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„Yet each of us has the indisputable impression
that the sum total of his own experience and
memory forms a unit, quite distinct from that of
any other person. He refers to it as ‘I’. What is
this ‘I’? If you analyze it closely you will, I think,
find that it is just a little bit more than a
collection of single data (experiences and
memories), namely the canvas upon which they
are collected. And you will, on close
introspection, find that what you really mean by
‘I’ is that ground stuff upon which they are
collected. You may come to a distant country,
lose sight of all your friends, may all but forget
them; you acquire new friends, and you share
life with them as intensely as you ever did with
your old ones. Less and less important will
become the fact that, while living your new life,
you still recollect the old one. ‘The youth that
was I’, you may come to speak of him in the
third person, indeed the protagonist of the novel
you are reading is probably nearer to your heart,
certainly more intensely alive and better known
to you. Yet there has been no intermediate break,
no death. And even if a skilled hypnotist
succeeded in blotting out entirely all your earlier
reminiscences, you would not find that he had
killed you. In no case is there a loss of personal
existence to deplore. Nor will there ever be.

— Erwin Schrödinger
What is life?, 1944





ABSTRACT

The motivation to study elastic structures such as filaments and shells stemmed from
its application in the construction of tall buildings, bridges etc. Interest in this field
has rekindled in the past decades due to growing interest in understanding biological
materials and because of possible applications in nanoscience and medicine. This
also poses new challenges as the biological materials show both solid and fluid-like
behavior, and in addition they are active. In this thesis, we study the mechanical
properties of shells and filament and their interaction with fluid. The thesis is divided
into two themes. First, how to model nano-vesicles and how are the mechanical
properties of a spherical shell is affected if they are thermal and active? Second, can
non-linear interaction between fluid and filament generate turbulence and hence
mixing in the Stokes flow?

To model nano-vesicles, we develop an open-source software package – MeMC. The
MeMC models nano-vesicles as an elastic objects. It interprets the force-distance data
generated by indentation of biological nano-vesicles by atomic force microscopes
and uses Monte Carlo simulations to compute elastic coefficients of a nano-vesicle
Further, we use this code and break the detailed balance in Monte Carlo simulation –
thereby driving the shell active and out of thermal equilibrium – to study the effect
of activity on mechanical properties of elastic shells, in particular, buckling. Such a
shell typically has either higher (active) or lower (quiescent) fluctuations compared
to one in thermal equilibrium depending on how the detailed balance is broken.
We show that for the same set of elastic parameters, a shell that is not buckled in
thermal equilibrium can be buckled if turned active. Similarly, a shell that is buckled
in thermal equilibrium can unbuckle if turned quiescent. Based on this result, we
suggest that it is possible to experimentally design microscopic elastic shells whose
buckling can be optically controlled.

In the next part of the thesis, we visit the problem of mixing in Stokes flow using
elastic filament. As it is known, the flow of Newtonian fluid at low Reynolds number
is, in general, regular and time-reversible due to absence of nonlinear effects. For
example, if the fluid is sheared by its boundary motion that is subsequently reversed,
then all the fluid elements return to their initial positions. Consequently, mixing in
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microchannels happens solely due to molecular diffusion and is very slow. Here, we
show, numerically, that the introduction of a single, freely floating, flexible filament
in a time-periodic linear shear flow can break time reversibility and give rise to
chaos due to elastic nonlinearities, if the bending rigidity of the filament is within
a carefully chosen range. Within this range, not only the shape of the filament
is spatiotemporally chaotic, but also the flow is an efficient mixer. We model the
filament using the bead-rod model. We consider two different models for the viscous
forces: (a)they are modeled by the Rotne–Prager tensor. This incorporates the
hydrodynamic interaction between every pair of beads. (b)we consider only the
diagonal term of the Rotne–Prager tensor which makes the viscous forces local. In
both of these cases, we find the same qualitative result: the shape of a stiff filament
is time-invariant – either straight or buckled for large enough bending rigidity; it
undergoes a period-n bifurcation (n = 2,3, 4, etc) as the filament is made softer;
becomes spatiotemporally chaotic for even softer filaments. For case (a) but not for
(b) we find that the chaos is suppressed if bending rigidity is decreased further. For
(b), in the chaotic phase, we show that the iterative map for the angle, which the
end–to–end vector of the filament makes with the tangent its one end, has period
three solutions; hence it is chaotic.



SVENSK

SAMMANFATTNING

Motiveringen att studera elastiska strukturer som filament och skal härrörde från
dess tillämpning vid konstruktion av höga byggnader, broar etc. Intresset för detta
område har återuppstått under de senaste decennierna på grund av ett växande
intresse för att förstå biologiska material och på grund av möjlig tillämpning inom
nanovetenskap och medicin. Detta innebär också nya utmaningar eftersom de
biologiska materialen uppvisar både fast och flytande beteende, och dessutom är
de aktiva. I denna avhandling studerar vi de mekaniska egenskaperna hos skal och
filament och deras interaktion med vätska. Uppsatsen är uppdelad i två teman.
För det första, hur man modellerar nano-vesiklar och hur påverkas de mekaniska
egenskaperna hos ett sfäriskt skal om de är termiska och aktiva? För det andra, kan
icke-linjär interaktion mellan vätska och filament generera turbulens och därmed
blanda i Stokes-flödet?

För att modellera nanovesiklar utvecklar vi ett mjukvarupaket med öppen käl-
lkod – MeMC. MeMC modellerar nanovesiklar som ett elastiskt föremål. Den
tolkar kraftavståndsdata som genereras av indragning av biologiska nano-vesiklar
med atomkraftmikroskop och använder Monte-Carlo-simuleringar för att beräkna
elastiska koefficienter för en nanovesikel. Vidare använder vi den här koden och
bryter den detaljerade balansen i Monte-Carlo-simulering – därigenom driver skalet
aktivt och ur termisk jämvikt – att studera effekten av aktivitet på de mekaniska
egenskaperna hos elastiska skal, i synnerhet buckling. Ett sådant skal har typiskt
antingen högre (aktiva) eller lägre (vila) fluktuationer jämfört med ett i termisk
jämvikt beroende på hur den detaljerade balansen bryts. Vi visar att för samma
uppsättning elastiska parametrar kan ett skal som inte är buckligt i termisk jämvikt
bucklas om det aktiveras. På samma sätt kan ett skal som spänns i termisk jämvikt
lossna om det blir vilande. Baserat på detta resultat föreslår vi att det är möjligt
att experimentellt designa mikroskopiska elastiska skal vars knäckning kan styras
optiskt.
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I nästa del av avhandlingen tittar vi på problemet med att blanda in Stokes-flödet
med hjälp av elastiskt filament. Som bekant är flödet av newtonsk vätska vid lågt
Reynolds-tal i allmänhet regelbundet och tidsreversibelt på grund av frånvaron av 3
icke-linjära effekter. Till exempel, om vätskan klipps av genom sin gränsrörelse som
därefter reverseras, så återgår alla vätskeelementen till sina initiala positioner. Föl-
jaktligen sker blandning i mikrokanaler enbart på grund av molekylär diffusion och
är mycket långsam. Här visar vi, numeriskt, att införandet av en enda, fritt flytande,
flexibelt filament i ett tidsperiodiskt linjärt skjuvflöde kan bryta tidsreversibiliteten
och ge upphov till kaos på grund av elastiska olinjäriteter, om glödtrådens böjstyvhet
ligger inom ett noga utvalt sortiment. Inom detta område är inte bara formen på
glödtråden rumsligt kaotisk, utan även flödet är en effektiv blandare. Vi modellerar
glödtråden med pärlstavmodellen. Vi beaktar två olika modeller för de viskösa
krafterna: (a) de är modellerade av Rotne–Pregor-tensoren. Detta inkluderar den
hydrodynamiska interaktionen mellan varje par av pärlor. (b) vi betraktar endast
den diagonala termen för Rotne–Pregor-tensorn som gör de viskösa krafterna lokala.
I båda dessa fall finner vi samma kvalitativa resultat: formen på ett styvt filament
är tidsinvariant - antingen rak eller bucklig för en tillräckligt stor böjstyvhet; den
genomgår en period-n bifurkation (n = 2,3, 4, etc) när glödtråden görs mjukare; blir
rumsligt kaotiskt för ännu mjukare filament. För fall (a) men inte för (b) finner vi
att kaoset undertrycks om böjstyvheten minskar ytterligare. För (b), i den kaotiska
fasen, visar vi att den iterativa kartan för vinkeln, som glödtrådens ände-till-ände
vektor gör med tangenten sin ena ände, har period tre lösningar; därför är det
kaotiskt.
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Thesis overview
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INTRODUCTION AND

MOTIVATION

1

„Although not everyone is mindful of it, all cell
biologists have two cells of interest: the one they
are studying and Escherichia coli.

— F. Neidhardt

In this thesis, we study the elastic properties of shells and filament and their in-
teractions with fluid. The motivation is threefold. First, because of their ubiquity
in biological systems [1, chapter 10, 11], second, they pose very interesting and
challenging phenomena due to the inherent nonlinearities [2, 3] and third, because
of their applications in nano-technology and medicine [4, 5, 6, 7, 8, 9].

From biological point of view, filaments are the basis for many biological phenomena.
Such as microorganismal swimming [10, 11], network of filaments which make up
cytoskeleton of an eukaryotic cells [12] (see Fig. 1.1(a)) hunting and swimming of
protozoans, (see Fig. 1.1(d) [13]) and dynamics of actin filaments and DNA [14,
15]. Similarly, shells and membranes are also one of the hallmark feature of cellular
life. For example, the building block of life, a cell has a membrane that separates
it from the rest of the world [1, chapter 11]. This gives rise to many interesting
biological phenomena such as the mechanism of internalizing or secreting the large
extracellular molecules by cells (endocytosis and exocytosis, see Fig. 1.1(c)) [16]
and budding – a form of asexual reproduction of plant etc Fig. 1.1(b). At even
smaller level in the length scale, a cell produces a lot of nano-vesicles e.g. exosomes.
Which are essentially a building block of inter-cell communication. It is evident
that, studying the elasticity of biological materials will help us understanding these
biological phenomena. However it poses new challenges mainly because these
materials show both solid and fluid like behavior [17], and in addition they are
active [18].

In elasticity, the dynamical variable is the displacement of a point from its un-
deformed position. If this displacement is small and the stress-strain response
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(d)

(b)
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Fig. 1.1.: (a) Cytoskeleton in an eukaryotic cell. (b) Budding in Yeast. (c) Illustration of
exocytosis and endocytosis. (d) Hunting for prey in the single-celled ciliate using
long cellular protrusion. Figures adapted and reprinted with permission from [19,
20, 1, 21].

(constitutive relation) of a body is linear – which is true for most solid materials
except e.g, foams – elasticity is a linear problem [2, 3]. But if the displacement is
large then even for linear constitutive relation the elastic response can be nonlinear.
Canonical examples of such problems are two-dimensional membranes or shells in
three dimensional space or one-dimensional filaments in two or three dimensional
space (see chapter 1 of [22], chapter 2 of [3]). Hence nonlinear elasticity plays a
crucial role in understanding the biological phenomena stated above.

From an application-oriented point of view, the study of elastic objects have wide
applications. We list a few of them here.

1. Red blood cells (RBC) get harder due to malaria – studying the interaction
of elastic body such as RBC and blood flow could help us in developing new
affordable microfluidic devices to detect malaria [23].

2. Micro-robots are used for the localized delivery of drugs or for brachytherapy –
treatment by placing a radioactive source near tumors [6].

3. Exosomes of ovarian cancer contain different set of proteins and micro RNAs as
compared to the normal exosomes of cancer-free individuals [24]. Expressing
pan proteins in lesser amount over the membrane, can in principal change
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the elastic modulii of exosomes. Based on this, an early detection of cancer is
possible.

4. One of the most-used methods to determine the elastic moduli of microscopic
shells is to measure their force distance curves while poking them with an
atomic force microscope (AFM) and then interpreting the data in the light of
the theory of elastic shells [25, 26, 27, 28, 29, 30, 31].

5. Synthetic nano-vesicles can be turned active if irradiated with certain frequency
of light [32, 33]. We show that the buckling of such vesicle depends on the
activity of the shell [34]. Based on this, it may be possible to drive flows at
microscopic scales by repeating buckling and unbuckling of shells.

6. Flow at low Reynolds number is linear and time-reversible. Consequently, such
flows are non-mixing [35]. We show that the introduction of a single freely-
floating filament can give rise to chaos and hence mixing in the fluid [36].

1.1 Thesis outline

This thesis focuses on two important themes. First, elastic properties of shells and
second, the elastic interaction of filament and the fluid.

In chapter 2, we review the basic concepts of elasticity of three-dimensional bod-
ies. In chapter 3 , we give an overview of elasticity of plates. We formulate the
expression for bending and stretching energy of plates using the concepts in three-
dimensional elasticity. In chapter 4, we discuss the kinematics and mechanics of
shells. In chapter 5, we discuss the recent literatures about the effect of thermal
fluctuations on mechanical properties of shells particularly buckling. We also sum-
marize the work from paper I [37]– MeMC: a package for Monte Carlo simulation
of spherical shells– where we have developed an open source package for Monte
Carlo simulation of spherical shells and paper II [34] – active buckling of pressurized
spherical shells: Monte Carlo simulation – where we show how by driving the shell
out-of-equilibrium can make it buckle at lower or higher pressure.

In chapter 6, we move to filaments. We formulate the expression for energy
of filament and subsequently discuss the Euler-Bernoulli equation. chapter 7 is
dedicated to revise the fundamentals of Stokes flow i.e. the flow at zero Reynolds
number. Here we introduce the mixing problem in Stokes flow. We also review
the concepts of Stokesian dynamics. In chapter 8, we discuss recent literature
about filament in Stokes flow and summarize our work in paper III [36] – chaos

1.1 : Thesis outline 5



and irreversibility of a flexible filament in periodically driven Stokes flow – and paper
IV [38] – flexible filament in time-periodic viscous flow: shape chaos and period three –
where we put forward an idea that the nonlinear elasticity of the filament can give
rise to chaos and hence mixing in Stokes flow.
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THREE DIMENSIONAL

ELASTICITY

2

„ut tensio, sic vis
(as the extension, so the force)

— Robert Hooke
1678

The theory of elasticity deals with materials that, in the presence of mechanical
stress, depart from their ‘natural’ configuration. In this chapter, we discuss the
fundamental equations of elasticity in three dimensions. First, we introduce the
fundamental notions.

x∗
x∗ + 𝑑x∗

𝑑x∗

x
x + 𝑑x

𝑑x

Deformed config.

Config. before 
deformation

Config. after 
deformation

Fig. 2.1.: Configuration of an elastic body before and after deformation. Two nearby
material points on the body before deformation at x and x + dx, moves to x∗ and
x∗ + dx∗ after the deformation. Figure adapted and reprinted with permission
from [1].
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2.1 Strain

Consider a solid body as shown in Fig. 2.1. Let us take two nearby points at
x ≡ {x1, x2, x3} and x + dx on the body, which moves to x∗ ≡ {x1

∗, x
2
∗, x

3
∗} and

x∗ + dx∗ respectively after the deformation. Let us define

u(x) = x∗ − x, (2.1)

where u(x) is the displacement of the point at x due to deformation. The small line
element dx changes to dx∗,

du(x) = dx∗ − dx. (2.2)

In general, this change can be due to translation, rotation or stretching/compression.
Translation and rotation do not contribute to the elastic energy. Hence the elastic
energy only depends on: [1, section 2.2] [2, section 1]:

(dx∗)2 − (dx)2 = (dx + du)2 − (dx)2 (2.3a)

= 2eαγdxαdxγ , (2.3b)

where eαγ = 1
2

(
∂uα

∂xγ
+ ∂uγ

∂xα
+ ∂uµ

∂xα
∂uµ

∂xα

)
. (2.3c)

Here eαγ is the strain tensor, the Greek indices go from 1 to 3 and Einstein summation
is implied.

Note that eαγ is a symmetric tensor of rank two by its construction so it can be
represented by 3× 3 symmetric matrix. The eigenvectors of a symmetric matrix are
orthogonal. These eigenvectors are called the principal axes of strain tensor – let
us denote them by x̃1, x̃2, x̃3. In the coordinate system of principal axes, the strain
tensor is diagonal. We denote the diagonal entries as ẽ11, ẽ22, ẽ33 – these are called
principal strains [1, section 2.2]. We rewrite Eq. (2.3)(a,b):

(dx∗)2 = (δαγ + 2eαγ) dxαdxγ , (2.4a)

= (1 + 2ẽαγ) δαγdx̃αdx̃γ (2.4b)

= (1 + 2ẽ11)dx̃1dx̃1 + (1 + 2ẽ22)dx̃2dx̃2 + (1 + 2ẽ33)dx̃3dx̃3, (2.4c)

= dx̃α∗ dx̃
α
∗ , (2.4d)

where dx̃1
∗ =
√

1 + 2ẽ11dx̃1, and similarly for other two directions. This shows that
any elastic deformation of a body can locally be represented as a combination of
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Fig. 2.2.: A rod along x1 direction with the tip displacement as u2(x1).

extension and compression along the principal axes. The relative extension along
principal axis x̃1 is:

dx̃1
∗ − dx̃1

dx̃1 =
√

1 + 2ẽ11 − 1 ≈ ẽ11, (2.5)

and similarly for other two directions.

2.1.1 Small strain

As described earlier, the strain tensor has three principal axis at any point in the
elastic material. Let us choose three distances along these three principal axis and
consider deformations of the body, for which the changes in these distances are
small compared with the distances themselves. In other words, relative extension
or compression along any principal axis is much less than 1, hence so are principal
strains. Consequently, in the frame of Cartesian coordinates also, we can drop the
nonlinear term in Eq. (2.3)(b) to get:

eαγlin = 1
2

(
∂uα

∂xγ
+ ∂uγ

∂xα

)
. (2.6)

The subscript lin is for the strain tensor in the small deformation regime.

In some cases, even for small strains, all the nonlinear terms can not be ignored.
For example, consider an undeformed rod along the x1-axis as shown in Fig. 2.2.
The rod is deformed as shown in the same figure. Clearly the tip of the rod moves
by a considerable amount of distance. Nevertheless the local compression and the
extension in the rod is small. Let u2 be the vertical displacement of every point in the
rod. Here, the derivative ∂u2/∂x1 is comparable to unity and the nonlinear terms
involving this derivative can not be ignored in the expression of strain tensor. This
illustrates that for a one-dimensional object embedded in two or three dimensions,
or for a two-dimensional object embedded in three dimension, even in the regime of
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Fig. 2.3.: The force on the face parallel to x2 − x3 plane due to rest of the body is f . Stress
σ on the face has three components along all the three axis.

small deformation, the nonlinearity in strain tensor is significant. We discuss these
cases for filament and shells in the subsequent chapters.

2.2 Stress

Take a solid body in mechanical equilibrium and apply external forces to deform it.
Now consider a small volume element inside the body as shown in Fig. 2.3. Without
any loss of generality, we take the volume element as a rectangular parallelepiped
with faces parallel to Cartesian coordinate axis. Due to deformation, at microscopic
level, the arrangement of molecules is changed. This gives rise to internal forces.
These forces act through the faces of the volume element. Now consider the face
parallel to x2 − x3-plane as shown in Fig. 2.3. We define stress as force across the
face, per unit area of that face. The stress will be a 2nd rank tensor or a 3× 3 matrix
[3, chapter 31]. We further assume that Hooke’s law holds, such that for small strain,
stress is proportional to strain [2, section 4]. In the most general form,

σαβ = Eαβγδeγδ, (2.7)

where σαβ is second-rank stress tensor and Eαβγδ is the fourth-rank tensor of elastic
modulii of the material.

12 Chapter 2 : Three dimensional elasticity



2.2.1 Lamé coefficients

If the elastic material is isotropic then the tensor Eαβγδ must be invariant under
rotation and reflection. Hence it is described by two elastic coefficients [3, chapter
31]

Eαβγµ = λδαβδγµ + µ(δαγδβµ + δαµδβγ), (2.8)

which are called the Lamé coefficients. Substituting Eq. (2.8) in Eq. (2.7), we get

σαβ = λeµµδαβ + 2µeαβ . (2.9)

2.2.2 Elastic energy

To construct the elastic energy of the system, we must follow certain rules. First,
the energy should not be function of displacement field u, but its gradient – This
ensures that translating a body from one point to another does not change the stored
elastic energy. Second, it should be quadratic in any deformation to ensure that the
energy function has a minima. Third, it should be scalar. Such an energy function is
constructed as the linear combination of σαβσαβ , σαβeαβ , eαβeαβ. We use Eq. (2.9)
to replace σαβ in terms of eαβ . In an isotropic material obeying the Hooke’s law, this
leads to the following expression for the total elastic energy

H =
∫
V
HdV , (2.10)

where
H = 1

2λe
µµeµµ + µeαγeαγ , (2.11)

is the energy per unit volume, and V is the volume. Here λ and µ are known as the
Lamé coefficients [1].

2.2.3 Bulk modulus, Young’s modulus and Poisson ratio

Let us represent the strain tensor as the sum of pure shear and a hydrostatic
compression. Pure shear alters the shape of a body but do not change its volume
whereas hydrostatic compression causes a change in volume but no change in the
shape. We rewrite the identity eαγ as:

eαγ =
(
eαγ − 1

3δ
αγeµµ

)
+ 1

3δ
αγeµµ. (2.12)

2.2 : Stress 13



Here, the first term on the right hand side is strain due shear deformation, as it does
not cause any change in the volume of the body whereas the second term is due to
hydrostatic compression.

Substituting Eq. (2.12) in (2.11)

H = µ

(
eαγ − 1

3δ
αγeµµ

)2
+ 1

2Ke
µµeµµ,

K = λ+ 2
3µ.

(2.13)

Here K is bulk modulus. Since µ also turns out to be the coefficient of shear
deformation of the body, it is also sometime referred as the shear modulus.

Further we rewrite Eq. (2.9) as

σαβ = Y

1 + ν

(
eαβ + ν

1− 2ν e
µµδαβ

)
, (2.14)

where Y is Young’s modulus, and ν is the Poisson ratio. The Young’s modulus and
Poisson ratio are related to Lamé coefficient as follows:

Y = 9Kµ
3K + µ

, (2.15a)

ν = 1
2

3K − 2µ
3K + µ

. (2.15b)

To understand the meaning of Young’s modulus and Poisson ratio, consider a rod
with force F stretching it on both ends. Relative lengthening of the rod in the
longitudinal direction is F/Y . Young’s modules is the ratio of applied force and
change in length of the rod and Poisson ratio is the ratio of relative compression in
the transverse direction and extension in longitudinal direction(see [2, section 5]
and [1, section 2.4]).

2.3 Mechanical equilibrium

One possible way to solve for problems in linear elasticity, is to consider the energy
H ( Eq. (2.11)) as a functional for the deformation field u(x), and set

δH
δu

= 0, (2.16)
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where δ/δu denotes functional derivative. This gives the partial differential equa-
tion [4, Chapter 39]

(λ+ µ)∇(∇ · u) + µ∇2u = 0, (2.17)

which must be solved with the appropriate boundary conditions.
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PLATES
3

By definition, a plate has a very small thickness i.e. its dimension in one direction,
called the transverse direction, is very small compared to the two other longitudinal
directions. In this chapter, we discuss the equations governing the elasticity of
plates.

Clearly for plates, the dynamical variable consists of both in-plane deformation and
out-of-plane deformation. This gives two type of contribution to the total elastic
energy, first, bending energy and second, stretching energy. To understand this,
consider a plate with thickness h as shown in Fig. 3.1. When the plate is bent, it
is compressed at some points and extended at some other points. So there should
be a plane inside the plate, which does not undergo any compression or extension
– we call this the neutral plane. For such deformations, where the plate has a
neutral plane, total elastic energy has contribution due to the curvature of the plate
(bending energy) but negligible contribution from in-plane (x1,x2) deformations.
Such deformations are generally called as isometric deformation or pure bending
deformation. Next, we also consider that the plate is deformed in-plane only. Here,
the elastic energy has contribution only due to stretching of the plate.

