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Abstract

The bottleneck problem of cloud droplet growth is one of the most challenging
problems in cloud physics. Cloud droplet growth is neither dominated by con-
densation nor gravitational collision in the size range of 15–40 µm in radius.
Turbulence-generated collision has been thought to be the mechanism to bridge
the size gap, i.e., the bottleneck problem. This study develops the numerical
approaches to study droplet growth in atmospheric turbulence and investigates
the turbulence effect on cloud droplet growth. The collision process of in-
ertial particles in turbulence is strongly nonlinear, which motivates the study
of two distinct numerical schemes. An Eulerian-based numerical formulation
for the Smoluchowski equation in multi-dimensions and a Monte Carlo-type
Lagrangian scheme have been developed to study the combined collision and
condensation processes. We first investigate the accuracy and reliability of the
two schemes in a purely gravitational field and then in a straining flow. Dis-
crepancies between different schemes are most strongly exposed when con-
densation and coagulation are studied separately, while their combined effects
tend to result in smaller discrepancies. We find that for pure collision simulated
by the Eulerian scheme, the mean particle radius slows down using finer mass
bins, especially for collisions caused by different terminal velocities. For the
case of Lagrangian scheme, it is independent of grid resolution at early times
and weakly dependent at later times. Comparing the size spectra simulated by
the two schemes, we find that the agreement is excellent at early times. For
pure condensation, we find that the numerical solution of condensation by the
Lagrangian model is consistent with the analytical solution in early times. The
Lagrangian schemes are generally found to be superior over the Eulerian one in
terms of computational performance. Moreover, the growth of cloud droplets
in a turbulent environment is investigated as well. The agreement between the
two schemes is excellent for both mean radius and size spectra, which gives
us further insights into the accuracy of solving this strongly coupled nonlinear
system. Turbulence broadens the size spectra of cloud droplets with increasing
Reynolds number.





Sammanfattning

Molndroppstillväxt är ett av de mer utmanande problemen inom molnfysik.
Speciellt tillväxten i intervallet 15− 40 µm är en flaskhals eftersom varken
kondensationsprocessen eller tillväxt genom kollisioner pga olika fallhastigheter
är tillräckligt effektiv. En möjlighet som föreslagits är att tillväxten genom
kollisioner kan ske hastigare i ett turbulent flöde. I denna studie utvecklas
numeriska metoder för att studera dropptillväxt i atmosfärisk turbulens med
avsikten att studera dess effekter påtillväxthastigheten. Kollisionsprocessen
för partiklar som är påverkade av tröghetskrafter är mycket ickelinjär, där-
för testas tvåolika numeriska metoder. En multidimensionell Eulersk metod
baserad påSmoluchowskiekvationen och ett Lagrangeskt schema av Monte
Carlotyp är utvecklade för att samtidigt studera tillväxt genom kondensation
och kollision. Noggrannheten och tillförlitligheten för de tvåschemana stud-
eras först i förenklad form, enbart för kollisioner pga gravitationen eller för ett
sk “straining flow”. Skillnaden mellan metoderna är tydligast i experiment när
kondensation och kollision studeras separat. För bara kollision med det Euler-
ska schemat sker tillväxten av medelradien långsammare när fler beräkningsin-
tervall används för dropparnas massa; detta gäller speciellt för kollisioner som
orsakas av dropparnas olika fallhastigheter. Det Lagrangeska schemat är däre-
mot oberoende av upplösningen av beräkningsgriddet tidigt i experimenten för
att sedan ha ett begränsat inflytande. De simulerade storleksfördelningarna för
båda metoderna stämmer mycket väl överens i början av simuleringen. Re-
sultaten för den Lagrangeska metoden, vid enbart kondensation, ger samma
resultat som en analytisk lösning i början av simuleringen. Det Lagrangeska
schemat är generellt bättre än det Eulerska avseende beräkningstiden. Efter-
som de tvåmetoderna ger lika resultat med avseende påbåde medelradie och
storleksfördelning, kan numeriska experiment ge oss större förståelse för detta
ickelinjära system. Preliminära resultat visar att turbulensen breddar storleks-
fördelningen av molndroppar samt att breddningen ökar med ökande Reynolds
tal.
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1. Introduction

Clouds, the regulator of the radiative heating of the planet [1], represent a ma-
jor complication in the current representations of the climate system [2]. The
albedo of clouds largely depends on the spatial distribution and the size of
cloud droplets [3]. Experimental studies have allowed detailed insights about
the size distributions of droplets [4]. Turbulence has been considered to play
a crucial role in the spatial distribution [5] and the growth of cloud droplets
[6]. Therefore it is of fundamental importance to investigate the cloud droplets
growth in the turbulent environment. In this study, we will mainly focus on the
bottleneck problem of cloud droplet growth [7], one of the main challenges for
cloud physics. The bottleneck problem states that the size range of approx-
imately 15–40 µm1, in which neither condensational growth nor collisional
growth due to gravity dominate the increase of the droplet size [7].

The growth of cloud droplets is dominated by two processes: condensation
and collision [8]. Condensation dominates the growth between the size range
of 2–15 µm [8] and the droplet radius growth rate is inversely proportional
to the radius, implying that a larger droplet grows slower than a smaller one,
which generates a narrow size distribution [7]. Thus, droplet growth by col-
lision is required to complete the growth mechanism for the formation of the
rain droplet. Collisions between droplets happen when their mutual velocities
are directed toward each other. In the absence of turbulence, this can hap-
pen when droplets have different sizes such that their terminal fall velocities
are different. Gravitational collision plays a significant role in droplet growth
within the size range of 50–100 µm [7, 8]. However, it cannot explain the size
gap of the growth, therefore turbulence-generated collision has been proposed
to explain the bottleneck problem.

Previous studies suggested that turbulence acceleration is mainly due to
the turbulence enhancement effect on collision probability [5, 7, 8]. As far
back as 1939, Arenberg recognized qualitatively that turbulence can enhance
the collision rate and relative motion of cloud droplets [9], followed by semi-
analytical studies of Gabilly [10] in 1949 and East & Marshall [11] in 1954. In
1956, Saffman & Turner developed a theoretical model for the turbulence en-
hancement effect on relative motion of weak-inertia cloud droplets [12]. The
stochastic model was first introduced in 1988 by Reuter [13], suggesting that
turbulence could enhance the gravitational kernel. In recent years, by adopt-
ing the concept of radial distribution function, several works have shown that

1In present context, size is in radius instead of diameter.
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turbulence can accelerate the rain formation through increasing the collision
efficiency and radial relative velocity [7, 14, 15]. Wang & Grabowski studied
the turbulence effect on warm rain development by comparing the turbulence
kernel with the gravitational kernel, concluding that the turbulence enhance-
ment factor is about 2 [14].

Turbulence could also affect the condensation process by changing the dis-
tribution of supersaturation. Vaillancourt investigated the turbulence effect on
the condensation process by direct numerical simulation (DNS1) and argued
that small-scale turbulence has negligible effect on the condensation process
owing to rapid rearrangement of droplet positions [16]. However, Lanotte et
al. conducted similar DNS and found the width of the cloud droplet radius in-
creases with increasing Reynolds number [17], which is further confirmed by
Sardina et al. [18].

In the astrophysical context, the size gap problem of planetesimals via
meter-sized accretion is still a puzzling process [19]. The planetesimals, the
kilometer-sized planetary precursors, are formed from micrometer-sized pro-
toplanetary dust particles. In this growth process, both condensation and co-
agulation are involved in. Particles with size smaller than millimeter grow by
sticking together owe to contact forces. Kilometer-sized and even larger bod-
ies coagulate by gravity-generated and turbulence-generated collision. How-
ever, the turbulence-generated collision is a barrier to study the planet for-
mation. Particles grow from millimeter to kilometer-sized planetesimals by
condensation process, which is a conclusion rely on several assumptions and
simplifications [20]. The formation of planetesimals involves not only colli-
sion and condensation process, but also fragmentation and bounce. Moreover,
these processes are entangled with turbulence, therefore the combination of
collision, fragmentation processes and turbulence renders the growth process
a strongly nonlinear problem. Thus further study is required to bridge the size
gap for planet formation in astrophysical context and cloud-droplet formation
in meteorological context.

To have a comprehensive understanding of the turbulence effect on cloud
droplet formation, here we combine the condensation and collision process to
simulate the entire growth process of cloud droplets by DNS. We solve the
Smoluchowski equation combined with the condensation equation in a weakly
compressible turbulent gas flow in an Eulerian framework using the PENCIL

CODE [21]. Moreover, since the collision process of inertial particles in tur-
bulence is strongly nonlinear, the Lagrangian scheme is employed to compare
with the Eulerian one. The Lagrangian scheme is technically more compli-

1DNS is the numerical method of solving the nonlinear physical equations directly
without adopting any sub-grid models, and thus to resolve the dissipation scale of
turbulence.
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cated than the Eulerian one, but it provides a more physical representation of
the dynamics properties of cloud droplets. In the current context we adopt
the modified-Lagrangian approach to simulate the collision process of cloud
droplets with huge number density (at least n0 = 108 m−3). We refer to the
modified-Lagrangian scheme here as swarm model. The advantages of the
swarm model are two-fold. On the one hand, it tracks the individual cloud
droplets along their trajectories, which also means that artificial viscosities
used in the Eulerian scheme to stabilize the simulation can be avoided. On
the other hand, it allows cloud droplets in large domains to be treated in a
stochastic manner.

The observation of the cloud droplet number concentration (CDNC) can
help verify the numerical simulations. The liquid water content (LWC) within
clouds is determined by the spatial distribution and size of cloud droplets.
Therefore it is important to measure these two quantities in the cloud. Leaitch
et al. [22] measured the size spectra and liquid water content (LWC) of strati-
form clouds and cumululiform clouds respectively using aircrafts since 1982.
Their measurement shows that the CDNC is n ≈ 20− 150cm−3 in cumululi-
form clouds and n≈ 170−370cm−3 in stratiform clouds respectively. In 1993,
Martin et al. [23] presented the experiments of warm stratocumulus clouds
in the eastern Pacific, South Atlantic, subtropical regions of the North At-
lantic, and the sea areas around the British Isles. They found that the shape of
the size spectra strongly depends on the properties of cloud condensation nu-
clei (CCN). Since then many observational experiments have observed CCN,
CDNC and turbulence in marine stratocumulus e.g. BOMEX, ATEX [24], and
DYCOMS [25]. Recent observations focus more on the entrainment. Small
et al. [26] analyzed the measured CDNC and LWC from the Artium Flight
phase-Doppler interferometer and found the mixing in clouds is inhomoge-
neous, which is further confirmed by more accurate measurement by Beals et
al. [3]. Nevertheless the mechanism of inhomogeneous mixing is still unclear,
which may require more investigation.
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2. Growth of cloud droplets in a
turbulent environment

2.1 Condensational growth

When a cloud droplet is exposed in a supersaturated environment, it will grow
due to the net water vapor flux towards the surface, resulting in the condensa-
tional growth law

r
dr
dt

= GS, (2.1)

where G is a coefficient that is weakly dependent on temperature and pressure,
and S is the supersaturation ratio. The condensational growth law results in
slow growth of cloud droplets, r∼ t1/2, which is similar to Einstein’s theory of
Brownian motion and the single-particle dispersion law in turbulence [27]. As
can be seen from Equation (2.1), the growth rate of cloud droplets is inversely
proportional to the radius, suggesting that larger cloud droplets grow slower
than smaller ones. This will narrow the size spectra of cloud droplets under
the assumption that the supersaturation ratio is positive and uniform. Super-
saturation, as the driver of condensational growth, however is spatially inho-
mogeneous. The basic parcel model in the Meteorological context suggests
that the supersaturation is proportional to the updraft velocity and inversely
proportional to the mean radius and number density of cloud droplets [8]. The
flow within the cloud is highly turbulent, thus one may expect that turbulence
can contribute to the spatial distribution of supersaturation and therefore affect
the size spectra of cloud droplets even though the size of cloud droplets is much
smaller than the Kolmogorov length scale (≈ 1mm) of the cloud turbulence. In
fact, turbulence also has an effect on the local temperature field and therefore
the vapor mixing ratio [28]. The supersaturation can then be determined by
Equation (5.1) discussed in Section 5.2. Lanotte [17] and Sardina [18] found
that the width of the size spectra of cloud droplets increases with increasing
Reynolds number [17]. Assumptions in these studies limit the variations of the
supersaturation since thermodynamics is neglected and the supersaturation is
solely transported by turbulence with zero mean velocity and supersaturation
ratio. In addition, inhomogeneous mixing of dry air and vapor at the cloud
edge, or entrainment, is not accounted for and observations [3] show that this
plays an important role for the evolution of supersaturation. The entrainment
is not emphasized in the present study, but it will be a subject of future studies.
It is worth noting that an adequate investigation of the condensational growth
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depends on the appropriate representation of supersaturation. The modelling
of supersaturation requires the combination between micro-scale and macro-
scale dynamics as well as the coupling of turbulence and thermodynamics.
Condensational growth law in the astrophysical context is similar to that in the
meteorological context [20] in the sense that the growth of particles is due to
the vapor flux towards the surface.

