and boosts) to include scaling (dilatation), and special
conformal transformation, which is a composition of inversion, translation and
inversion. The conformal symmetry, the four copies of supersymmetry and
the internal R-symmetry are part of the larger N = 4 superconformal group
PSU(2,2|4). Its Lie algebra is generated by the generators of the conformal
algebra, 16 supercharges (that commute with momentum generators), and 16
superconformal charges (that commute with special conformal generators).
Details of the algebra can be found for example in [6].

3.2 Action on S4

In order to apply supersymmetric localization to N = 4 SYM, we shall put
this theory on a hypersphere S4. Conformal invariance implies an additional
conformal coupling of the scalars to the scalar curvature R, namely,

R

6
ΦIΦI , I = 0,5,6,7,8,9 (3.14)
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where for Sd with radius R, the scalar curvature is R = d(d − 1)/R2. Then,
there will be also a metric factor

√
g coming from the curved background. The

action on S4 is hence

SS4 =− 1
g2

Y M

ˆ
d4x

√
gtr
(

1
2

FμνFμν +DμΦIDμΦI +
1
2
[ΦI ,ΦJ] [ΦI ,ΦJ]

−Ψ̄ΓμDμΨ− Ψ̄ΓI [ΦI ,Ψ]+
4

R2 ΦIΦI

)
.

(3.15)

Localization also requires the existence of an off-shell supersymmetry. To
fulfill this condition, additional auxiliary field terms are added to the above
action, see [7, 8]. Then, on the localization locus, the action will effectively
be 3/2 times the conformal coupling (3.14), see also [9]. Naturally, at the
decompactification limit R → ∞, we recover the flat space version.
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4. N = 2∗ SYM

The fields of N = 4 SYM form a N = 4 vector (or gauge) multiplet, but the
latter can be decomposed into two N = 2 massless supermultiplets, namely

Vector multiplet: {A1,A2,A3,A4,Φ0,Φ9,ψL,ψR}, (4.1)
Matter hypermultiplet: {Φ5,Φ6,Φ7,Φ8,χL,χR}. (4.2)

N = 2∗ SYM is the unique massive deformation of N = 4 SYM that
breaks half of its supersymmetries. This is achieved by giving mass to the
matter hypermultiplet, either via the N = 1 superpotential [10, 11], or using
Scherk-Schwarz reduction of N = 1 SYM [7, 12]. The latter prescribes the
following replacement rules in the action (3.13):

D0Φi → D0Φi +Mi jΦ j, i, j = 5, . . .8 (4.3)

D0χ → D0χ +
1
4

Γi jMi jχ, (4.4)

where Mi j, a 4× 4 matrix, is a generator of SU(2)R
R, and is normalized as

Mi jMi j = 4M2, where M is the mass scale. All the repeated indices are summed
over. These replacements will give the standard mass term to the bosons and
the fermions, and a cubic coupling term for the scalars. In its infinite-mass
limit, the matter hypermultiplet can be integrated out, and the resulting theory
is the pure N = 2 SYM.

In order to apply the localization method to the partition function of N = 2∗
SYM, we need to put it on S4. Since the theory is no longer conformal due to
the hypermultiplet mass scale, an additional curvature correction term to the
mass is required in order to preserve supersymmetry, besides the conformal
coupling discussed in (3.15). The full action can be found in [7], with the
details of the localization procedure therein. We are interested in the final
localized result, that we will discuss next.

4.1 Partition function
Theories with an action can be quantized using a path integral. The partition
function in Euclidean signature is defined as

Z =

ˆ
Dφ e−S[φ ], (4.5)
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which is an infinite-dimensional integral, over all possible field configurations
(represented by the measure Dφ ) on all of spacetime.

For N = 2∗ on S4 and its limiting cases N = 4 (massless hypermulti-
plet) and pure N = 2 (infinitely-heavy hypermultiplet that is integrated out),
there is one localization locus. It is the moduli space of Coulomb vacua,
parametrized by the vacuum expectation value of a scalar of the vector multi-
plet:

〈Φ0〉= diag(a1, . . . ,aN), (4.6)

where ai are real numbers. The Coulomb phase of the theory is a conse-
quence of the spontaneous symmetry breaking of the bosonic quartic potential
∼ [ΦI ,ΦJ]

2, that breaks the original gauge group U(N) to U(1)N .
The result for the localized partition function is of the form:

Z =

ˆ
dNa ∏

i< j
(ai −a j)

2 Z1-loop(a) |Zinst(a)|2 e−
8π2N

λ ∑k a2
k . (4.7)

The classical action comes from the curvature coupling of the scalars in (3.15).
The 1-loop correction, for the different theories are

N = 2∗ SYM: Z1-loop = ∏
i< j

H2(ai −a j)

H(ai −a j −MR)H(ai −a j +MR)
(4.8)

N = 2 SYM: Z1-loop = ∏
i< j

H2(ai −a j) (4.9)

N = 4 SYM: Z1-loop = 1 (4.10)

where

H(x)≡
∞

∏
n=1

(
1+

x2

n2

)n

e−
x2
n . (4.11)

We used the ’t Hooft coupling λ = g2
Y MN, and R is again the radius of the

hypersphere.
The instanton partition function is the generating function of instantons of

topological charge k:

Zinst =
∞

∑
k=0

(ei2πτ)kZk, (4.12)

where Z0 = 1 and

τ = i
4π

g2
YM

+
θ
2π

(4.13)

is the complexified Yang-Mills coupling1.

1 The instanton action is the pure Yang-Mills action with an additional topological term. For an
instanton of charge k, the action is given by:

SYM(k) =− 1
2g2

YM
tr
ˆ

d4x
√

gFμν Fμν − i
θ

8π2 tr
ˆ

F ∧F =

(
8π2

g2
YM

− iθ
)

k =−i2πτ k.
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For the N = 4 case, Zinst = 1, [13]. For the N = 2 cases, it is non-trivial,
[14]. However, the regime of interest is the large N limit:

N → ∞ and λ = g2
YMN is kept finite, (4.14)

then the expansion parameter becomes

ei2πτ = e−
8π2N

λ +iθ ,

hence the instanton contributions are expected to be exponentially suppressed.
This is checked in [15].

4.2 Large-N matrix model
The localized partition function (4.7) is a matrix model. For the N = 4 case,
the model is particularly simple, it is the well-known Gaussian unitary en-
semble (GUE) in the random matrix theory. The product of the eigenvalue
differences is the Vandermonde determinant squared, which is essentially the
Jacobian factor after diagonalizing the Hermitean matrix in (4.6). Writing it
in terms of the effective action:

ZGUE =

ˆ
dNa e−S[a], S[a] =−

N

∑
i�= j

log(|ai −a j|)+ 8π2N
λ

N

∑
k

a2
k (4.15)

we see that the Vandermonde determinant gives the 2d Coulomb potential.
This partition function is indeed identified with that of a 2d Coulomb gas con-
fined on a line, with the repulsive electrostatic force and an attractive harmonic
force [16].

For N = 2∗, the matrix model is highly non-trivial, but we can solve it
systematically in the large N limit, where the saddle-point approximation and
the continuous approximation in principle apply. The only relevant quantity to
compute then is the distribution of the eigenvalues:

ρ(x) =
1
N

N

∑
i=1

δ (x−ai). (4.16)

It must have a compact support, i.e. ρ(±μ) = 0, where the endpoint μ de-
termines the scale of the spontaneous symmetry breaking. By definition, it is
also unit-normalized: ˆ μ

−μ
dxρ(x) = 1. (4.17)

The saddle-point equation, from extremizing the effective action (4.15) in
terms of (4.16), is a singular (principal value) integral equation:

δS[ρ]
δρ(x)

= 0 ⇒
 μ

−μ
dyK(x− y)ρ(y) =

8π2

λ
x. (4.18)
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Figure 4.1. Wigner’s semicircle distribution, solution to the Gaussian unitary ensem-
ble (GUE).