In section 3.1, we only consider out-of-plane deformations and formulate the ex-
pression for bending energy of plate. In section 3.2, we consider only in-plane

𝒉
x𝟑 ≡ 𝒛

Compression

Extension
Neutral axis

Fig. 3.1.: A plate with thickness h bent along x3-axis. The plate is compressed at some
points and stretched at other points. Here, neutral axis of the plate does not show
any compression or extension – it is an example of isometric deformation or pure
bending. Figure adapted and reprinted with permission from [1].
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deformations and write down the stretching energy. Further, in section 3.3, we
discuss the large deformation of plate – where the elastic energy has contributions
from both in-plane and out-of-plane deformations– and subsequently arrive at the
Föppl–von Kármán equations.

3.1 Bending energy of a plate

Consider a plate of thickness h, as shown in Fig. 3.1. We notice that the component
of stress in x3 direction is zero on both the top and the bottom surface of the
plate. Since the plate is very thin, we assume that these stresses shall be negligible
throughout the thickness of the plate. Thus we have: [2, section 11]

σ13 = Y

1 + ν
e13 = 0, (3.1a)

σ23 = Y

1 + ν
e23 = 0, (3.1b)

σ33 = Y

(1 + ν)(1− 2ν)
[
(1− ν)e33 + ν(e11 + e22)

]
= 0, (3.1c)

where we have used Hooke’s law (Eq. (2.14)) to write stress in terms of strain. We
solve Eq. (3.1)(a,b) in the limit of small displacement (Eq. (2.6)) with the following
boundary conditions

u1(z = 0) = u2(z = 0) = 0. (3.2)

We get

u1 = −z ∂f
∂x1 ; u2 = −z ∂f

∂x2 , (3.3)

where f ≡ u3 is the displacement in x3 direction, and z is the vertical coordinate
which varies from −h/2 to +h/2. A straight forward calculation for the elastic
energy per unit volume (Eq. (2.11)) leads us to:

H = z2 Y

1 + ν

{ 1
2(1− ν)

(
∂2

1f + ∂2
2f
)2

+
[
(∂1∂2f)2 − ∂2

1f∂
2
2f
]}
, (3.4)

where Y is Young’s modulus, ν is Poisson’s ratio and ∂i(·) ≡ ∂(·)/∂xi. Note that,
the expression of H in Eq. (3.4) contains only out-of-plane displacement term, f .
This is the bending energy of the plate per unit volume. We integrate Eq. (3.4) from
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z = −h/2 to z = +h/2 to get bending energy per unit surface area of the plate. The
total bending energy is

HBend = Y h3

24(1− ν2)

∫
S

[(
∂2

1f + ∂2
2f
)2

+ 2(1− ν)
{

(∂1∂2f)2 − ∂2
1f∂

2
2f
}]
dS.

(3.5)

The first and second term in Eq. (3.5) are the mean, κH , and Gaussian curvature,
κG, of plate respectively.

κH = 1
2
(
∂2

1f + ∂2
2f
)

; and κG = (∂1∂2f)2 − ∂2
1f∂

2
2f, (3.6)

Gauss-Bonnet theorem [3, 4] implies that the contribution from κG to elastic energy
does not change if the topology of surface is held fixed. Hence we shall drop the
respective term to obtain:

HBend = B

2

∫ (
∇2f

)2
dS, (3.7)

where

B = Y h3

24(1− ν2) (3.8)

is the bending modulus of the plate.

3.2 Stretching energy

In this section, we consider the special case where the plate has only in-plane defor-
mations but no out-of-plane deformations. We write down the stress by being only
on the surface – an intrinsic way. We follow the same logic as in three-dimensional
elasticity (see Eq. (2.9)) to define stress-strain relationship using Hooke’s law as

σij2D = λ2De
kk
2Dδ

ij + 2µ2De
ij
2D, (3.9)

where σ2D is force per unit length (as opposed to force per unit area in three
dimension), e2D is the strain tensor for two dimensional surface,

eij2D = 1
2

[
∂ui

∂xj
+ ∂uj

∂xi

]
(3.10)

3.2 : Stretching energy 19



λ2D and µ2D are 2D Lamé coefficients. Latin indices run from 1 to 2. Here, we
assumed the limit of small in-plane deformation. Stretching energy of the system is
written as

HStretch =
∫
S
dS

[1
2λ2De

kk
2De

kk
2D + µ2De

ij
2De

ij
2D

]
, (3.11)

where S is area of the surface.

3.2.1 2D Lamé coefficients in terms of 3D elastic coefficients:

In this section, we shall again use the equations of general elasticity theory in three
dimension to compute the stretching energy of a flat surface. Consider a flat surface
of thickness h, as shown in Fig. 3.1. We apply the stress free conditions on the
surface of the plate as described in Eq. (3.1). We solve (3.1) to get [2, section 13]

e13 = e23 = 0, e33 = − ν

1− ν (e11 + e12). (3.12)

Since we want to write the stress tensor and stretching energy in terms of in-plane
displacement i.e. u1, u2, we use Eq. (3.12) to substitute e13, e23, e33 in the expressions
of σ11, σ12, σ22 to get:

σij = Y ν

1− ν2 e
kkδij + Y

1 + ν
eij , i, j = {1, 2} (3.13)

where σ is force per unit area, and σ2D is force per unit length which is obtained by
multiplying σ by thickness h i.e. σ2D = σh. We compare Eq. (3.13) with (3.9) to
get

λ2D = Y hν

1− ν2 , µ2D = Y h

1 + ν
. (3.14)

The stretching energy is given by Eq. (3.11).

3.3 Large deformation of a plate: stretching and
bending energy

Here we consider the contribution from both in-plane and out-of-plane deformation
to the total elastic energy. Let us rewrite the general expression for strain tensor

eαγ = 1
2

(
∂uα

∂xγ
+ ∂uγ

∂xα
+ ∂u1

∂xα
∂u1

∂xγ
+ ∂u2

∂xα
∂u2

∂xγ
+ ∂f

∂xα
∂f

∂xγ

)
, (3.15)
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where u1, u2 are in-plane displacements in x1, x2 direction and u3 ≡ f .

Here, as in section 2.1.1, we assume that the in-plane strain are small. Hence
for x1, x2 direction, we ignore the quadratic term in u1, u2 but we must retain the
quadratic term in f in Eq. (3.15). Thus we obtain:

eij2D = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi
+ ∂f

∂xi
∂f

∂xj

)
, (3.16)

where i, j = {1, 2}. Total energy of the system is:

H =
∫
S
dS

[
B

2 (∇2f)2 + µ2De
ijeij + λ2D

2 ekkekk
]

(3.17)

3.3.1 The Föppl–von Kármán equation

Minimizing the energy functional (Eq. (3.17)) with respect to both f and u yields
the Föppl–von Kármán equations [2, section 14] [1, section 6.5]

B∇4f − ∂

∂xk

(
σik2D

∂f

∂xi

)
= P (3.18a)

∂σik2D
∂xk

= 0. (3.18b)

Here Latin indices run from 1 to 2 and P is force per unit area on the plate in the
transverse direction.
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SHELLS
4

This chapter covers fundamental aspects of the mechanics of thin spherical shells. A
shell is a two-dimensional curved surface whose thickness is small compared with its
other dimension. They are different from plates because of their non-zero curvature
even when they are not deformed. They are commonly found in many natural and
engineering settings. Their sizes can vary over a very large range – from hundred
meters, e.g., the Avicii Arena Stockholm 1 down to about hundred nanometers, e.g.,
viral capsules [1, 2] and exosomes [3, 4]. From an engineering perspective, a typical
reason to study shells is to determine conditions under which these structures buckle
or collapse [5, 6, 7, 8]. Interest in this traditional field has been rekindled in the
past decades because of possible applications to medicine and nanoscience [9, 10,
11].

In this chapter, we construct an effective Hamiltonian for shells. For that, we need
to use generalized curvilinear coordinate system. We start by describing kinematics
of the surface.

4.1 Kinematics of a surface

Let us consider a two dimensional surface embedded in three-dimensional Euclidean
space R3 as shown in Fig. 4.1. We define a generalized curvilinear coordinate system
on the surface as ξ ≡ {ξi; i = 1, 2} – this is an intrinsic coordinate on the surface 2.
Let us also denote the position of a point P in an extrinsic way on the surface in R3

as

x(ξ) ≡ {xµ(ξ);µ = 1, 2, 3} (4.1a)

ξ ≡ {ξi; i = 1, 2}. (4.1b)

1There are several geodesic domes with sizes ranging from 10 to 200 meters.
2Intrinsic coordinates are defined in such a way as if a creature is living entirely within the surface

without any reference to its embedding dimension [12].
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Fig. 4.1.: Tangent plane and normal vector at point P on a two dimensional surface embed-
ded in three dimensional space. Position of P is described in two ways, first in the
intrinsic surface coordinate system (ξ1, ξ2), and second in the extrinsic Cartesian
coordinate system (x1, x2, x3). Figure adapted and reprinted with permission
from [13].

Here, for two dimensional coordinate system we use Latin indices and for three
dimensional coordinate system we use Greek indices. A two dimensional surface has
infinite number of tangent vectors at a point. We choose two linearly independent
tangent vectors, Ti, {i = 1, 2} at any point P, which forms the basis for tangent
plane [14, 13]. We write

Ti ≡ Tµi = ∂xµ

∂ξi
≡ ∂x
∂ξi
≡ ∂ix, (4.2)

where i = {1, 2}, µ = {1, 2, 3}. In general, T1,T2 do not form an orthonormal basis.
We define the unit normal to the surface N̂ as

N̂ = T1 × T2
|T1 × T2|

. (4.3)

Note that, there are two normal vectors N̂ and −N̂ . Direction of N̂ is decided by
the choice of an orientation on the surface. Unless there is any asymmetry, there is
no reason to prefer one over another.

We calculate the infinitesimal Euclidean distance, ds, between two points on the
surface, ξ and ξ + dξ [13, chapter 6]:

ds2 = [x(ξ + dξ)− x(ξ)]2 = dξidξj
∂x
∂ξi

∂x
∂ξj

= dξidξjgij(ξ), (4.4)

where gij(ξ) is the metric tensor [15].
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4.1.1 Curvature tensor

The curvature is the tangential component of the rate of change of the normal to the
surface [14, Eq. 80]:

dN̂ · dx = −κijdξidξj , (4.5)

where

κij = −∂N̂
∂ξi
· Tj , (4.6)

µ = {1, 2, 3} and i = {1, 2}.

An alternate description of the curvature is as follows. We take derivative of a
tangent vector with respect to the surface coordinates [14, 13]. The component of
the derivative of tangent in N̂ direction, κijN̂ , is the curvature tensor.

∂Ti
∂ξj

= κijN̂ +
(

Other terms in
T1, T2 direction

)
, (4.7)

This description allows us to write the curvature κij ≡ κijN̂ , as a 2nd rank tensor
with each element as a vector in the direction of N̂ [13, Eq. 2.40]. Using Eq. (4.2),
we note that κij is symmetric. Hence its eigenvectors are orthogonal. In the frame
of these eigenvectors κij is a diagonal matrix with two curvature values, κ1, κ2 –
known as principal curvatures. Trace κH and determinant κG of κij is:

κH = κ1 + κ2
2 ; κG = κ1κ2. (4.8)

Here κH and κG are the mean and Gaussian curvature of the surface – these are the
invariants of the surface under any coordinate transformation.

4.1.2 Laplace-Beltrami operator

We shall make extensive use of κHN̂ , therefore we define an operator L(x) =
2κH(x)N̂(x) – it is generalization of Laplacian on curvilinear coordinate system,
which is also known as Laplace-Beltrami operator. The operator can be used to
assign the sign of curvature at any point. The idea is to compute L at the point
and if it points in the direction of chosen orientation of the surface i.e. N̂ , κH is
positive otherwise κH is negative. To understand this, let us consider a sphere under
an action of some force F on point P at north-pole as shown in Fig. 4.2(a,b,c). We
choose the force to be towards the center of sphere and the direction of N̂ away
from the center of the sphere for all the cases. Initially in Fig. 4.2, the sphere is
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Fig. 4.2.: Change in sign of mean curvature on a sphere before and after deformation.

undeformed, L at point P is in the same direction as N̂ so κH is positive. Later
in Fig. 4.2(b), κH and L are zero at point P. In the end, in Fig. 4.2(c), the region
around the point P have become inverted. Now L points downwards, in the opposite
direction of N̂ , which determines that κH is negative.

4.2 Bending energy of a shell

To construct an effective energy for a shell, we generalize the energy of plate (Eq. (3.5))
for curvilinear coordinates, and subtract the contribution from the curvature when
sphere is not deformed. A general form of bending energy [16, 17] [13, section 4]

HBend =
∫
S

[
B

2
(
2κHN̂ − 2κ0N̂0

)2
+ B̄κG

]
dS. (4.9)

where HBend is total bending energy, B is the bending rigidity and B̄ is the Gaussian
rigidity, N̂0 is the unit normal vector on the surface before deformation, κ0 is the
curvature of the surface before deformation (also known as spontaneous curvature,
for a shell κ0 = 2/d, where d is diameter of the shell) and dS is the area of the
parallelogram formed by tangent vectors,

dS = N̂ ·
(
T1dξ

1 × T2dξ
2
)

= √gdξ1dξ2, (4.10)

where g is the determinant of metric tensor gij . We use the similar arguments
as section 3.1 that if the surface does not change its topology, we drop the term
involving B̄ to get

HBend = B

2

∫
S

(
2κHN̂ − 2κ0N̂0

)2√
gdξ1dξ2. (4.11)
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ACTIVE SHELLS
5

„ ...living matter, while not eluding the "laws of
physics" as established up to date, is likely to
involve "other laws of physics" hitherto unknown,
which however, once they have been revealed,
will form just as integral a part of science as the
former.

— Erwin Schrödinger
What is life, 1944

It was realized very early in biophysics [1], that the fundamental property of living
matter is that they are not in thermal equilibrium even when they are statistically
stationary. They are active – they consume energy and generate entropy [2]. The
statistical and mechanical properties of such matter is a current topic of considerable
interest [3, 4]. Membrane of any living cell can be considered as an active shell,
although not necessarily spherical, because the fluctuations of its membrane have
active components, in addition to the thermal fluctuations, due to active processes
occurring on the membrane (e.g., endocytosis and exocytosis) and the driving by
the active cytoskeleton [5, 6, 7, 8, 9].

5.1 Shallow shell approximation

Let us simplify the energy expressions for a shell by just considering a section
of the shell (see Fig. 5.1). We further assume that the shell section is weakly
curved and it departs only slightly from a plane [10, section 11.2][11, section
3.15][12]. An advantage of this assumption is that we do not need to describe
the shell deformations in curvilinear coordinate system and we can describe the
deformations using Cartesian coordinate system.
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Fig. 5.1.: A section of an undeformed sphere is shown in Cartesian coordinate system
with x1 − x2 plane as the tangential plane. The displacement vector between
deformed state and undeformed state at any point P is decomposed into three
mutually perpendicular direction, u1(x1, x2), u2(x1, x2), f(x1, x2), as shown by
red arrows. Figure adapted and reprinted with permission from Ref. [12].

Here we take the tangent vectors T1, T2 of the shell at origin along the Cartesian
coordinate axis x1, x2. Thus x3 ≡ z axis is normal to the shell at origin. Now we
define the height field perpendicular to x1, x2 plane as z ≡ z(x1, x2), where

z(x1, x2) = R

1−

√
1−

(
x1

R

)2
−
(
x2

R

)2
 , (5.1)

Eq. (5.1) defines the undeformed state of the shell. Here we take center of the shell
at (0, 0, R), where R is radius of the shell. We shall make these assumptions for
shallow shell theory:

1. The section of the shell is weakly curved i.e.

∂z(x1, x2)
∂x1 ∼ x1

R
; ∂z(x1, x2)

∂x2 ∼ x2

R
(5.2)

2. The surface departs only slightly from the plane i.e. z/R� 1.
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In addition, we assume that in-plane displacements are small as compared to out-
of-plane displacement (see (3.2)). With these assumptions the undeformed state is
approximately paraboloid i.e.

z(x1, x2) ≈ x1x1 + x2x2

2R . (5.3)

We decompose the displacement vector from undeformed state of the shell (Fig. 5.1)
to in-plane displacement as u1(x1, x2), u2(x1, x2) in x1, x2 direction, and out of plane
displacement in the normal direction as f(x1, x2). In terms of these fields, a point at
(x1, x2, z) moves to

(x1, x2, z)→
(
x1 + u1 − f ∂z

∂x1 , x
2 + u2 − f ∂z

∂x2 , z + f

)
. (5.4)

We get strain tensor for this case by substituting

ui → ui − f ∂z
∂xi

(5.5)

in the expression of strain tensor for flat surface( Eq. (3.16)). We ignore the higer
order terms to get

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi
+ ∂f

∂xi
∂f

∂xj

)
− δij f

R
. (5.6)

Note that, the strain tensor for shallow shell approximation (Eq. (5.6)) differs by an
additional term as compared to the strain tensor for flat surfaces in (3.16). For flat
surfaces, we found that out-of-plane displacements contribute to in-plane stretching
through nonlinear terms. In addition, for a shell, a purely normal displacement
modifies the tangential strain.

Furthermore, a shell can also sustain pressure difference between its interior and
exterior. We include an extra term for pressure to write total energy of a section of
the shell:

H[u1, u2, f ] =
∫
dx1dx2

[
B

2 (∇2f)2 + µeijeij + λ

2 e
kkekk − Pf

]
, (5.7)

where P is the difference between external and internal pressure, B is the bending
rigidity and λ, µ are the Láme coefficients.
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A B C

Fig. 5.2.: Grid points on a sphere (A)Triangulated random points on a sphere. (B) Trian-
gulated points on sphere after 60000 SMC iteration of the initial configuration
shown in (A). (C) An example of regular grid

5.2 Numerical method

Here, we discuss the numerical model for tethered shell, Monte Carlo simulation for
equilibrium and non-equilibrium systems.

5.2.1 Summary of paper I – MeMC:A package for Monte Carlo
simulations of spherical shells [13]

We use Monte Carlo algorithm following Refs. [12, 14] to study the elastic properties
of shells. First, we start withN randomly chosen points on a sphere Fig. 5.2(A). Then,
we run a Monte Carlo simulation, with a Lennard-Jones (LJ) repelling potential,
of these points moving on the surface. Once the surface Monte Carlo (SMC) has
reached an equilibrium, we use the algorithm in Ref. [15] to construct the Delaunay
triangulation of these points, see Fig. 5.2(B). The connection between the points
thus formed is kept unchanged. The distance between two neighboring nodes i and
j is called `0ij .

We use Monte Carlo [16] simulations to update the positions of the points (xi at
node i). For a pressurized shell, the total energy,

H = HStretch +HBend + PV , (5.8)

32 Chapter 5 : Active shells



where the stretching contribution is

HStretch = 1
2
∑
i

H

2
∑
j(i)

(
xij − `0ij

)2
, with (5.9a)

xij ≡ |xi − xj |. (5.9b)

The bending contribution is

HBend = B

2
∑

i

Ai
(
Li − CN̂

)2
. (5.10)

Here V is the volume. The Young’s modulus of the membrane is given by Y =
2H/
√

3 [17], N̂ is the outward normal to the surface, C is its spontaneous curvature,
and Ai is the area of Voronoi dual cell at the node i [13, 18, 19]. The operator

Li = 1
Ai

∑
j(i)

1
2 [cot(αij) + cot(βij)] xij , (5.11)

is the discrete Laplacian [17, 19, 18] at the node i. Here αij , βij are the angles
opposite to bond xij as shown in Fig. 5.3. We compute Ai as follows [19, 18].
Consider the triangle T in Fig. 5.3, defined by the nodes i, j, j − 1. If T is non-obtuse,
the area of shaded region in Fig. 5.3

Aj(i) = 1
8
[
x2
ij cot(αij) + x2

ij−1 cot(βij−1)
]
. (5.12)

If T is an obtuse triangle, the shaded region in Fig. 5.3 lies outside the triangle
T then Aj(i) = area(T )/2 if the angle at the vertex i of T is obtuse. Otherwise
Aj(i) = area(T )/4. Here area(T ) = 0.5 |xij × xij−1|.

The area Ai is obtained by summing up the contributions from all the triangles
similar to Aj(i), in Fig. 5.3, e.g., the contribution from the triangle T is the shaded
area.

To compute the outward normal to the surface, N̂ , in Eq. (5.10), we sort the points
about node i in a counterclockwise manner. To sort the neighbors around any node i,
we rotate the coordinate system such that, the z axis passes through the point i along
the vector xi. In this coordinate system we sort the neighbors by their azimuthal
angle.
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Fig. 5.3.: An example of triangulated mesh at the node i. αij , βij are the angles opposite to
the bond ij. Shaded part is the Voronoi region of triangle T at the nodes i, j − 1, j
– it lies inside as T is non-obtuse. The nodes are sorted in counterclockwise
direction. The image is adapted from Ref. [13].

5.2.2 Model of activity

Over the years, many theoretical models [20, 21, 22, 23, 24, 25, 26], have been
suggested to incorporate the effects of active fluctuations into models of membranes.
All of these drive the membrane out of thermal equilibrium. In equilibrium Monte
Carlo simulations the transition rate, W , from one state to another is given by the
Metropolis algorithm:

W = min[1, exp(−H/kBT )], (5.13)

where kB is the Boltzmann constant, T is the temperature and H is the difference in
energy between the two states. To drive the membrane out of equilibrium, following
Ref. [27], we replace H by H+ ∆H. This guarantees that detailed balance is broken
and the amount by which it is broken is ∆H. If ∆H is positive (negative) the
probability of acceptance of large fluctuations is decreased (increased). Thus we
define activity

A = −∆H
kBT

(5.14)

such that simulations with positive A, active simulations, have higher fluctuations
than equilibrium ones whereas for negative A, quiescent simulations, the fluctuations
are less than the equilibrium ones.
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5.3 Statistical-mechanics of the shells

Micro and nano vesicles, both natural and synthetic, play a crucial role in biology
and medicine. The physical properties of these vesicles play an important role
in their biological functions [28]. For example, consider a shell and compress it
with an external pressure with no thermal fluctuations. Initially the shell contracts
uniformly [11], but beyond a certain critical pressure P0 the shell develops buckling
instability. Recently Ref [12, 29] showed that for small enough shells, thermal
fluctuations can decrease the critical buckling pressure by a large amount. To
incorporate the effects of thermal fluctuation, instead of dealing with elastic energy,
we formulate the expression for Helmholtz free-energy.

5.3.1 Free-energy

Let us consider that the shell, under the action of small enough external pressure P
contracts uniformly by an amount w0. We write

f(x) = w0(x) + w(x), (5.15)

where w(x) is deformation with respect to the contracted state and x = (x1, x2). An
effective free energy F of the system is

F [w] = −kBT ln
[∫
Du(x)

∫
dh0 exp

(
−H[w,w0, u

1, u2]
kBT

)]
(5.16)

Following Ref. [12, 29], we perform the functional integral in Eq. (5.16). We divide
F [w] into harmonic (F0[w]) and anharmonic part (F1[w]),

F [w] = F0[w] + F1[w], (5.17a)

F0[w] = 1
2

∫
d2x

[
B(∇2w)2 − PR

2 |∇w |2 +Y2D
R2 w

2
]
, (5.17b)

F1[w] = Y2D
2

∫
d2x

[(1
2Pij

∂w

∂xi
∂w

∂xj

)2
− w

R
Pij

∂w

∂xi
∂w

∂xj

]
, (5.17c)

where x =
(
x1, x2), Pij is the transverse projection operator,

Y2D = 4µ2D
µ2D + λ2D
2µ2D + λ2D

= Y h (5.18)
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Fig. 5.4.: Thermal buckling for FvK = 4616, ET = 27 and P = 0(A), P = 0.5P0(B), where
P0 is the mechanical buckling pressure. The shell shows buckling at much lower
pressure than P0 due to thermal fluctuations. Figure adapted with permission
from [12].

is two-dimensional Young’s modulus, Y is three-dimensional Young’s modulus, and
h is thickness of the shell. We use relations in (3.14) to write the last equality
in Eq. (5.18).