2.2 Collisional growth

Cloud droplets grow from 2 µm to 500 µm to become raindrops. Condensation
plays a very important role in the size range of 2 µm–20 µm. But, as discussed
above, it leads to narrow size spectra of the cloud droplets. Therefore, another
efficient mechanism is required to drive the growth, i.e. the collision process.

2.2.1 Continuous collision from different terminal fall velocities

The most basic mechanism causing collisions among cloud droplets is the
gravity-generated collision. Considering the following continuous collision
process that one large cloud droplet with radius rL (corresponding to terminal
velocity vL) collide with a smaller one with radius rS, (corresponding to ter-
minal velocity vS) the mass growth rate of the larger one can be expressed as
[8]

dmd

dt
= K(rL,rS)wl, (2.2)

where
K(rL,rS) = π(rL + rS)

2|vL− vS|E (2.3)

is the collision kernel and wl is the liquid water concentration. The collision
kernel is defined as the volume swept out per unit time per density in the col-
lision process [29]. E is the collision efficiency tabulated by Hall [30]. In
the present study, the collision is assumed to be perfect and E is unit for sim-
plicity. When the collector is much larger than the collected cloud droplet in
size, the collision kernel can be simplified as K(rL,rS) = πr2

L|vL|. In the size
range of 100 µm–500 µm, the descent speed of the cloud droplet is roughly
proportional to its size if the droplet remains spherical, i.e. |vL| ∼ DrL, where
D≈ 4000s−1 [8]. Thus, the mass growth rate of the collector can be approxi-
mated as dmd/dt ≈ πDr3

Lwl , giving an exponential growth behavior.

2.2.2 Stochastic collision through turbulence

The continuous collision will become effective only if there are large enough
collectors. To start the process, a triggering collector is needed which is some-
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times referred to as the “lucky” cloud droplet. Where does the lucky one come
from? The “lucky” cloud droplet is assumed to emerge from the stochastic col-
lision process. As discussed in Section 2.2.1, gravity plays an important role
for the continuous collision, which is however not the case for stochastic col-
lisions, since gravity cannot dominate the motion of cloud droplets with sizes
in the range of 2–50 µm. We recall that the Reynolds number of turbulent flow
within clouds is Re ≈ 107; thus turbulence likely contributes to the stochastic
collision process. The total number density of cloud droplets is about 108 m−3,
indicating that 3× 108 freedom has to be solved by numerical simulation if
each individual cloud droplet is tracked. Therefore, stochastic method is nec-
essary to solve the collision problem. To characterize the spatial distribution
and time evolution of cloud droplets, the number density distribution function
f (xxx,r, t) is adopted. The main aim in the present thesis is to determine f (xxx,r, t)
in a turbulent environment by DNS.

When two cloud droplets collide with each other, they may coalesce, re-
bound and disrupt. In the present study, we consider perfect collision and ne-
glect the fragmentation. Here we limit the discussion to fragmentation and dis-
ruption. The disruption of cloud droplets redistributes water mass into smaller
ones, which on the one hand can slow down the growth of cloud droplets, but
on the other hand, it can broaden the size spectra of cloud droplets. Study-
ing the disruption in the growth process may become another subject of future
studies [8]. Fragmentation is also important for the understanding of planet
formation in the sense that it is the key issue of the meter-size barrier for the
planet formation. The problem of the meter-size barrier states that particles
obtain large relative velocity when they reach a size of decimeters to meters so
that collisions at large relative speeds lead to fragmentation and bounce instead
of coagulation. Thus, the growth of particles in this size range stalls. There
have been several works trying to explain the meter-size barrier, but an appro-
priate representation of the kernel is required to overcome the growth obstacle
[31].
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3. Numerical models

In this thesis, two stochastic methods that allow for fluctuations are employed.
The Smoluchowski model and a modified-Lagrangian (superparticle) model.
We refer to the Smoluchowski model as Eulerian model and to the modified-
Lagrangian model as swarm model; see details about the two models in Paper I.

3.1 Eulerian model

The Eulerian model is widely used in both meteorological [8, 12, 32] and astro-
physical [31] contexts to simulate the collision process. The spatial distribution
of cloud droplets varies dramatically because of collisions and entrainment.
For a given number density of cloud droplets with different size, the collision
process yields an increasing number of larger cloud droplets and a decreasing
number of smaller ones. Thus the rate of change of the number density can
be expressed by the gain of larger cloud droplets and the loss of smaller ones,
which is referred to as the Smoluchowski equation. The Smoluchowski equa-
tion is a nonlinear equation, when coupled with the hydrodynamic equation of
the air flow and the momentum equation of cloud droplets, it becomes even
more complicated. For the kernels of the form (2.3), there are no analytical
solution so far. Therefore, DNS are adopted to investigate the growth of cloud
droplets.

3.2 Swarm model

Compared with the Eulerian model, Lagrangian modelling of the collision of
inertial particles is closer to the nature of real physical collisions in that it takes
fluctuations automatically into account. However, the Lagrangian tracking has
the following drawbacks. First, it is limited by the physical size of the sys-
tem [33]. The typical mean number density of cloud droplets in stratocumulus
cloud is n = 108 m−3. Assuming that the maximum number that we can han-
dle on a supercomputer is Np = 108, the largest computational domain we can
simulate has a volume of Np/n = 1m3 This value is much less than the vol-
ume corresponding to the typical turbulent integral length scale of clouds of
about 100m. Second, it is numerically expensive and difficult to implement
the collision process in the sense that the potential collision partners in neigh-
boring grid cells have to be considered. Considering the above restrictions
of the direct Lagrangian approach, we employ Monte Carlo-type Lagrangian
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tracking to model collisions between numerical super-particles, which is a sta-
tistical approach to represent swarms of physical particles [34]. We refer to
this statistical Lagrangian model as the swarm model. The swarm model is
also referred to as the super-particle or super-droplet model [35]. The essence
of the Monte Carlo method is to track the super-particles consisting of physi-
cal particles instead of tracking the individual physical particles. The behavior
of super-particles is assumed to be a good representation of all physical parti-
cles. A collision will only happen if two swarms reside in the same grid cell.
Therefore, it is technically much easier to implement the collision processes
and numerically inexpensive compared with the direct Lagrangian approach.
We also assume that the collision only happens among one super-particle and
physical particles that do not belong to the super-particle. This requires that
the number of superparticles is much smaller than the number of physical par-
ticles. More importantly, the swarm model allows us to deal with large domain
sizes (see Paper I for details). Therefore the swarm model allows us to fol-
low collisions together with hydrodynamics in a large domain at a moderate
computational cost [33].
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4. Results

4.1 Eulerian model

4.1.1 Sensitivity to parameters

To investigate the sensitivity to changes in the parameters, zero-dimensional
(0-D) simulations of gravity-driven collision, condensation, and combined pro-
cesses are conducted with varying parameters.

Mass bin resolution dependency

In this section, we discuss the numerical convergence of the Smoluchowski
equation solved using the mass bin method. To address the MBR dependency,
it is convenient to define the mean radius r and the total number density distri-
bution n from f (xxx,r, t). The r is given by

r =
∫

∞

0
f (xxx,r, t)r dr

/∫
∞

0
f (xxx,r, t)dr, (4.1)

and n is given by

n(xxx, t) =
∫

∞

0
f (xxx,r, t)dr. (4.2)

First, we investigate the MBR dependence of the condensation process. The
upper panel of Figure 4.1 shows that the evolution of the mean radius is weakly
MBR dependent using an isotropic supersaturation. However, as shown in the
lower panel of Figure 4.1, its size spectra strongly depend on MBR in the
sense that the numerical solution cannot match the analytical solution even
with kmax = 1281. The coagulation process exhibits strong MBR dependency,
as shown in the left panel of Figure 4.2, where r is seen to diverge even at
the highest mass bin kmax = 3457. Such a large MBR is impractical for DNS.
Thus, we will focus more on the Lagrangian method in future studies. Never-
theless, the combined condensational and collisional growth weakly depends
on MBR when kmax ≥ 55 as shown in Figure 4.2. This is due to the fact that
the condensation process narrows the size spectra, resulting in very narrow
size spectra for the coagulation process. Meanwhile, the coagulation process
is dramatically more efficient than the condensation process. Therefore, the
evolution of r converges rapidly when both condensation and coagulation pro-
cesses are involved. We therefore conclude that it is advantageous to adopt the
Lagrangian scheme to model the condensation and coagulation processes.
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Figure 4.1: Evolution of mean radius with different MBR in the case of pure
condensation simulated by Eulerian model (upper panel). The supersaturation
value is given as S = 0.01. The parameters of the initial distribution are σ = 0.2,
rini = 5 µm and n0 = 1010 m−3. The lower panel shows the size spectra of the case
with kmax = 1281. The red curve in the lower panel is the analytical solution (See
Equation (40) of Paper I) of condensational growth with constant supersaturation.
Here, τ stands for the condensation time τcond = r2

ini/2GS.

Initial width dependency

In the present study, we adopt a lognormal function as initial distribution of
cloud droplets. The lognormal function is widely used in atmospheric appli-
cations due to the fact that it is semi-empirical in nature and fits well with the
observed distribution of aerosols and cloud droplets [36]. For numerical stud-
ies, it is necessary to prescribe the width σ , initial radius rini and the lower
boundary of radius r1 of the initial distribution given by Equation (29) of Pa-
per I so that the simulation is independent of initial parameters, or at least only
weakly depends on them. The upper panel of Figure 4.3 shows the evolu-
tion of the mean radius for two different initial widths, where the evolution is
driven by collision only. The two radii are the same initially, but the one with

12



Figure 4.2: Evolution of mean radius with different MBR in the case of pure
collision (left panel) as well as the one with both collision and condensation (right
panel) simulated by Eulerian model. The parameters of the initial distribution for
pure collision case are σ = 0.2, rini = 10 µm and n0 = 1010 m−3; those for both
collision and condensation are σ = 0.2, rini = 5 µm and n0 = 108 m−3. Here,
t̃ = tn/n0. θ is chosen to be a power of two and defined such that mk = m1δ k−1

and δ = 21/θ , where mk is the mass bins and m1 is the initial mass bin.

wider distribution grows faster because the high-mass tail of the distribution
matters, which is due to the fact that collision can only be triggered by cer-
tain large cloud droplets. However, when condensation is also turned on, the
evolution becomes almost independent of width, as shown in the lower panel
of Figure 4.3. This is because the condensation process shrinks the number
density distribution. Other numerical issues, like the initial radius and lower
boundary of radius, are studied as well. First, to investigate the sensitivity
to the choice of the initial radius, 0-D simulations with different initial radii
are carried out at a fixed low boundary of radius. Figure 4.4 shows that, as
long as the initial radius rini is less than 10 µm, the subsequent evolutions of
r and mdrop/mair are virtually identical, suggesting that the current numerical
simulation to solve the Smoluchowski equation can be applied to the collision
and coagulation problem with different initial sizes. Second, motivated by the
fact that the simulation is independent of initial radius, the dependency on the
lower boundary radius is also investigated. In most of the experiments, a lower
boundary r1 = 2 µm is used, but, as shown in Figure 4.4, r1 can be increased
to 4 µm without any loss of accuracy, and even r1 = 8 µm is found to be accu-
rate enough. The supersaturation value of maritime cloud in the atmosphere is
S≈ 0.01. In Figure 4.5 we compare the evolution of the mean radius r̄ and the
mass ratio of liquid water to gas ratio, mdrop/mair, for S = 1.0, 0.1, and 0.01
and σ = 0.1, 0.2, and 0.5. It is plausible that the evolution of the mean radius is
independent of σ for σ ≤ 0.2 with S = 0.01, but for σ = 0.5 the evolution de-
pends on supersaturation. This is because the width σ = 0.5 is so large that for
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Figure 4.3: Evolution of mean radius for two different widths of the initial dis-
tribution (red line: σ = 0.5, black line: σ = 0.2). The upper panel represents the
collisional growth of cloud droplets driven by gravity. The lower panel represents
the combined collisional and condensational growth. The supersaturation value
is given as S = 1.0. The parameters of the initial distribution are n0 = 108 m−3,
rini = 10 µm and r1 = 2 µm. The MBR is kmax = 55.

the slow condensation with S = 0.01, collision can act on the largest droplets
of the tail of the distribution, resulting in a different growth rate.