The singular kernel for the GUE case is just the Hilbert kernel2, that is

KHilbert(x) =
1
x
. (4.19)

In the Coulomb gas picture, the saddle-point equation determines the equi-
librium distribution due to the force balance. The result is the well-known
Wigner’s semicircle distribution

ρ(x) =
2

πμ2

√
μ2 − x2, μ =

√
λ

2π
, (4.20)

shown in figure 4.1.
For the N = 2∗ SYM, the kernel is

K(x) =
1
x
−K (x)+

1
2

K (x+MR)+
1
2

K (x−MR), (4.21)

where

K (x)≡−H ′(x)
H(x)

= 2x
∞

∑
n=1

(
1
n
− n

n2 + x2

)
, (4.22)

and much more interesting features show up in the saddle-point solution, as
shown in figure 4.2. Let us briefly review these results.

In the strong-coupling regime, the bulk of the distribution is also a semicir-
cle but with a rescaled endpoint:

ρ(x) =
2

πμ2

√
μ2 − x2, μ =

√
λ (1+(MR)2)

2π
, (λ → ∞). (4.23)

2 The name is in relation with the Hilbert transform. It is also known as Cauchy kernel in the
literature.

23



This is due to the fact that the kernel is approximately a Hilbert kernel [17]:

K(x)≈ 1+(MR)2

x
, (λ → ∞). (4.24)

Close to the edge-points, this approximation no longer holds, and it was the
goal of Paper I to find the endpoint distribution in the strong coupling regime.

We computed the endpoint distribution exactly using the so-called Wiener-
Hopf method, which is essentially the Fourier transform of the convolution
integral in (4.18) in a semi-infinite interval (zero being at the endpoint), that
relies on a certain factorization of the kernel.

The distribution exhibits oscillatory behavior with a period proportional to
the scale MR. In the decompactification limit MR → ∞ (but μ � MR because
we remain in the strong coupling limit), the peaks of the oscillation diverge,
see figure 4.2. The analytical endpoint distribution at strictly infinite coupling
and flat space, with ξ ≡ μ − x, is summarized below:

ρ(ξ ) =
23/2

πμ3/2

⎧⎨
⎩

MR
√

ξ , (ξ ∼ 1)√
MR
2

∑

[
ξ

MR

]
k=0

({
ξ

MR

}
+ k
)−1/2

(ξ ∼ MR),
(4.25)

where [·] and {·} denote the integer and the fractional part, respectively, and
μ = MR

√
λ/(2π), from (4.23).

Physically, the cusps appear due to a resonance phenomena

mi j = |ai −a j ±MR| ≈ 0 (4.26)

of very light states in the hypermultiplet sector. Similar features were already
observed for finite couplings in the flat space limit [9], and it was numerically
shown that there are infinite-many critical couplings defined by

μ = g(λ (n)
c )MR, g(λ (n)

c ) =
n
2
, n = 1, . . . (4.27)

This means there are infinitely many phase transitions, where the phases are
distinguished by the number of cusps of the distribution, and the coupling λ
is the order parameter. At strong coupling, the critical behavior persists and
matches with the one obtained from the decompactification limit, hence these
two limits commute [18].

Such phase transitions are common among large-N matrix models, and have
been observed in e.g. ABJM models [19], 5d N = 1 SYM with massive
matter multiplets [20]. In our case, the gauge/string duality in principle gives
us an opportunity to understand them from the point of view of gravity. The
physical observables we use to probe the infinite-coupling phase are Wilson
loops, the topic of the next chapter.
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Figure 4.2. Phase diagram for the partition function of N = 2∗ SYM on S4, in the
large N limit. The plots at the decompactification limit are taken from [9], and the ones
at strong coupling limit are from Paper I, where only close to the endpoint is shown
and R = 1. In the zero mass limit, we have N = 4 SYM, where the distribution is the
Wigner semicircle for any coupling.
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5. Wilson loops

A Wilson loop is a gauge-invariant observable, defined as the expectation
value of the character of the representation R of the gauge group (U(N) in
our case):

WR(C) = 〈trRU〉 , U ∈U(N) (5.1)

where U is a path-ordered exponential of the gauge connection Aμ , transported
along an arbitrary curve C parametrized by s:

U = Pexp
[

i
ˆ

C
ds ẋμAμ

]
, (5.2)

where the dot denotes derivative respect s.
Physically, the Wilson loop operator measures the phase associated with

moving a probe particle with charge R around a curve C in spacetime. In
particular, the long rectangular Wilson loop in the fundamental representation,
the path shown in the figure 5.1, determines the static quark and antiquark
potential:

Vqq̄(L) =− 1
T

lim
T→∞

logW1(C). (5.3)

In confined theories such as QCD, the potential is linear, which is referred as
the area law in terms of the Wilson loop, logW ∝ L×T , while in the decon-
fined phase, the Wilson loop follows the perimeter law, logW ∝ L.

We are interested in a supersymmetric extension of the Wilson loop, such
that it is computable through localization, see conditions (2.5). We will study
the so-called Maldacena-Wilson loop [21], where we add a coupling to the
scalars of the vector multiplet:

U = Pexp
[ˆ

C
ds
(
iẋμAμ + |ẋ|nIΦI

)]
, I = 0,9. (5.4)

Let us start by reviewing some known results in N = 4 SYM and then gener-
alize them to N = 2∗.

5.1 Wilson loops in N = 4 SYM
The simplest Wilson loop is an infinite straight line. It is a half-BPS object,
meaning it commutes with half of the 32 supercharges of N = 4 SYM. This
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Figure 5.1. Trajectory of a probe quark and antiquark separated by distance L, and
travel T distance in time.

fact protects the Wilson line from quantum corrections and its value is simply
one:

〈Wline〉= 1. (5.5)
By conformal transformation, the Wilson line can be mapped to a circular

Wilson loop. The result, however, is not the same. This is often referred to
as a conformal anomaly, and it is due to the fact that large conformal trans-
formations such as inversion are not symmetries in the flat space (infinity is
not a point of Rd). On the sphere, these are symmetries, hence there is no
distinction between a circle and a line, and the expectation value of either is
the same as for a circle on R

4 [22]. The circular Wilson loop, which is also
half-BPS, is exactly computable using the localized partition function for the
theory on S4, where the path is the equator of sphere, see figure 5.2.

5.1.1 Fundamental representation
The circular Wilson loop in the fundamental representation is mapped to a
matrix model expectation value:

W1 =

〈
1
N

N

∑
i=1

e2πai

〉
matrix model

, (5.6)

which can be solved exactly for GUE [22]:

W1 =
1
N

L1
N−1(−λ/(4N))e

λ
8N , (5.7)
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Figure 5.2. The contour of the circular Wilson loop we study is the equator of the
hypersphere the theory is defined on.

where L is the generalized Laguerre polynomial:

Lm
n (x) =

x−mex

n!
dn

dxn (e
−xxn+m). (5.8)

In the large N limit and fixed ’t Hooft coupling, (5.6) can be written as:

W1 =

ˆ μ

−μ
dxρ(x)e2πx (5.9)

=
2√
λ

I1(
√

λ ), (N → ∞ and λ - fixed) (5.10)

where for the last equality, we used the semicircle distribution (4.20), since
the Wilson loop insertion to the partition function is subleading in N. I1(x) is
the modified Bessel function:

I1(x) =
∞

∑
n=0

1
n!(n+1)!