We define two non-dimensional numbers, the Föppl–von Kármán number and the
Elasto-thermal number, respectively as

FvK ≡ Y2DR
2

B
, ET ≡ kBT

B

√
FvK, (5.19)

where kB is the Boltzmann constant and T is temperature. At constant temperature,
the effects of anharmonicity increases with FvK whereas at constant elastic modulus
the effects of thermal fluctuations increases with ET.

5.3.2 Thermal buckling

Buckling emerges in this model in the following manner. Consider just the harmonic
part F0[w]. If we write this in Fourier space, with

ŵ(q) ≡
∫
d2xw(x) exp(iq · x), (5.20)

we obtain

F [ŵ] = 1
2

∫
d2qrqŵ(q)ŵ(−q) where (5.21a)

rq = Bq4 − PR

2 q2 + Y2D
R2 (5.21b)
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Using standard tools of equilibrium statistical mechanics – averaging over thermal
noise – it is straightforward to obtain

C0 ≡ 〈ŵ(q)ŵ(−q)〉0 = S
kBT

rq
. (5.22)

Here q > 1/R and S is the area of integration in the x1–x2 plane. We rewrite

rq = B(q + q∗)4 − (PR/2)q2 (5.23)

where

q∗ = (`∗)−1
(
Y2D
BR2

)1/4
= FvK1/4

R
. (5.24)

For a large Föppl–von Kármán number, FvK � 1, `∗ � R. Hence it is valid to
consider the mode q = q∗. We notice that for

P = P0 = 4B
R
q2
∗ (5.25)

rq(q = q∗) = 0, in other words, the equilibrium spectrum, C0, blows up. This is the
signature of buckling. This corresponds to the well known mechanical buckling
pressure of spherical shells under external pressure [11]. So far, we have discussed
the emergence of mechanical buckling in this model.

Note that, the shallow shell theory can accurately predict the buckling pressure but
the shape of the deformed shell after buckling can no longer be described by it.
Refs. [12, 29] use renormalization group (RG) techniques to show that the effects
of the anharnomic terms is to renormalize the parameters appearing in the bare
theory, i.e., P , B, and Y2D in (5.22) must be replaced by their scale–dependent,
renormalized versions, see Ref. [29, Eq. 18]. Consequently both the pressure and
the critical buckling pressure are renormalized and buckling is obtained if both of
these quantities are equal for a length scale which must be smaller than the radius
of the sphere [29]. They find that, with thermal fluctuations, the shell buckles at
much lower pressure P < Pc (see Fig. 5.4) and sometime even at negative pressure
i.e. shell may collapse because of thermal fluctuations alone.

5.3.3 Discussion of results from paper II – active buckling of
pressurized spherical shells: Monte Carlo simulation

In this paper, we study how elastic properties of shells, in particular buckling changes
if they are turned active – driven out of thermal equilibrium. We show that within
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Fig. 5.5.: Active buckling: Typical snapshots from our simulations for activity A = −2, 0
and 2 (from left to right), and pressure P = 0.30P0 (top row) and 0.36P0 (bottom
row) where P0 is the critical buckling pressure obtained from the mechanical
theory of elastic shells, i.e., at zero temperature. We use FvK = 4616, and ET = 8.
The middle column, A = 0, corresponds to shells in thermal equilibrium – an
unbuckled shell buckles upon increasing P/P0 from 0.30 to 0.36. This is consistent
with the results of Refs. [12, 29]. Top row: As activity is increased to 2 (right
column) the shell buckles. Bottom row: Whereas as activity is decreased to −2
(left column) the shell, that was buckled in thermal equilibrium, does not buckle
at the same pressure. Figure adapted from [30].
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Fig. 5.6.: Phase diagram The phase boundary in (a) the pressure–elasto–thermal number
plane for different activities and (b) in the pressure–activity plane for different
elasto–thermal numbers (gray triangles for ET = 7.99, olive squares for ET = 2.12
and cyan cross for ET = 0.03). In (a) the region where the buckled phase is
obtained in equilibrium is marked by blue lines. The region where the buckled
phase is obtained for A = 4 is shaded in light yellow. The region where the
buckled phase is obtained for A = −4 is marked by violet lines. In (a) the phase
boundary obtained by RG calculation [29] is marked by a black line and the
simulation results by Ref. [12] are represented by red triangles.

the right range of elastic parameters, a shell that is not buckled just with thermal
fluctuations can be buckled if we increase its activity. Similarly a shell that is buckled
in thermal equilibrium can unbuckle if we reduce its activity, see Fig. 5.5. We obtain
the phase diagram for thirteen values of elasto–thermal number, for each of which
we use seven values of activity. For a fixed choice of elasto–thermal number and
activity we start our simulations with an initial condition where the shell is a perfect
sphere. Then we choose a fixed value of external pressure and run our simulations
till we reach a stationary state, which for zero activity is the equilibrium state. If the
sphere in not buckled we choose a higher external pressure and start our simulations
again from the same initial condition till we find the pressure where sphere buckles.
This way we mark out the phase boundary in the pressure–elasto–thermal number
plane for different activities and in the pressure–activity plane for different elasto–
thermal numbers, see Fig. 5.6. In Fig. 5.6(a) we also plot the phase boundary,
obtained through a RG calculation in Ref. [29], which agrees reasonably well with
our numerical results for zero activity. Note that at small ET for the quiescent case it
is possible to have the shell remain unbuckled even for pressure higher P0, i.e., the
shell is stabilized.
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FILAMENTS
6

Long slender elastic bodies, filaments in short are ubiquitous in nature e.g. human
hair [1], bacteria [2], carbon-nanotubes [3]. The study involving elastic properties
of filaments dates back to 16th century. James Bernoulli posed the fundamental
problem of elastica in 1691. The problem reads as: take a filament of uniform
thickness and negligible weight. The filament is clamped at one end with force P
pushing it from the other end. what is the shape of the filament? Leonhard Euler
and Daniel Bernoulli found that the filament will remain straight for loads less than
the critical load 1

Pcr = π2B

4`2 , (6.1)

where B is bending rigidity of the filament, ` is total length of the filament. For
P > Pcr, the filament buckles rather than just longitudinally compressing itself.
Solution of elastica problem has found its application in diverse felds. For example,
bending of long tracks due to heat, collapsing of a tall structure under its own
weight [5].

More recently, interest in studying the elastic properties of filament is rekindled
because of their application in bio-physics and bio-mechanics. Few examples in-
clude, the study of twist in DNA [6], stretch-coil transition of polymers [7], actin
filaments [8], flagella [9]. In this chapter, we discuss the foundation of elasticity of
filaments.

The rest of this chapter is organized in the following manner. In section 6.1, we
describe the kinematics of a filament. In section 6.2, we formulate the expression
for total energy. We conclude the chapter by discussing equilibrium equation of a
filament under external forces – known as Euler-Bernouili equation (section 4.3).

1A closed form solution of elastica was worked out by Saalschütz [4] in 1880.
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6.1 Kinematics of a filament

Let us first consider a three-dimensional curve. We represent the curve as R(ξ).
Here R(ξ) is the coordinate of every point on curve embedded in 3 dimension, with
parameter ξ in some interval on real axis I. We consider only smooth curves i.e.
dR(ξ)/dξ is well defined everywhere in I. The length of such a curve between
parameter values ξ0 and ξ can be defined as:

s ≡ ψ(ξ) =
∫ ξ

ξ0

∥∥∥∥dR(ξ′)
dξ′

∥∥∥∥ dξ′ (6.2)

Where ‖·‖ denotes the norm. s = ψ(ξ) is the arc-length of the curve from ξ0 to ξ.

Since ψ(ξ) is always an increasing function , we can take its inverse and write
ξ = ψ−1(s). We re-parametrize the curve as R(ψ−1(s)) with respect to arc-length s.
Let us derive the relation between both notations for describing a curve. Distance
between two nearby points on the curve is given by the Pythagorean theorem:

ds2 = dR(s)
dξ

· dR(s)
dξ

dξ2 =⇒ ds

dξ
=
∥∥∥∥dR(s)

dξ

∥∥∥∥ (6.3)

We use this relation to write:

R′(s) ≡ dR(s)
ds

= dR(ξ)
dξ

dξ

ds
= dR(ξ)/dξ
‖dR(ξ)/dξ‖ ≡ T̂ (s) (6.4)

We denote (·)′ as the derivative with respect to s and T̂ denotes the unit tangent
vector at every point on the curve.

So far we have described the curve from an extrinsic point of view i.e. we write
the coordinate of every point on the curve in three-dimensional coordinate system.
The curve is a one-dimensional body embedded in three-dimensional space, so it is
also useful to describe its kinematics without resorting to any external co-ordinate
system – this is called an intrinsic view.

6.1.1 Filament with no thickness: Frenet-Serret frame

We describe the curve in the frame of unit tangent vector (T̂ (s)), unit normal
vector(N̂(s)) and unit binormal vector (B̂(s)) – this is known as Frenet-Serret
frame (as shown in Fig. 6.1(A). These form an orthogonal coordinate system
(see Fig. 6.1(A)):
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B̂(s) = T̂ (s)× N̂(s) (6.5)

We defined T̂ in (6.4) and N̂ is a vector perpendicular to T̂ . Notice that, if a curve
is embedded in three dimension, we have infinite number of vectors perpendicular
to T̂ . We choose one of them as a normal vector, which also fixes B̂.

Frenet-Serret frame moves along the curve, from s = 0 to s = L, as shown
in Fig. 6.1(A). The frame for any two nearby points differ by a small rotation
∆φ. So we write:

T̂ |s+∆s= T̂ |s+∆φ× T̂ |s =⇒ T̂ ′(s) = dφ(s)
ds

× T̂ (s). (6.6)

We can write the similar equations for N̂ and B̂. Equation 6.6 tells us that the
T̂ ′, N̂ ′, B̂′ is perpendicular to T̂ , N̂ , B̂ respectively. So we choose N̂ in the direction
of T̂ ′:

N̂ = T̂ ′(s)∣∣∣∣∣∣T̂ ′(s)∣∣∣∣∣∣ (6.7a)

T̂ ′ =
∣∣∣∣∣∣T̂ ′(s)∣∣∣∣∣∣ N̂ =

∣∣∣∣∣
∣∣∣∣∣d2R(s)
ds2

∣∣∣∣∣
∣∣∣∣∣ N̂ ≡ κN̂ (6.7b)

Here κ(s) is curvature of the curve. Now we derive the same relation for N̂ ′ and
B̂′. Using (6.5) and (6.6), we derive [10]:

N̂ ′ = τB̂ − κT̂ (6.8a)

B̂′ = −τN̂ (6.8b)

Where τ is called the torsion of the curve. Intuitively, the curvature (κ) measures
the deflection of the curve from a straight-line and torsion (τ) measures the failure
of a curve to be planer[11]. Equation 6.7 and 6.8 are called the Frenet-Serret frame
of equations [11] – an intrinsic description of the curve.

6.1.2 Filament with finite thickness: Darboux frame

Frenet-Serret frame describes the kinematics of a curve i.e. a filament with zero
thickness, although practical filaments have a finite thickness. To describe the
filaments in more accurate way, we define an orthonormal frame, d̂1 d̂2 d̂3, moving
along the filament, as shown in Fig. 6.1(B). We denote the centerline of the filament
as R(s) and the unit tangent vector to the centerline is denoted as T̂ = R′(s).
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(A) (B)

Fig. 6.1.: (A) The Frenet-Serret (T̂ N̂B̂) frame moving along a helix. (B) Orientation of the
fialment in orthonormal frame – d̂1, d̂2 and d̂3 is shown. The figure is reprinted
with permission published by Ref. [11].

Without any loss of generality, we take d̂3 = T̂ and d̂1 is chosen arbitrarily in the
cross-section perpendicular to the tangent vector, this determines the third axis
d̂2 = d̂3 × d̂1 – this is called the Darboux frame [1] (see Fig. 6.1(B)). The Darboux
fram, d̂a (a=1,2,3), for two nearby points differ by a small rotation and we write:

d̂′a = Ω× d̂a (a = 1, 2, 3) (6.9a)

where Ω = dφ
dt is the rotation rate of the Darboux frame. It is called the Darboux

vector [1] and given as: Ω = Ω1d̂1 + Ω2d̂2 + Ω3d̂3.

Ω1 = d̂′2 · d̂3 (6.9b)

Similarly, we write equations for Ω2 and Ω3.

Darboux vector, Ω, shows the rate at which the Darboux frame rotates when we
follow the centerline with unit speed. Ω1 and Ω2 are the rotation rate of Darboux
frame about d̂1 and d̂2 respectively – they are called material curvatures. Similarly,
Ω3 defines the rotation rate of the frame with respect to d̂3 – it is called the material
twist of the filament. The components of Ω – Ω1,Ω2,Ω3 are shown in Fig. 6.2.
Note that, Darboux frame is different from Frenet-Serret frame which is described
in (6.7)eq:NhpBhp. Likewise, the material curvature (Ω1, Ω2) and twist (Ω3) are
different from κ and τ respectively.
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Fig. 6.2.: Three different type of deformation rate of a filament along the arc-length co-
ordinate is shown. (a) Material curvature, Ω1, which is the frame rotation rate
about d̂1. (b) Material curvature, Ω2, – the frame rotation rate about d̂2. (c)
Twist of the filament, Ω3 – the frame rotation rate about d̂3. Figure adapted and
re-printed with permission from [1]

Next, we describe relation between the Darboux frame and Frenet-Serret frame.
Using (6.7), (6.8) and (6.9), we write:

Ω2
1(s) + Ω2

2(s) = κ2(s). (6.10)

The relation between twist Ω3 and torsion, τ is:

Ω3 = dθ

dS
+ τ , (6.11)

where θ is the angle between d̂2 and N̂ i.e.

d̂2 · N̂ = cos(θ) (6.12)

6.2 Bending energy

Energy per unit length (H(s)) integrated over whole length gives the total elastic
energy of the filament (H). The H(s), for an elastic filament has contributions due
to bending i.e. Ω1 and Ω2 and twisting i.e. Ω3 – For the current work, we ignore the
twisting of the filament. The energy is a quadratic function of the deformation, i.e.
a function of Ω1, Ω2[12, 1, 11, 13].

H(s) = Y I11
2 Ω2

1(s) + Y I22
2 Ω2

2(s) (6.13a)
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HBend =
∫ L

s=0
H(s) ds (6.13b)

where Y (unit: Pa = Kg m−1 s−2) is the Young’s modulus of the filament, HBend is
the bending energy of the elastic filament and I11 and I22 are the second moment of
inertia along the principal axes of inertia of the cross-section of the filament.

For a filament with circular cross-section, I11 = I22 = I = πd4

64 , where d is diameter
of the filament. We define B = Y I, as the bending rigidity of the filament, since
this is the contribution due to bending of the filament. Equations (6.10) and (6.13)
yields:

H(s) = Y I

2
(
Ω2

1(s) + Ω2
2(s)

)
= B

2 κ
2(s) (6.14a)

HBend = B

2

∫ L

s=0
κ2(s)ds (6.14b)

6.3 Euler-Bernouili equation

There are two ways to obtain an equilibrium configuration of the filament. First,
we write the equation of force-balance and moment-balance on every element
of the filament [12]. Second, we can use variational principle to minimize the
Hamiltonian to get the equilibrium configuration of the filament [1]. We take the
second approach.

Let us ignore the twist of the filament and concentrate only on the bending forces.
Consider a macroscopic filament with force per unit length given as q(s). For the
equilibrium configuration of the filament R(s) we write:

q(s) = −δH (R′′)
δR

= d2

ds2

(
∂H (R′′)
∂R′′

)
= d2

ds2

(
−Bd

2R(s)
ds2

)
= −Bd

4R(s)
ds4 (6.15)

where δ(·)
δR denotes the functional derivative with respect to R.

The total force on the filament is∫ L

s=0
q(s)ds =

∑
i ε forces

Fi = F = F1d̂1 + F2d̂2 + F3d̂3 (6.16)

where F is the summation over all the forces acting on the filament.
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The force acting along the tangent can not bend a filament. So we do not write
equations in that direction. We write down the equation in the other two direction
by integrating both sides of equation 6.15:

−Bd
3R(s)
ds3 · d̂i = F · d̂i ; i = 1, 2 (6.17a)

This can also be written as following:

B
dR(s)
ds

× d3R(s)
ds3 = F × dR(s)

ds
(6.17b)

where d̂3 = dR(s)
ds . Equation 6.15 and 6.17b are the Euler-Bernoulli beam equation

[14].

6.3.1 Boundary conditions on the filament

There are atleast three types of boundary conditions that are commonly used. Here
we show boundary conditions at one end with s = 0.

• Clamped: The filament can not move either longitudinally or transversely i.e.
the direction of the filament at the point can not change.

R(s = 0) = R0
dR(s = 0)

ds
= N̂0 (6.18)

• Hinged: The filament can not move, but its direction can vary

R(s = 0) = R0; d2R(s = 0)
ds2 = 0 (6.19)

• Free end: For this case, the force and moment at the point is zero.

d2R(s = 0)
ds2 = 0 d3R(s = 0)

ds3 = 0 (6.20)
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STOKES FLOW
7

„Imagine that a man swimming at same Reynolds
number as his own sperm. Well, you put him in
a swimming pool full that is full of molasses, and
then you forbid him to move any part of his body
faster than 1 cm/min. If under these condition,
you are able to move more than a few meters per
week, you can qualify as low Reynolds number
swimmer – and that exactly is harsh life of
bacteria.

— E.M.Purcell
life at low Reynolds number, 1973

Low Reynolds number flows are ubiquitous in nature ranging from the world of tiny
organisms such as bacteria to the movement of glaciers. Reynolds number – the
ratio of inertial to viscous forces – is used to predict the transition from laminar
flow to turbulent flow [1]. For example, a swimming bacteria corresponds to a
Reynolds number of about 10−5 – a laminar regime. Whereas a flying bird has a
Reynolds number of about 104 – a turbulent regime, see fig 7.1. At Re � 1, the
inertial and nonlinear terms of the Navier–Stokes equation can be ignored. Such
flows are called Stokes flows. Many biophysical phenomena are well described by
the Stokes flows e.g. swimming of unicellular organism such as Chlamydomonas
to multicellular organisms Volvox [2], human blood circulation system in capillary
[3], beating of flagella [4, 5] etc. Furthermore the subject of microfluidics almost
entirely (except inertial microfluidics [6]) is in Stokesian regime. In this regime, the
flows obey linear equations and they are also time-reversible [7] due to absence of
nonlinearities. Consequently, such flows are non-mixing. For example, if the fluid
is sheared by its boundary motion that is subsequently reversed, then all the fluid
elements return to their initial positions. Hence, mixing in micro-channels happens
solely due to molecular diffusion and is very slow [8, 9].
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7.1 Fundamental equations

Motion of an incompressible Newtonian fluid is given by Navier-Stokes equation
[10, 11, 12]:

∂tv + v ·∇v = −∇p

ρ
+ η

ρ
∇2v + fex, (7.1a)

∇ · v = 0. (7.1b)

Here ρ is constant density of the fluid, v is the velocity, p is the pressure, η is the
dynamic viscosity and fex is the external force e.g. gravity, electro-magnetic forces
etc. (7.1a) is the equation for momentum conservation and 7.1b is the continuity
equation. We take curl of (7.1a) and write down the vorticity equation:

∂t$ + ∇× ($ × v) = η

ρ
∇2$ + ∇× fex, (7.2)

where $ ≡ ∇ × v, is vorticity of the fluid. Let us introduce the dimensionless
variables:

x = x̃L, v = U ṽ, t = T t̃, ∂t = 1
T
∂̃t̃, ∇ = 1

L
∇̃, fex = F f̃ex (7.3)

Here L is a length scale, U is a reference velocity scale, and T is a time scale, (̃·)
denotes the dimensionless variables. We write (7.2) in non-dimensional form [13]:

1
St
∂̃t̃$̃ + ∇̃× ($̃ × ṽ) = 1

Re
∇̃2$̃ + F∇̃× f̃ex, (7.4a)

∇̃ · ṽ = 0. (7.4b)

We get two dimensionless number

Re = Reynolds number = ULρ

η
, St = Stokes Number = UT

L
(7.5)

Reynolds number is the ratio between typical inertial and viscous forces, and Stokes
number characterizes the time scale of particles or any foreign body in the flow.

Let us assume that there is no external force or time-scale in the system. Then
T ∼ L/U or St ∼ 1. In that case, dynamics of the fluid flow is determined by only
one dimensionless number, Re [13]. We visually represent the importance of Re
in Fig. 7.1. Realm of microfluidics generally deals with the flows with very small
characteristic length scale, L, i.e. Re� 1. We rewrite (7.4a):

Re
[
∂̃t̃$̃ + ∇̃× ($̃ × ṽ)

]
= ∇̃2$̃ (7.6)
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Fig. 7.1.: Reynolds and Stokes number of various examples of swimming and flying. Stoke-
sian and turbulent regime are loosely defined based on Reynolds number. (fig not
to scale)

We take the limit Re→ 0 to get:

∇̃2$̃ = 0 (7.7a)

⇒ ∇̃2ṽ = ∇̃φ (7.7b)

Comparing (7.1a) and (7.7b), we note that the scalar function φ is proportional to
p/η. Hence we write the Stokes equations in dimensional form [13]:

η∇2v = ∇p ∇ · v = 0 (7.8)

The Stokes equations are simpler than the Navier Stokes equation as they do not
contain nonlinear terms. The equation has two very important features: 1) linearity
2) time independence. These two features are what defines the Stokesian realm. Due
to its linearity, Stokes equation has a unique solution for given boundary conditions
[14]. Since there is no time-dependent term as well, the dynamics of the flow is
completely determined by the boundary condition specified at that instant i.e. the
flow instantly adapts to any change in the boundary condition.
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7.2 One sphere in Stokes flow

In this section, first we develop the expression for flow disturbances due to a fixed
sphere in an ambient flow, v∞(X) [15]. Second, we calculate the forces and torques
required to keep the sphere fixed. Third, we calculate the flow disturbances due to
an external force, torque and stresslet in a quiescent flow.

Let us assume the ambient flow, v∞(X), to be a linear function of space. Then

vα∞(X) = vα∞ + (Ωαβ
∞ + Eαβ∞ )Xβ (7.9)

Where Ωαβ
∞ and Eαβ∞ represent rate of rotation and rate of strain of the ambient flow

respectively [15]. Einstein summation is implied. Since the Stokes equations are
linear, flow disturbances due to the presence of fixed sphere in the ambient flow are
sum of flow disturbances due to the presence of fixed sphere in an ambient flow with
translational velocity, rotation, and strain individually. The velocity at any Eulerian
point X, Vact(X), is the sum of flow disturbances and ambient flow.