In summary, based on the tests discussed above, kmax ≈ 55, σ ≤ 0.2, S =
0.01, rini ≤ 14 µm, r1 ≤ 8 µm, and n0 = 108 m−3 are chosen to simulate the
two-dimensional (2-D) and three-dimensional (3-D) cases.

4.1.2 Comparison between Eulerian and swarm models

Although the Eulerian model is numerically expensive, it is still of value to
solve and compare with the Lagrangian model to evaluate the accuracy and
reliability of the solution of this strongly nonlinear system. In this section,
we will summarize the main conclusions of the comparison between the Eule-
rian and Lagrangian schemes. We refer to Paper I for a detailed comparison.
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Figure 4.4: Dependence on rini (upper panels) for rini = 5 µm (black). 10 µm
(red) and 14 µm (blue) using 55 mass bins, σ = 0.2 with condensation and col-
lision at S = 1%, n0 = 108 m−3. Dependence on r1 (lower panels) for r1 = 2 µm
(black), 4 µm (red) and 8 µm (blue).

Here, we limit the discussion to collision processes in a purely gravitational
field or in a straining flow. The one in the turbulence case will be discussed
in Section 4.2. The size spectra of condensational growth simulated by the
Lagrangian model agree well with the analytical solution, while the one by the
Eulerian model requires high MBR to match the analytical solution. For purely
coagulational growth, the size spectra calculated from the two schemes agree
well with each other at early times, but they depart at later times. The com-
bined condensational and collisional process also shows agreement at early
times, but deviates at late times. The evolution of the mean particle radius
requires high MBR to converge in the case of the Eulerian scheme, but it is
independent of spatial resolution at early times and weakly dependent at late
times in the case of the Lagrangian scheme. We conclude that the Lagrangian
scheme is superior over the Eulerian scheme regarding the convergence and
the quality of statistics at given computational performance.
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Figure 4.5: Evolution of mean radius with different supersaturation value in the
case of combined condensation and collision simulated by Eulerian model. The
parameters of the initial distribution are σ = 0.2, rini = 5 µm and n0 = 108 m−3.
The MBR is given as kmax = 28. The width of the initial distribution are given as
σ = 0.1 (blue, dashed), 0.2 (back, solid) and 0.5 (red, dotted). It is interesting to
note that the evolution is independent of σ for σ ≤ 0.2.

4.2 Turbulence effect on cloud droplet growth

In this section, growth of cloud droplets in a turbulent environment using both
swarm and Eulerian models will be explored. Air flow in the atmosphere is
generally approximated by 2-D turbulence owing to its large aspect ratio [37]
and high Reynolds number [38]. However, the dimension of atmospheric tur-
bulence is strongly scale dependent. It is more physical to consider the dynam-
ics of cloud droplets in 3-D turbulence rather than 2-D turbulence. Neverthe-
less, covering all the atmospheric scales in modern numerical simulations is
challenging, which may be possible using quantum computers in the future. In
the present study, we will adopt 2-D turbulence for the purpose of comparing
the Eulerian model and the swarm model.

Our 2-D simulations are carried out in a domain with length L = 0.5m and
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turbulence is driven by random forcing, resulting in the smallest wavenumber
being k1 = 2π/L ≈ 13m−1. Energy is injected at 1/3 (kf/k1 = 3) of the box,
leading to an average forcing wavenumber kf ≈ 40m−1. The viscosity of the
gas flow adopted in the current simulation is ν = 5× 10−4 m2/s. Thus, the
Reynolds number can be obtained as1 Re = urmsLinj/ν = urmsL/(3ν). The
mesh-grid Reynolds number is defined as Remesh = urms∆x/ν , which should
be less than2 5 in moderately compressive flows to ensure numerical stability
of the simulation. In the present study, Remesh ≈ 2. The Kolmogorov length
scale is given by η =

(
ν3/εK

)(1/4), where εK is the energy dissipation rate.
The eddy turnover time is defined as τeddy = Linj/urms.

Cloud droplets grow first by condensation and then, at larger radii, by colli-
sion. To simulate the comprehensive growth mechanism of cloud droplets, we
solve both collision and condensation equations simultaneously. Even though
the Reynolds number achieved in DNS is much smaller than that in the at-
mosphere, the enhancement effect on collision by turbulence is quite clear, as
shown below.

The collision process is extremely complex. There is no analytical solution
even with the most basic geometrical kernel. When the collision process is
coupled with turbulence, it becomes even more complicated. To verify if the
code is suitable to the turbulence case, one needs to solve the problem using
at least two distinct approaches and compare the results; see details of the
simulations in Table 4.1. As discussed in Paper I, it is advantageous to adopt
the nearest grid point mapping (NGP) method for the swarm scheme. However,
we here emphasize that it does not seem to be important for turbulence, as
shown in the inset of Figure 4.6. Turbulence continues to mix particles all the
time while the straining flow tends to sweep up particles into predetermined
locations that do not change. Nevertheless we would strongly recommend to
use NGP in the swarm scheme. We recall that the mean particle growth is
strongly MBR dependency for gravity, and less strongly for the straining flow
(see details in Paper I). As shown in the inset of Figure 4.6, it weakly depends
on MBR in turbulence. Thus, we conclude that the MBR dependency is closely
related to the temporal and spatial properties of the flow. After investigating
the convergence statistics of Smoluchowski equation and the swarm model in
turbulence, we first compare the evolution of the mean radius simulated by the
two schemes. As shown in Figure 4.6, the values of r agree well with each
other from 0–2,000s for Re ≈ 115, after which they depart from each other,
but follow the same trend. The result is similar for Re ≈ 233, but the time

1This is one way to define the Reynolds, another way is to defined as Re =
urms/νkf, which is used in Paper I.

2This criterion depends on the nature of the flow. If there are no shocks in the gas,
it can be larger than 5.

17



Table 4.1

Scheme mesh Np | f | (N) IM Processes kmax urms (m/s) Re
Swarm 256 3×105 2×10−2 CIC Coa – 0.36 115
Swarm 256 3×105 2×10−2 CIC Con & Coa – 0.36 115
Swarm 256 3×105 2×10−2 NGP Coa – 0.36 115
Swarm 512 1.2×106 4×10−2 CIC Coa – 0.74 233
Swarm 512 1.2×106 4×10−2 CIC Con & Coa – 0.74 233
Swarm 512 1.2×106 4×10−2 NGP Coa – 0.74 233
Euler 256 – 2×10−2 – Coa 53 0.36 115
Euler 256 – 2×10−2 – Coa 109 0.36 115
Euler 256 – 2×10−2 – Coa 53 0.36 115
Euler 512 – 4×10−2 – Con & Coa 53 0.74 233
Euler 512 – 4×10−2 – Con & Coa 53 0.74 233

Simulations in 2-D turbulence with both swarm model and Eulerian model. The
viscosity of the gas flow is ν = 5×10−4 m2 s−1 in the present simulations. For the
Eulerian model we adopt artificial viscosity and enhanced Brownian diffusivity
for the particles (νp = Dp = 10−3 m2 s−1).

interval is only between 0–1,000s. We recall that the collision process in a
turbulent environment is strongly nonlinear. However, the agreement between
the swarm model and the Eulerian model gives us a sense of the accuracy of
the solution. Moreover, both approaches show a counterintuitive peak in the
evolution of mean radius, which is plausible and will be discussed later.

One might have thought that the evolution of the mean radius would show
the growth of cloud droplets most directly. However, the mean radius cannot
display the details of the growth, thus the number density distribution func-
tion f (xxx,r, t) is adopted to investigate the details of the growth. Moreover,
f (xxx,r, t) is the key to the problem, which gives us the spatial distribution of
cloud droplets as functions of time, position, and size. Figure 4.8 shows a
comparison of size spectra between the swarm model and the Euler model in
the case of pure collision at Re ≈ 233. The agreement of the spectra is excel-
lent within 3000s and especially for smaller particles.

We emphasize here that the agreement of size spectra between the swarm
model and the Eulerian model in turbulence can shed some light on exploring
the collision process of inertial particles in a turbulent environment. Thus, we
can use both schemes to investigate the Reynolds number effect on the growth
of cloud droplets; see details of the simulations in Table 4.1. We first inspect
the case with pure collisions driven by turbulence. Both swarm and Eulerian
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Figure 4.6: Comparison between 2-D swarm (approach II) model and the Eule-
rian model. The solid curves represent swarm model and the dashed ones repre-
sent Eulerian model. The upper panel represents the case with pure collision
process, the lower one represents the case with both collision and condensa-
tion processes. The parameters of the initial distribution are given as σ = 0.2,
rini = 10 µm and n0 = 1010 m−3. We refer to Table 4.1 for the details of the sim-
ulations. The inset shows the mean radius growth simulated by Eulerian model
with kmax = 53 and kmax = 109, by swarm model with interpolation method CIC
and NGP.

models illustrate that turbulence can broaden the size spectra with increasing
Reynolds number, as shown in Figure 4.8, which can be intuitively illustrated
by comparing the mean radius evolution in the upper panel of Figure 4.6. The
broadening effect is crucially important to explain the “lucky cloud droplet”
formation during the stochastic collision process. To our knowledge, it is the
first time that the combined collision process of inertial particles, momentum
of inertial particles and the turbulent gas flow are solved by DNS without
adopting any types of subgrid scale models. This work provides a detailed
study of the turbulence enhancement effect on raindrop formation. Further de-
tailed studies of the enhancement mechanism need to be conducted, however.
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Figure 4.7: Comparison of the size spectra between the Eulerian model and
the swarm model in the case of pure collision. The Reynolds number here is
Re≈ 233, corresponding to the red curves in the upper panel of Figure 4.6. The
solid lines represent the result simulated using the swarm model and the dashed
lines represent the one by the Eulerian model.

The combined condensational and collisional growth in turbulence is also in-
vestigated. It shows the same behavior as the case with pure collision. This
is, on the one hand, due to the fact that condensation is here simulated us-
ing isotropic supersaturation, while on the other hand, the collision process
dominates the growth of cloud droplets in the size range of 20–100 µm. To
model the condensation process more realistically, one needs to solve the cou-
pled physics of thermodynamics and turbulence, which will be discussed in
Section 5.2.

Figure 4.8: Size spectra for Re≈ 155 and Re≈ 233, corresponding to the upper
panel of Figure 4.6.
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4.3 The counterintuitive “peak”

Figure 4.6 shows the counterintuitive, but, natural peak. In this section, we will
explore the cause of the “peak”. For the following discussion, it is convenient
to introduce the moments of the size spectra

Mζ = ∑ f (r)rζ . (4.3)

so that r = M1/M0. We emphasize here that the mean radius is determined by
both the instantaneous size spectra and the radius. When two very small par-
ticles coalesce, the sum of all radii does basically not change, but the number
of particles decreases by one, so the average increases. By contrast, when two
large particles coalesce, the particle number again decreases by one, but the
sum of the radii decreases from 2 to 21/3 ≈ 1.26 due to the mass conserva-
tion assumption during the collision process, so the average also decreases, as
shown in Figure 4.9. Thus, when the peak appears, it means that larger parti-
cles coalesce. We refer to Appendix B of Paper I for a detailed mathematical

Figure 4.9: Sketch illustrating the growth of r when two small particles coalesce
(A) and the decrease of r when two large particles coalesce (B). Filled black
symbols denote actual particle sizes and open red symbols and red text refer to r.

explanation of the peak.
It is worth noting that the evolution of the mean radius driven by gravity-

generated collision does not show the bump. This motivates us to explore the
physics behind it. The spatial variation of f (xxx,r, t) in the case with gravity is
much weaker than in the case with turbulence.