( x
2

)2n+1
. (5.11)

Historically, the large-N result was initially obtained by Erickson-Semenoff-
Zarembo [23], by summing over rainbow diagrams in perturbation theory, and
they conjectured the Gaussian matrix model structure for N = 4 SYM. Even-
tually Pestun’s work in localization [7] proved it.

In the ’t Hooft limit, which is the holographic regime,

W1 =

√
2
π

λ−3/4e
√

λ , (N → ∞ and λ → ∞). (5.12)

5.1.2 Higher rank representations
Exact results for arbitrary representation of U(N) can also be obtained [24].
These are very generic, though, but the generating function of k-antisymmetric
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representation

〈GAk(t)〉=
N

∑
k=0

tk WAk (5.13)

has a nice compact form:

〈GAk(t)〉= det
(

tδi j +L j−i
i−1(−λ/(4N))e

λ
8N

)
. (5.14)

We study the ’t Hooft limit for the symmetric (+) and the antisymmetric (-)
representations. The generating functions1 for the character of these represen-
tations are explicitly known:

G±
k (ν) =

N

∏
i=1

(1∓ eai−ν)∓. (5.15)

Notice that these are also the Bose (+) and Fermi (-) distributions, in terms of
the eigenvalues ai.

The standard procedure is to derive the character by inverting the generating
function using Cauchy’s integral formula:

χ±
k ≡ tr±U =

ˆ C+iπ

C−iπ

dν
2πi

eνkG±
k (ν), (5.16)

where C > ai,∀i, for the symmetric case, and C is arbitrary for the antisym-
metric case.

All we need to do now is to compute the expectation value of the above
integral. We can still employ the semicircle distribution (4.20), and we further
take the large representation limit k ∼ N, which allows us to use the saddle-
point method in (5.16), [25]. The saddle-point equation to solve for ν∗ is

k
N

=

ˆ μ

−μ
dx

ρ(x)
eL(ν∗−x)∓1

, (N → ∞ and
k
N

- fixed), (5.17)

which is analogous to the particle density equation in a Bose/Fermi system.
The final leading solutions for the antisymmetric representation is

logW−
k = N

2
√

λ
3π

sin3 θ , (5.18)

where cosθ ≡ ν∗/μ satisfies the transcendental equation

θ − 1
2

sin2θ = π
k
N
, (5.19)

resulting from (5.17) after the step-function approximation of the Fermi dis-
tribution.

1 Here, unlike in (5.13), we use the expansion parameter e−ν instead of t.
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For the symmetric representation, however, there is no saddle-point solution
for (5.17). This is the same phenomenon as the Bose-Einstein condensation. It
is possible to analytically continue the solution to the second Riemann sheet,
though, as done in [25], and the final result is:

logW+
k = 2N f (κ) , κ ≡

√
λ k

4N
(5.20)

where
f (x) = x

√
1+ x2 + arcsinhx. (5.21)

The drawback of the analytic continuation was that computing large-N cor-
rections became less clear, as attempted in [26]. In Paper II and Paper IV, we
used a more systematic approach. Paper IV focused exclusively on the sym-
metric Wilson loop in N = 4 SYM, where subleading corrections in N were
computed. This result is consistent with the expansion of the known exact re-
sult for the multiply wrapped fundamental Wilson loop [27], which helped to
clarify the apparent mismatch observed in [26], and agrees with the analysis by
[28] that symmetric representations and the multiply-wound fundamental ones
differ by exponentially-suppressed terms in strong coupling. Paper IV also
derived the strong-coupling corrections, in response to the strong-coupling
expansion done for the antisymmetric case in [29], where the Sommerfeld ex-
pansion of the Fermi distribution was used.

5.2 Wilson loops in N = 2∗ SYM
The story can be extended to N = 2∗ SYM on S4. Here we have an extra
parameter: the scale MR. We will take the decompactification limit MR → ∞,
where interesting phase transitions were seen, and also, the dual theory is fully
known on R

4 [30].

5.2.1 Fundamental representation
Since the fundamental Wilson loop is basically an exponentially-weighted in-
tegral (5.9), its value in the strong coupling limit is determined by the largest
eigenvalue μ (recall μ ∼

√
λ , see (4.23)). Thus, we do not expect its strong

coupling corrections to probe the cusps region. In Paper I, we computed the
subleading correction to the endpoint μ , which lead to the same correction to
the Wilson loop (in terms of the perimeter l = 2πR):

logW1 = P(λ )Ml, P(λ ) =
λ
2π

− 1
2
+O(λ−1), (MR → ∞). (5.22)

The leading order term is the same as its homologous case in N = 4, only
rescaled by MR [17], as a direct consequence of the semicircle behavior of
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the bulk distribution (4.23). As a consistent check, when M → 0, the Wilson
loop goes to 1, as expected for the N = 4 case. Moreover, we clearly see the
perimeter law here since the theory is not confining neither conformal.

5.2.2 Symmetric and antisymmetric representations
In Paper II, result for symmetric and antisymmetric representations were com-
puted, up to the next-to-leading order in the strong coupling expansion. The
decompactified results at the leading order in N are also the same as the ones
in the N = 4 case, but rescaled differently:

logW−
k = NMR

2
√

λ
3π

sin3 θ , (5.23)

logW+
k = 2N(MR)2 f

( κ
MR

)
, (5.24)

where θ and f satisfy the same equation as in (5.19) and (5.21), respectively.
Now, the interesting part lays in the subleading terms. Unlike the funda-

mental representation, the higher rank representations do probe the endpoint
distribution of the eigenvalues, which has periodic cusps with period MR, see
figure 4.2. The results are:

δ logW−
k =−2π2

3
NMR
λ 3/4

⎧⎪⎪⎨
⎪⎪⎩

4 f̃ 3 0 < f̃ ≤ 1
f̃ 3 +6 f̃ − 3

f̃ 1 < f̃ ≤ 1+
√

2
...

, f̃ =
λ 3/4k
4
√

πN

(5.25)
and

δ logW+
k =

25π3/2

5
N(MR)2

λ 3/4

(
v5/2 +Θ(v−1)

(
v+

2
3

)
(v−1)3/2

)
, (5.26)

where Θ(x) is the Heaviside function and v is written in terms of the scaling
parameter f̃ as

3
2

f̃ = v3/2 −Θ(v−1)(v−1)3/2, f̃ =
λ 3/4k

8
√

πMRN
. (5.27)

The solutions are plotted in figure 5.3. The phase transitions are of second and
third order for the antisymmetric and symmetric representations, respectively,
in the sense that the derivatives of the free energy F =− 1

N logW with respect
to f̃ exhibit discontinuity at these orders.
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Figure 5.3. Strong coupling correction for (rescaled) log of Wilson loops in antisym-
metric representation (up) with the critical points at {1,1+

√
2,1+

√
2+

√
3, . . .}, and

in symmetric representation (down) with the critical point at 2/3.
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Part II:
Gauge/string duality





6. Supergravity

Quantum gravity theories must contain massless spin 2 particles, that are
gravitons. In the same fashion as we built super-Yang-Mills (SYM) theories,
with maximum spin 1, we can build supergravity (SUGRA) theories by requir-
ing the supermultiplet to contain gravitons (and no higher spin particles). This
constrains the number of super-Poincaré charges to a maximum of 321.