Vact(X) = V (X) + v∞(X), (7.10)

where V (X) are the flow disturbances due to the fixed sphere which also satisfies
the Stokes equations with the following boundary conditions [15]:

V α
(
X = |X| = d

2

)
= −vα∞ − εαβγωβ∞Xγ − Eαβ∞ Xβ (7.11a)

V (X = |X| → ∞) = 0 (7.11b)

p (X = |X| → ∞) = 0. (7.11c)

Here ωα∞ = − (1/2) εαβγΩβγ , d is the diameter of the sphere and εαβγ is Levi-Civita
symbol [16]. The first, second and third term in the right hand side (RHS) of
the (7.11a) are the contributions from translation, rotation and straining motion
respectively. The solution is (see chapter 2 of [15], chapter 2,3 of [14] for the
complete derivation):

(7.12a)
V α(X) = −3d

8 v
β
∞

(
1 + d2

24∇
2
)
Gαβ(X)− d3

8X3 ε
αβγωβ∞X

γ

+ 5d3

48
(
Eβγ∞ ∂γ

)(
1 + d2

24∇
2
)
Gαβ(X)

p(X) = −3ηd
2
vα∞X

α

X3 + 0− 5ηd3

8
XαEαβ∞ Xγ

X5 (7.12b)
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where Gαβ(X) is the Green’s function (also known as Stokeslet):

Gαβ = δαβ

X
+ XαXβ

X3 . (7.13)

Note that, the second term in the RHS of the (7.12b) is 0, to show that there is no
pressure disturbance in the flow due to the rotation of the sphere. We compute the
hydrodynamic force,Fh, on the sphere:

Fαh =
∫∫

Sp
σαβN̂βdSp, (7.14)

where
σαβ ≡ −pδαβ + η

(
∂αV β + ∂βV α

)
, (7.15)

is the stress on the sphere due to the flow, Sp denote the surface of the sphere and N̂
is the unit normal in the outward direction of the surface Sp. Only the translational
part of the velocity disturbance (first term in the RHS of the (7.12)) contributes to
the force on the sphere. An equal and opposite force, F , is required to hold the
sphere fixed i.e. F = −Fh.

F = −Fh = −3πηdv∞ (7.16)

The rotation and the straining term (second and third term in RHS of the (7.12))
contributes to the first moment of force distribution which is:∫∫

S
σαγXβN̂γdSp = Aαβ + Sαβ . (7.17)

Here Aαβ and Sαβ are the antisymmetric and symmetric part of the first moment
respectively [15]:

Aαβ = 1
2

∫∫
S

[
σαγXβ − σβγXα

]
N̂γdSp = −1

2ε
αβγT γh

Sαβ = 1
2

∫∫
S

[
σαγXβ + σβγXα

]
N̂γdSp,

(7.18)

where Th is the hydrodynamic torque on the sphere. If T is an external torque to
hold the sphere fixed, then T = −Th. By substituting equation 7.12a, 7.15 in (7.18),
we get:

T = −Th = −πηd3ω

Sαβ = 5
6πηd

3Eαβ∞ .
(7.19)
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It is useful to express (7.12a) in terms of F β , T β ,Sαβ:

V α(X) = F β
(

1 + d2

24∇
2
)
Gαβ(X)

8πη + 1
8πηX3 ε

αβγT βXγ

+ Sβγ∂γ
(

1 + d2

24∇
2
)
Gαβ(X)

8πη (7.20)

Now, if we imagine an inertia-less sphere in a quiescent fluid with external force F ,
external torque T , and stresslet Sαβ such that the motion of the sphere still follows
the assumption of the Stokes flow. The fluid flow due to the external F ,T and Sαβ

on the sphere, is given by (7.20) [15].

7.2.1 A sphere in shear flow:

We consider a freely suspended sphere (i.e. the sphere is not under influence of any
external force or torque) in shear flow, v∞ = (Sy, 0, 0). We wish to determine the
flow disturbances due to the sphere. For the shear flow, we write:

Eαβ∞ =


0 S/2 0
S/2 0 0

0 0 0

 , Ωαβ =


0 S/2 0
−S/2 0 0

0 0 0

 (7.21)

Without any loss of generality, we take the origin of shear flow at the center of
the sphere. Hence, the sphere does not have any translational motion. However,
the shear flow causes the sphere to rotate with an angular velocity, ω. The Stokes
equations (7.8) does not contain inertia. In addition, let us assume that the sphere
also does not have any inertia. Then the sphere rotates with the angular velocity of
the fluid i.e. ω = ω∞ = −(1/2)εαβγΩβγ . Hence, there will not be any disturbances
in the flow due to the Ωαβ

∞ as there is no relative angular velocity between the fluid
and the sphere. Note that, by the same logic, even if the sphere is not at the origin,
there are no disturbances in the flow due to translation.

The symmetric part, Eαβ∞ , exerts no net force or torque on the sphere due to its
symmetry. The flow disturbance due to Eαβ∞ ((7.12a)) is :

V α(X) = 5d3

48
(
Eβγ∞ ∂γ

)(
1 + d2

24∇
2
)
Gαβ(X) (7.22)
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7.3 Faxén’s law

So far, we have assumed the ambient flow to be linear. If the ambient flow is not
linear, there is an additional term in the expression for F , T and Sαβ, known as
Faxén’s law [17, 15, 14, 18]:

F = 3πηd
[(

1 + d2

24∇
2
)
v∞(X = 0)−U

]
, (7.23a)

T = πηd3 [ω∞(X = 0)−W ] , (7.23b)

Sαβ = 5
6πηd

3
(

1 + d2

40

)
Eαβ∞ . (7.23c)

Here U and W are the velocities and angular velocity of the sphere respectively and
we take the center of the sphere to be at the origin.

7.4 Stokesian dynamics

Particles suspended in Stokes flow effect each other’s motion through hydrodynamic
interaction. In this section, we discuss the basics of Stokesian dynamics – a perturba-
tive approach to compute hydrodynamic interaction between N spherical particles.
The method treats the suspended particles in a discrete sense while the continuum
approximation remains valid for the surrounding fluid. Stokesian dynamic approach
is broadly divided in two types of problems. First, if the velocity and angular velocity
of N spherical particles are specified, what is the total force, torque and stresslet
on each particle – this is known as the resistance problem. Second, what is the
velocity and angular velocity of N spherical particles, if forces, torques and stresslets
are specified – known as mobility problem. Here, we give a short overview of only
mobility problems.

7.4.1 N spheres in quiescent fluid

Consider N spheres each subject to an external force, Fi, where i goes from 0 to
N . We do not consider any external torque or external stresslet on the sphere. We
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assume that the motion of spheres follows the assumption of the Stokes flow. We
exploit the linearity of Stokes equations to write [14, 19]:

Uαi =
i=N∑
i=0
Mαβ

ij F
β
j , (7.24)

or in the matrix form,


Uα1
Uα2
...
UαN

 =


Mαβ

11 Mαβ
12

. . . Mαβ
1N

Mαβ
21 Mαβ

22
. . .

...
...

...

Mαβ
N1 Mαβ

N2
. . . Mαβ

NN




F β1
F β2
...
F βN

 . (7.25)

Here Ui is the velocity of the ith sphere, Mαβ is the mobility tensor. The Greek
indices run over coordinates and the Latin indices run over the number of spheres.

No closed-form solution to the Stokes equations (7.8) with boundary conditions:∫ ∫
Si

σαβ(Xi)N̂βdSi = Fαi for X ∈ Si, i = 1, . . . N , (7.26a)

V (Xi →∞) = 0 , (7.26b)

p(Xi →∞) = 0 , (7.26c)

is known for N ≥ 2. So we find the solution by perturbative methods. The
perturbation series for Ui, is expanded in the powers of (d/Xij), where d is diameter
of the spheres, Xij = |Xij | = |Xi −Xj |, and j goes from 0 to N .

Let us start with N = 2. We assume that the spheres are very far from each other
(d/X) → 0, and write the velocity of the spheres using (7.16) – this is the zeroth
order approximation to the problem. The flow field at any Eulerian point is the sum
of flow disturbances due to both spheres i.e. at the lowest order, we neglect the
hydrodynamic interaction between them. Next, we consider that the ambient flow
around the second sphere consists of flow disturbances (velocity field and stresslet)
produced by the first sphere and vice-versa – this generates a correction to the earlier
solution, and is the first order approximation to the problem. Similarly, we get the
higher order terms in the series – this method is known as method of reflection [20,
19]. We write the final velocity Ui as:

Ui = U
(0)
i +U (1)

i + . . . , (7.27)

where the superscript (m) denotes the mth order approximation.
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Zeroth order approximation:

We take N = 2. As described earlier, for zeroth order approximation we take
(d/Xij)→ 0 i.e. we write the velocity of the sphere using (7.16):

U
(0)
i = Fi

3πηd (7.28)

and the mobility matrix consists of only diagonal terms:

Mαβ =

 1
3πηdδ

αβ 0
0 1

3πηdδ
αβ

 (7.29)

We use (7.20) (only the force part, as torque and stresslet is zero) to write the
velocity field at any Eulerian point X:

V (0),α(X) =
2∑
i=1

V
(0),α
i =

2∑
i=1

F βi

(
1 + d2

24∇
2
)
Gαβ(X −Xi)

8πη , (7.30)

where V (0)
i is the flow disturbance due to ith sphere.

First order approximation:

We notice that, the zeroth order velocity on each sphere U (0)
i , produce exactly the

prescribed forces Fi. So the next correction in the velocity Ui should be such that,
they do not produce any additional forces on the sphere. As described earlier, the
flow field generated by the second sphere acts as an ambient flow around the first
sphere. We use Faxèn’s law ((7.23a)) to write:

U
(1),α
1 =

(
1 + d2

24∇
2
)
V

(0),α
2 (X1)

= 3d
8 U

(0),β
2

(
1 + d2

12∇
2 + d4

496∇
4
)
Gαβ(X1 −X2)

(7.31a)

S(1),αβ
1 = 5

6πηd
3
(

1 + d2

40∇
2
)
E

(0),αβ
2 (X = X1). (7.31b)

Here Eαβi = (1/2)[∂αV β
i + ∂βV α

i ]. Similarly, the expression for U2 and Sαβ2 is also
written.
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The final velocity of ith sphere Ui is the sum of zeroth order and first order velocities.
We write the final mobility matrix for N spheres:

Mαβ
ij (Xij) =


1

8πηXij

[
δαβ + Xα

ijX
β
ij

X2
ij

+ d2

2X2
ij

(
δαβ

3 −
Xα
ijX

β
ij

X2
ij

)
+O

(
d4

X4
ij

)]
, i 6= j

1
3πηdδ

αβ , i = j

 .
(7.32)

Here i, j = {0, 1, . . . , N}, and Xij = |Xij | = |Xi −Xj |. (7.32) is known as Rotne-
Pragor tensor [21, 22]. The velocity field at an Eulerian point X, upto first order
approximation is:

(7.33a)V α(X) =
N∑
i=1

[
F βi

(
1 + d2

24∇
2
)
Gαβ(X −Xi)

8πη

+ 5
6πd

3E
(0),βγ
i ∂γ

(
1 + d2

40∇
2
)
Gαβ(X −Xi)

8πη

]

=⇒ V α(X) = 1
8πηX

[
δαβ + XαXβ

X2 + d2

4X2

(
δαβ

3 − XαXβ

R2

)
+O

((
d

X

)3)]
(7.33b)

Note that, the first order correction to the sphere velocity, U (1)
i does not have any

contribution to the flow disturbance in the ambient flow, as they do not produce any
net force. Though S(1),αβ

1 ,S(1),αβ
2 has contributions to (7.33) but these terms drops

faster than O(d4/X4
ij).

7.4.2 N spheres in shear flow

Let us now consider N spheres in shear flow, v∞:

v∞ = (Sy, 0, 0) (7.34)

with force Fi on ith particle, where i = {0.N}, and S is the shear rate. The shear
flow imposes velocity, angular velocity and stresslet on all the spheres as described
in section 7.2.1. There is no external torque on any sphere, so there is no flow
disturbance due to the angular motion of the spheres as there is no relative angular
velocity between ambient fluid and the sphere. We write the velocity of the spheres,
Ui and stresslet around it, Sαβi as:

Uαi = vα∞(Xi) +
i=N∑
j=0

(
Mαβ

ij F
β
j +Nαβγ

ij Eβγ∞ (Xj)
)

(7.35)
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We use the same technique as described in section 7.4.1.

Zeroth order interaction:

For simplicity, we first consider N = 2. Velocity and stresslets at the zeroth order
approximation are:

U
(0),α
i = vα∞(Xi) + Fi

3πηd

S(0),αβ
i = 5

6πηd
3Eαβ∞ (Xi)

(7.36)

In the case of shear flow, the velocity field, V (0)(X) at the zeroth order approxima-
tion has an additional term than the quiescent fluid ((7.30)) due to the presence of
S(0),αβ:

V (0),α(X) =
2∑
i=1

[
F βi

(
1 + d2

24∇
2
)

+ 5
6πd

3Eβγi ∂γ
(

1 + d2

40∇
2
)]
Gαβ(X −Xi)

8πη
(7.37)

First order interaction:

U
(1),α
1 =

(
1 + d2

24∇
2
)
V

(0),α
2 (X1)

S(1),αβ
1 = 5

6πηd
3
(

1 + d2

40∇
2
)
Eαβ2 (X1)

(7.38)

Similarly, we write expressions for the other sphere i.e. U (1),α
2 and S(1),αβ

2 . Upto,
the first order approximation, the expression forMαβ remains same as in quiescent
fluid ((7.32)). Nαβγ is:

Nαβγ
ij (Xij) =

 −
5d3

16
Xα
ijX

β
ijX

γ
ij

X5
ij

− d5
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[
δαβXγ

ij+δ
αγXβ

ij

X5
ij

− 5Xα
ijX

β
ijX

γ
ij

X7
ij

]
, i 6= j

0 , i = j

 .
(7.39)

Here i, j = {0, 1.N} The leading order term in Nαβγ
ij drops as O(d3/X2

ij).
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(A) (B) (C)

Fig. 7.2.: Kinematic reversibility of Stokes flow demonstrated by G.I.Taylor. The dye in the
syrup comes back to its position after rotating the apparatus in clockwise and
counterclockwise direction by same angle.

7.5 Life at low Reynolds number

So far, we exploited time-reversibility and linearity of Stokes equation to write their
solution in various cases. However, we have not considered the harsh consequences
of Stokes flow i.e. slow swimming of microorganisms [23], No-mixing [8].

7.5.1 Kinematic reversibility of Stokes flow

Effect of kinematic reversibility is demonstrated beautifully in G.I.Taylor’s one of
the lectures on low reynolds number flows 1 [24]. He starts with the Taylor-Couette
apparatus with a highly viscous fluid. He describes the reversibility of the Stokes
flow by putting some dye in syrup in the Taylor-Couette apparatus (Fig. 7.2). We
quote G.I.Taylor:

“The space between two concentric cylinders is filled with glycerin. Dye
is introduced into the annulus which forms a compact colored volume,
see Fig. 7.2(A). The inner cylinder is turned through, say, N revolutions.
When observed from the side, the colored area seems to mix with the
uncolored glycerin (see Fig. 7.2(B)), just as milk mixes with tea when
stirred in a cup, but on reversal of the motion the dye suddenly collects
into a compact mass when the cylinder has been turned exactly N turns
in reverse (Fig. 7.2(C)). On reversal of the motion of the boundary, every
particle retraces exactly the same path on its return journey as on the
outward journey. Molecular diffusion, which is irreversible, is negligible
during the time of this experiment.”

1Video to the lecture: https://youtu.be/51-6QCJTAjU
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Serpentine micromixer

(A) (B)

(C)

Fig. 7.3.: (A) Mixing of two liquids in a micro-channel solely due to diffusion. L is length
and w is width of the channel. (B) Serpentine micromixer. (C) Staggered
herringbone micromixer. Figure reprinted with permission from Ref. [25, 26].

7.5.2 Mixing in micro-channel

The mixing in micro-channels happens solely due to molecular diffusion and is very
slow. Take a micro-channel of length L and width w, see Fig. 7.3(A). Two liquids A
and B enter to the channel through two inputs. The amount of time, tD, that fluid
takes to traverse the width of the channel through diffusion is

tD = w2

D
, (7.40)

where D is the diffusion coefficient. Length of the channel required for fluids to
inter-diffuse

L

w
= UtD

w
= Uw

D
≈ 250 (protein), (7.41)

where U is velocity of the fluid. It is clear that we need very long channels to mix
two fluids in micro-channel. Most strategies to increase mixing in microfluidics rely
on having a non-zero but small molecular diffusivity and by stretching and folding
the fluid –they increase the surface area between the layers– hence mixing [8]. We
quote Aref [8]:
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For efficient mixing to be achieved, the velocity field must stir together
different portions of the fluid to within a scale that is small enough for
diffusion to take over and homogenize the concentrations of the advected
quantities.

In recent years, there has been some progress in this direction. These solutions are
practical for moderate Reynolds number flows Re ∼ 1−40. For examples, a serpentine
channel (see Fig. 7.3(B)) and a staggered herringbone mixer (see Fig. 7.3(C)) – this
mixer has grooves as pattern printed on the surface of the channel which relies on
clockwise and counterclockwise vortices to mix the fluids [27].
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FILAMENT IN STOKES

FLOW

8

The interaction between Stokesian fluid and filament holds the key to understand
many natural phenomena e.g. swimming of microorganisms [1], nuclear positioning
in eukaryotic cells [2], or how cells search and home to a target [3]. The dynamics
of an elastic filament in a constant-in-time Stokes flow has been extensively studied,
numerically and experimentally [4, 5, 6, 7, 8, 9, 10, 11, 12]. Depending on the
flow, the filament either attains a complex shape, which in one case can even be
helical [12], or shows a wide range of morphological transition [6] depending on
its elastoviscous number µ ≡ (8πηSL4)/B, where L is length of the filament, η is
viscosity of the fluid, S is inverse time-scale, and B is the bending rigidity of the
filament. For small elastoviscous number (large bending rigidity), typically, the
filament behaves like a rigid one.

In section 8.1, we compare the time-scales of bending and stretching forces for a
filament in Stokes flow. In section 8.2, we discuss the motion of the filament with
time-periodic forcing.

8.1 Time scales

Consider a simple experiment. Take a strand of your hair and try to stretch or bend
it. You shall find that bending of hair is much easier than stretching it. In this section,
we elucidate this by comparing typical stretching and bending time-scales.

Consider a filament in Stokes flow i.e. viscous forces are the dominant forces on
the filament which balances the bending and stretching forces on the filament. The
viscous force, F vis, scales as (equation 7.16):

F vis ∼ ηU0L, (8.1)
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where η is viscosity, U0 is some velocity scale, L is size of the object. The bending
and stretching forces scale as:

F Bend = −δH
Bend(R′′)
δR

∼ Y d4

L2 , (8.2a)

and
F Stretch ∼ Y d2 , (8.2b)

where F Bend, F Stretch are forces due to bending and stretching respectively, d is
diameter of the filament, L is length of the filament, B = Y I, Y is the Young’s
modulus of the material and I is second moment of inertia of the filament i.e.
I ∼ d4. The bending and stretching force (equation 8.2) balances the viscous forces
(equation 8.1). We compute the relaxation time for bending and stretching:

ηU0L = Y
d4

L2 ⇒ τBend = L

U0
= η

Y

(
L

d

)4
, (8.3a)

ηU0L = Y d2 ⇒ τStretch = η

Y

(
L

d

)2
, (8.3b)

τStretch

τBend =
(
d

L

)2
� 1 . (8.3c)

Here τ is the relaxation time. We compare the relaxation time for stretching and
bending in (8.3c) and we observe the ratio to be much smaller than 1 as we generally
deal with the filaments with very high aspect ratio (L/d� 1). Therefore, we say that
the modulation in the extension relax much faster than the bending deformations
for the filament in Stokes flow [13]. Hence, we consider the filament to be almost
inextensible throughout the study.

Note that, if the inertial forces are dominant instead of viscous force i.e. F ∼ ρU2
0L

2,
the ratio of stretch and bend timescales is proportional to d/L� 1instead of d2/L2.
Although the ratio of timescales in the case, where inertial forces are dominant, is
smaller than the case, where viscous forces are dominant, the assumption that the
filament is easier to bend than stretch still holds.

8.2 Breaking of kinematic reversibility of Stokes
flow

It has been shown that addition of elastic polymers [14, 15, 16, 17], or active
objects [18, 19, 20] and mutual hydrodynamic interaction between many suspended
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time

time

Fig. 8.1.: Breaking of kinematic reversibility: due to a flexible but inextensible filament
in the Taylor-Couette apparatus. The filament breaks kinematic reversibility and
does not come back to its original shape but comes back in the buckled shape
after reversing the flow.

colloidal particles [21], give rise to breakdown of time-reversibility and to chaotic
flows even at zero Reynolds number.

G.I. Taylor puts a flexible filament in the Taylor-Couette apparatus. He studies the
effect of nonlinear elasticity of the filament in the following way [22]. We again
quote him:

The motion of a flexible body is not reversible because when the stresses
in a flexible body are reversed it changes its shape. This is illustrated
in Fig. 8.1, where we put a flexible body, consisting of a piece of wool in
the fluid. The inner cylinder was then rotated in a clockwise direction,
the wool moved round in a clockwise direction. The wool remained
nearly straight, because it was in fluid which was moving in such a way
as to stretch it. After the motion was reversed until the inner cylinder
was in its original position, the wool curled up because on the return
path the viscous stressed gave rise to a compressive stress along its length
which naturally made it collapse.
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Fig. 8.2.: Schematic of a freely jointed bead-rod chain. We show a > d for illustration, but
we use a = d for our simulation. Figure adapted and reprinted with permission
from [23].

8.3 Simulation model

We use the bead-spring model to simulate the dynamics of the filament. The model
consists of N spherical beads of diameter d, connected by springs of equilibrium
length a, see Fig. 8.2. We assume the springs to be in the over-damped limit (see
appendix A for discussion on over-damped limit in Stokes flow). The position of the
center of the i-th bead is Ri, where i = 1, . . . N . The equation of motion for the i-th
bead is given by [24, 9] (see Eq. (8.17)):

∂Rαi
∂t

=
N−1∑
j=0

−Mαβ
ij (Rij)

δH
δRβj

+Nαβγ
ij (Rij)Eβγ∞ (Rij)

+ vα∞(Ri) ,

=
N−1∑
j=0

[
− 1

8πηRij

δαβ +
RαijR

β
ij

R2
ij

+ d2

2R2
ij

δαβ
3 −

RαijR
β
ij

R2
ij

 ∂H
∂Rβj

1
N
vα∞(Ri)−

5d3

16
RαijR

β
ijR

γ
ij

R5
ij

Eβγ∞

]
.

(8.4)

Here Ri is the position vector of the center of the i-th bead, Rij = Rj −Ri, H is
the elastic Hamiltonian, and v∞ is the velocity of the background flow,Mαβ ,Nαβγ

are the hydrodynamic interaction tensors explained in section 7.4.1,7.4.2. Note
that, in Eq. (8.17) we do not include term with second derivative of position i.e. we
consider the springs to be over-damped – which is a reasonable approximation for
small beads in Stokes flow [25].
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Let us look at the (8.17) dimensionally. We compare the terms due to the external
shear and flow (terms with Eαβ∞ ,v∞), and terms due to elastic forces (δH/δRβj )
separately. We write:

∂Rαi
∂t
∼ 1
ηRij

[
O(1) +O(1) +O

(
d2

R2
ij

)]
δH
δRβj

+ SXij

[
O(1) +O

(
d3

R3
ij

)]
.

(8.5)
In our model, we do not consider the terms of higher order than O(d2/R2

ij) to
obtain:

∂Rαi
∂t

= −
N−1∑
j=0
Mαβ

ij (Rij)
δH
δRβj

+ vα∞(Ri) , (8.6)

The Hamiltonian of the system, H, is H = HBend + HStretch – we do not consider
twisting. Here HBend and HStretch are from bending [26, 27]and stretching [24, 28]
respectively. The bending energy of a filament for a discrete bead-rod model [29,
27, 26]:

HBend = aB
N−1∑
i=0

κ2
i = B

a

N−1∑
i=0

T̂i · T̂i−1 = B

a

N−1∑
i=0

cos θi, (8.7)

where

κi = 2
a

tan
(
θi
2

)
≈ sin (θi)

a
=

∣∣∣T̂i × T̂i−1
∣∣∣

a
, (8.8a)

T̂i = Ri+1 −Ri

|Ri+1 −Ri|
, (8.8b)

and θi is the angle between two consecutive unit vectors T̂i and T̂i−1 (see Fig. 8.2A).
In the second step of equation 8.7, we have dropped a constant term. In the last
step of equation 8.8a, we have used small-angle approximation [26]. This is a
discrete approximation of contribution to the bending energy (equation 6.13) from
curvature.