In a turbulent flow, one would expect that the clustering caused by tur-
bulence will contribute to the size redistribution rate (∂M1/∂ t) and the dilute
rate (∂M0/∂ t). The issue of whether clustering of cloud droplets enhances the
collision rate is still debated. However it is generally suggested that the clus-
tering or the preferential concentration contributes to the collision rate of cloud
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droplets. The Reynolds number dependency and Stokes number dependency
of clustering have been intensively studied from 1956 [39] up to now. Here the
Stokes number (St) characterizes the inertial effect of massive particles in a
flow. The average Stokes number is in the range of 10−4–10−2 in clouds [40],
which is smaller than the triggering value St > 0.1 that can make the droplet
feel the effect of clustering [41]. However, the analysis of the observational
data by Shaw [42] reveals droplet clustering even in cumulus clouds, which
are free of entrained ambient air. Dallas [40] adopted the same analysis with
Saffman [39] but using the local Stokes number to characterize the clustering,
which demonstrates that turbulence can initiate and sustain a rapid growth of
very small water droplets because of the extremely broad range of local Stokes
numbers of identical droplets in the turbulence flow. Collins [43] found that the
degree of preferential concentration increases with increasing Reynolds num-
ber. Later on, he concluded that the radial distribution function approaches
a plateau with increasing Reynolds number [41]. However, Perrin et al. [44]
found by means of DNS in isotropic cloud-like turbulence that droplets do not
collide where they preferentially concentrate but in regions with significantly
higher dissipation rates. Subsequently, Perrin et al. [45] conducted DNS to
study the distribution of relative velocities between particles and found ex-
cellent agreement with the theoretical model of Gustavsson and Mehlig [46].
They argued that the distribution of the relative velocity of particles exhibits
the same universal power-law in the case that the relative motion of particles is
dominated by caustics. The observation by Beals et al. [3] shows that turbulent
mixing within clouds is extremely inhomogeneous, indicating that the cluster-
ing contributes to the spatial distribution of cloud droplets, although they do
not necessarily enhance the growth of cloud droplets. Therefore, further study
is needed to address this issue conclusively.

In the present study, we only show that clustering occurs in the collision
process and can affect the spatial distribution of cloud droplets. We do not
claim that clustering contributes to the collision rate. The common under-
standing of the clustering of finite-size inertial particles relies on the idea that
vortices act as centrifuges ejecting particles heavier than the fluid and trapping
lighter ones [47] below the Kolmogorov length scale in a turbulent flow. As
shown in Figure 4.11, this is the case in our present study. Turbulence enhances
the clustering of cloud droplets, thus resulting in a rapid increase of the dilute
rate. When the dilute rate becomes larger than the size redistribution rate, the
evolution of the mean radius of cloud droplets will decrease. It is interesting
to define the collision time scale and the clustering time scale. Then, the ef-
fect of clustering on the collision rate can be quantitatively determined. To
characterize particle clusters at scales below the Kolmogorov length scale, and
thus the clustering time scale, the correlation dimension D2 can be measured.
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Figure 4.10: Evolution of the mean radius, zeroth moment and the third moment
in a kinematic straining flow. The combined collision and condensational growth
is simulated by 3-D swarm (Scheme II) model. The parameters of the initial
distribution of size spectra are rini = 12 µm, n0 = 1010 m−3 and σ = 0.2. The
parameters for the condensation are given as G= 10−11 m2/s and S= 0.01. Here,
F represents the amplitude of the straining flow in m/s.

It is estimated through the small-scale algebraic behavior of the probability to
find two particles at a distance less than a given d: P2(d) ∼ dD2 . If the spatial
distribution of inertial particles is homogeneous, D2 is the largest. Conversely,
the minimum D2 corresponds to the maximum clustering [48]. Bec et al. [48]
found that D2 depends weakly on Reλ . For all values of Reλ , a maximum
of clustering is observed for Sη ≈ 0.6. Calculating D2 with variable Stokes
number is challenging in our present work, which is still in progress.

Turbulence leads to clustering of cloud droplets, thus resulting in an ex-
tremely inhomogeneous spatial distribution of cloud droplets. To verify our
explanation of the peak of mean radius, we study the growth of cloud droplets
in a less chaotic flow, the divergence-free kinematic straining flow. We in-
vestigate the combined isotropic condensation with collision simulated by the
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Figure 4.11: Instantaneous spatial distribution of cloud droplets (here t = 60s).
The contour map shows the corresponding vorticity distribution. The simulation
corresponds to the r of the solid lines (2-D swarm model, pure collision driven
by turbulence with Re ≈ 233) of Figure 4.6. Here, cloud droplets are plotted
randomly.

swarm (Scheme II) model in a 3-D kinematic straining flow. When the ampli-
tude of the straining flow is increased, as expected, the evolution of the mean
radius reveals a peak shown in Figure 4.10. It is worth noting that in the strain-
ing flow, the growth of the mean radius shows some discrepancy (see Paper I)
between the swarm model and the Eulerian model—starting already from the
beginning, which we have not understood yet. One possible reason is that the
swarm model neglects Brownian motion. If we introduce Brownian motion in
the swarm model, the discrepancy may vanish, which is to be confirmed.
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5. Conclusion and outlook

5.1 Conclusions

In this thesis, a preliminary investigation of turbulence effect on cloud droplet
growth is conducted. Cloud droplet growth driven by collision in turbulent
environment is a strongly nonlinear process. To get an idea about the solution
of this problem, an Eulerian and two Lagrangian schemes are compared. We
developed a numerical formulation for the Smoluchowski equation in multi-
dimensions to investigate the bottleneck problem of cloud droplet growth. The
condensation process is highly mass bin resolution demanding to reproduce
the analytical solution. The collision process requires huge MBR to obtain a
converged solution. Large artificial particle viscosities and Brownian diffusion
coefficients are needed to stabilize the simulations in multi-dimensional cases,
but they damp the growth of cloud droplets. Therefore the Lagrangian (swarm)
scheme is preferred. The swarm scheme is more physical and practical in the
sense that it allows for large stochastic effects and avoids the artificial particle
viscosity. For the condensation process, the numerical solution of size spectra
by the swarm model agrees well with the analytic one. For the collision pro-
cess, the size spectra simulated by the Eulerian and swarm schemes agree well
with each other at early times.

The combined condensational and collisional growths are simulated in a
turbulent gas flow using the swarm model and the Euler model. Not only do
the evolution of the mean size agree well with each other, but also the detailed
inspection of the size spectra at early times. This sheds light on studying the
strongly coupled collision process and turbulence. The size spectra become
broadened with increasing Reynolds number. The evolution of the mean radius
shows a counterintuitive but physical bump, which we explained through the
dominance of coalescence of progressively larger particles. It is also related to
turbulence-generated clustering.

5.2 Outlook

In Paper I we have simulated the condensation process using isotropic super-
saturation, which is, however, strongly dependent on the ambient environment
and it is desirable to have a system that allows for its spatial and temporal vari-
ations. The supersaturation can be simulated by coupled thermal dynamics and
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turbulence [28],

S (xxx, t) =
qv (xxx, t)
qvs (T )

, (5.1)

where qvs (T ) is the supersaturated vapor pressure at temperature T , qv (xxx, t) is
the vapor mixing ratio and can be obtained by solving

∂qv

∂ t
+uuu ·∇qv = D∇

2qv−Cd . (5.2)

Here Cd is the condensation rate given by

Cd (xxx, t) =
1

ma

dml (xxx, t)
dt

=
4πρlG
ρ0a3

4

∑
β=1

S
(
xxxβ , t

)
a(t) , (5.3)

where ma and ml are the mass of air and liquid water, respectively, ρl and ρ0
are the water density and the reference mass density of dry air, respectively, β

denotes the grid cell and 4 is the total number of grid cells. To complete the
equations, the temperature field needs to be solved by

∂T
∂ t

+uuu ·∇T = κ∇
2T +

L
cp

Cd , (5.4)

where κ is the thermal diffusion coefficient of air, cp is the specific heat at
constant pressure, and L is the latent heat. The condensation rate, given by
Equation (5.3), is coupled with the cloud droplet radius and the supersatura-
tion. Thus, together with Equation (2.1) and the momentum equation of the
gas flow [see Equations (31)–(33) of Paper I], the supersaturation field can be
solved. To conserve the mass of liquid water, we define the mixing ratio of
total water as qtot = ql +qv, where ql is the mixing ratio of liquid water.

Another important shortcoming is the fact that in the present work, the
collision efficiency is assumed to be perfect, resulting in unrealistically rapid
growth. It should be considered in a future study. Furthermore, we only con-
sider 2-D turbulence in the present study, which is another unphysical restric-
tion. Extending our work to the 3-D case is straightforward and would be
feasible particularly in the swarm model. Lastly, we would extend our study
to the parameterization of LES [49] so that an appropriate representation of
cloud droplet growth can be implemented in the LES. These will be parts of
the topics to be addressed in the remaining period of my Ph.D. studies.
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Abstract

Turbulence is believed to play a crucial role in cloud droplet growth. It makes the collision
process of inertial particles strongly nonlinear, which motivates the study of two rather different
numerical schemes. Here, an Eulerian scheme based on the Smoluchowski equation is compared
with two Lagrangian superparticle (or superdroplet) schemes in the presence of condensation
and coagulation. The growth processes are studied either separately or in combination using
either two-dimensional turbulence, a steady flow, or just gravitational acceleration without gas
flow. Discrepancies between different schemes are most strongly exposed when condensation
and coagulation are studied separately, while their combined effects tend to result in smaller
discrepancies. In the Eulerian approach, the late growth of the mean particle radius slows down
for finer mass bins, especially for collisions caused by different particle sizes. In the Lagrangian
approach it is nearly independent of grid resolution at early times and weakly dependent at later
times. However, the mean particle radius is shown to be of limited usefulness, because it tends to
decrease when the largest particles out of a broad distribution coalesce. This can therefore result
in a peak in the evolution of the mean particle radius, even though many droplets have already
grown from cloud droplet (micrometer) to raindrop (millimeter) size. The Lagrangian schemes
are generally found to be superior over the Eulerian one in terms of computational performance.
However, it is shown that the use of interpolation schemes such as the cloud-in-cell algorithm is
detrimental in connection with superparticle or superdroplet approaches. Furthermore, the use
of symmetric over asymmetric coagulation schemes is shown to reduce the amount of scatter in
the results.

Keywords: coagulation; condensation; cloud droplet formation; superdroplet approach;
superparticle approach; size distribution spectra Revision: 1.285

1. Introduction

In the context of raindrop formation, it is generally accepted that turbulence plays a crucial
role in bridging the size gap between efficient condensational growth of small particles (radii be-
low 10 µm) and efficient coagulational growth due to gravity of larger ones (radii around 100 µm
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and above) [1, 2]. Solving this important problem in meteorology [3, 4, 5] might also shed light
on how to bridge the even more severe size gap in the astrophysical context of planetesimal for-
mation [6, 7]. To address these questions numerically, one has to combine direct numerical sim-
ulations (DNS) of turbulent gas motions with those of particles. The particles are cloud droplets
in the meteorological context and dust grains in astrophysics. A possible approach to treating
coagulation is to solve the Smoluchowski equation [8, 9], which couples the spatio-temporal
evolution equations of the particle distribution function for different particle sizes. The particle
motion can be treated using a fluid description for each particle size. Thus, not only does one
have to solve the Smoluchowski equation at each meshpoint, but, because heavier particles have
finite momenta and speeds that are different from those of the gas, one has to solve corresponding
momentum equations for each mass species. This is an Eulerian approach, which is technically
more straightforward than a Lagrangian one, but it becomes computationally demanding when
the number of particle size or mass bins becomes large.

The Eulerian approach also has conceptual difficulties in that particles of the same size can
never interact with each other owing to the fact that particles of the same size are described by
the same momentum equation and have therefore the same velocity at a given position in space,
so the mutual collision probability vanishes. This is not a problem for freely falling particles of
the same size, which would have the same terminal velocity and would never collide anyway, but
it would be an unrealistic restriction when particles are subjected to acceleration by turbulence.

An alternative approach is the Lagrangian one, where one solves for the motion of indi-
vidual particles and treats collisions explicitly. In atmospheric clouds, the number density of
micrometer-sized cloud droplets is of the order of 108 m−3, so in a volume of 1 m3, one has 100
million particles, which is the typical size that can still be treated on modern supercomputers. A
domain of this size is also about the largest that is possible in direct numerical simulations (DNS)
of atmospheric turbulence; the Reynolds number based on the length scale ℓ = 1 m and the corre-
sponding velocity scale uℓ ≈ 0.2 m/ s is uℓ ℓ/ν ≈ 20, 000, where ν ≈ 10−5 m2 s−1 is the viscosity
of the gas flow. Such a large Reynolds number is just within reach on current supercomputers,
but larger domains would remain out of reach for a long time. An intermediate approach involves
the use of Lagrangian “superparticles” [7, 10, 11, 12], which represent a “swarm” of particles of
certain size and number density. Depending on the values of particle size and number density,
there is a certain probability that an encounter between two superparticles leads to coagulational
growth of some of the particles in each swarm (or superparticle).