For one copy of supersymmetry, i.e. N = 1, we have a unique supergravity
theory in 11 dimensions [32], from which many lower dimensional supergrav-
ity theories can be obtained by the means of Kaluza-Klein compactication and
dimensional reduction. This theory contains a metric, an antisymmetric rank
3 tensor and a Majorana gravitino field.

Compactifying it on a circle and taking its radius to be zero, we obtain type
IIA N = 2 SUGRA in 10 dimensions, which is also a low energy effective
action of type IIA superstring theory. Using T-duality2, we can obtain type IIB
N = 2 SUGRA, which is of our interest to study the AdS/CFT duality. Let
us list its field content:

rank 2 symmetric tensor: metric g
complex scalar: axion-dilaton C(0) + i e−Φ

rank 2 antisymmetric tensor C(2) + iB(2)
rank 4 antisymmetric tensor C(4)
Majorana-Weyl 3/2-spinor: gravitinos ψ I

M, I = 1,2
Majorana-Weyl 1/2-spinor: dilatinos λ I , I = 1,2

The gauge potentials C(i) are called the Ramond-Ramond potentials. The
fields above must satisfy the supergravity equations that consist of [33]:

• Einstein’s equations
• Maxwell’s equations
• The dilaton equation

1 In the unitary massless spinor representation S, half of the supercharges annihilates the highest
weight state. Only half of the remaining supercharges are spin-raising operators (the other half
lowers spin). On the hand, we can have at most 8 raising operators from spin -2 to 2 by steps of
1/2. Then (see e.g. [31]), for N copies of supersymmetries:

1/4×N ×dim S = 8 ⇒ N dim S = 32.

2 It states that strings compactified on a torus with radius R is equivalent to strings compactified
on a torus with radius proportional to 1/R.
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• (Hodge) self-duality equation: ∗F(5) = F(5), where

F(5) = dC(4)−
1
2

C(2)∧dB(2) +
1
2

B(2)∧dC(2). (6.1)

To avoid introducing more notation, we refer the reader to e.g. [10] for explicit
expressions of the above equations.

The supersymmetry condition imposes the variation of dilatinos and of
gravitinos to be zero [33]. These are Killing equations and by solving them
we obtain the Killing spinors of the background geometry. For AdS5 ×S5, the
solutions can be found in [34], and for the Pilch-Warner background, see [35]
and the appendix D of Paper III.

6.1 AdS5 ×S5

The simplest solution to the supergravity equations is AdS5 × S5 geometry,
where the dilaton Φ, the B-field and the gauge potentials C(0) and C(2) are
trivial.

Since spheres are more familiar, let us review only the metric of the anti-de-
Sitter space (AdS). It is a hyperboloid with Minkowski signature, embedded
in the flat space of one dimension higher, i.e.:

ds2 =−dX2
0 −dX2

D +
d−1

∑
i=1

X2
i (6.2)

with the constraint

−X2
0 −X2

d +
d−1

∑
i=1

X2
i =−L2. (6.3)

Figure 6.1 shows an example for AdS2. The isometry group is clearly SO(2,d).
By solving the constraint, the induced metric (in global coordinates) for

AdSd+1 becomes:

ds2 = L2(−cosh2 ρdτ2 +dρ2 + sinh2 ρdΩ2
d−1). (6.4)

where dΩ2
d is the metric of Sd , ρ ≥ 0 and 2π ≥ τ ≥ 0.

Another set of solutions that solve the constraint (6.3) is the Poincaré coor-
dinates. These are preferred for holographic studies, since the metric in these
coordinates

ds2 =
L2

z2 (ημνdxμdxν +dz2) (6.5)

is manifestly conformal invariant, with flat space slicing for any z > 0 (see
figure 6.1), despite it covers only half of the geometry. The conformal bound-
ary3 corresponds to z → 0, and z, called radial coordinate, is interpreted as the
energy scale of the boundary theory in AdS/CFT.

3 The boundary of AdS is infinitely far aways from the bulk, but it can be mapped to a finite
distance using a conformal transformation.
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Figure 6.1. Left: AdS2 ×S2, where AdS2 is defined by x2 − y2 − t2 = −L2, and at all
its surface points we find the sphere. Right: Flat space slicing for AdSd in Poincaré
coordinates.

6.2 D-branes
D-branes are soliton-like solutions of the supergravity equations that preserve
half of the 32 background supercharges (BPS solutions), see textbook [36]:

ds2 = Hp(r)−1/2ημνdxμdxν +Hp(r)1/2δi jdyidy j (6.6)

eΦ = gsHp(r)(3−p)/4 (6.7)

C(p+1) = (Hp(r)−1 −1)dx0 ∧·· ·∧dxp (6.8)
B(2) = 0, (6.9)

where xμ ,μ = 1, . . . , p are the D-brane worldvolume coordinates, yi, i = p+
1, . . . ,9 are the transversal directions to the brane, and the harmonic function
is

Hp(r) = 1+
(

Lp

r

)7−p

. (6.10)

It is intuitive to think of these solutions as charged point-like particles from
the (9− p)-dimensional transverse space point of view. For N coincident D-
branes, their total charge is proportional to N, and from the Gauss law, we
obtain

N ∝
ˆ

S9−p−1
∗F(p+2), (6.11)

quantizing therefore the (Hodge dual) of the flux of the Ramond-Ramond field
C(p+1) through the hypersphere, F(p+2). The above relation also determines the
characteristic length scale

L7−p
p = (4π)(5−p)/2Γ

(
7− p

2

)
gsNα ′(1−p)/2, (6.12)

where gs is the string length and α ′ is the Regge slope. We will comment on
these parameters in chapter 7, where we will also see that AdS5×S5 geometry
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can be obtained as the near horizon geometry of a stack of N coincident D3-
branes.

To conclude this section, let us write down the generic action of a single
D-brane, that will be used in different contexts through out the thesis. The
action consists of the Dirac-Born-Infeld (DBI) term:

SDBI = TDp

ˆ
M

e−Φ

√
det
(

P[g]+P[B]+
1

TF1
F
)
, (6.13)

and the Wess-Zumino (WZ) term with the Ramond-Ramond potentials pulled
back to the worldvolume:

SWZ = TDp

ˆ
M

exp
(

B+
1

TF1
F
)
∧P[C]. (6.14)

The couplings are

TF1 =
1

2πα ′ , TD1 =
1
gs

TF1, TDp = TD1

(
2π

√
α ′
)1−p

. (6.15)

6.3 Pilch-Warner geometry
Another solution that preserves N = 2 supersymmetric flow is found by
Pilch-Warner [30]. The geometry is a deformed and warped AdS5 × S5, and
all the fields are non-trivial in this case. The metric (in Einstein frame) is

ds2 =
(cX1X2)

1/4
√

A
L2
(

M2A
c2 −1

ημνdxμdxν +
1

A(c2 −1)2 dc2 (6.16)

+

[
1
c

dθ 2 +
sin2 θ

X2
dφ 2 + cos2 θ

(
A
X1

(σ2
1 +σ2

2 )+
A

cX2
σ3

)])
,

where σi, i = 1,2,3 are the Maurer-Cartan forms for SU(2) and

X1(c,θ) = cos2 θ + cA(c)sin2 θ ,
X2(c,θ) = ccos2 θ +A(c)sin2 θ ,

A(c) = c+
1
2
(c2 −1) log

(
c−1
c+1

)
.

It reduces to AdS5 × S5 near the boundary, i.e. expand the metric for c ≈
1+ z2M2/2, where z is the radial coordinate in (6.5), then set M = 0.