The stretching energy is: [24, 28]

HStretch = k

2a

N−1∑
i=0

(|Ri+1 −Ri| − a)2, (8.9)

where k is the stretching modulus. We ignore thermal fluctuations. Expression for
δH/δRβij is given in the section 8.3.1. We use the adaptive Runge-Kutta method [30]
with cash-karp parameters [31, 32] to evolve the system. We use time-step, ∆t, such
that

∆̃ = B∆t
8πη`4 = 10−11 – 10−12 (8.10)
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We use numerical accuracy of order 10−6 [30, 31, 32]. We use CUDA to parallelize
the code 1.

8.3.1 Discretized bending and stretching force

Total force on any bead is the sum of the bending force and stretching force:

F = F Bend+F Stretch = ∂HBend

∂Ri
+∂HStretch

∂Ri
=

N−1∑
i=0

[
B

a
T̂i · T̂i−1 + k

2a (|Ri+1 −Ri| − a)2
]

(8.11)
where HBend and HStretch are the Hamiltonian for bending and stretching respec-
tively.

Bending force:

F Bend
i = B

a

[
T̂i−2 + T̂i
bi−1

− T̂i+1 + T̂i−1
bi

+ (T̂αi T̂αi−1 + T̂αi T̂
α
i+1)

(
T̂i
bi

)

−
(
T̂αi−1T̂

α
i−2 + T̂αi−1T̂

α
i

)( T̂i−1
bi−1

)]
, for i 6= 0, 1, N − 1, N − 2. (8.12a)

The bending force for boundary points are:

F Bend
i = B

a

[
− T̂i+1

bi
+
(
T̂αi T̂

α
i+1

) T̂i
bi

]
, i = 0 (8.12b)

F Bend
i = B

a

[
T̂k
bk−1

− T̂i+1 + T̂i−1
bi

+ (T̂αi T̂αi−1 + T̂αi T̂
α
i+1)

(
T̂i
bi

)

−
(
T̂αi−1T̂

α
i

)( T̂i−1
bi−1

)]
, i = 1 (8.12c)

F Bend
i = B

a

[
T̂i−2 + T̂i
bi−1

− T̂i−1
bi

+ (T̂αi T̂αi−1)
(
T̂i
bi

)

−
(
T̂αi−1T̂

α
i−2 + T̂αi−1T̂

α
i

)( T̂i−1
bi−1

)]
, i = N − 2 (8.12d)

1Our code is available here: https://github.com/dhrubaditya/ElasticString
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F Bend
i = B

a

[(
T̂αi−1T̂

α
i−2

)( T̂i−1
bi−1

)]
, i = N − 1 (8.12e)

Here
bi = |Ri−1 −Ri| (8.13)

Stretching force:

F Stretch
i = k

a

[
T̂i (bi − a)− T̂i−1(bi−1 − a)

]
, i 6= 0, N − 1 (8.14a)

F Stretch
i = k

a

[
T̂i(bi − a)

]
, i = 0 (8.14b)

F Stretch
i = −k

a

[
T̂i−1(bi−1 − a)

]
, i = N − 1 (8.14c)

8.4 Filament driven in time-periodic manner

Elongation and compression of flexible filament gives rise to buckling instability [5,
6, 7, 12]. The intensity of elongational and compressional forces determines the
morphology of the filament. For a filament in fluid, typically, these forces are the
result of fluid-filament interaction. Thus for a time-dependent forcing, it is possible
to control the buckling of filament by controlling the amount of time filament spends
in elongation and compression regime. Furthermore, such a driving of the filament
can also act as a stirrer to mix flows at very small Reynolds number.

8.4.1 summary of paper III – chaos and irreversibility of a
flexible filament in periodically driven Stokes flow [33]

In paper III [33], we consider a freely suspending filament in plane-Couette flow as
shown in Fig. 8.3(A). The ambient flow is

v∞ = γ̇yx̂, (8.15)

where strain rate γ̇ = S sin(ωt), S = 2s−1, ω is rate of change of the flow, and
t is time. The filament extends for the first-half of the cycle and compresses for
second-half of the cycle. If the bending rigidity of the filament is very large, such
that the filament behaves effectively like a rigid body, we expect the filament to
rotate away and back to its original position and shape . Once the bending rigidity
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x
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time

A B

Fig. 8.3.: (A) Sketch of numerical experiment: Initially the filament is straight. It rotates
and translates while advected by v∞ = γ̇yx̂ with γ̇ = S sin(ωt) over the first-half
of the cycle. In the second half the filament rotates and translates back but in
addition buckles if its elastoviscous number is large enough. The flow v∞ at
t = T/4 (top panel) and t = 3T/4 (bottom panel) are shown as red arrows.
(B) Phase diagram from time-dependent numerical simulation of (8.6) in µ–
t̃ = ω/S parameter space. We show five different dynamical phases in the system
represented by five symbols. Straight (•); Periodic buckling (H); Two-period
(�) ; Complex(F); Complex–transients(�). Figure adapted and reprinted with
permission from [23].

is below a threshold, we find that the filament buckles (similar to Fig. 8.1) – it does
not return to its original shape. If the bending rigidity is decreased further we find
that the elastic nonlinearities play a more and more dominant role in the dynamics
thereby giving rise to higher order buckling.

Overall, we identify five types of dynamical phase (see Fig. 8.3(B)), each character-
ized by the shape of the filament – as described by its curvature as a function of its
arc length – at late times [33, see section IIIA, appendix C]:

1. Straight:- The filament comes back to the initial position in the straight con-
figuration after every period.

2. Periodic buckling:- The filament comes back in the buckled configuration
after every period.

3. Two-period:- The filament repeats its configuration not after every but after
two-period.

4. Complex:- The filament buckles into complex shape with very high mode of
buckling instability and it never repeats itself.
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�̅�	×	10!

Fig. 8.4.: Solutions of stroboscopic map in real space for t̃ = 0.75 for different values of
µ. We find multiple co-existing solutions as we increase µ (black symbols from left
to right) indicating the complexity of the system. We compare this solutions with
the solutions obtained at late times from the evolution code at the same points in
the phase diagram. Figure adapted and reprinted with permission from [23].

5. Complex–transients:- Filament shows long transients with complex shape but
at late times, the shape of the filament (almost) repeats itself. At late times
the filament settles down to a complicated shape which changes very slowly.
The boundary between the complex and complex-transient phase is difficult to
clearly demarcate.

We characterize the chaos using fixed-point analysis of the iterative stroboscopic
map by integrating the dynamical equation for exactly one period [33, see section
IIIB]. We define the stroboscopic map

κ(s, pT ) = Fκ(s, 0), (8.16)

where κ(s, T ) is curvature of the filament as a function of its arc-length, s (see (8.8a))
at time T , where T = 2π/ω and n is an integer. This converts the non-autonomous
system described by (8.6) to an autonomous map in N -dimensional space where N
is the total number of beads. we study the chaos by obtaining the fixed points We
use look for solution of (8.16) for different values of p i.e. different periods [33, see
appendixD1].

In Fig. 8.4 we show the co-existence of many periodic orbits and fixed points for a
fixed t̃ = 0.75 as a function of µ. For small µ = 0.17× 106 we obtain only one fixed
point and it corresponds to κ(s) = 0, i.e., a straight filament. At µ = 0.33× 106 in
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Fig. 8.5.: Mixing of passive tracer: (A) to (B) Positions of tracer particles at t = 0T, 256T
respectively for the filament in complex phase (µ = 3.3× 106, t̃ = 1.5). Initially,
the tracers are placed on concentric circles, color coded by their distance from
the center of the circles. The mixing of the colors show the mixing of the scalars.
Figure adapted and reprinted with permission from [23].

addition to the straight filament a new fixed point appears, where κ is zero at one
end, changes sign once roughly at the middle of the filament and has two maximas.
We show the shape of the filament in Fig. 8.4(B1). Next at µ = 0.33 × 106 we
no longer find any fixed points. We find two periodic orbits, one that is a two–
period Fig. 8.4(C1) and one with four periods Fig. 8.4(C2). The two solutions in
the two-period solution are mirror images of each other. At the same place in the
phase diagram the evolution code finds the same two–period solution. Increasing µ
to 0.84× 106 we find that the four-period solution has disappeared, two two–period
solutions exist, Fig. 8.4(D). At even higher values of µ we start to obtain many
solutions. We show a few examples in Fig. 8.4(F), Fig. 8.4(G), and Fig. 8.4(H). This
is the region of phase space where complex and complex-transient dynamical phases
are seen.

Next we demonstrate that if we choose µ and t̃ inside the complex phase then the
filament acts as an effective mixer of passive tracers [33, see section C]. Once the
filament has reached a statistically stationary state we introduce Np tracers placed
on concentric circles in the x–y plane, Fig. 8.5(A). The equation of motion of a
passive tracer is given by (7.33). At t = 256T , we find the tracer particles are well
mixed with each other (see Fig. 8.5(B)). To obtain a quantitative measure of mixing
we compute the net displacement of the k-th tracer particle, ∆Xk

j , over the j-th
cycle – t = jT to t = (j + 1)T , where j is an integer. Furthermore, we calculate
the cumulative probability density function (CPDF) for each component of the
displacement ∆Xk

j . For the out-of-plane component this CPDF has an exponential
tail. For the in-plane components we obtain a power-law tail of exponent of −3.
This implies that the probability density function (PDF) of each component of the
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displacement ∆Xk
j is such that its second moment is well defined. Hence by the

central limit theorem, we expect the tracers to mix diffusively.

8.4.2 Summary of paper IV – flexible filament in time-periodic
viscous flow: shape chaos and period three [23]

There are two types of nonlinearities in (8.6). First, the elastic nonlinearities in
the system and second, the nonlinear filament-fluid interaction. It has been shown
that the time-reversible motion of many particle suspended in shear flow breaks the
kinematic reversibility and shows chaos solely due to the nonlinear hydrodynamic
interactions between the particles [21]. Hence it becomes important to ask that, if
we assume the local approximation to the flow–structure interaction, can an elastic
filament still show the chaotic behavior? After ignoring the nonlocal fluid–filament
interaction in (8.6), the equation of motion is:

∂Rαi
∂t

= − 1
3πηd

∂H
∂Rαi

+ vα∞(Ri) . (8.17)

The background shear flow is given by (8.15).

We evolve the filament from a straight configuration similar to what is shown
in Fig. 8.3(A). The evolution phase diagram is shown in Fig. 8.6A. We have observed
the same qualitative behavior for the case where the viscous forces are modeled
by the non-local Rotne-Prager tensor, with three quantitative differences. First, the
instabilities appear at lower µ for a given t̃, second, the appearance of three-period
solution, third, we obtained complex transients for large enough µ in the case of
nonlocal interaction, whereas here we observe the reappearance of the complex
phase for the higher µs. Nevertheless, we conclude that the model with local viscosity
is able to capture the feature of the problem we consider essential – a rich dynamical
phase diagram that includes complex shapes.

The computational complexity of this model in O(N), where N is the total number
of beads, as opposed to the nonlocal case where the computational complexity is
O(N2). This allows us to run our simulations for much longer times than it was
possible in the case of nonlocal interactions. Here for any fixed value of µ and t̃ we
obtain many periodic orbits. We list all of them in table 8.1.

Further we attempt an arbitrary dimensional reduction to construct a one-dimensional
map. We draw the straight line that connects the top end of the filament to the bot-
tom one and call Θ the angle this line makes with the tangent to the filament at its top
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(B)
𝑡

Fig. 8.6.: (A):Phase diagram in the µ–t̃ plane; We find 5 different qualitatively different
dynamical phases: Straight(•); periodic (H) with n-period, where n=2(�), 3(J),
4(I); complex (F) complex-transients (�). (B) An example of three period
solution: for (t̃ = 0.75, µ = 3.35 × 105) in 1D Θ-space (C). The Θ is defined as
the angle between the lines connecting the top and bottom end of the filament to
the tangent to the filament at its top point.

point, see Fig. 8.6(B). We find period three solution of Θ for t̃ = 0.75, µ = 3.35× 105.
This is a one-dimensional map for which Sharkovskiˇi’s theorem [34] and the Li
and Yorke theorem [35] is valid – existence of orbits of period three implies not
only the existence of orbits of all periods but also the sensitive dependence on initial
condition. Thus by demonstrating that the Θ map has three period we show that
this map is chaotic. We also show that, in the chaotic phase, the tracers are mixed
diffusively.
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Tab. 8.1.: Cycles of the stroboscopic map in (8.16). In some of these cases the evolution
equation shows chaotic solution but so far we have obtained one or two periodic
orbits of small periods, these are marked by ∗.

8.4 : References 79



[4] Leif E Becker and Michael J Shelley. “Instability of elastic filaments in shear
flow yields first-normal-stress differences”. In: Physical Review Letters 87.19
(2001), p. 198301.

[5] Laura Guglielmini, Amit Kushwaha, Eric SG Shaqfeh, and Howard A Stone.
“Buckling transitions of an elastic filament in a viscous stagnation point flow”.
In: Physics of Fluids 24.12 (2012), p. 123601.

[6] Yanan Liu, Brato Chakrabarti, David Saintillan, Anke Lindner, and Olivia
Du Roure. “Morphological transitions of elastic filaments in shear flow”. In:
Proceedings of the National Academy of Sciences 115.38 (2018), pp. 9438–
9443.

[7] John LaGrone, Ricardo Cortez, Wen Yan, and Lisa Fauci. “Complex dynamics
of long, flexible fibers in shear”. In: Journal of Non-Newtonian Fluid Mechanics
269 (2019), pp. 73–81.

[8] AM Slowicka, Howard A Stone, and Maria L Ekiel-Jezewska. “Flexible fibers in
shear flow: attracting periodic solutions”. In: arXiv preprint arXiv:1905.12985
(2019).
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SUMMARY AND

OUTLOOK

9

In this thesis, we have investigated the elastic properties of shells and filament and
their interaction with fluid.

9.1 Filament interactions with fluid

One part of the thesis which concerns with filaments is motivated by an impor-
tant problem in the field “how to mix two fluids at zero Reynolds number.” Our
work [1, 2], has provided a way to solve the issue. We consider a freely-floating
elastic filament in a linear shear flow that changes periodically with time, at zero
Reynolds number. We do not consider thermal fluctuations, although for a small
enough filament, e.g., a single large polymer molecule, thermal effects that we have
ignored, may be important. We have ignored them for two reasons. First, in many
experimental situations [3] the filament is large enough that the thermal fluctua-
tions may not be crucial. Second, we want to address the fundamental question
of emergence of chaotic behavior due to elastic nonlinearities in the absence of
any external stochastic fluctuations. We show that the motion of such a filament is
chaotic.

There are two nonlinear effects, which can be the cause of chaos in such system.
First, the elastic nonlinearities and second, the nonlinear filament–fluid interaction
or nonlocal viscosity. We also consider a model where we ignore the nonlocal
interaction between filament and the fluid, we call this local viscosity. We show
that such a system also show chaotic behavior which are solely the results of elastic
nonlinearities. For both cases, local and nonlocal viscosity, we characterize the
chaos using fixed-point analysis of the iterative stroboscopic map by integrating the
dynamical equation for exactly one period. We show the co-existence of periodic
orbits and fixed points at any point in the phase space of µ = 8πηSL4/B, t̃ = ω/S,
where L is length of the filament, η is viscosity of the fluid, S is inverse time-scale, B

83



is the bending rigidity of the filament, ω is frequency by which the flow is reversed
and S is strain rate. For the case of local viscosity, we consider a one-dimensional
stroboscopic map which we define as the angle between the ray connecting first
and second bead and the ray connecting first and last bead. We prove chaos by
showing the existence of very high periods and more importantly three-period of
one-dimensional map [4, 5]. For both cases, in the chaotic regime, tracers are mixed
diffusively.

9.1.1 Further progress

These two following papers [6, 7], which appeared in arxiv shortly after our pa-
per [8], also study the dynamics of filament when it is driven in a time-periodic
manner.

1. Bonacci [6] et al. explores the morphology of the filament for half a oscillation
period using experiments and weakly nonlinear Landau model. First, they show
that the morphology of the filament is sensitive to the initial orientation θ0, µ
and t̃. Depending on t̃, µ and θ0, they find rich variety of deformation modes as
shown in Fig. 9.1(a,b,c). It is in contrast to the filament in constant flow field –
where the filament shows either C mode or tank-treading motion [3]. Second,
they find the absence of observable buckling at high oscillation frequencies
even when the maximum elastoviscous number is greater than the buckling
threshold for steady shear.

2. Krishnamurthy and Prakash [7] consider an active filament clamped on one
end instead of a freely suspending passive filament. This is a numerical model
of the flagella of certain unicellular organism such as L.olor The filament is
made active with a bead on the tip with periodic phases of extensional and
compressive tip-follower forces as shown in Fig. 9.1(d). The filament shows
chaotic motion for certain range of activity strength and period of oscillation.

9.1.2 Future work

Our work is a first-step towards a potential microfluidic device to mix fluid. However
it is not a very practical solution. Following future extensions lead us towards that
goal.

1. To simulate the dynamics of an elastic filament in a flow with boundaries [9,
10].
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(b)

𝑡̅ = 6.28

𝑡̅ = 1.26

𝑡̅ = 0.15

(c)
(d)

Fig. 9.1.: Filament driven in time-periodic manner: (a,b,c): Dynamics of the filament
in oscillatory shear flows based on initial orientation θ0 (a), t̃ (b) and µm =
µ/(1 + 2 ln(d)− 2 ln(e)) (c). Here (CB), (BTPS), (BTS) and (T) are abbreviations
of continuous buckling, buckling then partial stretching, buckling then stretching
and tumbling. E and S means experimental and simulation results respectively.
(d): Model of the active filament by Ref. [7]. The green beads are passive and
red beads are active. The activity of the bead is time-periodic. Figure adapted
with permission from [6, 7].
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2. Instead of the background flow, activity can induce mixing at zero Reynolds
number. Consider a device with a few, but not too many, filament clamped
at one of walls. Such a device, when irradiated with certain frequency of
light [11, 12], can be an efficient mixer.

9.2 Elastic properties of shells

We became interested in studying elastic properties of shells, due to a very general
but important question: “how much are the physical properties affected by the fact
that most cells are not in equilibrium” [13, 14, 15, 16, 17]? To understand this,
we considered one of the fundamental problems in the theory of shells that how
is buckling affected with an inclusion of activity. We realized the need of an open
source software for Monte Carlo simulation of spherical shells [1] due to growing
interest in elasticity in biological systems. The package is written in C++ and Python
and we have released it under the GNU GPL-3.0 license. The package is helpful for
biophysicists working on Cells, Nano-vesicles, etc.

We further add the modification to this package to perform Monte Carlo simulations
for shells which are not in equilibrium. We show that, for the same set of elastic
parameters, a shell that is not buckled in thermal equilibrium can be buckled if turned
active. Similarly a shell that is buckled in thermal equilibrium can unbuckle if turned
quiescent. The results are interesting from a fundamental point of view, but they also
points us towards an intriguing possibility that it is possible to experimentally design
microscopic elastic shells whose buckling can be optically controlled. In such devices
it may be possible to drive flows at microscopic scales by buckling and unbuckling
of shells, optically. Future extensions are as follows. 1) synthetic membranes that
can be turned active (A > 0) optically, has been already realized by embedding
certain proteins in a bi-lipid membranes – proteins that act as active pumps when
irradiated with light of certain frequency [11, 12]. In such cases, only a fraction of
points on the shell are active. This can be incorporated in a straightforward manner
in our code and it would be interesting to see how the critical buckling pressure
changes as we change the fraction of active points. 2) bi–lipid membranes are
semi-permeable [18]. As the shell buckles the fraction of solute increases, increasing
the partial pressure inside the shell. Experimentally, this can be avoided by using
shell with holes in them. We expect in such cases the buckling pressure may change
by a small amount.
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OVERDAMPED

HARMONIC OSCILLATOR

A

In this appendix, we comment on the validity of overdamping limit in Stokes flow.
We consider a harmonic oscillator immersed in a fluid. We further consider the
oscillator to move so slowly such that the drag from the fluid is well approximated
by the Stokes drag. This is given as (see chapter 7 of [1]):

m
∂2R

∂t2
+ α

∂R

∂t
+ kR = f (A.1)

where m is mass of the particle, α is the friction coefficient, k is the spring constant
and R is the position. First term, m∂2R/∂t2 in the equation (A.1) represents inertial
effects, α∂R/∂t is the dissipation in the system, f is an external fore and kR is the
conservative force.

Consider setting up α = 0 in (A.1), the system performs an oscillatory motion in-
finitely for some initial perturbation from equilibrium position – This is an undamped
state of the system. For α 6= 0, oscillation in the system gradually decays towards
zero amplitude or attenuate. Equation A.1 also reads as:

∂2R

∂t2
+ 2ω0ζ

∂R

∂t
+ ω2

0R = f

m
(A.2)

where
ω2

0 = k/m, ζ = α

2
√
km

is the damping ratio of the system. For this system, we take ζ to be always positive
– which is a fair assumption for a particle in viscous flow. Let us not worry about
external force, and consider an ansatz R = exp(iωt) which is put in (A.2) to give the
following relation [1]:

− ω2 + ω2
0 + 2iζω0ω = 0 (A.3)

with solutions
ω = ω0

(
iζ ±

√
1− ζ2

)
= ω0iζ ± ω1 (A.4)
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If the system has damping ratio ζ < 1, ω1 is real and the system oscillates with
frequency ω1 but the amplitude of oscillation decays to zero – this is called an
underdamped oscillator. If ζ > 1, ω1 is imaginary, the system does not oscillates but
decays exponentially – this is called an overdamped oscillator. If ζ = 1, the equation
A.3 has two repeated roots, the system decays exponentially as well in this case but
faster than the overdamped case [1, 2].

For a particle in fluid,
ζ ∼ η√

kρd

and if we consider the d to be very small, ζ � 1 which is a reasonable assumption.
For the overdamped case, the inverse decay times (inverse of frequency) are:

τ−1
f = ω0

(
ζ +

√
ζ2 − 1

)
ζ � 1−−−→ 2ω0ζ = α

m
(A.5a)

τ−1
s = ω0

(
ζ −

√
ζ2 − 1

)
ζ � 1−−−→ 1

2ζ = k

α
(A.5b)

If ζ � 1, the fast decay time, τf is very small as compared to the slow time decay, τs.
Thus, for this limit, for long times compared to τf , this mode can be ignored. This is
also same as neglecting the mass term in the equation A.1, A.2.

α
∂R

∂t
= −kR (A.6a)

∂R

∂t
= −k

α
R = −µ∂HT

∂R
(A.6b)

where µ = α−1 is the total dissipation in the system from various sources, HT is the
total energy of the system.
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The MeMC is an open-source software package for monte-carlo simulation

of elastic shells. It is designed as a tool to interpret the force-distance data

generated by indentation of biological nano-vesicles by atomic force microscopes.

The code is written in c++ and python. The code is customizable – new

modules can be added in a straightforward manner.
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1. Statement of need and purpose of software

Micro and nano vesicles, both natural and synthetic, play a crucial role in biology

and medicine. The physical properties of these vesicles play an important role in

their biological functions (Phillips et al. 2012). Hence it is important to be able

to measure their elastic constants, in particular the Young’s modulus and the

bending rigidity. One way to measure the elastic constants of biological objects,

e.g., a red blood cell (RBC), is to poke them with an atomic force microscope

(AFM) to obtain a force-distance curve. Then we must model the biological

object as an elastic material and by fitting this model to the experimental

force-distance curve to estimate the parameters of the elastic model, i.e., the

elastic constants. As an example, consider a force-distance curve obtained by

AFM measurements of an RBC. The RBC is modeled as a linear elastic material
with a Young’s modulus, Y3d. Typically a Hertzian model of elastic bodies in

contact (Landau and Lifshitz 1970, section 9) is used to measure Y3d. Nano

vesicles differ from (micro-meter scale) cells in two important ways

1. The nano-vesicles are much smaller hence thermal fluctuations may

effectively renormalize the elastic coefficients (Paulose et al. 2012; Košmrlj

and Nelson 2017).