The purpose of the present paper is to compare the Eulerian approach involving the Smolu-
chowski equation with the Lagrangian superparticle approach with the aim of identifying a
promising DNS scheme for tackling the bottleneck problem of cloud droplet growth. This has
been done in the astrophysical context [13, 14], where the principal problem with the Eulerian
approach was emphasized in that it requires high mass bin resolution (MBR) to avoid artificial
speedup of the growth rate. Here we also compare with the superdroplet approach [11]. The
original work on this approach was restricted to the case of vanishing particle inertia, but this
restriction is not a principal limitation of this scheme, which is in fact well applicable to the case
of finite particle inertia.

2. Lagrangian and Eulerian approaches

In the following, we refer to the superparticle or superdroplet approaches as the swarm model,
where each superparticles represents a swarm of physical particles. By contrast, the Eulerian
approach is also referred to as the Smoluchowski model. Here we compare the two approaches
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in the meteorological context of water droplets using, however, simplifying assumptions such as
a constant supersaturation ratio and ideal collision efficiency. In this paper, we generally refer to
particles and superparticles, which are thus used interchangeably with droplets and superdroplets,
respectively.

2.1. The swarm model
The swarm model is a Monte Carlo type approach that handles particle collisions in a swarm

of particles in a statistical manner [12]. Each swarm i has a particle number density ni, and
occupies a volume δxD, which equals the volume of a fluid grid cell of size δx in D dimensions.
All particles in a given swarm have the same mass, radius, and velocity. Following the description
[7], the swarm is transported along with its “shepherd particle”, which is also referred to as the
corresponding superparticle. The swarm is treated as a Lagrangian point-particle, where one
solves for the particle position xi via

dxi
dt

= Vi (1)

and the velocity via
dVi
dt

=
1
τi

(u − Vi) + g (2)

in the usual way. Here, u is the fluid velocity at the position of the swarm, g is the gravitational
acceleration, τi is the particle inertial response or stopping time of a particle in swarm i and is
given by

τi =
2ρdr2

i

9ρνeff
i
, (3)

where ri is the radius of particles in swarm i, ρd is the particle solid material density and the
effective viscosity is given by [15]

νeff
i = ν (1 + 0.15 Re0.687

i ), (4)

where ν is the ordinary (microphysical) fluid viscosity, and Rei = 2ri|u − Vi|/ν is the particle
Reynolds number, which provides a correction factor to the particle stopping time.

The growth of the particle radius ri by condensation is governed by [16]

dri
dt

=
GS
ri

, (5)

where S is the supersaturation ratio andG is the condensation parameter (having units of m2 s−1).
Both S and G are in principle dependent on the flow and the environmental temperature and
pressure, but these dependencies are here neglected, because it would complicate the comparison
of different numerical schemes even further. The assumed constancy of S also implies that the
total liquid water content is not conserved.

A given swarm may only interact with every other swarm within the same grid cell. The
computational cost associated with such collisions scales as N2

pg, where Npg is the number of
swarms within a grid cell, but this is computationally not prohibitive as long as Npg is not too
large.

We now consider two swarms i and j residing within the same grid cell. Consider first
collisions of particles within swarm j with a particle of swarm i. The inverse mean free path of i
in j is given by

λ−1
i j = σi jn jEi j, (6)
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where σi j is the collisional cross section with

σi j = π(ri + r j)2, (7)

and Ei j is the collision efficiency, but in the following we assume Ei j = 1 in all cases. The
particle number density in swarm j is n j and ri and r j represent the radii of the particles in the
two swarms. From this, one can find the typical rate of collisions between a particle of swarm i
and particles of swarm j as

τ−1
i j = λ−1

i j

∣∣∣Vi − V j
∣∣∣ = σi jn j

∣∣∣Vi − V j
∣∣∣ Ei j, (8)

where Vi and V j are the velocities of swarms i and j. The probability of a collision between the
swarm i and any of the particles of swarm j within the current time step ∆t is then given by

pi j = τ−1
i j ∆t. (9)

This effectively puts a restriction on the time step, since the probability cannot be larger than
unity. For each swarm pair in a grid cell, one now picks a random number, ηi j, and compares it
with pi j. A collision event occurs in the case when ηi j < pi j.

2.2. Coagulation scheme I
For the swarm model, two different coagulation schemes have been proposed in the astro-

physical and meteorological contexts. We begin discussing the former (scheme I), which is
similar to that described in [7] in that it maintains a constant mass of the individual swarms.
Scheme II is discussed in Section 2.3.

If ηi j < pi j, one assumes that all the particles in swarm i have collided with a particle in
swarm j. In this coagulation scheme, all swarms are treated individually. This means that even
though the particles in swarm i have collided with the particles in swarm j, swarm j is kept
unchanged at this stage. Instead, swarm j is treated individually at a different stage. Hence, all
collisions are asymmetric, i.e., pi j , p ji. The new mass of the particles in swarm i now becomes

m̃i = mi + m j, (10)

where mi is the mass before the collision and the tilde represents the new value after collision. In
order to ensure mass conservation, the total mass of swarm i is kept unchanged, i.e.,

ñim̃i = nimi, (11)

which implies that the new particle number density, ñi, is given by ñi = nimi/m̃i. By invoking
momentum conservation,

Ṽim̃i = Vimi + V jm j, (12)

the new velocity of any particle in swarm i is given by Ṽi = (Vimi + V jm j)/m̃i.

2.3. Coagulation scheme II
In the meteorological context, the following coagulation scheme has been proposed [11].

Assume two swarms i and j, and consider (without loss of generality) the case n j > ni. The
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collision probability of particles in swarm i with swarm j is, again, given by Eq. (9). If the two
swarms are found to collide, the new masses of the particles in the two swarms are given by

m̃i = mi + m j,

m̃ j = m j, (13)

but now their new particle number densities are

ñi = ni,
ñ j = n j − ni. (14)

In other words, the number of particles in the smaller swarm remains unchanged (and their
masses are increased), while that in the larger one is reduced by the amount of particles that
have collided with all the particles of the smaller swarm (and their masses remain unchanged).
Finally, the new momenta of the particles in the two swarms are given by

Ṽim̃i = Vimi + V jm j,

Ṽ jm̃ j = V jm j. (15)

In contrast to scheme I, these collisions are symmetric, i.e. pi j = p ji. Consequently, both swarms
are changed during a collision.

2.4. Initial particle distribution
We recall that particles within a swarm may interact with particles of another swarm only if

both swarms occupy the same grid cell. The effective volume of each swarm is therefore equal
to δxD, where D is the spatial dimension introduced in Section 2.1. The total number of particles
in our computational domain is therefore δxD times the sum of ni over all Np swarms. This must
also be equal to nLD, where n is the total number density represented by the simulation and L is
the size of the computational domain. Thus, we have

nLD = δxD
Np∑
i=1
ni. (16)

Initially (t = 0), the particle number densities of all swarms are the same and since (L/δx)D =

Ngrid is the total number of grid points, we have nNgrid = niNp. Thus, the initial number density
of particles within one swarm must be

ni = nNgrid/Np (at t = 0). (17)

In the following, we choose the initial particle size distribution to be log-normal, i.e.,

f (ri) =
(
n
/√

2πσp
)

exp
{
−[ln(ri/rini)]2/2σ2

p

}
, (18)

where rini and σp are the center and width of the size distribution, respectively.
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2.5. Eulerian approach
To model the combined growth of particles through condensation and coagulation in a multi-

dimensional flow in the Eulerian description, we describe the evolution of particles of different
radii r (or, equivalently, of different logarithmic particle mass lnm) at different positions x and
time t. We employ the particle distribution function f (x, r, t), or, alternatively in terms of loga-
rithmic particle mass lnm, f̃ (x, lnm, t), such that the total number density of particles is given
by

n(x, t) =
∫ ∞

0
f (x, r, t) dr, (19)

or, correspondingly for f̃ , we have n(x, t) =
∫ ∞
−∞ f̃ (x, lnm, t) d lnm. Since m = 4πr3ρd/3, we

have f̃ = f dr/d lnm = f r/3. Note that n(x, t) obeys the usual continuity equation,

∂n
∂t

+ ∇ · (nv) = Dp∇2n, (20)

where Dp is a Brownian diffusion term, which is enhanced for numerical stability and will be
chosen depending on the mesh resolution. The evolution of the particle distribution function
is governed by a similar equation, but with additional coupling terms due to condensation and
coagulation, i.e.

∂ f
∂t

+ ∇ · ( f v) + ∇r( fC) = Tcoag + Dp∇2 f , (21)

where ∇r = ∂/∂r is the derivative with respect to r, C = 3GS/r2 quantifies the rate of conden-
sation, and Tcoag describes the change of the number density of particles for smaller and larger
radii, as will be defined below. Furthermore, v(x, r, t) is the particle velocity within the resolved
grid cell and is, in turn, affected by gravity and, more importantly, by the friction force with the
gas. The degree of coupling depends on the value of τi given by Eq. (3).

The modeling of condensation and coagulation implies coupling of the evolution equations
of f (x, r, t) for different values of r. The advantage of using f̃ (x, lnm, t) is that it allows us to
cover a large range in m, because we will use then an exponentially stretched grid in m such that
lnm is uniformly spaced [17, 18]. The total number density within a finite mass interval δ lnm
is then given by f̃ (x, lnm, t) δ lnm. Thus, the total number density of particles of all sizes at
position x and time t is given by

n(x, t) =
kmax∑
k=1

f̃k δ lnm =

kmax∑
k=1

f̂k, (22)

where f̂k = f̃ (lnmk) δ lnm is the variable used in the simulations and kmax is the number of
logarithmic mass bins.

Let us first consider the process of condensation, which is described in Eq. (21) by the term
∇r( fC), where fC is the flux of particle from one size bin to the next. Evidently, the total number
density is only conserved if the particle flux fC vanishes for r = rmin and r = rmax, which is the
case if the range of r is sufficiently large. In particular, ( fC)min → 0, because n→ 0 for m → 0.
In practice, however, we consider finite lower cutoff values of m and therefore expect some
degree of mass loss at the smallest mass bins. The same is also true for the largest mass bin once
the size distribution has grown to sufficiently large values. In all cases with pure condensation, it
is convenient to display solutions in non-dimensional form by measuring time in units of

τcond = r2
ini/2GS (23)
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and r in units of rini. We refer to Appendix A for more details on the condensation equation for
the Eulerian approach.

Next, we consider coagulation, which leads to a decrease of n, but does not change the mean
mass density of liquid water. The evolution of f̃ (x, lnm, t) due to coagulation is governed by the
Smoluchowski equation

Tcoag = 1
2

∫ m

0
K(m − m′,m′) f (m − m′) f (m′) dm′

−
∫ ∞

0
K(m,m′) f (m) f (m′) dm′. (24)

Here, K is a kernel, which is proportional to the collision efficiency E(m,m′) and a geometric
contribution. As mentioned above, we assume E = 1 and so K is given by

K(m,m′) = π(r + r′)2|v − v′|, (25)

where r and r′ are the radii of the corresponding mass variables, m and m′, while v and v′ are
their respective velocities.

In the following, we define the mass and radius bins such that

mk = m1δ
k−1, rk = r1δ

(k−1)/3. (26)

Unfortunately, δ = 2 is in many cases far too coarse, so we take

δ = 21/θ, (27)

where θ is chosen to be a power of two. In terms of f̂k, Eq. (24) reads

T coag
k = 1

2

∑
i+ j ∈ k

Ki j f̂i f̂ j − f̂k
kmax∑
j=1
Kik f̂i, (28)

where we have adopted the nomenclature of Johansen [18] where i + j ∈ k denotes all values of
i and j for which

mk−1/2 ≤ mi + m j < mk+1/2 (29)

is fulfilled. The discrete kernel is then Ki j = π(ri + r j)2|vi − v j|. The corresponding momentum
equations for the velocities vk(x, t) = v(x, lnmk, t) for each logarithmic mass value lnmk is

∂vk
∂t

+ vk · ∇vk = g − 1
τk

(vk − u) + Fk(vk), 1 ≤ k ≤ kmax. (30)

Here, u is the gas velocity, τk (for k = i) is defined by Eq. (3), and Fk(vk) = νp∇2vk is a
viscous force, which should be very small for dilute particle suspensions, but is nevertheless
retained in Eq. (30) for the sake of numerical stability of the code. In principle, the expression
for Fk(vk) should be based on the divergence of the traceless rate-of-strain tensor of vk, similarly
to the corresponding expression for the viscous force of the gas discussed below. However, since
the term Fk(vk) is unphysical anyway, we just use the simpler expression proportional to ∇2vk
instead.
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2.6. Evolution equations for the gas flow in both approaches
To obtain u at each meshpoint, we solve the usual Navier-Stokes equation

∂u
∂t

+ u · ∇u = f − ρ−1∇p + F(u), (31)

where f is a forcing term, p is the gas pressure, ρ is the gas density, which in turn obeys the
continuity equation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (32)

the viscous force F(u) is given by

F(u) = ν(∇2u + 1
3∇∇ · u + 2S · ∇ ln ρ), (33)

where S i j = 1
2 (ui, j + u j,i) − 1

3δi j∇ · u is the traceless rate-of-strain tensor and commas denote
partial differentiation. We assume that the gas is isothermal and has constant sound speed cs so
that the pressure p = c2

sρ is proportional to the gas density ρ. Note that gravity has been neglected
in Eq. (31), but this is not a principal restriction and can be relaxed once suitable non-periodic
boundary conditions are adopted. For the relatively small domains that can be handled by DNS,
gravity will nevertheless have only minor effects on the fluid flow for atmospheric conditions.