The Pilch-Warner solution is dual to N = 2∗ SYM on R
4. Similarly the

dual for N = 2∗ on S4 has been studied in [11], but the solution is partially
known only. We are interested in the flat space regime, where interesting
physics happen such as the phase-transitions discussed in Part I (see figure
4.2). Hence, the dual computations will be done in the Pilch-Warner back-
ground.
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7. AdS/CFT correspondence

We have seen that a Yang-Mills theory with gauge group U(N) is character-
ized by two parameters: the Yang-Mills coupling gYM and the gauge group
rank N. Before stating the gauge/string duality, also known as the holographic
principle, let us discuss different perturbative limits in string theory.

In string theory, there are two parameters used for expansion: the string
coupling constant gs and the string length1 ls =

√
α ′. When the string coupling

is small, it leads to classical strings, where only tree level diagrams are taken
into account. This means strings do not merge and split, which would give
different worldsheet topologies, see figure 7.1. If the strings propagate in a
curved background with a characteristic length scale L, the classical gravity
limit is obtained by requiring additionally ls � L. In other words, strings can
be approximated by point particles (their center mass).

The AdS/CFT correspondence was originally conjectured by Maldacena
[37], and stated the below theories are dynamically equivalent:

• N = 4 SYM in 4 dimensions with gauge group SU(N)
• Type IIB superstring theory on AdS5×S5 (both with the same radius L),

where the F(5) has integer flux N on S5.
The parameters of these two theories are related as:

g2
YM = 4πgs, λ ≡ g2

YMN =

(
L
ls

)4

. (7.1)

The conjecture was further developed by [38, 39], and since its original
inception, other examples have been found such as a lower dimensional corre-
spondence between a 3d CFT called ABJM theory and type IIA superstring on
AdS4 ×CP3 [40], known as AdS4/CFT3 correspondence. It is also an active
field of research, but here, we will focus only on the N = 4 case.

We see the first relation in (7.1) implies the YM’s coupling to be small in
the classical strings limit. Moreover, from the second relation, L/ls is arbitrary
in this limit, hence N must be large to compensate the smallness of gYM. The
’t Hooft coupling λ is then kept fixed when N is large. This limit gives planar
Feynman diagrams, see figure 7.2, in the leading order on the gauge theory
side, and corresponds to the genus expansion in string worldsheet, see figure
7.1. This was actually noticed by ’t Hooft long before the advent of AdS/CFT
correspondence [41], and suggested planar diagrams as triangulations of the
string worldsheet. Notice that, in the planar limit, the Lie groups U(N) and
SU(N) are indistinguishable.

1 It is a fundamental scale in string theory, and not literally the length of the strings.
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Figure 7.1. Genus expansion of the closed string worldsheet and the point-particle
approximation.

Figure 7.2. A planar diagram (left) and a non-planar diagram (right).

If we further impose classical gravity limit, then the ’t Hooft coupling must
be large too. Hence, the correspondence becomes a form of strong/weak du-
ality. This is the ’t Hooft limit and it is the most computationally accessible
one, since our understanding of string theory beyond the above-mentioned
perturbative regimes is poor. Moreover, it is potentially seen as a tool to solve
strongly coupled quantum field theory using supergravity. Let us summarize
the different limits in the table below:

N = 4 SYM Type IIB strings on AdS5 ×S5

N, λ = g2
Y MN gs =

λ
4πN , T =

√
λ

2π
N → ∞, λ fixed gs = 0, T fixed
N → ∞, λ → ∞ gs = 0, T → ∞

Symmetry-wise, the conjecture is consistent:

N = 4 SYM Type IIB strings on AdS5 ×S5

conformal symmetry SO(4,2) isometry of AdS5: SO(4,2)
R-symmetry SO(6) isometry of S5: SO(6)
SUSY: 32 supercharges SUSY: 32 supercharges
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As for local operators in CFT, the AdS/CFT statement is that2

ˆ
φ∼φ(0)

Dφe−Sstring[φ ] = 〈e−
´

∂AdS φ(0)O〉CFT , (7.2)

where φ(0) represents the boundary values of fields φ living in the bulk of AdS.
In the supergravity limit, the on-shell supergravity action corresponds to the
generating function of connected graphs in the field theory. In other words,
bulk fields with non-trivial boundary values are sources of gauge invariant
operators in CFT. Since the volume of AdS is infinite (due to the second or-
der pole in the radial coordinate), the divergences are removed using holo-
graphic renormalization, which is analogous to the renormalization of cor-
relation functions. Holographic renormalization consists of expanding bulk
fields close to the boundary, identifying the divergent terms and remove them
by counterterms, as in the usual renormalization procedure, see e.g. [42] for a
review.

A formal proof of AdS/CFT correspondence is yet elusive, despite numer-
ous explicit checks. Next, we will review the original argument from [37].

7.1 N D3-branes
The origin of this correspondence lies on the two perspectives of D-branes in
superstring theory.

D-branes are non-perturbative objects where open strings end (with Dirich-
let conditions, i.e. fixed endpoint with zero momentum). In the weak coupling
limit gs � 1, open strings can be thought as excitations of D-branes, see e.g.
figure 7.3. In the low energy limit E � 1/ls, the massive string excitations can
be ignored.

Consider a single D3-brane and let us expand its action (the DBI part) for
ls � 1, which gives the low energy open (bosonic) string action:

S =− 1
2πgs

ˆ
d4x(1+

1
4

FμνFμν +ηIJ
1
2

∂ μΦI∂μΦJ + . . .). (7.3)

These fields are the gauge field Fμν that transforms in the unbroken Lorentz
symmetry of the 4-dimensional worldvolume, and massless scalar fields ΦI

that are Goldstone bosons of the broken translation symmetry in the six trans-
verse directions of the target space, due to the presence of the brane. The
resulting effective theory (excluding the term with no fields) is a U(1) gauge
theory living in the worldvolume of the D3-brane. This identifies the string
coupling constant with the Yang-Mills coupling: 4πgs = g2

YM. The gauge
group is U(1) for a single D-brane, and for N D-branes, it gets enhanced from

2It is generalized to asymptotic AdS spaces, such as the Pilch-Warner geometry.
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Figure 7.3. All the possible (oriented) open string excitations in two D-branes. If we
have N non-coincident D-branes, then there are N2 possible open string configura-
tions.

U(1)N to U(N) if they are coincident, see explanations in [43]. The effec-
tive coupling constant is then given by gsN. The full spectrum also contains
closed string modes and interaction terms, but by carefully taking the low en-
ergy limit, these sectors decouple and the interaction term vanishes.

On the other hand, D-branes are also solutions of supergravity field equa-
tions, as discussed in chapter 6. Hence, as gravitational objects, they can de-
form the surrounding spacetime, and closed strings can propagate there. For a
stack of N coincident D3-branes, the metric is

ds2 =

(
1+

L4

r4

)−1/2

ηi jdxidx j +

(
1+

L4

r4

)1/2

(dr2 + r2dΩ2
5). (7.4)

Notice the two limits for this metric:
• r � L: leading to the 10-dimensional flat Minkowski metric.
• r � L: redefining z ≡ L2/r, we get the Poincaré patch for AdS5 ×S5.