2. Cell membranes are strongly coupled to an underlying cytoskelton. Hence

they may be modeled by a solid body (HW et al. 2002) but nano-vesicles

must be modeled as liquid filled elastic membranes.

Hence, to be able to interpret the force-distance curve of nano-vesicles, we need

to solve for the elastic response of a thermally fluctuating elastic shell.

There are commercial packages, e.g., COMSOL (COMSOL), to calculate the

force-distance curve of solid bodies and closed membranes with fluids inside under
the action of external forces but to the best of our knowledge there is no package

that includes thermal effects, which are important in nano-vesicles. Monte-carlo

simulations of elastic membranes, that does include thermal fluctuations, have

been done for more than three decades (Goetz et al. 1999; Bowick et al. 2001;

Auth and Gompper 2005; Paulose et al. 2012), see also (Gompper and Kroll

2004, for a review ). But to the best of our knowledge there is no open-source

code available. The goal of this package is to fill this gap in open-source software.

2. Theoretical background

Our model of nano-vesicles is an homogeneous amorphous membrane enclosing

an incompressible fluid (Vorselen et al. 2017). Unlike a solid ball, the force-

distance relationship for such a model is linear for small deformation (Vorselen

et al. 2017; Paulose et al. 2012) if we ignore thermal fluctuations. Ref. (Vorselen
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et al. 2017) uses a similar model, ignoring thermal fluctuations, to interpret

AFM measurement of nano-vesicles.

Let us consider a (three dimensional) material with Young’s modulus Y3d

and Poisson’s ratio σ3d and make a membrane out of it. Then the bending

modulus and the in-plane Young’s modulus are (Landau and Lifshitz 1970,

section 13 and 14)

B =
Y3dh

3

12(1− σ2
3d)

and Y = Y3dh, (1)

where h is the thickness of the membrane. This need not necessarily hold

for biological membranes. Nevertheless consider a fluid enclosed by a solid

membrane, as done in (Paulose et al. 2012). We consider an elastic energy of

the form

E [w,u] =

∫
d2x

[
B

2

(
∇2w

)2
+ µu2

ij +
λ

2
u2
kk − pw

]
(2a)

uij =
1

2
(∂iuj + ∂jui + ∂iw∂jw)− δij

w

R
(2b)

where w is the out-of-plane deformation of the shell, and u is the in-plane

deformation, p is the pressure, λ and µ are the two in-plane Láme coefficients

and B is the bending modulus. The Láme coefficients are related to other

elastic constant in the following manner (Landau and Lifshitz 1970)

K = λ+
2

3
µ (3a)

Y =
9Kµ

3K + µ
(3b)

σ =
1

2

3K − 2µ

3K + µ
(3c)

Here K is the volume compressibility, Y the Young’s modulus, and σ the Poisson

ratio.

If we consider the material to be incompressible, K →∞ and σ = 1/2, then

there are two elastic constant, the bending rigidity B and the Young’s modulus

Y . Consequently, there are two dimensionless numbers, the Föppl–von-Karman

number

FvK =
Y R2

B
(4)

and the Elasto-Thermal number:

ET =
kBT

B

√
FvK (5)

where R is the radius of the spherical shell.
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A B C

Figure 1: Grid points on a sphere (A)Triangulated random points on a
sphere. (B) Triangulated points on sphere after 60000 SMC iteration of the
initial configuration shown in (A). (C) An example of regular grid

Using values of Y and B from molecular dynamics simulations of lipid

bilayers (Boek et al. 2005), Y = 1.7N/m and B = 5kBT and R = 100 nano

meter, we have FvK ≈ 0.3 × 107 which is close to the Föppl–von-Karman

number for Graphene sheets and ET ≈ 103.

3. Numerical implementation

3.1. Grid

Following Ref. (Gompper and Kroll 2004), we use a triangulated-network

grid in the following manner. We start with N randomly chosen points on a

sphere Fig. (1A). Then, we run a Monte-Carlo simulation, with a Lennard-

Jones (LJ) repelling potential, of these points moving on the surface. Once the

surface Monte-Carlo (SMC) has reached an equilibrium, we use the algorithm

in Ref. (Caroli et al. 2009) to construct the Delaunay triangulation of these

points. The connection between the points thus formed is kept unchanged. In

the rest of this paper we call this the initial configuration. A different snapshot

from the same equilibrium gives an equivalent but differently triangulated grid.

An alternative is to use a regular grid (Vliegenthart and Gompper 2006;

Buenemann and Lenz 2008). This is achieved by approximating the sphere with

geodesic polyhedron [Fig. (1C)] . They can be generated using Meshzoo library

(A simple and fast mesh generator). In this paper we use N = 5120 for the

random grid and N = 5292 for the regular grid.
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3.2. Energy

The basic algorithm of the Monte-Carlo simulations is straightforward and

well-known (see, e.g., Baumgärtner et al. 2013). We randomly choose a point on

the grid and move it by a random amount. We calculate the change in energy

due to this movement. We accept or reject the move by the standard Metropolis

algorithm. In our code the energy has the following contributions

E = Es + Ebend + Ebulk (6)

where Es is the contribution from stretching, Ebend is the contribution from

bending, and Ebulk is the contribution from the bulk modulus. Below, we

describe each one of them in turn.

3.2.1. Stretching

In the initial configuration, two neighboring points with coordinates Ri and Rj

are connected by a bond of length `0ij. When the i-th point is moved, all its

bonds with the neighbors change from their initial length. We model each of

these bonds by a harmonic spring and calculate the stretching energy by

Es
1

2

∑

i

H

2

∑

j(i)

(
Rij − `0ij

)2
where (7a)

Rij ≡ |Ri −Rj|. (7b)

Here the notation j(i) denotes that the sum is over all the nearest neighbors of

the i-th point.

The Láme coefficients (λ, µ) and the Young’s modulus (Y ) are given by (Se-

ung and Nelson 1988)

λ = µ =

√
3

4
H, Y =

2√
3
H. (8)

3.2.2. Bending

To calculate the bending contribution, we need to calculate the curvature. In

the continuum limit, i.e. N →∞, bending energy (Nelson et al. 2004) is:

EB =
B

2

∫
(∇2R)2dS, (9)

where R is the vector of a point on the surface of the sphere, ∇2R is Laplacian

of R on the surface of the sphere.

A general introduction to discretization of Laplacian on a triangulated mesh

is given in Refs.(Itzykson 1986; Hege and Polthier 2003). Laplacian on a 2D
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Figure 2: An example of triangulated mesh at the node i. αij, βij are the angles
opposite to the bond ij. Shaded part is the Voronoi region of triangle T which
is defined by the nodes (i, j − 1, j). Here, we consider that the triangle T is
acute.

manifold embedded in R3 is:

L(R) = 2κ(R)m̂(R), (10)

where κ(R) is the mean curvature, and m̂(R) is the normal to the surface at

R. Note that, m̂(R) is a local property of a point P with coordinates R and

it is not necessarily the outward normal of the closed surface. In the discrete

form (Hege and Polthier 2003; Meyer et al. 2003),

Li =
1

Ai

∑

j(i)

1

2
[cot(αij) + cot(βij)]Rij. (11)

Here, Ai is the area of Voronoi dual cell at the node i, and αij, βij are the angles

opposite to bond ij as shown in Fig. (2). Consider the triangle T in Fig. (2)

defined by its vertices (i, j− 1, j). If T is non-obtuse its circumcenter lies within

it, hence so does the Voronoi region. Let Ac be the area of shaded region in

Fig. (2) given by (Meyer et al. 2003; Hege and Polthier 2003),

Ac =
1

8

[
R2

ij cot(αij) +R2
ij−1 cot(βij−1)

]
. (12)

If there is an obtuse angle in triangle T, the Voronoi region is not necessarily

enclosed by the triangle (Hege and Polthier 2003). For such cases, instead of

Ac, we use Ab, defined as (Hege and Polthier 2003; Meyer et al. 2003):

Ab =

{
area(T)

2 , angle of T at i is obtuse
area(T)

4 , any other angle is obtuse

}
, (13)
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where area(T ) = 0.5 |Rij ×Rij−1| is the area of the triangle T. The area Ai is

obtained by summing up the contributions from all the triangles in Fig. (2),

e.g., the contribution from the triangle T is the shaded area.

For a closed surface, the bending energy must be calculated relative to the

spontaneous curvature, i.e., its discretised form is

EB =
B

2

∑

i

Ai (Li − Cn̂)
2
. (14a)

where C is the spontaneous curvature, for a sphere C = 2/R, where R is radius

of the sphere and n̂ is the outward normal to the surface. Hence not only

the magnitude but also the vector nature of the surface Laplacian must be

determined. For every triangle in the initial configuration, i.e., when all the

points lie on the surface of a sphere, the outward unit normal can be calculated

in a straightforward manner. For example, for the triangle T in Fig. (2) it

can be calculated by finding out the unit vector that points along Rij−1 ×Rij.

Hence, at any time, if we access the points around the node i in counterclockwise

manner when viewed from outside we are guaranteed to obtain the outward

normal. We ensure this by sorting appropriately the points around every node

in the initial configuration. As the connectivity of the mesh remains unchanged

this property is preserved at all future times.

To sort the neighbors around any node i, we rotate the coordinate system

such that, the z axis passes through the point i along the vector Ri. In this

coordinate system we sort the neighbors by their azimuthal angle.

Note that unlike Ref. (Gompper and Kroll 2004) we do not incorporate

self-avoidance.

3.2.3. Bulk

We assume that the liquid inside the vesicle is incompressible 1. This is

implemented by adding a energy cost to the volume change. At any point, the

total contribution to the bulk energy is

Ebulk = K

(
V

V0
− 1

)2

, (15)

where K is bulk modulus, V is current volume, and V0 is the undeformed initial

volume of the vesicle. As we move the point i by a random amount, the change

1This is different from assuming a semi-permeable membrane, as done in Ref. (Vorselen et al.
2017), in which case the liquid can flow in or out and the osmotic pressure of solutes decreases

and increases accordingly.
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in bulk energy is

∆Ebulk = 2K

(
∆V (V − V0)

V 2
0

+

(
∆V

V0

)2
)
, (16)

where ∆V is the change in volume due to the move.

3.2.4. Pressure

With addition of contribution from pressure difference from inside and outside

the shell our code can also be used for pressurized shells.

3.3. Sticking to a solid surface

As a specific example of nano-vesicle, we consider an exosome. We quote from

Ref. (Pegtel and Gould 2019) “ Exosomes are small, single-membrane, secreted

organelles of ∼ 30 to ∼ 200 nm in diameter that have the same topology

as the cell and are enriched in selected proteins, lipids, nucleic acids, and

glycoconjugates. ” The exosomes that we consider here were collected from

immortalized cell line and extracted following the procedures as described in

Ref. (Cavallaro et al. 2019). To measure the force-distance curve, it is necessary

to fix an exosome on a transparent coverslip. This was done by electrostatic

coupling to a PLL coated surface by incubating them at room temperature for

one hour, see Ref (Cavallaro et al. 2019). As an illustration, in Fig. (3), we

show a typical experimental measurement of the height above a flat surface as

measured by the AFM. After being stuck to the flat surface the free surface forms

a spherical cap. To reproduce such experiments as closely as possibly we need

to fix the vesicle to a flat surface. This is implemented by the Lennard-Jones

potential:

VLJ(r) ≡ 4εw

[(σw

r

)12

−
(σw

r

)6
]

(17)

What fraction of the vesicle is fixed to the flat surface is parametrized by the

angle Θ0 (see Fig. (3B)) which is a parameter in our code. We choose a system

of coordinates with its origin at the center of the vesicle and the z axis pointing

radially outward through the north pole. All the grid points on the surface

whose polar angle is greater than Θ0 are selected such that the sticking potential

acts only on them, see Fig. (3B).

3.4. AFM tip

To model the interaction between AFM tip and the vesicle, We model the shape

of tip as paraboloid and we use only the repelling part of the Lennard-Jones

potential:

VRLJ(r) ≡ 4εA

(σA

r

)12

(18)
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Figure 3: (A) A colormap of the height as measured by the AFM. (B) Illustration
of the vesicle stuck to a flat surface by an angle Θ0. (C) The height plotted
along the line shown in (A).

For every point on the vesicle we calculate the shortest distance of this point to

the paraboloid and use this distance as the argument of function VRLJ in (18).

4. Dependencies

The code requires the following:

• A c++ compiler. We have tested the code with gnu g++ version 11.2.0

on x86 64 CPU.
• Hdf5 libraries for reading and writing data.

• Python version 3.8 with scipy, numpy, h5py and numpy-quaternion

installed.
• For three-dimensional visualization we use VisIt (Childs et al. 2012).

5. Typical workflow and test

We have tested our code in LINUX operating system. We expect it to work

without any problem in any similar environment. It may also work with

WINDOWS although we have not tested this aspect.
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(A) (C)(B)

Figure 4: Representative snapshots from our code for three different positions
(tz) of the AFM tip. The origin of our coordinate system is at the center of
the undeformed sphere and the radius of the undeformed sphere is unity. The
colormap shows the signed curvature (10); red(positive) and blue (negative).
(A) tz = 1.05, (B) tz = 0.9, (C) tz = 0.75.

The github repository (Monte-Carlo for elastic shells) contains a a file named

README.md that contains instructions to install and run the code. In Fig. (4)

we show three typical snapshots from our code for three different positions of

the AFM tip.

In the github repository, we also provide a subdirectory called Examples.

By executing the shell script execute.sh in that directory the user can run

the code (without the AFM tip and the bottom plate). It takes almost 30

minutes on Intel(R) Core(TM) i5-8265U CPU. The run produces a probability

distribution function (PDF) of the total energy after 50, 000 number of Monte

-carlo steps. By running gnuplot plot.gnu (this requires the software gnuplot)

the user can compare the PDF obtained by their run with the PDF that we

provide.
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Artur Baumgärtner, Kurt Binder, J-P Hansen, MH Kalos, K Kehr, DP Landau,

D Levesque, H Müller-Krumbhaar, C Rebbi, Y Saito, et al., Applications of the

Monte Carlo method in statistical physics, Topics in Current Physics, Vol. 36

(Springer Science & Business Media, 2013).

Hyunjune Sebastian Seung and David R Nelson, “Defects in flexible membranes with

crystalline order,” Physical Review A 38, 1005 (1988).

David Nelson, Tsvi Piran, and Steven Weinberg, Statistical mechanics of membranes

and surfaces (World Scientific, 2004).

C Itzykson, in Proceedings of the GIFT seminar, Jaca 85, edited by J et al Abad

(World Scientific Singapore, 1986) pp. 130–188.

Paper 1: MeMC 105



Hans-Christian Hege and Konrad Polthier, Visualization and mathematics III (Springer

Science & Business Media, 2003).

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr, “Discrete
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We study the buckling of pressurized spherical shells by Monte Carlo simulations

in which the detailed balance is explicitly broken – thereby driving the shell

active, out of thermal equilibrium. Such a shell typically has either higher

(active) or lower (quiescent) fluctuations compared to one in thermal equilibrium

depending on how the detailed balance is broken. We show that, for the same

set of elastic parameters, a shell that is not buckled in thermal equilibrium

can be buckled if turned active. Similarly a shell that is buckled in thermal

equilibrium can unbuckle if turned quiescent. Based on this result, we suggest

that it is possible to experimentally design microscopic elastic shells whose

buckling can be optically controlled.
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Thin spherical shells are commonly found in many natural and engineering

settings. Their sizes can vary over a very large range – from hundred meters, e.g.,

the Avicii Arena Stockholm 2 down to about hundred nanometers, e.g., viral

capsules (Buenemann and Lenz 2008,?; Michel et al. 2006) and exosomes (Peg-

tel and Gould 2019; Cavallaro et al. 2019). The elastic properties of shells,

including conditions under which buckling can occur, have been extensively

studied (Love 2011; Landau and Lifshitz 1970; Koiter 1963; WT 1976; Pogorelov

1988; Hutchinson 2016). Interest in this traditional field of applied mathematics

has been rekindled in the past decades because of possible applications to biology

and nanoscience (Vliegenthart and Gompper 2006; Gao et al. 2001; Gordon

et al. 2004). For example, one of the most-used methods to determine the elastic

modulii of microscopic shells is to measure their force–distance curves while

poking them with an atomic force microscope (AFM) and then interpreting the

data in the light of the theory of elastic shells (Buenemann and Lenz 2008; Vella

et al. 2012; Vorselen et al. 2017; Wu et al. 2018; Vorselen et al. 2020; Cavallaro

et al. 2021; Michel et al. 2006; Zoldesi et al. 2008). More recently, it has been

shown that for small enough shells thermal fluctuations can decrease the critical

buckling pressure by a large amount (Paulose et al. 2012; Košmrlj and Nelson

2017). This opens up the intriguing possibility of how the elastic properties of

shells, in particular buckling, will change if they are turned active – driven out

of thermal equilibrium.

It was realized very early in biophysics (Schrödinger 2012), that the funda-

mental property of living matter is that they are not in thermal equilibrium even

when they are statistically stationary. They are active – they consume energy

and generate entropy (Gnesotto et al. 2018). The statistical and mechanical

properties of such matter is a current topic of considerable interest (Marchetti

et al. 2013; Ramaswamy 2010). Membrane of any living cell can be considered

as an active shell, although not necessarily spherical, because the fluctuations of

its membrane have active components, in addition to the thermal fluctuations,

due to active processes occurring on the membrane (e.g., endo–cytosis and

exo–cytosis) and the driving by the active cytoskeleton (Peng et al. 2013; Turlier

et al. 2016; Biswas et al. 2017; Turlier and Betz 2019; Manikandan et al. 2022).

Active shells can also be synthetically designed, e.g., by embedding certain

proteins in a bi-lipid membranes – proteins that act as active pumps when

irradiated with light of certain frequency (Girard et al. 2005; Manneville et al.

2001). Shells made out of hard–magnetic elastomers can be turned active by an

external magnetic field (Yan et al. 2021). In this paper we study the buckling

of pressurized active spherical shells by Monte Carlo (MC) simulations (Kumar

2There are several geodesic domes with sizes ranging from 10 to 200 meters.

Paper 2: V. Agrawal et.al.108



Figure 1: Active buckling: Typical snapshots from our simulations for
activity A = −2, 0 and 2 (from left to right), and pressure P = 0.30P0 (top row)
and 0.36P0 (bottom row) where P0 is the critical buckling pressure obtained
from the mechanical theory of elastic shells, i.e., at zero temperature. We use
N = 5120, FvK = 4616, and ET = 8. The middle column, A = 0, corresponds
to shells in thermal equilibrium – an unbuckled shell buckles upon increasing
P/P0 from 0.30 to 0.36. This is consistent with the results of Refs. (Paulose
et al. 2012; Košmrlj and Nelson 2017). Top row: As activity is increased to 2
(right column) the shell buckles. Bottom row: Whereas as activity is decreased
to −2 (left column) the shell, that was buckled in thermal equilibrium, does
not buckle at the same pressure.

and Dasgupta 2020) in which detailed balance is explicitly broken – thereby

driving the shell active, out of thermal equilibrium. Such a shell typically has

either higher or lower fluctuations than thermal ones depending on how the

detailed balance is broken. We call such non-equilibrium stationary states active

and quiescent respectively. We show that, within the right range of elastic

parameters, a shell that is not buckled in thermal equilibrium can be buckled

if turned active. Similarly a shell that is buckled in thermal equilibrium can

unbuckle if turned quiescent, see Fig. (1). Based on this, we suggest that it is

possible to experimentally design microscopic elastic shells whose buckling can

be optically controlled.

Let us briefly summarize, following Refs. (Paulose et al. 2012; Košmrlj

and Nelson 2017) the model and the key results of theory of thin elastic shells

in thermal equilibrium. A pressurized elastic shell is described by an effective
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Hamiltonian, Geff = G0 +G1 where,

G0[f ] =
1

2

∫
d2x

[
B(∇2f)2 − PR

2
|∇f |2 +

Y

R2
f2

]
, and (1a)

G1[f ] =
Y

2

∫
d2x

[(
1

2
Pij∂if∂jf

)2

− f

R
Pij∂if∂jf

]
. (1b)

Here x = (x1, x2) is a two-dimensional Cartesian coordinate system and

Pij ≡ δij − ∂i∂j/∇2 is the transverse projection operator. The out-of-plane

displacement is h(x) = f0(x) + f(x) where f0(x) is the uniform contraction

of the sphere in response to the external pressure. The difference between the

external and the internal pressure is P . The part G0 is harmonic and the part

G1 is anharmonic. In this model, we assume the shell to be amorphous and ho-

mogeneous with radius R, bending modulus B and (two–dimensional) Young’s

modulus Y . Two non-dimensional numbers determine the elastic behavior of
such shells, the Föppl–von-Karman number and the Elasto-thermal number,

defined respectively as

FvK ≡ Y R2

B
, ET ≡ kBT

B

√
FvK, (2)

where kB is the Boltzmann constant and T is temperature. At constant ET, the

effects of anharmonicity increases with FvK whereas at constant elastic modulii

the effects of thermal fluctuations increases with ET. Ignoring the anharmonic

contribution, using standard tools of equilibrium statistical mechanics it is

straightforward (Paulose et al. 2012, Eq. 4) to calculate the spectrum of

fluctuations

S(q) ≡
〈
f̂(q)f̂(−q)

〉
=

akBT

Bq4 − PRq2

2 + Y
R2

, (3)

where f̂(q) is the Fourier transform of f(x) and a is the area of integration in the

(x1, x2) plane. In equilibrium, the symbol 〈·〉 denotes thermal averaging; whereas

for active cases, it denotes averaging over the non–equilibrium stationary states.

Note that S(q) blows-up for

P = P0 ≡
4B

R
q2
∗, where (4a)

q∗ ≡
(

Y

BR2

)1/4

=
FvK1/4

R
, (4b)

where P0 is the buckling pressure, independent of temperature, obtained within

the traditional theory (Hutchinson 2016) of buckling of pressurized shells.

For a large Föppl–von-Karman number, q∗ > 1/R. is the buckling mode.

Refs. (Paulose et al. 2012; Košmrlj and Nelson 2017) used renormalization
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group (RG) techniques to show that the effects of the anharnomic terms is

to renormalize the parameters appearing in the bare theory, i.e., P , B, and

Y in (3) must be replaced by their scale–dependent, renormalized versions,

see Ref. (Košmrlj and Nelson 2017, Eq. 18). Consequently both the pressure

and the critical buckling pressure are renormalized and buckling is obtained if

both of these quantities are equal for a length scale which must be smaller than

the radius of the sphere (Košmrlj and Nelson 2017). The results of this RG

analysis were validated by Monte Carlo simulations of spherical shell, randomly

triangulated with N grid points, with discretized bending and stretching energies

that translate directly into a macroscopic elastic modulii (Paulose et al. 2012;

Gompper and Kroll 2004; Itzykson 1986). Our Monte Carlo code, described in

detail in Ref. (Agrawal et al. 2022), closely follows that of Ref. (Paulose et al.

2012), and faithfully reproduces these results 3. We incorporate activity into

this model in the following manner.