To obtain a non-vanishing flow, we apply volume forcing via the term f . In the case of a
time-independent two-dimensional (2-D) divergence-free straining flow,

ustr = u0 (sin kx cos kz, 0,− cos kx sin kz), (34)

we take f = νk2ustr, where, u0 determines the amplitude and k the wavenumber of the flow.
Alternatively, we also consider a kinematic flow where we set u = ustr. In the case of a turbulent
flow, f is delta-correlated in time and consists of random waves in space [19]. The flow is
characterized by a typical forcing wavenumber kf (

√
2k for the straining flow or the average

wavenumber from a narrow band of wavevectors) and the root-mean-square (rms) velocity urms.
As a relevant timescale characterizing such a flow, we define

τcor = (urmskf)−1, (35)

which is an estimate of the correlation time. This definition is also used for the straining flow,
which is a special case in that it is time-independent and therefore τcor would no longer charac-
terize the correlation time of the flow, but it would still be proportional to the turnover time.

2.7. Boundary conditions and diagnostics
In the present work, we use periodic boundary conditions for all variables in all directions.

Therefore, no particles and no gas are lost through the boundaries of the domain. The use of
periodic boundary conditions requires us to neglect gravity in Eq. (31), which could be relaxed
if non-periodic boundary conditions were adopted.

To characterize the size distribution, especially for the larger particles, we consider the evo-
lution of different normalized moments of the size spectra,

aζ =
(∫

f̃ (lnm) rζ d lnm
/∫

f̃ (lnm) d lnm
)1/ζ

. (36)
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The mean radius r is given by a1. Higher moments represent the wings of the distribution at large
radii.

In the case of coagulation, the condensation timescale τcond, defined in Eq. (23), is no longer
relevant, but it is instead a coagulation timescale that can be defined in the Eulerian model as

τ−1
coag =

kmax∑
k=1

〈
T coag
k

〉/ kmax∑
k=1

〈
f̂k
〉
, (37)

which is, in this definition, a time-dependent quantity. Here, angle brackets denote volume aver-
aging. In the Lagrangian model, this quantity can be defined by the collision frequency. Unlike
the case of pure condensation, where τcond was used as the appropriate time unit, τcoag can only
be used a posteriori as a diagnostic quantity. However, given that the speed of pure coagulation
is proportional to the mean particle density n, it is often convenient to perform simulations at
increased values of n and then rescale time to a fixed reference density n0 and use

t̃ = t n/n0. (38)

In the following we use n0 = 108 m−3, which is the typical value of n in atmospheric clouds.
Analogously we also define τ̃coag = τcoag n/n0.

As mentioned above, a shortcoming of the Eulerian approach is that no coagulation is pos-
sible from equally sized particles. To assess the consequences of this unphysical limitation,
we study the sensitivity of the results to replacing Ki i either (i) by (Ki+1 i + Ki i+1)/2 or (ii) by
ǫselfπ(2ri)2|vi + v j|/2, where ǫself is an empirical parameter.

2.8. Computational implementation
We use the P C1, which is a public domain code where the relevant equations have

been implemented [18, 20, 21]. We refer to Appendix A for a description of an important mod-
ification applied to the implementation of Eq. (5), which is available with revision 722883 and
later. The implementation of Eq. (28) has been discussed in detail by Johansen [18], and fol-
lows an approach described earlier [17]. It avoids inaccuracies resulting from the fact that for
logarithmic mass binning, mass conservation cannot be accurately obeyed unless one redefines
the mass bins dynamically at each mesh point. Although this formulation has been implemented
[18], we found that the resulting departures from mass conservation were acceptably small and
did therefore not invoke this refinement.

3. Results

3.1. Homogeneous condensation and coagulation experiments
We first consider the homogeneous case in which there is no spatial variation of the velocity

and density fields for both the gas and the particles. We compare the Eulerian and Lagrangian
models separately for pure condensation and coagulation processes.

1http://pencil-code.github.com/
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Figure 1: Comparison between numerical solution of size spectra and analytic solution for condensation for a lognormal
initial conditions given by n0 = 108 m−3, rini = 5 µm, and σ = 0.2. Simulations of pure condensation (no turbulence nor
gravity) with the Eulerian model using θ = 128 and 1281 mass bins in the range 2–20 µm (left panel) and the Lagrangian
swarm model with Np = 10000 and Ngrid = 163 (right panel). The solid lines correspond to the analytic solution given
by Eq. (40) while the black dots represent the numerical results.

3.1.1. Homogeneous condensation
In the case of homogeneous condensation, we can compare the numerical solution with the

analytic solution of [22]; see their Fig. 13.25. To this end, we make use of the fact that solutions
of the condensation equation (5) obey

f (r, t) = (r/r̃) f (r̃, 0), (39)

where r̃ is a shifted coordinate with r̃2 = r2−2GS t. With the log-normal initial distribution given
by Eq. (18), this yields

f (r, t) =
n√

2πσp

r
r̃2 exp

− (ln r̃ − ln rini)2

2σ2
p

 , (40)

where rini denotes the position of the peak of the distribution and σp = lnσSP denotes its width,
where σSP is the symbol introduced in Ref. [22]. What is remarkable here is the fact that f (r, t)
vanishes for r < r∗ ≡

√
2GS t and that ∂ f /∂r has a discontinuity at r = r∗. This poses a challenge

for the Eulerian scheme in which the derivative ∂/∂r is discretized; see Eq. (21). In Figure 1, we
compare solutions obtained using both Eulerian and Lagrangian approaches. It is evident that the
r-dependence obtained from the Eulerian solution is too smooth compared with the analytic one,
even though we have here used 1281 points to represent r on our logarithmically spaced mesh
over the range 2 µm ≤ r ≤ 20 µm with θ = 128, so δ ≈ 1.0054; see Eq. (27). Better accuracy
could be obtained by using a uniformly spaced grid in r, but this would not be useful later when
the purpose is to consider coagulation spanning a range of several orders of magnitude in radius.
By comparison, the Lagrangian solution shown in the right hand panel of Figure 1 (here with
n = 1010 m−3) has no difficulty in reproducing the discontinuity in ∂ f /∂r at r = r∗.

In practice, we would use logarithmic spacing on a mesh with δ = 2 or 21/2 ≈ 1.414. How-
ever, in such cases, the distribution develops broad wings. This can be seen by plotting the
evolution of different moments aζ . In Figure 2 we show (a24/rini)2 for different mass bin resolu-
tions θ and compare with (r/rini)2. In the Eulerian model, we consider the values θ = 2, 8, and
128 over the mass bin interval 2–20 µm, so the number of bins are kmax − 1 = 20, 80, and 1280,
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Figure 2: Comparison of (a24/rini)2 for θ = 2 (blue), 8 (red), and 128 (black solid) for condensation, together with
(r/rini)2 for θ = 128 (black dashed) using the mass bin interval 2–20 µm. The inset shows (a1/rini)2 for θ = 2 (blue
dashed) and 128 (solid black). The right panel shows a comparison of the 24th moment between the Eulerian model with
1281 mass bins (blue dotted) and the swarm model with coagulation scheme I, Np = 10, 000, and Ngrid = 163 (red). The
solid green lines show the analytic solutions for a1 and a24. The latter is shown more clearly in the inset. The black
dashed line shows (a1/rini)2 for θ = 128 and agrees nearly perfectly with the analytic result (thin green line). Here, the
parameters for condensation and the initial conditions are the same as for Figure 1.

respectively. In the Lagrangian model, we use Np = 10, 000 and Ngrid = 163, so Np/Ngrid ≈ 2.4.
At higher resolution, the aζ for different values of ζ converge to the same value, but not at low
resolution (see inset). This can have a lasting effect on the growth of the higher moments in the
sense that the slope in Figure 2 is increased at all later times. This is consistent with earlier find-
ings [13, 14]. When coagulation is included, the artificially broadened tails in the distribution
can be particularly dangerous, because they would have a strong effect on the rate of coagulation,
which would be faster when the aζ for large values of ζ are increased by the artificially broadened
size distribution. In the right hand panel of Figure 2, we compare (a24/rini)2 for both the swarm
model and the high resolution Eulerian simulation. From this it is clear that the swarm model
reproduces the high resolution Eulerian simulation rather accurately.

3.2. Purely gravitational coagulation experiments
For the purely geometrical kernel, no analytic solution exists. However, we can compare the

convergence properties of our two quite different numerical approaches and thereby get some
sense of their validity in cases when the two agree. Here we consider pure coagulation ex-
periments, starting again with a log-normal distribution. The results are presented in terms of
normalized time; see Eq. (38).

3.2.1. Eulerian approach
The MBR dependency of the numerical solution using the Smoluchowski scheme appears to

be a serious obstacle in studying particle growth not only by condensation but also by coagula-
tion. In Figure 3, we compare the evolutions of a1 and a3 using different MBR and thus different
values of θ. We also considered the evolution of a6, but it was very similar to that of a3 in that
the Eulerian solutions for different resolutions agreed quite well with each other and with the
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Figure 3: Evolution of the normalized moments a1 and a3 for simulations with gravity but no condensation nor turbu-
lence. The different black lines represent simulations with different number of mass bins (solid line: kmax = 3457 with
θ = 128, dashed-dotted line: kmax = 865 with θ = 32, dashed line: kmax = 217 with θ = 8, and dashed-triple-dotted line:
kmax = 55 with θ = 2).

solution from the swarm model. For a1 the evolutions are strongly MBR dependent. Neverthe-
less, the evolution of a3 with different MBR converges over a wide range of MBR spanning from
kmax = 55–3457. We also tested the MBR dependency using a constant kernel. In that case, it
turns out that the results converge only for kmax ≥ 50. However the geometrical kernel combined
with the Smoluchowski equation is strongly nonlinear. Therefore, a1 converges only for even
larger MBR in the case of purely gravity-driven collision, which is a strong argument in favor of
the Lagrangian scheme.

3.2.2. Comparison between swarm coagulation schemes I and II
In Figure 4, the same variables as in Figure 3 are shown, but now the swarm model is used.

The simulations have been performed with 323 grid points and different average numbers of
swarm particles per grid point (Np/Ngrid = 2–8). It can be seen from the plots that the swarm
simulations with coagulation scheme II almost converge for Np/Ngrid = 4. It is also seen that the
results from the swarm simulations with the highest number of swarms follow the Smoluchowski
results rather well for a3 (right hand panel), while the results for a1 (left panel) depart at later
times. Moreover, for a1 the results of the swarm simulations with scheme I agree with those
of scheme II at early times, but depart at late times. However, for a3, the agreement is good.
The evolution of a1 with scheme I shows considerable scatter at late times. We recall that the
main difference between schemes I and II is the geometry of collision. Collisions simulated with
scheme I are asymmetric, while those with scheme II are symmetric. Thus, in scheme II both
swarms change either their total mass or their total particle number, while in scheme I the total
mass of a swarm is kept constant by adjusting the particle number correspondingly. This may be
responsible for creating stronger fluctuations in the mean radius. Therefore, to keep the amount
of scatter comparable, scheme II is effectively less demanding. In the following, we will mainly
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Figure 4: Similar to Figure 3, but for 3-D simulations with the swarm model and 323 grid points. The different colors rep-
resent simulations with different mean number of swarms per grid point (Np/Ngrid). Dashed lines represent simulations
with scheme I and the solid ones represent simulations with scheme II. The total number density of physical particles are
kept the same for all simulations by changing the number density of particles in each swarm.

adopt scheme II to save computational time. At early times, on the other hand, the evolution of
r obtained from the swarm model with coagulation scheme I follows more closely that of the
Eulerian model.