The characteristic length scale (6.12) in this case is

L4

l4
s
= 4πgsN. (7.5)

By taking the low energy (Maldacena) limit: ls → 0 while L/ls fixed, we can
decouple the two sectors, where the flat space part gets canceled exactly with
the closed string modes in the open string analysis. We arrive now the con-
clusion of the AdS/CFT correspondence. However, instead of U(N), we have
SU(N), because there is an overall U(1) phase that decouples, and this degree
of freedom corresponds to a boundary field that cannot propagate into the bulk
of AdS5.
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8. Holographic Wilson loops

As discussed in chapter 5, Wilson loops are important gauge invariant observ-
ables that can play the role of order parameters of the different phases of the
gauge theory. Let us describe the basic idea that lead to find the holographic
dual of Wilson loops, in the context of AdS/CFT correspondence. We then
summarize the results obtained for the Pilch-Warner supergravity.

8.1 In the AdS5 ×S5 background
8.1.1 Fundamental representation
In the fundamental representation, the (Maldacena-)Wilson loop (5.4) describes
the phase of a trajectory of an external quark. A way to introduce the massive
quark is to consider N = 4 SYM theory with all the fields in the adjoint rep-
resentation of U(N + 1) instead. Then, we break spontaneously the gauge
group U(N + 1) → U(N)×U(1). In this way, the off-diagonal states of the
scalars that were in the adjoint of U(N + 1) become fundamental quarks and
anti-quarks in U(N), which are massive due to the Higgs mechanism. This
is a useful picture because, in string theory, it is equivalent to separating one
D-brane from the original stack of N+1 coincident D3-branes. This produces
excited open strings that stretch along the stack and the individual brane, with
the mass proportional to the separation distance. Since we consider probe
quarks (non-dynamical), the brane must be infinitely far away from the stack.
The stretched strings not only source the gauge fields, but by pulling the N
branes, they cause deformation on the branes that are described by the scalar
fields in (5.4). The details of the derivation can be found in the appendix of
[44].

Now, let us consider the dual gravitational picture. The stack gravitates
and the near-horizon geometry is AdS5 × S5. Then the position of the single
D-brane lays on the conformal boundary of AdS5, i.e. z → 0, and sits at a
point on S5. The probe particle moves on the single D-brane. The Wilson
loop operator is then dual to the partition function of fundamental strings in
AdS5×S5 whose worldsheets end on the same curve C that defines the Wilson
loop at the boundary, [21]:

W (C) =

ˆ
C=∂Σ

DXe−Sstring[X ]. (8.1)
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Figure 8.1. Circular Wilson loop as the minimal worldsheet area Σ drawn by string
ending in the contour C at the boundary of AdS5.

In the ’t Hooft limit, which corresponds to classical supergravity limit, min-
imizing the bosonic string action is sufficient for the leading order, which is es-
sentially the minimal worldsheet area. Nevertheless, the area is infinite in AdS,
hence we must regularize it. For example, the minimal surface that is dual to
the circular Wilson loop in the fundamental representation is parametrized as

z(r) =
√

R2 − r2, r ∈ [0,R], φ ∈ [0,2π]. (8.2)

This result can be obtained either by minimizing the string Nambu-Goto action
[44], or by exploiting the conformal symmetry, i.e. mapping the special con-
formal transformation of the straight line solution [45]. The induced world-
sheet metric, that is the pullback of the background metric g (6.5) in polar
coordinates for some xi, is:

ds2 =
L2

z2

(
(1+ z′2)dr2 + r2dφ 2) . (8.3)

Then the on-shell (Nambu-Goto) action gives:

S = TF1

ˆ √
detP[g] (8.4)

=

√
λ

2π

ˆ 2π

0
dφ

ˆ √
R2−ε2

0
dr

r
z2

√
1+ z′2 (8.5)

=
√

λ
(

R
ε
−1
)
. (8.6)

The correct prescription to regularize the action is to set the boundary cut-off
at z = ε , then, we remove the perimeter divergence [44]. This regularization
scheme will be used for other cases of Wilson loop dual computations. The
finite remnant in (8.6) matches with the leading order field theory result (5.12),
i.e.

W1 = e
√

λ , (N → ∞ and λ → ∞). (8.7)
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Figure 8.2. Circular Wilson loop of rank k as a D-brane with k string charges dissolved
in it and the worldvolume ends in the contour C at the boundary of AdS5.

In order to compute the subleading correction in (5.12), the fermionic con-
tribution must be taken into account. The full string action to use would be the
Green-Schwarz action. Although it is not fully known in curved background,
its quadratic order is known [46], which suffices for 1-loop corrections. Its
quartic order was also derived in [47]. Many efforts have been put into find-
ing the subleading correction [48, 49, 50, 51, 52, 53] but no full matching
has been achieved. The ambiguity in the path integral measure hindered this
computation.

8.1.2 Higher rank representations
The lesson from the fundamental Wilson loop suggests that the string dual
of rank-k representations must be an object that carries k units of the string
charge. Intuitively, if we consider a Wilson loop wrapped k times around
the contour (the k-fundamental representation), we would expect the world-
sheet to puff up, due to repulsive charges from multiple coincident fundamen-
tal strings. We see that the individual string action is no longer useful in this
case. Instead, we can describe the new object in terms of D-branes with fun-
damental string charges dissolve in it. The worldvolume must also pinch off at
the boundary of AdS5, ending along the curve defined by the Wilson loop, see
figure 8.1. Supersymmetry will then guide us which D-brane configurations
are allowed.

More generally, [54] related supersymmetric Wilson loops of any repre-
sentation of the gauge group to a stack of bulk D3-branes or a stack of bulk
D5-branes, see figure 8.3. They proved the correspondence by explicitly inte-
grating out the physics on the D-branes, which results to a half-BPS Wilson
loop insertion in the desired representation in the N = 4 SYM path integral.
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Figure 8.3. A generic Young table, taken from [54]. Row i corresponds to a D3-
brane with ni fundamental string charge dissolved in it. Column j corresponds to a
D5-brane with m j fundamental string charge dissolved in it. Thus, for symmetric (one
row) and antisymmetric (one column) representations, their rank k corresponds to the
string charges a D3-brane and a D5-brane contains.

Let us focus on a single D3-brane and a single D5-brane. Consider first the
line element for AdS5 ×S5 is this convenient form:

ds2 = L2 (du2 + cosh2 udΩ̌2 + sinh2 udΩ2
2 +dθ 2 + sin2 θ dΩ2

4
)
, (8.8)

where u ≥ 0, and π ≥ θ ≥ 0. dΩ̌2
n and dΩ2

n indicate the line element for AdSn
and Sn, respectively. Using the supersymmetry condition1

Γε = ε, (8.9)

where Γ is the kappa symmetry2 projector for the D-brane and ε is the Killing
spinor of the background geometry, we can find the D-brane embeddings that
preserve half of the original supersymmetries. Note that the supersymmetry
condition, which gives first order differential equations, imply the D-brane
equations of motions, which are of second order, up to some integration con-
stants. The list below shows the half-BPS D-brane embeddings with their
worldvolume geometries induced from the target space, and the worldvolume
gauge fields F [55]:

D3-brane: AdS2 ×S2, u = constant, θ = 0 (8.10)
1

TF1
F = L2

√
1+κ2e0e1, κ ≡ sinhu (8.11)

D5-brane: AdS2 ×S4, u = 0, θ = constant (8.12)
1

TF1
F = L2 cosθe0e1 (8.13)

1 May be up to a sign depending on the conventions.
2 It is a fermionic local gauge symmetry that is present also in particles and strings. Its full
definition can be found in Paper III.
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Figure 8.4. S4 that is θ angle away from the pole of S5. The angle depends on the
amount of string charges k that D5-brane contains.

where e0 and e1 are the vielbeins3 of dΩ̌2. We see that the D3-brane sits on a
fixed point on the S5, while the D5-brane sits on S4 that is θ angle away from
the pole of S5, see figure 8.4.