Over the years, many theoretical models (Ramaswamy et al. 2000; Rao

and R.C. 2001; Loubet et al. 2012; Maitra et al. 2014; Hawkins and Liverpool

2014; Yin et al. 2021; Goriely 2017), have been suggested to incorporate the

effects of active fluctuations into models of membranes. All of these drive the
membrane out of thermal equilibrium. In equilibrium Monte Carlo simulations

the transition rate, W , from one state to another is given by the Metropolis

algorithm:

W = min[1, exp(−E/kBT )], (5)

where kB is the Boltzmann constant, T is the temperature and E is the difference

in energy between the two states. To drive the membrane out of equilibrium,

following Ref. (Kumar and Dasgupta 2020), we replace E by E + ∆E. This

guarantees that detailed balance is broken and the amount by which it is broken

is ∆E. If ∆E is positive (negative) the probability of acceptance of large fluc-

tuations is decreased (increased). Thus we define A = −∆E/(kBT ) such that

simulations with positive A, active simulations, have higher fluctuations than

equilibrium ones whereas for negative A, quiescent simulations, the fluctuations

are less than the equilibrium ones. For membranes in thermal equilibrium,

micropipet aspiration shows ∆α ∝ (kBT/4πB) lnσ where ∆α is the areal strain

and σ is the surface tension. This result can be obtained using standard tech-

niques of equilibrium statistical mechanics (Turlier and Betz 2019). For active

membranes the same proportionality holds but the constant of proportionality

is different. This experimental result was captured by the model in Ref. (Prost

and Bruinsma 1996) which adds an additional Ornstein–Uhlenbeck noise to

the model of thermal membranes. We test our active Monte Carlo scheme,

3See Supplemental Material
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Figure 2: Buckling under pressure: Normalized change in volume as a
function of external pressure for (blue) a shell in thermal equilibrium, (green)
active (A = 2), and (magenta) quiescent (A = −2) for simulations with ET = 8
and FvK = 4616 and number of grid points N = 5120. Here 〈V 〉 is the ensemble
average of volume, and Vref is the average volume at the smallest pressure
difference. The error in 〈V 〉 are the shades around the solid lines – they are
too small to be visible. The signature of buckling is the sudden large change in
volume. The critical buckling pressure for the thermal case is consistent with
Refs (Paulose et al. 2012; Košmrlj and Nelson 2017).

in planar membranes 4 to reproduce the results of, Ref. (Prost and Bruinsma

1996) and also the experimental result of Ref. (Manneville et al. 2001). In

summary, we incorporate the technique of active Monte Carlo (Kumar and

Dasgupta 2020) into the Monte Carlo algorithm for spherical shells in thermal

equilibrium (Paulose et al. 2012; Gompper and Kroll 2004; Agrawal et al. 2022)

to simulate active shells. In our simulations we set the length scale R = 1 and

the energy scale kBT = 1. A complete list of parameters are shown in table (1).

In Fig. (2) we show a typical plot of how the volume, V , of the spherical

shell changes as the external pressure is increased from a very small value.

The simulations are done in a constant pressure ensemble, hence volume is a

4A. Fragkiadoulakis, S.K. Manikandan, and D. Mitra, unpublished.
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Figure 3: Spectra: The spectra, S`,m, (6), for m = 0, ` ≥ 2 and (a) P =
0.3P0 and (b) P = 0.36P0 for thermal (blue) active (green, A = 2) and
quiescent (magenta, A = −2). The solid lines and the shaded regions are the
means and variances of spectra over many snapshots. Appearance of a peak at
small ` signifies buckling.

fluctuating quantity. Henceforth, by volume we mean the average volume 〈V 〉.
The average volume at the smallest pressure difference, is the reference volume

Vref . The error in 〈V 〉, shown by the shaded regions in Fig. (2) are the variances

– they are too minute to be visible. First consider the shell under thermal

equilibrium. Buckling shows up as a sharp decrease in volume accompanied by

a typical buckled shape, as shown in Fig. (1). The critical buckling pressure,

Pc, that we obtain is consistent with the results of Refs. (Paulose et al. 2012;

Košmrlj and Nelson 2017). We show the results of the simulations for both the

active, A = 2, and the quiescent, A = −2 cases. For the former the critical

buckling pressure decreases while for the latter the critical buckling pressure

increases.

Next we decompose the fluctuating height field, f(θ, φ) in spherical har-

monics, Y`,m(θ, φ):

f(θ, φ) =
∑

`,m

f̃`,mYm` (θ, φ), and define (6a)

S`,m =
〈
|f̃`,m|2

〉
(6b)

In Fig. (3a) we plot the spectra S`,m for P = 0.3P0 for the thermal (A = 0,

blue), active (A = 2, red) and quiescent (A = −2, green) case. In Fig. (3b) we

plot the same for P = 0.36P0. The error in S`,m, shown by the shaded regions

in Fig. (3) are the variances. In particular, for the thermal case, we notice

that the case P = 0.3P0 has no prominent peak for small ` values and is not

buckled, whereas for P = 0.36P0 we observe buckling accompanied by a peak

in S`,m at a small ` value. For the equilibrium case, buckling as a function
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Figure 4: Phase diagram The phase boundary in (a) the pressure–elasto–
thermal number plane for different activities and (b) in the pressure–activity
plane for different elasto–thermal numbers (gray triangles for ET = 7.99, olive
squares for ET = 2.12 and cyan cross for ET = 0.03). In (a) the region where
the buckled phase is obtained in equilibrium is marked by blue lines. The region
where the buckled phase is obtained for A = 4 is shaded in light yellow. The
region where the buckled phase is obtained for A = −4 is marked by violet lines.
In (a) the phase boundary obtained by RG calculation (Košmrlj and Nelson
2017) is marked by a black line and the simulation results by Ref. (Paulose
et al. 2012) are represented by red triangles.

of external pressure is an equilibrium phase transition with the amplitude of

the peak of S`,m at small ` as the order parameter (Paulose et al. 2012). But

buckling at the fixed P and ET as a function of activity is not an equilibrium

phase transition but can be considered as a dynamical one. Nevertheless, we

can still characterize buckling by appearance of a peak in S`,m for small `.

At thermal equilibrium, the phase boundary, that separates the buckled

state from the unbuckled one, in the pressure–elasto–thermal number plane was

marked out in Refs. (Paulose et al. 2012; Košmrlj and Nelson 2017). To obtain

the phase diagram we use thirteen values of elasto–thermal number, for each

of which we use seven values of activity. For a fixed choice of elasto–thermal

number and activity we start our simulations with an initial condition where

the shell is a perfect sphere. Then we choose a fixed value of external pressure

and run our simulations till we reach a stationary state, which for zero activity

is the equilibrium state. Whether the shell is buckled or not is decided by three

checks: (a) significant decrease of volume (b) a peak at small ` for S`,m (c) visual

inspection. If the sphere in not buckled we choose a higher external pressure

and start our simulations again from the same initial condition. The buckling

pressure, Pc obtained for a set of parameters is given in table (1). This way we

mark out the phase boundary in the pressure–elasto–thermal number plane for

different activities and in the pressure–activity plane for different elasto–thermal

numbers, see Fig. (4). In Fig. (4a) we also plot the phase boundary, obtained
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HHHHHET
A

4 2 1 0 -1 -2 -4

1.65× 10−2 0.70 0.70 – 0.70 0.70 0.80 1.10
3.32× 10−2 0.60 0.60 – 0.70 0.70 0.80 1.10
6.63× 10−2 0.60 0.60 0.60 0.70 0.70 0.80 1.00
1.33× 10−1 0.60 0.60 0.60 0.70 0.70 0.80 1.00
2.65× 10−1 0.50 0.60 0.60 0.70 0.70 0.80 1.00
5.31× 10−1 0.50 0.50 0.60 – 0.70 0.80 1.00

1.06 0.40 0.40 0.50 – 0.60 0.80 1.00
2.12 0.40 0.40 0.47 0.50 0.60 0.70 1.00
4.53 0.30 0.30 – 0.50 0.50 0.60 0.80
7.99 0.30 0.30 0.30 0.36 0.40 0.40 0.50
16.99 -2.8 – – 0.30 0.40 0.40 –
33.97 <-4 -2.5 – 0.30 0.30 0.40 0.50
67.94 <-4 <-4 -0.10 0.20 0.30 0.30 0.50

Table 1: Buckling pressure (Pc/P0): for different values of elasto–thermal
number (ET) and activity (A) obtained from the simulation with FvK=4616,
N = 5120, R = 1 and kBT = 1, where N is the number of grid points, R is
radius of the shell, kB is the Boltzmann constant and T is the temperature.
We repeated some of the simulations for N = 20252 and obtained the same
buckling pressure. To reach a stationary state, typically, we need to run for
106 − 3× 106 Monte Carlo steps, where in one Monte Carlo step, we perform
2N Monte Carlo iterations to attempt to update the position a random point.

through a RG calculation in Ref. (Košmrlj and Nelson 2017), which agrees

reasonably well with our numerical results for zero activity. Note that for large

enough values of ET and A we reach a part of the phase diagram where the

shell is unstable at zero external pressure and can be made stable only with

positive internal pressure. This part of the phase diagram is not shown in

Fig. (4) although the relevant data are included in table (1). Note that at small

ET for the quiescent case it is possible to have the shell remain unbuckled even

for pressure higher P0, i.e., the shell is stabilized.

Several comments are now in order: One, most of our simulations use

N = 5120. We have repeated some of our simulations with N = 20252 and

obtained the same buckling pressure. Two, to obtain the buckling pressure

we always start from the same initial condition and imposed a fixed external

pressure. Hence, the lines of phase separation we show, Fig. (4), are not

continuous and will be improved if the phase diagram is sampled in a finer

resolution. Three, experimentally, it is unclear how to implement the quiescent

regime, negative A. Nevertheless, synthetic membranes that can be turned

active (A > 0) optically, has been already realized by embedding certain proteins
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in a bi-lipid membranes – proteins that act as active pumps when irradiated with

light of certain frequency (Girard et al. 2005; Manneville et al. 2001). In such

cases, only a fraction of points on the shell are active. This can be incorporated

in a straightforward manner in our code and it would be interesting to see how

the critical buckling pressure changes as we change the fraction of active points.

Four, bi–lipid membranes are semi-permeable (Phillips et al. 2012). As the shell

buckles the fraction of solute increases, increasing the partial pressure inside

the shell. Experimentally, this can be avoided by using shell with holes in them.

We expect, in such cases the buckling pressure may change by a small amount.

Finally, our simulations point towards the intriguing possibility that within

the right range of elastic parameters, a shell that is not buckled in thermal

equilibrium can be buckled if turned optically active. Based on this, we suggest

that it is possible to experimentally design microscopic elastic shells whose

buckling can be optically controlled. In such devices it may be possible to drive

flows at microscopic scales by buckling and unbuckling of shells, optically.
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Code and data availability

The source code used for the simulations of the study is freely available at

https://github.com/vipinagrawal25/MeMC/releases/tag/v1.1 (Agrawal

et al. 2022). The simulation setup and the corresponding data are freely available

on Zenodo with DOI: 10.5281/zenodo.6772570. Python scripts are included

with the data to generate all the figures.

Appendix A. Monte Carlo simulation of elastic shells in
thermal equilibrium

We use a Monte Carlo algorithm following Refs. Paulose et al. (2012); Gompper

and Kroll (2004) to study the elastic properties of shells. A version of our
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code, which performs thermal simulation of elastic shells, is already available as

an open source software Agrawal et al. (2022). In this appendix, for the sake

of completeness, we describe the algorithm in brief and compare the results

for elastic properties of shells in thermal equilibrium with those obtained in

Ref. Paulose et al. (2012). How we adapt the same algorithm to study shells

out of equilibrium is described in the main body of this paper.

A.1. Algorithm

First, we start with N randomly chosen points on a sphere. Then, we run

a Monte Carlo simulation, with a repulsive Lennard-Jones (LJ) potential, of

these points moving on the surface. Once the surface Monte Carlo (SMC) has

reached an equilibrium, we triangulate the points using the algorithm described

in Ref. Caroli et al. (2010). This is our initial configuration. The distance

between two neighboring nodes i and j is called `0ij.

We use Monte Carlo Baumgärtner et al. (2013) simulations to update the

positions of the points (Xi at node i). For a pressurized shells, the total energy,

E = Estretch + Ebend + PV , (7)

where the stretching contribution is

Estretch =
1

2

∑

i

H

2

∑

j(i)

(
Xij − `0ij

)2
, with (8a)

Xij ≡ |Xi −Xj|. (8b)

The bending contribution is

Ebend =
B

2

∑

i

Ai (Li − Cn̂)
2
. (9)

Here P is the pressure difference between outside and inside the shell, and

V is the volume. The Young’s modulus of the membrane is given by Y =

2H/
√

3 Itzykson (1986). The bending modulus is B, n̂ is the outward normal

to the surface, C is its spontaneous curvature, and Ai is the area of Voronoi

dual cell at the node i Agrawal et al. (2022); Meyer et al. (2003); Hege and

Polthier (2003). The operator

Li =
1

Ai

∑

j(i)

1

2
[cot(αij) + cot(βij)]Xij, (10)

is the discrete Laplacian Itzykson (1986); Hege and Polthier (2003); Meyer

et al. (2003) at the node i. Here αij, βij are the angles opposite to bond Xij as
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Figure 5: An example of triangulated mesh at the node i. αij, βij are the angles
opposite to the bond ij. Shaded part is the Voronoi region of triangle T at
the nodes i, j − 1, j – it lies inside as T is non-obtuse. The nodes are sorted
in counterclockwise direction. The image is adapted from Ref. Agrawal et al.
(2022).

shown in Fig. (5). We compute Ai as follows Hege and Polthier (2003); Meyer

et al. (2003). Consider the triangle T in Fig. (5), defined by the nodes i, j, j − 1.

If T is non-obtuse, the area of shaded region in Fig. (5)

Aj(i) =
1

8

[
X2

ij cot(αij) +X2
ij−1 cot(βij−1)

]
. (11)

If T is an obtuse triangle, the shaded region in Fig. (5) lies outside the triangle

T then Aj(i) = area(T)/2 if the angle at the vertex i of T is obtuse. Otherwise

Aj(i) = area(T)/4. Here area(T ) = 0.5 |Xij ×Xij−1|.
Here area(T ) = 0.5 |Xij ×Xij−1|. The area Ai is obtained by summing up

the contributions from all the triangles similar to Aj(i), in Fig. (5), e.g., the

contribution from the triangle T is the shaded area.

To compute the outward normal to the surface, n̂, in Eq. (9), we sort the

points about node i in a counterclockwise manner. To sort the neighbors around

any node i, we rotate the coordinate system such that, the z axis passes through

the point i along the vector Xi. In this coordinate system we sort the neighbors

by their azimuthal angle. Note that unlike Ref. Gompper and Kroll (2004) we

do not incorporate self-avoidance.

A.2. Comparison with Paulose et al.

In Fig. (6A), we plot the spectra S`,m for m = 0 and for three different value of

bending modulus B, such that kBT/B = 7× 10−4 (blue), 0.07 (red) and 0.18
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Parameters our simulation Paulose et al.simulation
Number of grid points, N 5120− 20252 5530− 41816

Activity, A −4− 4 0
P/Pc, −4− 1 0.2− 1

Elasto thermal number, ET 1.65× 10−2 − 68 10−6 − 102

FvK, FvK 4616 650− 35000
Total MC steps 106 − 107 1.25× 108

MC iterations in one MC step 104 − 4× 104 Attempt to update the position
of all nodes

Table 2: Comparison between our simulation parameters and Ref. Paulose et al.
(2012).

(orange). We take the number of points N = 20252, FvK = Y R2/B = 4616, and

kBT = 1. The continuous line shows the theoretical prediction calculated using

RG by Paulose et al. (2012) – we find reasonable agreement with the theory.

Next, following Paulose et al. (2012) we measure the mechanical response a

thermal shell by deforming it with a point-like indentation. This is implemented

by two harmonic springs that are attached to the north and south pole of the

shell. In Fig. (6B) we compare the force–deformation curve from our simulations

with those obtained in Ref. Paulose et al. (2012). We obtain quite reasonable

agreement.
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Figure 6: Comparison with Ref Paulose et al. (2012): (a) Fluctuation
spectrum S`,m for m = 0 versus ` for different values of bending modulus B.
The solid lines are theoretical predictions Paulose et al. (2012). The lines with
symbols are from our simulations. The shaded area shows the variance. (b)
Force–deformation curve from our simulations compared with Ref. Paulose et al.
(2012) (yellow squares). We use N = 20292 and FvK = 4616.
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Manuel Caroli, Pedro MM de Castro, Sébastien Loriot, Olivier Rouiller, Monique

Teillaud, and Camille Wormser, “Robust and efficient delaunay triangulations

of points on or close to a sphere,” in International Symposium on Experimental

Algorithms (Springer, 2010) pp. 462–473.

A simple and fast mesh generator, https://github.com/meshpro/meshzoo.

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science &

Engineering 9, 90–95 (2007).

Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David

Pugmire, Kathleen Biagas, Mark Miller, Cyrus Harrison, Gunther H. Weber,

Hari Krishnan, Thomas Fogal, Allen Sanderson, Christoph Garth, E. Wes Bethel,
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The flow of Newtonian fluid at low Reynolds number is, in general, regular and

time-reversible due to absence of nonlinear effects. For example, if the fluid is

sheared by its boundary motion that is subsequently reversed, then all the fluid

elements return to their initial positions. Consequently, mixing in microchannels

happens solely due to molecular diffusion and is very slow. Here, we show,

numerically, that the introduction of a single, freely-floating, flexible filament in

a time-periodic linear shear flow can break reversibility and give rise to chaos

due to elastic nonlinearities, if the bending rigidity of the filament is within a

carefully chosen range. Within this range, not only the shape of the filament is

spatiotemporally chaotic, but also the flow is an efficient mixer. Overall, we find

five dynamical phases: the shape of a stiff filament is time-invariant – either

straight or buckled; it undergoes a period-two bifurcation as the filament is

made softer; becomes spatiotemporally chaotic for even softer filaments but,

surprisingly, the chaos is suppressed if bending rigidity is decreased further.
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1. Introduction

Flows at very small Reynolds number play a key role in biology Purcell (1977);

Lauga and Powers (2009); Phillips et al. (2012); Taylor (1951) and microflu-

idics Squires and Quake (2005); Kirby (2010); Stone et al. (2004). In the

presence of rigid boundaries, such flows are typically laminar and reversible.

For example, consider the fluid between two concentric cylinders sheared by

rotating the outer one slowly. If the rotation is reversed the fluid particles come

back to their original positions (ignoring the small fluctuations due to Brownian

motion) Taylor (1967). Consequently, mixing by periodic stirring is in general

catastrophically slow in microfluidic flows although Lagrangian chaos is possi-

ble in pressure–driven flows through rigid but complex boundaries Aref et al.

(2017). Addition of elastic polymers Groisman and Steinberg (2000, 2001, 2000);

Stroock et al. (2002); Steinberg (2021), or active objects Dombrowski et al.

(2004); Wensink et al. (2012); Dunkel et al. (2013) and mutual hydrodynamic

interaction between many suspended colloidal particles Pine et al. (2005), can

also give rise to breakdown of time-reversibility and to chaotic flows.

Here we consider a neutrally–buoyant inextensible, elastic filament, of length

L and bending rigidity B, subject to a linear shear flow U0(x, y) = γ̇yx̂. The

strain-rate γ̇ is time-periodic with a period T , γ̇ = S sin(ωt), where ω = 2π/T .

Initially the filament is placed along the y direction, see Figure. 1. The flow

parameters, S, T , and dynamic viscosity of the fluid, η, are chosen such that

the Reynolds number is very small. This corresponds to, for example, the

demonstration by G.I. Taylor where he puts a small thread in a Taylor-Couette

apparatus filled with syrup, turns the outer cylinder in one direction and then

reverses it exactly back to its starting position Taylor (1967) This experiment

does break time-reversal invariance – the thread is buckled at the end of the
cycle. Here our aim is to study the same phenomena in a numerical setup For

simplicity, we consider a plane Couette flow without boundaries.

An elastic filament, of length L, in a constant-in-time flow has been ex-

tensively studied, numerically and experimentally Becker and Shelley (2001);

Guglielmini et al. (2012); Liu et al. (2018); LaGrone et al. (2019); Slowicka et al.

(2019); Żuk et al. (2021); Kuei et al. (2015); Hu et al. (2021); Chakrabarti et al.

(2020) for the last two decades. Depending on the flow, the filament either

attains a complex shape, which is one case can even be helical Chakrabarti

et al. (2020), or shows a wide range of morphological transition Liu et al. (2018)

depending on its elastoviscous number µ ≡ (8πηSL4)/B For small elastoviscous

number (large bending rigidity), typically, the filament behaves like a rigid one.

Hence we expect that in our case, if the bending rigidity of the filament is very

large, the filament would rotate away and back to its original position without
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any change in shape. We also expect that once the bending rigidity is below

a threshold, (or µ is above a threshold) the filament would buckle – it would

not return to its original shape. The time reversibility would be broken. If the

bending rigidity is decreased further we expect elastic nonlinearities to play a

more and more dominant role in the dynamics thereby giving rise to complex

morphologies. Repeating the experiments over many cycles can potentially give

rise to spatiotemporaly chaotic behaviour of the filament.

2. Model

We use the bead-spring model for the numerical simulation of the filament in

a Stokes flow Larson et al. (1999); Wada and Netz (2006); Guglielmini et al.

(2012); Nazockdast et al. (2017); Slowicka et al. (2019); Żuk et al. (2021). The

model consists of N spherical beads of diameter d, connected by overdamped

springs of equilibrium length a. The equation of motion for the i-th bead is

given by Wada and Netz (2006):

∂tR
α
i = −

N−1∑

j=0

Mαβ
ij (Rij)

∂H
∂Rβj

+ Uα0 (Ri) , (1a)

Mαβ
ij (R) =

1

8πηR

[
δαβ +

RαRβ

R2

+
d2

2R2

(
δαβ

3
− RαRβ

R2

)]
, for i 6= j

=
1

3πηd
δαβ for i = j (1b)

Where Ri is the position vector of the center of the i-th bead, Rij ≡ Rj −Ri,

U is the velocity of the background shear flow, and η is the dynamic viscosity

of the fluid.

The hydrodynamic interaction between the beads is described by the Rotne–

Prager mobility tensor Mij(R) Rotne and Prager (1969); Brady and Bossis

(1988); Guazzelli and Morris (2011); Kim and Karrila (2013) derived by solving

the Stokes equation, i.e., our simulations are at zero Reynolds number. The

Latin indices run from 1 to N , the total number of beads, and the greek indices

run from 1 to D, where D = 3 is dimensionality of space. Repeated greek

indices are summed.

The elastic Hamiltonian, H, contains contribution from both bending and

stretching but not torsion: H = HB +HS, where HB and HS are contributions

from bending Montesi et al. (2005); Bergou et al. (2010) and stretching Wada

and Netz (2006, 2007) respectively. The bending energy of a continuous filament
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is given by Powers (2010):

HB =
B

2

∫
κ2(s)ds, (2)

where B is the bending modulus, κ is curvature, and s is the material coordi-

nate. As we use a discrete bead–spring model, hence we must discretize the

Hamiltonian, see appendix Appendix A.

We define three dimensionless parameters: the elastoviscous number, µ,

the non-dimensional frequency, σ, and the ratio of stretching to bending, K,

defined respectively as

µ =
8πηSL4

B
, σ =

ω

S
, and K =

Hd2

B
. (3)

The elastoviscous number measures the relative strength of the elastic forces

due to bending and the visous forces.

In appendix Appendix A, we give a comprehensive description of the

model, its numerical implementation, and the parameters of simulations. The

elastoviscous number of our simulations includes in the same range as the

experiments in Ref. Liu et al. (2018). Our code reproduces their experimental

results, see appendix Appendix A.

The velocity of the flow at any Eulerian point r = (x, y, z) is given by

Uα(r) = Uα0 (r) + Gαβ(r −Ri)F
β
i , ,where (4a)

Fαi = − ∂H
∂Rαi

, and (4b)

Gαβ(R) =
1

8πηR

[
δαβ +

RαRβ

R2
+

d2

4R2

(
1

3
δαβ − RαRβ

R2

)]
(4c)

In (4a) Uα0 (r) is the background linear shear flow and Gαβ is the Green’s

function given in (4c).