From Figure 5 it can be seen that for three-dimensional (3-D) simulations with Np/Ngrid = 4,
the results are more or less converged when the total number of swarms reaches 128×103. Since
all fluid variables are constant in these simulations with no gas flow, the number of grid points
has no effect on the fluid. The number of swarms can therefore be changed by increasing the
total number of grid points while maintaining Np/Ngrid = 4.

3.2.3. Size spectra
The evolution of size spectra in the Smoluchowski simulation with 3457 mass bins, θ = 128,

and coagulation scheme II (same case as in Figure 4) is shown as black lines in Figure 6, while
the corresponding size spectra obtained with simulations utilizing the swarm model with 8 and
32 particles per grid point are shown in the left-hand panel. The agreement between the Eulerian
and Lagrangian schemes is good at early times, but at late times the size spectra from the Eulerian
approach develop an excess for the largest sizes (rmax = 1000 µm) and yield deficient values at
intermediate sizes (30–300 µm).

It is interesting to note that, when the swarm model is used in a one-dimensional (1-D)
simulation, the agreement between the Smoluchowski and swarm approaches is better, as can
be seen from the right-hand panel of Figure 6. This can be explained by the fact that a given
swarm particle in a 1-D simulation with pure gravity can have all the other swarm particles in
the simulation as collision partners, while for a 3-D simulation with pure gravity a given swarm
particle can only collide with another swarm particle within the same 1× 1× 32 vertical columns
of grid points. This inevitably reduces the statistics in the 3-D simulations. For turbulent cases,
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Figure 5: Same as Figures 3 and 4 but for Np/Ngrid = 4. The different colors represent simulations with different total
numbers of swarms. The corresponding Ngrid is 83 (black solid curve), 163 (red dotted curve), 323 (blue dashed curve),
483 (orange dash-dotted curve) and 643 (dark red dash-three-dotted curve).

Figure 6: Size spectra for three different runs at times t̃ = 0 s, 2000 s and 4000 s. The black line correspond to the highest
resolution Smoluchowski simulation while the red and blue lines represents results from the swarm model with 323 grid
points in 3-D (left panel) and with 4096 grid points in 1-D (right panel).

this is not expected to be important since the turbulence will move the particles out of their initial
vertical column, making all particles a potential collision partner even in 3-D.

We emphasize that the mean radius is sensitive to subtle changes in the size distribution, but it
is at the same time not really relevant to characterizing the coagulation of large particles. This can
be seen in the fact that the mean particle radius often increases by not much more than a factor
of three (see the left-hand panel of Figure 3), while the size distribution can become rather broad
and its tail can reach the size of raindrops (see Figure 6) within a relatively short time. In addition,
the evolution of the mean radius reaches a peak in the inhomogeneous coagulation process, as
will be discussed in Section 3.3. Instead of the mean radius, we will therefore adopt the size

14



Figure 7: Comparison of the evolution of the mean particle size in a straining flow for simulations with the swarm
approach at different resolutions. Here, both condensation and coagulation are included and the CIC particle interpolation
algorithm has been used. The total number of swarms is here Np = 300, 000. The inset shows the case with NGP mapping
instead of the CIC second order interpolation for particle properties.

spectra and the higher moments to address the coagulation of large particles. Nevertheless, the
mean radius will still be used as a criterion for comparison between the Eulerian and Lagrangian
models.

3.3. Inhomogeneous coagulation in a straining flow
Spatial variation in the flow leads to local concentrations and thus to large peak values of

f (x, r, t) that shorten the coagulation time τcoag [23]. Before studying the turbulent case, we
consider first coagulational growth in a steady two-dimensional (2-D) divergence-free straining
flow. The straining flow is numerically inexpensive and easy to control and analyze compared
with turbulence. However, given that it is a steady flow, the particles will end up near the vertices
of converging flow vectors and will therefore be much more concentrated in the swarm model
than what is possible to represent in the Eulerian model.

3.3.1. Pure coagulation
We consider first the case of pure coagulation. In Figure 7 we show the time-dependence of

r for the swarm model with coagulation scheme II at different resolutions ranging from 642 to
5122 meshpoints. (Here, we used f = νk2ustr, whereas in all other cases, including the inset of
Figure 7, we used u = ustr as a kinematic flow, but the differences are negligible.) Surprisingly,
r grows more slowly as we increase the mesh resolution of the swarm model. In the Eulerian
model, on the other hand, it grows slower still. Given that the swarm models seem to converge
toward the Eulerian model, we are confronted with the question of what causes the growth of r in
the swarm model to slow down at higher mesh resolution. In this connection, we must emphasize
that by default we use a second order interpolation to evaluate the gas properties at the position
of each Lagrangian particle. This will play an important role, as will be discussed now.

When traditional point particle Lagrangian particle tracking is employed, it is usually bene-
ficial to employ higher order interpolation between the neighboring grid cells to find the value
of a given fluid variable at the exact position of the particle. In the swarm approach, however,
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the particles in each swarm are filling up the entire volume of the grid cell in which the shepherd
particle is. The distribution of the swarm throughout the grid cell is homogeneous and isotropic,
and as such the swarm has no particular position within the grid cell. It is true that there is a
particular position associated with the swarm, namely the position of the shepherd particle, but
this position has no purpose other than to determine in which grid cell the swarm resides. We
must therefore conclude that it is not better to use any kind of interpolation in determining the
value of the fluid variables at the position of the swarm, but rather to use the values of the grid
cell in which the swarm resides. This method is technically referred to as nearest grid point map-
ping (NGP). This is an important point, and the coagulation speed can be greatly exaggerated if
interpolation is used.

The example shown in Figure 7 demonstrates the artificial speedup of the coalescence with
increasing volume of the grid cells. Here, the cloud-in-cell (CIC) algorithm is used. The reason
for the increased coagulation rate experienced when interpolation is used can be understood by
considering two swarms consisting of tracer particles, i.e. particles that follow the fluid perfectly.
Such tracer particles should never collide if the flow were incompressible, but given two swarms
of tracer particles at different positions within the same grid cell and with a fluid velocity gradient
over this cell, these two swarms will now have different velocities if interpolation is used to find
the fluid velocity at the exact position of the particles. Since the swarms are filling the entire
volume of the grid cell, this means that the two swarms will have different velocities and exist in
the same volume, and hence, the swarms may collide. The larger grid cells yield potentially larger
velocity differences between the particles, which explains why the coagulational growth is larger
for the coarser resolutions. When NGP mapping is adopted, the artificial speedup disappears,
as shown in the inset of Figure 7. Here, we used Np/Ngrid ≈ 5, which is appropriate based on
Figure 4.

Next, we must ask how well the Eulerian models converge. As we have seen, for gravitational
coagulation, the evolution of r is well converged at early times, while at later times, higher MBR
only leads to smaller values of r; see Figure 3. This makes the differences between Eulerian
and Lagrangian approaches even larger and does therefore not contribute toward resolving the
discrepancy between both approaches at early times. This is also true in the present case, as will
be shown below.

We recall that there are no self-collision in the usual Smoluchowski scheme. The potential
importance of this can be assessed by comparing with calculations in which self-collision is
included either via methods (i) or (ii); see the end of Section 2.5 for their definitions. It turns
out that by taking self-collision into account, method (i) causes only a weak speed-up in the
increase of r; see Figure 8. This is due to the fact that the number of potential collisional pairs
with the same size is small and the kinematic straining flow cannot redistribute cloud droplets
sufficiently. With method (ii), on the other hand, we find a strong enhancement of the growth.
However, although method (ii) consists of an artificial manipulation of the diagonal terms of
Ki j, it does not prove that self-coagulation is important, because similar manipulations of the
off-diagonal terms of Ki j can have the same effect. In any case, this unphysical approach does
not provide a proper solution to the convergence problem. We emphasize here that in the present
Smoluchowski model with a maximum radius bin of 1 mm, be begin to lose mass at the largest
mass bin. This is shown in the lower left panel of Figure 8.

In Figure 8 we also plot the evolution of the ratio of total droplet mass to gas mass, M/m ≡∑〈m f̂ 〉/〈ρ〉, which is related to a3. It turns out that this ratio starts dropping below the initial
value when the largest radius bins (amax = 10−3 m) begin to be populated. This is also seen from
the evolution of a24, which characterizes the maximum radius that is populated. Its value reaches
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Figure 8: Comparison of purely collisional growth for Eulerian models with average self-collision (ǫself ) and symmetric
self-collision (red dashed for θ = 2 and red dash-dotted for θ = 4), as well as the swarm model in a kinematic straining
flow. Here, urms = 0.7 m s−1, τcor = 1.4 s, while τcoag ≈ 100 s. The side length of the 2-D squared domain is L = 2πm.
The parameters of the Euler model are kmax = 53, n0 = 1010 m−3, r1 = 4 µm, and rini = 12 µm. Those for the swarm
model are Np = 50000 and NGP mapping is employed.

a saturation when t̃ ≥ 10, 000.

3.3.2. Combined condensation and coagulation
When both condensation and coagulation play a role, it is no longer possible to define a

unique timescale, and the solution depends on both τcond and τcoag. We consider here the kine-
matic straining flow using rini = 12 µm, G = 5 × 10−11 m2/ s and S = 0.01, which yields
τcond = 144 s. We investigate the role that particle viscosity and Brownian diffusion play in sim-
ulations using the Eulerian model. The Brownian motion of the particles is usually small, so the
particle diffusion coefficient Dp should be finite but small. Since it is assumed that the particle
flows are relatively dilute, there should be very little interaction between the different particle
fluids, except of course for the occasional collisions. This implies that the particle viscosity νp
should be close to zero2. For the Smoluchowski approach, both νp and Dp have to be made
large in order to stabilize the simulations in spatially extended cases. It turns out that the values
of these diffusion coefficients have a surprisingly strong effect on the solutions, which is shown
in Figure 9. The inset shows that τcoag ≈ 100, which is comparable to τcond and both are long
compared with τcor ≈ 1.4. However, τ̃coag ≈ 10, 000 is larger still.

Comparing now with the swarm approach, which avoids artificial viscosity and enhanced
Brownian diffusion altogether, we see from Figure 9 that Eulerian and Lagrangian approaches

2Note that the particle viscosity represents the coupling between the particle fluids – not the drag coupling between
the particles and the gas phase.
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Figure 9: Evolution of r in a kinematic straining flow with combined condensation and coagulation. The different
lines correspond to different amounts of artificial viscosity and enhanced Brownian diffusivity. The initial mean radius,
supersaturation and condensation parameter is given by rini = 12 µm, S = 0.01 and G = 5 × 10−11 m2/ s, respectively.
θ = 2 and kmax = 53.

agree with each other at early times and follow the same trend at later times. This suggests
that condensation has a “regularizing” effect and makes the overall evolution of r much less
dependent on model details, which is due to the fact that the condensation process with constant
positive supersaturation value leads to narrow size spectra of cloud droplets.

Another interesting aspect is the bump in the evolution of the mean radius. At first glance
it seems counterintuitive that r can actually decrease during some time interval. However, as
explained in detail in Appendix B, this can happen when the coagulation changes from primarily
smaller particles coalescing to primarily larger particles coalescing. This is similar in the tur-
bulent case, which will be discussed below. The peak appears earlier in the swarm model than
in the Euler model. This may be due to the fact that the swarm model avoids the artificially
enhanced diffusivity. Figure 9 shows that the peak appears earlier with decreasing viscosity and
Brownian diffusion. Considering the extreme case that the viscosity and Brownian diffusion of
the Eulerian model approaches zero, the results using both models should agree with each other.
However, owing to the absence of a pressure term for particles, discontinuities would develop
in the Eulerian model that destabilize the code if the viscosity and Brownian diffusion are too
small. Again, this may be a strong argument in favor of using the swarm model for studying the
collisional growth of cloud droplets.

3.4. Growth of droplets in 2-D turbulence
Turbulence is generally believed to help bridging the size gaps in both cloud droplet and

planetesimal formation. In this section, turbulence-generated collisions are simulated using both
the Eulerian and Lagrangian models. We consider a 2-D squared domain of side length L = 0.5 m
at a resolution of 5122 meshpoints, with viscosity ν = 5×10−4 m2 s−1 (which is about 50 times the
physical value for air), average forcing wavenumber kf ≈ 40, i.e., kfL/2π ≈ 3, root-mean-square
velocity urms = 0.8 m s−1, resulting in a Reynolds number of Re = urms/νkf ≈ 40. Our choice
of kfL/2π ≈ 3 corresponds to forcing at large scales that are not yet too large to be affected by
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Figure 10: Comparison of a1 (upper left), a3 (upper right), a12 (down right) anda24 (down left) between the Eulerian
model (dashed line) and the swarm model (solid line) with coagulation scheme II in 2-D turbulence.

constraints resulting the Cartesian geometry. The rate of energy dissipation per unit volume is
ǫ = 2ν〈S2〉 ≈ 0.1 m2 s−3 and the turnover time is τto = (urmskf)−1 ≈ 0.03 s. For the Lagrangian
model, we use NGP mapping while for the Eulerian model we adopt artificial viscosity and
enhanced Brownian diffusivity for the particles (νp = Dp = 10−3 m2 s−1).