The dual counterparts of the symmetric/antisymmetric representation in the
leading order ’t Hooft limit are the on-shell action DBI (6.13) + WZ (6.14) of
the D3-brane/D5-brane configuration aforementioned:

logW+
k =−SD3, logW−

k =−SD5. (8.14)

Moreover, we must ensure the string charge k constraint, which can be added
as a Lagrange multiplier term to the D-brane action:

Sk =−ik
ˆ

Σ
F ⇒ k =

1
TF1

δSDBI

δF
. (8.15)

The couplings in terms of λ and N are:

TF1 =

√
λ

2πL2 , TD3 =
N

2π2L4 , TD5 =
N
√

λ
8π4L6 , (8.16)

which are derived from (6.15) using (7.1).
Finally, the regularized actions are [56, 55, 57]:

SD3 = −2N(κ
√

1+κ2 + arcsinhκ) (8.17)

SD5 = −N
2
√

λ
3π

sin3 θ , (8.18)

with the θ satisfying the string charge constraint (8.15) that gives (5.19), i.e.

θ − 1
2

sin2θ = π
k
N
. (8.19)

3 Vielbeins are defined by ds2 = ηmnemen, which is often referred as the local frame. In terms
of components: em = em

MdxM , thus, we can relate them to the metric as gMN = ηmnem
Men

M .
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Thus the latitude angle θ depends on the amount of string charges k dissolved
in the D5-brane. In conclusion, there is an exact agreement with (5.20) and
(5.18), according to (8.14).

8.2 In Pilch-Warner background
In N = 2∗ SYM on S4, we took the decompactification limit for circular
Wilson loops in order to have results on R

4. This means that in the Pilch-
Warner background, the contour is a straight line of length l → ∞.

8.2.1 Fundamental representation
The minimal surface of a straight Wilson line is a wall, with the worldsheet
coordinates (τ,σ) induced from the Pilch-Warner geometry in the following
way:

τ = x1, σ = c. (8.20)

The regularized on-shell action was computed in [17], which agrees with the
leading order result in (5.22), that is:

logW1 =
√

λM
l

2π
, (l → ∞). (8.21)

The goal of Paper V was to compute the loop corrections to the minimal
surface by using string perturbation around the above classical solution. There
are two contributions, which turned out to be of equal weight in our case. The
first one comes from the dilaton coupling to the worldsheet curvature called
the Fradkin-Tseytlin term [58]:

SFT =
1

4π

ˆ
d2σ

√
hR(2)Φ, (8.22)

which is actually a bit controversial, with some authors arguing it is not needed
[59, 60, 46]. Besides, it is zero for the familiar AdS5 ×S5 background due to
a vanishing dilaton. The other one comes from 1-loop stringy corrections,
which are computed by expanding the Green-Schwarz action up to quadratic
fluctuations [46]. These contribute as functional determinants, from generaliz-
ing the Gaussian integration formula (2.1) for the bosons, and the Grassmann
integration for the fermions (2.14). Thus the semiclassical partition function
is schematically of the form

W = e−Scl−SFT
detF√
detB

, (8.23)

where Scl is the classical on-shell action in (8.21), B and F here just represent
the bosonic and fermionic operators.
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Supersymmetry simplifies our problem by cancelling exactly the sector of
bosonic and fermionic operators that are asymptotically massless (far away
from the boundary σ = 1). The remaining sector is asymptotically massive,
and the operators (after several manipulations) look enticingly similar:

HB =

(
1+ A

σ L
L † −1

)
, HF =

(−1 L
L † 1+ A

σ

)
, (8.24)

with

L = A
√

σ2 −1∂σ +
A
(
2σ2 +1

)
2σ

√
σ2 −1

,

L † = −A
√

σ2 −1∂σ − A
(
4σ2 −1

)
2σ

√
σ2 −1

+
2√

σ2 −1
. (8.25)

The final semiclassical partition function to compute is then:

W = e−Scl−SFT
det2(∂τ −HF)

det2(∂τ −HB)
, (8.26)

Instead of using the heat kernel technique or the Gelfand-Yaglom method,
both commonly used in the computation of functional determinants, we used
the phase-shift method from quantum mechanical scattering problems, see e.g.
[61]. The method requires the operators to be asymptotically free, hence it
works for (semi-)infinite intervals. Our operators (8.24) share the same asymp-
totics in large σ , and they are defined in a semi-infinite interval σ > 1, so the
method applies. Note that for τ variable, we do a usual Fourier transformation.
The exponential of the ratio of the determinants of the operators in (8.26) can
be written in terms of the phase-shift δ (p) between the wave function and the
asymptotic plane wave, see figure 8.5, which is

−2
ˆ ∞

0

d p
2π

4p

9
√

4
9 p2 +1

(
δ+

F (p)+δ−
F (p)−δ+

B (p)−δ−
B (p)

)
=−1

4
, (8.27)

where ± distinguish the two eigenvectors (particles and holes) of the Dirac
Hamiltonians (8.24). The last equality is backed by our numerics. Thus, to-
gether with the Fradkin-Tseytlin contribution, the total correction is −1/2. In
conclusion, we do have a perfect matching with the field theory result (5.22).
Moreover, the existence of Fradkin-Tseytlin term is necessary for this agree-
ment.

8.2.2 Symmetric representation
As for higher rank Wilson loops, Paper III found the D3-brane embedding
dual to the straight Wilson line of length l in symmetric representation, with
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Figure 8.5. Phase-shift δ (p) of the wave function in the presence of a typical potential
wall that many of our operators show, versus the free wave, for certain momentum p.

the help of the supersymmetric condition (8.9). The worldvolume metric is
induced from the deformed AdS part of (6.16):

ds2 =
AM2L2

c2 −1
(
dx2 −ρ(c)2dΩ2

2
)−L2

(
1

A(c2 −1)2 +
AM2ρ ′(c)2

c2 −1

)
dc2,

(8.28)
where

ρ(c) = κ
√

c2 −1, (8.29)

since the deformed sphere shrinks to θ = π/2 and φ = 0. The worldvolume
gauge field is given by

1
TF1

F(c) =− ML2

(c2 −1)3/2 dx∧dc. (8.30)

As expected, it also reduces to the analogous case in AdS5 × S5 close to the
boundary.

The regularized on-shell action reduces to

SD3 =−
√

λkM
l

2π
. (8.31)

This agrees with the matrix model result (5.26) according to (8.14), only in
the low rank limit

κ � Ml. (8.32)

Furthermore, for k = 1, we recover the fundamental case (8.21). We can con-
clude that this D3-brane configuration cannot probe the entire matrix model
region, and a full dual object is still to be understood.
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For the antisymmetric case, it is technically challenging to find the D5-
brane solution. So far, we have not succeeded. We do expect it though to
match the leading order field theory result, because the matrix model result
(5.25) is proportional to Ml, the same as in the D-brane action. It would be
definitely interesting to compute the subleading order to determine the phase-
transitions observed.
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9. Conclusions

In this thesis, we explored a very special class of supersymmetric gauge theo-
ries whose path integrals are directly reducible to finite-dimensional integrals,
i.e. 0-dimensional matrix models, by the means of the supersymmetric local-
ization method. In particular, we studied the vacuum partition function and
the expectation values of BPS Wilson loop observables of N = 2∗ SYM on
S4.