We first compare the evolution of the mean radius using both the Eulerian and Lagrangian
models. As shown in Figure 10, the r agree well with each other at early times (t̃ < 1000 s), after
which they depart from each other, but follow the same trend. We emphasize that the collision
process in a turbulent environment is strongly nonlinear. Thus, the agreement between the swarm
model and the Euler model gives us a sense of the accuracy of the solution. It is worth noting
that the MBR convergence of the Smoluchowski equation depends on the flow pattern. MBR
shows strong discrepancies for gravitational coagulation, but a relatively weak dependence in the
straining flow and converges at kmax ≈ 55 in turbulence.

In addition to inspecting the evolution of mean radius, More detailed insight can be gained
by inspecting the evolution of size spectra as well as its high moments. Figure 11 shows a
comparison of size spectra for the swarm and Eulerian models. The agreement of the spectra for
both schemes is good for smaller particles until t̃ = 1000 s. Moreover, the agreement of high
moments (Figure 10) between the Eulerian model and the Lagrangian is good in turbulence. The
reason why the higher moments of the Eulerian simulations flatten out for t̃ > 6000 s is that
particles are lost through the upper mass-bin boundary.

We emphasize that for the swarm model, the interpolation scheme of the tracked swarms does
affect the results, but this does not seem to be the case for turbulence. Turbulence continues to
mix particles all the time while the straining flow tends to sweep up particles into predetermined
locations that do not change. We may therefore conclude that the restriction on the interpolation
scheme depends on the spatio-temporal properties of the flow. Nevertheless, a higher order
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Figure 11: Comparison of size spectra for Lagrangian (solid lines) and Eulerian (dashed lines) approaches at different
times in the presence of 2-D turbulence and no gravity nor condensation for the same run as shown in Figure 10. The
largest departure between both approaches occurs for t̃ = 2000 s and is plotted separately in the right-hand panel.

interpolation is strictly not applicable to the swarm model.
The combined condensational and collisional growth in turbulence is investigated as well.

Again, the results are similar to the case with pure collisional growth due to the fact that the
condensation process in the present study with constant supersaturation is homogeneous. In
future studies, the turbulence effect on the condensational growth should be considered, similar
to what was done previously [24, 25].

4. Conclusion

The combined collisional and condensational growth of cloud droplets is studied in numeri-
cal simulations where the gas phase is solved on a mesh, while the particle phase is approximated
by a point particle approach and is treated either by an Eulerian or a Lagrangian formalism. Our
work extends previous work that investigated the condensation and collision processes individ-
ually [26, 27]. It is found that the Lagrangian approach agrees well with the analytic solution
of condensational growth. By contrast, the Eulerian approach requires high resolution in the
number of mass bins to avoid artificial speedup of the growth rate, which agrees with previous
findings [13, 14]. It is worth noting that the MBR dependency is closely related to the temporal
and spatial properties of the flow. The dependency is the strongest for gravity, less strongly for
the straining flow, and weak for turbulence.

A detailed comparison of the collisional size spectra between the Lagrangian and Eulerian
models demonstrates consistency between the two, especially when both condensation and co-
agulation are included. This suggests that condensation has a regularizing effect and makes the
overall evolution of the mean radius less dependent on details such as the precise form of the
initial condition or discretization errors that might affect the early evolution. However, the evo-
lution of the mean radius, i.e., the ratio of the two lowest (first and zeroth) moments of the size
distribution function, is a rather sensitive measure of particle growth. This is also seen in the fact
that the mean particle radius often increases by not much more than a factor of three, while the
size distribution can become rather broad and even millimeter-sized particles can be produced
within a relatively short time. The mean particle radius is also not the most relevant one in that
it does not characterize properly the growth of the largest particles. In fact, as we have shown
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in Appendix B, the mean radius actually decreases when two large particles collide. This is
somewhat counterintuitive, but actually quite natural. When two very small particles coalesce,
the sum of all radii does basically not change, but the number of particles decreased by one, so
the average increases. By contrast, when two large particles coalesce, the particle number again
decreases by one, but the sum of the radii decreases from 2 to 21/3 ≈ 1.26, so the average also
decreases.

When studying pure condensation, the Eulerian approach yields satisfactory results only
when the mass bins are sufficiently fine. Furthermore, for non-gravitational (inhomogeneous)
collisions, it is found that the Eulerian approach requires artificially large viscosity and Brow-
nian diffusivity for keeping the resulting shocks in the particle fluid resolved. Because of this,
it seems that for future studies of the effect of turbulence on condensational and coagulational
growth of particles, the Lagrangian swarm approach would be most suitable. However, several
precautions have to be taken. First, the symmetric coagulation scheme II [11] is to be preferred
because it shows less scatter in the mean radius than the asymmetric scheme I. This is because in
scheme I the particle number is adjusted to keep the total mass in the swarm constant. Second,
when interpolation of the gas properties at the position of each Lagrangian particle is invoked (for
example the CIC algorithm or the triangular shaped cloud scheme), both coagulation schemes
yield artificially increased coagulation rates. This is because two swarms within the same grid
cell may always collide since the interpolation of the fluid velocity results in a velocity difference
between the two swarms. This causes a speedup of the coagulation rate already at early times.
At larger grid resolution, the interpolated velocity differences are smaller, which reduces the co-
agulational growth. Therefore, it is best to map the gas properties to just the nearest grid point,
which is found to yield converged results even at low resolution.

A shortcoming of the Smoluchowski model is that self-collisions are impossible. This should
be mitigated by using finer mass bins, but it turns out that finer mass bins do not change the coag-
ulation rate at early times, but rather decrease it at later times. This indicates that the contribution
of self-collisions to the coagulation rate is relatively small.

The discrepancy between Lagrangian and Eulerian particle descriptions is particularly strong
in the time-independent straining flow. This is because particles tend to be swept into extremely
narrow lanes, which leads to high concentrations that can never be achieved with the Eulerian
approach, in which sharp gradients must be smeared out by invoking artificial viscosity and
large Brownian diffusivity. On the other hand, we are here primarily interested in turbulent
flows that are always time-dependent, which limits the amount of particle concentration that can
be achieved in a given time. In that case, the discrepancies between Eulerian and Lagrangian
approaches are smaller at early times, but there are still differences in the evolution of the mean
radius at late times. This can easily be caused by changes in the relative importance of collisions
of large and small particles. This is confirmed by the fact that the size distribution spectra in
the turbulent case are more similar for Lagrangian and Eulerian approaches than in the straining
flow.

Our present work neglects local and temporal changes in the supersaturation ratio. In future
studies, we will take into account that the supersaturation ratio increases (decreases) as a fluid
parcel rises (falls). We would then be able to account for the fact that the total water content
should remain constant and that the supersaturation ratio would become progressively more lim-
ited as water droplets grow by condensation. Another important shortcoming is our assumption
of perfect collision efficiency, which resulted in artificially rapid cloud droplets growth. Allevi-
ating these restrictions will be important tasks for future work. Furthermore, we have here only
considered 2-D turbulence. Extending our work to 3-D is straightforward, but our conclusions
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regarding the comparison of different schemes should carry over to 3-D.

Appendix A. Upwinding scheme for a nonuniform mesh

In the presence of condensation alone, the evolution equation for f (r, t) as a function of radius
r and time t is given by

∂ f
∂t

= − ∂

∂r
( fC), (A.1)

where C ≡ dr/dt and is given by Eq. (5). Thus, we have

∂ f
∂t

= −A ∂

∂r

(
f
r

)
(A.2)

where A = GS is assumed independent of r; see Eq. (13.14) of [28]. Is can be seen from the
form of the analytic solution that there will be a discontinuity at r2 = 2At, which is numerically
difficult to handle. In particular, it is difficult to ensure the positivity of f . For these reasons, a
low-order upwind scheme is advantageous. Furthermore, expanding the RHS of Eq. (A.2) using
the quotient rule,

∂ f
∂t

=
A
r2 f −

A
r
∂ f
∂r

, (A.3)

it is obvious that the first term in isolation would lead to exponential growth of f proportional to
exp(At/r2), which must be partially canceled by the second term. If the cancellation is numer-
ically imperfect, f (r, t) will indeed grow exponentially, which tends to occur in regions where
r2 < 2At, i.e., where f should vanish. For nonuniform mesh spacing, rk with k = 1, 2, ..., kmax,
the first-order upwind scheme can be written as

∂ fk
∂t

= c+k
fk+1

rk+1
+ c0

k
fk
rk

+ c−k
fk−1

rk−1
(A.4)

with
c±k = ± 1

2
|A| ∓ A
rk±1 − rk , c0

k = −c+k − c−k . (A.5)

On the boundaries of the radius bins at k = 1 and kmax, Eq. (A.4) cannot be used unless we make
an assumption about the nonexisting points outside the interval 1 ≤ k ≤ kmax. For example, for
k = kmax, the coefficient c+k would multiply fk+1/rk+1, which is not defined. Therefore, a simple
assumption is to set c+k = 0. However, c+k also enters in the expression for c0

k , which is the factor
in front of fk/ak. The coefficient c+k can only be nonvanishing when A < 0. If we were to omit c+k
in the expression for c0

k , then, for A < 0, the value of fk would not evolve at k = kmax and would
be frozen. Thus, the non-existing points lead to an unphysical situation. It would be natural to
assume that at k = kmax, fk should decay with time at a rate −(|A| − A)/rk. Therefore, assume

c+k = 0, c0
k = −(|A| − A)/rk − c−k (for k = kmax) (A.6)

and c−k unchanged, and analogously

c−k = 0, c0
k = −(|A| + A)/rk − c+k (for k = 0) (A.7)

and c+k unchanged.
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Figure B.12: Sketch illustrating the growth of r when two small particles coalesce (A) and the decrease of r when two
large particles coalesce (B). Filled black symbols denote actual particle sizes and open red symbols and red text refer to
r.

Appendix B. The “peak” in the evolution of the mean particle radius

For the following discussion, it is convenient to introduce the moments

Mζ =
∑

f (r) rζ . (B.1)

so that aζ = (Mζ/M0)1/ζ and r = a1, as before. Let us now assume a situation with pure coag-
ulation such that the total volume of water in the droplets is conserved. This implies that M3 is
constant, while M0 and M1 will always decrease with time. However, the relative rates at which
M0 and M1 decrease can change. Indeed, a peak in r is observed if M1 switches from decreasing
more slowly with time than M0 to decreasing faster than M0. An example of such a situation will
be presented in the following.

For a flow with two small and two large particles, with radii rS and rL, respectively, the size
distribution is given by f (r) = 2δr rS + 2δr rL , where δi j denotes the Kronecker delta (δi j = 1 for
i = j and 0 otherwise). From Eq. (B.1) it can then be found that the initial number of particles
and sum of particle radii is given by M0(0) = 4 and M1(0) = 2rS + 2rL, respectively. This yields
a mean initial particle radius of r(0) = M1(0)/M0(0). In the following, we assume that rS ≪ rL,
so that r(0) ≈ rL/2.

When two particles of radius r0 coalesce, their combined mass is unchanged, so 2r3
0 = r3,

i.e., the target radius becomes r = 21/3r0. Let us now consider two different collision scenarios;
cf. Figure B.12. In scenario A, two smaller particles coalesce such that M0(A) = 3 and M1(A) =
21/3rS + 2rL, while in scenario B two larger particles coalesce such that M0(B) = 3 and M1(B) =
2rS + 21/3rL. Since rL ≫ rS, we find for r in both scenarios

r(A) = (21/3rS + 2rL)/3 ≈ 2rL/3 ≈ 0.67rL > r(0), (B.2)

r(B) = (2rS + 21/3rL)/3 ≈ 21/3rL/3 ≈ 0.42rL < r(0). (B.3)

This means that for scenario A the mean particle radius is increasing, while for scenario B it is
decreasing. When a peak appears in the time evolution of the mean particle radius, this then
typically means that it is primarily the heavier particles that are coalescing.
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