Our main motivation was to rigorously test the gauge/string duality conjec-
ture in a slightly more generalized setting than the well-known case of N = 4
SYM and type IIB strings on AdS5 × S5, by introducing a mass scale. The
total access to the strong coupling phase of N = 2∗ SYM gives us a golden
opportunity to explicitly test it against its presumed dual theory of type IIB
strings on the Pilch-Warner background.

Computations are highly non-trivial, on the gauge theory side, as well as
on the string theory side. From our work, we can conclude the following,
supplemented with possible future work:

• Paper I and [18] showed that the decompactifaction limit of N = 2∗
SYM on S4 commutes with the strong coupling limit. This allows us
to do holographic studies, since the dual of N = 2∗ SYM on R

4 is
known. For the sake of completeness, it would be interesting to extend
the holographic study for the theory on S4.

• We used BPS Wilson loops in symmetric and antisymmetric representa-
tions of the gauge group to probe the strong-coupling phase of N = 2∗
SYM on S4, especially in the decompactifaction limit, where infinite
cusps appear. Paper II showed that these cusps induce phase transitions
seen in the subleading order in strong coupling for these Wilson loops.
In order to understand the nature of these phase transitions in the string
theory side, Paper III computed the D3-brane configuration in the Pilch-
Warner background dual to the symmetric Wilson loop. Only the lead-
ing result was derived, and it does not probe the full field theory result
regime. From scaling arguments, we believe the D5-brane dual to the an-
tisymmetric representation can be a promising case for a full matching,
and hopefully even at 1-loop level, where phase transitions happen.

• The gauge/string duality for N = 2∗ case works with the fundamental
Wilson line at least up to 1-loop quantum corrections, shown numeri-
cally by Paper V. Given the simplicity of the field theory prediction, an
analytical result in the string theory side might be possible and desir-
able. Moreover, the matching requires the existence of the controversial
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Fradkin-Tseytlin term in the string action. It would be clarifying to prove
its existence independently, for example by requiring the beta function
of the Green-Schwarz action to be zero.

• It is known that Wilson loops in the symmetric representation and the
multiply-wrapped representation differ by exponentially suppressed terms
for strong coupling [28]. Paper IV provided a non-planar correction to
this statement for the N = 4 case, and helped to clarify a mismatch
in an open problem concerning 1-loop corrections in the holographic
dual computation [26, 62]. Solving this problem is definitely a further
non-trivial quantum rigorous test, and we would gain a better under-
standing of divergences in stringy corrections. There is a similar open
problem concerning 1-loop matching for circular fundamental Wilson
loop in N = 4 SYM [48, 49, 50, 51, 52, 53].

Despite technical challenges, further studies on this N = 2∗SYM case are
necessary for better rigorous understanding of the generic gauge/string duality.
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10. Sammanfattning

Gauge/sträng-dualiteten (eller den holografiska principen) är en anmärkningsvärd
och djup förmodan som kommer från strängteorins mångfasetterade ramver-
ket. Den relaterar starkt kopplade gaugeteorier till svagt kopplad strängteori i
en högre-dimensionell krökt geometri. Från en konceptuell synvinkel antyder
den att gravitation, vilken är strängteorins lågenergigräns, och sålunda rumti-
den, är ett emergent fenomen från en lägre-dimensionell gaugeteori. Från en
praktisk synvinkel möjliggör dualiteten att familjära verktyg inom gravitation-
steorier kan ge svar till beryktat svåra frågeställningar inom gaugeteori vid
stark koppling. Eftersom att gaugeteorier är så vanligt förekommande inom
fysik – från beskrivningen av fundamentala interaktioner i partikelfysik till
modellering av kondenserad materia-system – är ett sådant analytiskt verktyg
potentiellt väldigt lovande. Exempel på ännu olösta problem som skulle kunna
lösas genom dualiteten är confinement i kvantkromodynamik, eller att förstå
faserna i en okonventionell supraledare.

Brasklappen hos denna "för-bra-för-att-vara-sann"-dualitet är att väldigt lite
är känt om den, förutom i vissa specialfall. Den bäst förstådda versionen är
AdS/CFT-korrespondensen, vilken hävdar att N = 4 SYM, som är en gauge-
teori med supersymmetri och konform symmetri, är ekvivalent med typ IIB
sluten strängteori i en 10-dimensionell AdS5×S5-bakgrund. Under de senaste
20 åren sedan Maldacena först formulerade detta antagande har många rig-
orösa tester utförts. Få experter inom fältet, om någon, betvivlar numer rik-
tigheten av just denna korrespondens. Denna framgång inspirerar till gener-
aliseringar till mindre symmetriska teorier. När allt kommer omkring så är
N = 4 SYM så begränsad av sina symmetrier att det är troligt att den är till-
fullo kvantintegrabel.

Nästa naturliga steg är att lägga till massiva tillstånd till N = 4 SYM. Den
unika massdeformation vilken bevarar hälften av supersymmetrin men bry-
ter den konforma symmetrin är den så kallade N = 2∗ SYM. Det är denna
teori som är studieämnet för denna avhandling. Den är tillräckligt super-
symmetrisk för att den kraftfulla metoden supersymmetrisk lokalisering skall
kunna användas, genom vilken N = 2∗-teorins partitionsfunktion över en sfär
reduceras till en effektiv matrismodell. På så vis är beräkningskomplexiteten
kraftigt reducerad så att standardmetoder för slumpmässiga matriser kan an-
vändas. Å andra sidan orsakar de introducerade masskalorna icke-triviala
fasstrukturer i vakuumfältkonfigurationerna, i gränsen av platt rum. Detta
saknar uppenbarligen motstycke i fallet med N = 4 SYM då den senare är
masslös. Att förstå denna nya egenskap, både inom fältteorin och framför allt
i den duala gravitationsteorin, är ett av avhandlingens huvudmotiv.
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Gravitationsdualen till N = 2∗ SYM utan krökning är den så kallade Pilch-
Warner-bakgrunden. Denna geometri är en deformerad AdS5 × S5, och den
reduceras asymptotiskt till den senare nära den konforma randen. Alla su-
pergravitationsfält är icke-triviala, till skillnad från den enklaste situationen
i AdS5 × S5-bakgrunden. Tyvärr försvårar detta beräkningar betydligt. Icke
desto mindre har vi lyckats att rigoröst och framgångsrikt testa denna icke-
konforma version av AdS/CFT-korrespondensen för vissa observabler.

Observablerna som vi studerar är supersymmetriska Wilson-loopar i olika
representationer av gaugegruppen. För den fundamentala Wilson-loopen, dual
till strängdiskpartitionfunktionen, lyckades vi med överensstämmelse jämföra
fältteoriförutsägelsen genom att beräkna strängkorrektionerna till den mini-
mala arean. Detta är det första testet på kvantnivå som har gjorts i denna
icke-konforma sättning. Å andra sidan bevisade vi att Wilson-loopar med rep-
resentationer av högre rang uppvisar de fasövergångarna som observerats i
vakuumpartitionsfunktionen vid andra ordningens stark koppling. Deras duala
objekt är supersymmetriska, elektriskt laddade D-bran. Vi lyckades finna D-
branskonfigurationen som är dual till Wilson loopen i den symmetriska repre-
sentationen och visade att korrespondensen håller till första ordningen, åtmin-
stone i en specifik gräns av det fältteoretiska resultatet. Loopkorrektionerna
kan därmed inte ha de nämnda fasövergångarna. Det senare kvarstår som ett
öppet problem och vi förväntar oss fortsatt arbete kring den anti-symmetriska
representationens D-branskonfiguration för att vidare belysa detta.
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