3. Results

Initially, the filament is placed along the y direction with its head at y = 0, see

Figure. 1. We use N = 256, K = 16 and a = d in all our simulations and vary

both σ and µ to explore a variety of dynamical behaviour.

As we impose an external linear flow with a period T , it is useful to look

at stroboscopic snapshots of the filament separated by time T . We note that

in some cases filament does not return to its original position at the end of a

cycle. When that happens time-reversal invariance is already broken even if the

shape of the filament remains unchanged. We call this swimming. In this paper

we focus not on swimming but on how the shape of the filament changes.
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x

y
time

Figure 1: Sketch of numerical experiment: Initially the filament is straight.
It rotates and translates while advected by U = γ̇yx̂ with γ̇ = S sin(ωt) over
the first-half of the cycle. In the second half the filament rotates and translates
back but in addition buckles if its elastoviscous number is large enough. The
flow U at t = T/4 (top panel) and t = 3T/4 (bottom panel) are shown as red
arrows.
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C

D

E

Figure 2: Kaleidoscope of dynamical behavior: (A) Periodic buckling
(µ = 1.46× 106, σ = 1.5): The filament is buckled after 8 cycles and repeats
itself after every cycle afterwards. Till cycle 8 the filament is not straight but
slightly deformed from its initial straight shape. This small deformation is
barely noticeable in this figure. (B) Two-period (µ = 0.67× 106, σ = 0.75):
The shape of the filament is either of two shapes, which are mirror images of
each other, at odd and even cycles. (C) and (D) The two types of Complex
phases: (C)For µ = 3.35× 106, σ = 1.5: The filament never repeats itself. (D)
For µ = 6.7 × 106, σ = 0.75: The filament shows spatiotemporally complex
behavior but for late cycles, the filament (almost) repeats at the end of every
cycle (nT ) (t = 55T, 65T, 75T ) but not at any other time. To illustrate, we show
the snapshots at t = 55.7T, 65.7T, 75.7T – the shape of the filament is different
from one another. Note, the filament shows maximum buckling, not at the end
of a cycle, but at times in-between the cycles, i.e., at t = (n+ p)T , where n is
an integer and 0 < p < 1. (E) Complex transients(µ = 16.75× 106, σ = 1.5):
Filament shows complex behavior for early periods but repeats itself at late
times.
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Figure 3: Phase diagram from time-dependent numerical simulations in the

µ–σ parameter space;
(
σ = ω

S , µ = 8πηSL4

B

)
. Here ω is rate of change of strain,

S is strain rate, η is the viscosity, L is length of the filament, and B is the
bending modulus. Initially, the filament is freely suspended in the shear flow,
see Figure. 1. We show five different dynamical phases in the system represented
by five symbols. Straight (•) : The filament comes back to the initial position
in the straight configuration after every period. Periodic buckling (H):- The
filament comes back in the buckled configuration after every period. Two-
period (�) : The filament repeats its configuration not after every but after
two-period. Complex(F): The filament buckles into complex shape with very
high mode of buckling instability. Complex–transients(�) : Filament shows
long transients with complex shape but at late times, the shape of the filament
repeats itself. The boundary between the complex and complex-transient phase
is difficult to clearly demarcate.

3.1. Dynamical phases

Based on the shape, a kaleidoscope of qualitative behavior emerges that we

classify into five different dynamical phases. For small elastoviscous number
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(µ) the filament comes back to its original position undeformed at the end of

every period (not shown in Fig. 2). As µ is increased, the filament is buckled

at the end of every period; see Fig. 2 panel A. On increasing µ further we

reach a phase where two buckled states, which are mirror images of each other,

alternate at the end of even and odd periods – a period–two solution ; see Fig. 2

panel B. At even higher µ the shape of the filament at the end of every cycle

is different – the filament never repeats itself. We continue these simulations

to long times. In some cases the shape of the filament never repeats itslf, see

Figure. 2 panel C. In some other cases, the shape of the filament is almost

repeated at the end of every period, but the shape is different at all other times,

e.g., consider the snapshots in Figure. 2 panel D. The shape of the filament

at 65T and 75T are almost the same. But the shapes at 65.7T and 75.7T are

not. We do not make a distinction between these two dynamical behavior –

we call both of them complex. Finally, for large µ we find that the shape of

the filament shows complex spatiotemporal behaviour till intermediate times

t < 60T but almost settles (it comes very close but does not repeat itself) to a

fixed spatially complex shape at late times; see Fig. 2 panel E. By surveying a

range of values for µ and σ we construct a phase diagram in Fig. 3. We find that

the straight phase can go unstable in two ways, depending on the value of σ. It

can either undergo a bifurcation to a two-period solution or go to a buckled

phase which repeats itself. The buckled solution appears at end of every period,

it is a time-reversible solution, the two-period solution is not. The boundary

between the phases can be clearly demarcated except the boundary between

the complex and the complex-transient phase. Thus it may be possible that

there is a fractal boundary between these two phases. Fractal boundaries are

not an uncommon occurance in many dynamical systems including transition to

turbulence in pipe flows Schneider et al. (2007), different forms of spiral-wave

dynamics in mathematical models of cardiac tissues Shajahan et al. (2007), and

onset of dynamo in shell-models Sahoo et al. (2010). We have not explored

this aspect in any detail in this paper. Except the region of the phase diagram

where we find straight solutions, swimming solutions appear everywhere else.

3.1.1. Complex Phase

Let us first discuss in detail a representative simulation in the complex phase.

As we focus on the shape of the filament we describe the filament in its intrinsic

coordinates – its curvature (κ) as a function of material coordinate (s). We

calculate curvature using a discrete approximation, see appendix Appendix

A. In Fig. 4 we plot κ versus s for early times, at t = T, 10T, 19T and 28T ,

in Fig. 4(A) and for late times in Fig. 4(C), at t=35T, 45T, 55T and 75T . At

all times, the curvature is zero at the two end of the filament, as dictated by

the boundary conditions, and changes sign several times, i.e., a quite complex
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morphology is observed, as we show in Fig. 4(B) and Fig. 4(D) respectively.

The minimum value of the radius of curvature is approximately 10d where d is

the diameter of each bead or alternatively the thickness of the filament. A sine

transform of the κ(s) to κ̂(q) shows several peaks, For q ' 20 the κ̂ is practically

zero, see Appendix Appendix C. This demonstrates that our simulations are

well resolved to capture the phenomena we observe. As the filament moves in

the fluid it changes the background flow. In Fig. 4(E) and Fig. 4(F) we plot

a typical phase-potrait of the velocity of the flow (after subtracting out the

background velocity) at a fixed Eulerian point. For small µ, in the part of the

phase diagram where the filament always remain straight, the phase potrait is a

simple closed curve as shown in orange in Fig. 4(E) and Fig. 4(F). For the case

where the filament is in the complex phase we obtain a non-trivial attractor.

There is another intriguing feature seen in some of the runs in the complex

phase: although the filament never repeat itself exactly in the κ–s space it

comes very close to periodic behavior with a large period, in one case 30T .

3.1.2. Complex–Transient phase

Next we turn to the phase we call Complex–Transient. Here the behavior is

the same as the Complex phase upto quite late times, e.g., 60T after which the

filament comes to almost the same shape at the end of every period. Here also

the dynamics of the filament is not strictly periodic. The shapes, which are

complex, change but very slowly over time. This slow drift in the configuration

space can be measured by calculating

K(p−m) =

[∫
| κ(s, pT )− κ(s,mT ) |2 ds

]1/2

(5)

where m > 60 is a period where the filament has already reached its late time

behavior. We find K(p−m) ∼ (p−m), for not too large values of p−m. i.e.,

an algebraic growth. We perform another numerical experiment. We take the

filament in its late almost stationary configuration and add a small perturbation

and then evolve again. The perturbation goes to zero very quickly, the filament

goes back to its almost stationary configuration.

3.2. Stroboscopic map

So far we have studied the different dynamical phases through time-stepping

our numerical code. Potentially, both the complex and complex-transient

phase are spatiotemporally chaotic. But a time-stepping code however accurate

accumulates error which grows with the number of time-steps taken. To

investigate the fate of the filament at late times we do have to integrate over

long times. Hence we need additional evidence to confirm the existence of chaos

in this problem.
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Figure 4: Evolution in the complex phase: (µ = 3.35 × 106, σ = 1.5)
The filament shows complex behavior and does not repeat in real space or
configuration space (t < 45T ) 9. (A) Curvature (κ) as a function of material
coordinate, s, of the filament at early cycles, t = T, 10T, 19T and 28T . (B)
Image of the filament at the same times. (C) and (D) Same as (A) and (B) but
for late times. (E,F) Phase portrait of tracer velocity at a fixed Eulerian point
for late cycles t = 45T–75T .

We start by defining the stroboscopic map, F ,

κ(s, T ) = Fκ(s, 0) (6)

The dynamical system obeyed by the filament, equation (1a), is non-autonomous

because the external flow U is an explicit function of time, the map F , which

is generated by integrating (1a) over exactly one time period T , is autonomous.

This is a map of N -dimensional space onto itself where N is the number of

beads. The function κ(s, t) at t = nT and t = (n + 1)T are related by one

iteration of this map. We proceed to study the fixed points and periodic orbits

of this map as a function of the parameters, µ and σ, following Refs. Auerbach

et al. (1987); Cvitanovic et al. (2005). Such techniques have been used widely

to study transition to turbulence in high-dimensional flows Kerswell (2005);

Suri et al. (2020); Page et al. (2020) and has also been applied to other fields of

fluid dynamics Franco-Gómez et al. (2018); Gaillard et al. (2021). The detailed

numerical techniques are described in appendix Appendix A.
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In Fig. 5 we show several examples of the solutions we obtain, for a fixed

σ = 0.75 as a function of µ. For small µ = 0.17× 106 we obtain only one fixed

point and it corresponds to κ(s) = 0, i.e., a straight filament. At µ = 0.33× 106

in addition to the straight filament a new fixed point appears, where κ is zero

at one end, changes sign once roughly at the middle of the filament and has

two maximas. We show the shape of the filament in Fig. 5(B1). At exactly this

point in the phase diagram, see top line in Fig. 5, obtained from the evolution

code, we find a straight filament. This implies, either of the two possibilities:

one, the new solution is unstable; two both the solutions are stable but the

evolution code lands up in the straight one because of the initial condition we

chose. Next at µ = 0.33 × 106 we no longer find any fixed points. We find

two periodic orbits, one that is a two–period Fig. 5(C1) and one with four

periods Fig. 5(C2). The two solutions in the two-period solution are mirror

images of each other. At the same place in the phase diagram the evolution

code finds the same two–period solution. Increasing µ to 0.84 × 106 we find

that the four-period solution has disappeared, two two–period solutions exist,

Fig. 5(D). At even higher values of µ we start to obtain many solutions. We

show a few examples in Fig. 5(F), Fig. 5(G), and Fig. 5(H). This is the region of

phase space where complex and complex-transient dynamical phases are seen.

To summarize, by turning our system of coupled non-autonomous differen-

tial equations, (1a) to an autonomous stroboscopic map and by studying the

solutions of the map we find further support of breakdown of time reversibiity

and appearence of chaos that we had already seen from the evolution of the

differential equations. We demonstrate that the first appearence of breakdown

of time-reversibility is through a period-two bifurcation. The map has many

solutions and the number of solutions increases as we increase µ.

3.3. Mixing of passive tracer

Next we study how passive tracers are transported by the flow generated by

the presence of the filament for parameters in the complex phase. The velocity

of the flow, U(r), at any Eulerian point, r = (x, y, z) is given in (4a). The

equation of motion of a passive tracer, whose position at time t is given by

X(t), is

dX

dt
= U(r)δ(r −X). (7)

We solve (7) simultaniously with (4a) and for Np tracers. The tracers are

introduced into the flow on concentric circles in the x–y plane, Fig. 6(A), after

approximately 10 cycles, when the flow has reached a statistically stationary

They are colored by radius of the circle on which they lie on at the initial time.

After 8 periods, t = 8T , we find that the outer rings are still somewhat intact

Paper 3: Chaotic filament in Stokes flow 135



(A) (B1)

(B2) (C2) (D2) (F) (H)

(C1) (D1) (E) (G)

�̅�	×	10!

Figure 5: Solutions of stroboscopic map in real space for σ = 0.75 for
different values of µ. We find multiple co-existing solutions as we increase
µ (black symbols from left to right) indicating the complexity of the system.
We compare this solutions with the solutions obtained at late times from the
evolution code at the same points in the phase diagram.

but the inner rings have somewhat merged with each other and also moved out

of the x–y plane. At even later time, t = 256T , we find the tracer particles are

well mixed with each other.

In the rest of this section, we set t = 0 at the time the tracers are introduced.

To obtain a quantitative measure of mixing we define

∆Xk
j ≡Xk((j + 1)T )−Xk(jT ) , (8)

the net displacement of the k-th tracer particle over the j-th cycle – t = jT to

t = (j + 1)T , where j is an integer. The net displacement of the k-th tracer

after q cycles is

ρk(q) =

q∑

j=1

∆Xk
j . (9)

The total mean square displacement, averaged over all the tracers, at the end

of q cycles is given by

〈
ρ2(q)

〉
≡ 1

Np

Np∑

k=1

|ρk(q)|2 (10)
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If the tracers diffuse then we expect
〈
ρ2(q)

〉
∼ q for large q Taylor (1922). In

Fig. 6(D) we plot
〈
ρ2(q)

〉
versus q in log-log scale. Clearly

〈
ρ2(q)

〉
increases

faster than q but slower than q2! Could it be possible that the tracers show

Levy-like superdiffusion ?

If this is true then the probability distribution function (PDF), P, of the

displacement ∆Xk
j must have a power-law tail with an exponent γ ≥ −2. We

probe this by calculating the cumulative probability distribution (CDF) function

for ∆Xk
j for all j and k. We calculate the CDF using rank-order method. The

advantace of using the CDF is that unlike the PDF it is not plagued by binning

error. The CDF of ∆Xk
j is different for each of its components. The CDF of the

out-of-plane component, X3, has an exponential tail. The CDF of the two in-

plane components are qualitatively similar, hence we calculate ∆s =
√
X2

1 +X2
2

and plot its CDF, Q(∆s), calculated by the rank-order method, in Fig. 6(E).

The tail of the CDF has a slope approximately equal to −3, which implies

that the tail of the corresponding PDF has a slope of approximately −4. Thus,

by the central limit theorem we conclude that the tracers to show diffusion,

not superdiffusion. However, as the PDF has power-law tail we expect that

very long averaging over very many number of tracer particles is necessary for

convergence. This explains why we do not observe clear evidence of diffusion

from the mean square displacement.

4. Conclusion

To summarize, we numerically study the motion of a freely-floating elastic

filament in a linear shear flows that changes periodically with time, at zero

Reynolds number. We find that elastic nonlinearies of the filament are re-

sponsible for breakdown of time-reversal symmetry. The first signature of this

breakdown, which appears as we increase the elasto-viscous number, is that

the filament starts to swim – it does not return to its initial poistion after one

period, although it returns to the same shape. As the elastoviscous number

is increased we find period-two bifurcation and eventually what could be spa-

tiotemporally chaotic behavior of the shape of the filament. Surprisingly, at

quite large elastoviscous number we find that chaos is suppressed at late times –

the filament returns to the same shape at the end of every period but does not

repeat itself between the periods. We also demonstrate that such a filament is

an efficient mixer of a passive scalar. Few comments are now in order.

Our numerical experiments corresponds, roughly, to the same range of

elastoviscous parameters as the recent experiments Liu et al. (2018) of flexible

filaments in constant-in-time shear flow and our code reproduces the behaviour

seen in these experiments. Hence we expect it will be possible to experimentally
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Figure 6: Mixing of passive tracer: (A) to (C) Positions of tracer particles
at different times for the filament in complex phase (µ = 3.3× 106, σ = 1.5).
Initially, the tracers are placed on concentric circles, color coded by their distance
from the center of the circles. The mixing of the colors show the mixing of
the scalars. (D) Mean squre displacment (MSD),

〈
ρ2
〉

(qT ), defined in (10),
as a function of q in log-log scale. We also plot two lines with slopes 1 and 2.
(E) Cumulative probability distribution function, 1 −Q(∆s) as a function of

∆s =
√
X2

1 +X2
2 (X1 and X2 are in-plane coordinate of the tracers).

confirm our results, at least qualitatively. Intriguingly, the spatiotemporally

chaotic behavior is observed within a window of values of the elastoviscous
number for a fixed value of σ.

We have not confined the numerical solution of our problem to two dimen-

sions. The filament could, in principle, bend out-of-plane when buckled, but

it never does. We expect, if torsion is included the filament will bend out of

the plane and also break the reflection symmetry. However, the passive tracers

driven by the filament do move out of the plane.

In addition to elastic nonlinearity, we have included non-local viscous

interaction. In its simplest approximation a filament in a viscous flow can be

described by including only the diagonal term (i = j) in the Rotne–Prager

tensor Goldstein et al. (1998) in (1b). We have checked that for such a model we

also find spatiotemporally chaotic behavior, which will be reported elsewhere.

Spatiotemporally chaotic systems are rare in nonlinear systems in one space

dimension, e.g., the one-dimensional Burgers equation does not show chaotic

behavior. When described in terms of its intrinsic coordinates our filament
could, naively, considered to be, a spatiotemporally chaotic one dimensional
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system. However, this is not true because the external shear cannot be captured

only with the intrinsic coordinates.

A single rigid ellipsoid in a shear flow shows low-dimensional chaotic motion

for appropriate choice of parameters Radhakrishnan et al. (1999); Lundell (2011);

Nilsen and Andersson (2013). Hence, from a fundamental point of view, it is

not a surprise that a deformable thread in a time-dependent shear can show

spatiotemporally chaotic behaviour. However, it has never been demonstrated

before.

For a small enough filament, e.g., a single large polymer molecule, thermal

effects that we have ignored, may be important. We have ignored them for two

reasons. First, in many experimental situations Liu et al. (2018) the filament is

large enough that the thermal fluctuations may not be crucial. Second, we want

to address the fundamental question of emergence of chaotic behavior due to

elastic nonlinearities in the absence of any external stochastic fluctuations. We

further emphasize that most strategies of increasing mixing in microfluidics rely

on having a non-zero but small molecular diffusivity – “ For efficient mixing to

be achieved, the velocity field must stir together different portions of the fluid

to within a scale that is small enough for diffusion to take over and homogenize

the concentrations of the advected quantities.” Aref et al. (2017). By contrast,

we operate at zero molecular diffusivity – our system is diffusive even at infinite

Peclet number.
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Appendix A. Model and Method

A.1. Model
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Figure 7: Schematic of a freely jointed bead-rod chain. We show a > d for
illustration, but we use a = d for our simulation.

We use the bead-spring model for the numerical simulation of the filament

in a flow Larson et al. (1999); Guglielmini et al. (2012); Nazockdast et al. (2017);

Slowicka et al. (2019); Wada and Netz (2006); Żuk et al. (2021). The model

consists of N spherical beads of diameter d, connected by overdamped springs

of equilibrium length a, see Fig. 7. The total length of the filament is L. The

position of the center of the i-th bead is Ri, where i = 1, . . . N . The equation

of motion for the i-th bead is given by Wada and Netz (2006):

∂tR
α
i = −

N−1∑

j=0

Mαβ
ij (Rij)

∂H
∂Rβj

+ Uα0 (Ri) . (11)

Where Rij = Rj−Ri, H is the elastic hamiltonian, ∂(·)/∂(·) denotes the partial

derivative, the greek indices run from 1 to D, where D = 3 is dimensionality

of space. Repeated greek indices are summed. The velocity of the background

flow, U0 is given by

U0(x, y) = γ̇yx̂, with γ̇ = S sin(ωt), (12)

being the time–periodic strain—rate and ω ≡ 2π/T .

The hydrodynamic interaction between the beads is encoded by the Rotne–

Prager mobility tensor Mij(R) Rotne and Prager (1969); Guazzelli and Morris
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(2011); Brady and Bossis (1988); Kim and Karrila (2013):

Mαβ
ij (R) =

{
1

8πηR

[
δαβ + RαRβ

R2 + d2

2R2

(
δαβ

3 − RαRβ

R2

)]
, i 6= j

1
3πηdδ

αβ , i = j

}
. (13)

Here η is viscosity of the fluid, and R = |R|.
The Hamiltonian of the system, H, is H = HB +HS – we do not consider

torsion. Here HB and HS are contributions from bending Montesi et al. (2005);

Bergou et al. (2010) and stretching Wada and Netz (2006, 2007) respectively.

The bending energy of a filament is given by Powers (2010):

HB =
B

2

∫
κ2(s)ds, (14)

where B is the bending modulus, κ is curvature, and s is the material coordinate.

The discrete form of HB is Bergou et al. (2008, 2010); Montesi et al. (2005):

HB = aB
N−1∑

i=0

κ2
i =

B

a

N−1∑

i=0

ûi · ûi−1 =
B

a

N−1∑

i=0

cos θi, (15)

where

κi =
2

a
tan

(
θi

2

)
≈ sin (θi)

a
=
|ûi × ûi−1|

a
, (16a)

ûi =
Ri+1 −Ri

|Ri+1 −Ri|
, (16b)

and θi is the angle between two consecutive unit vectors ûi and ûi−1 (see

Fig. 1(A)). In the second step of (15), we have dropped a constant term. In the

last step of (16a), we have used the small-angle approximation Montesi et al.

(2005).

The stretching energy is discretized Wada and Netz (2006, 2007) as:

HS =
H

2a

N−1∑

i=0

(|Ri+1 −Ri| − a)2, (17)

where H is the stretching modulus. We ignore thermal fluctuations.
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A.2. Non–dimensionalization

We use L and 1/S as our characteristic scales for length and time, respectively.

The evolution equation in non-dimensional form is:.

∂t̃R̃
α
i = − 1

µ

N−1∑

j=0

M̃αβ
ij (R̃ij)

[
∂H̃B

∂R̃βj
+K

(
L

d

)3(
d

a

)
∂H̃S

∂R̃βj

]

+ ỹ sinσt̃ . (18)

Here (̃·) denotes non-dimensional quantities. We get the following dimensionless

parameters: The elasto-viscous number,

µ ≡ 8πηSL4

B
, (19)

the non-dimensional frequency,

σ ≡ ω

S
, (20)

and the ratio of stretching to bending,

K ≡ Hd2

B
. (21)

All the parameter values are shown in table 1.

Appendix B. Numerical Implementation

We use the adaptive Runge-Kutta method Press et al. (2007) with cash-karp

parameters Press and Teukolsky (1992); Cash and Karp (1990) to evolve the

system. We use time-step, ∆t, such that

∆̃ =
B∆t

8πηL4
= 10−11 – 10−12 (22)

We use numerical accuracy of order 10−6 Press et al. (2007); Press and Teukolsky

(1992); Cash and Karp (1990). We use CUDA to parallelize the code 5.

The dimensionless frequency, σ, must be small enough such that the Stoke-

sian approximation remains valid. We use K = 16 (see table 1) for all the

simulations. Note that (15) is exact for an inextensible filament. In our case,

the total length of the filament changes at most by 2% – the filament is practi-

cally inextensible. Hence (15) remains a reasonable approximation. Our code

reproduces the experimental results by Liu et. al. Liu et al. (2018) (see Fig. 8).

5Our code is available here: https://github.com/dhrubaditya/ElasticString
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Parameters Simulation values
Number of beads, N 256

Equilibrium distance between beads, a 0.005
Filament diameter, d 0.005
Filament length, L 1.28

Bending modulus, B 2× 10−5–8× 10−3

Strain Rate amplitude, S 2
Viscosity, η 10

Rate of change of strain rate, ω 1–6
Time-step, ∆ 10−4–10−6

Elasto-viscous number, µ = 8πηSL4

B 1.7× 105–6.8× 107

Frequency parameter, σ = ω
S 0.5–3

Stretching-bending modulus ratio, K = Ha2

B 16

Table 1: Parameters of simulation. Earlier studies have used N = 20− 40 Wada
and Netz (2006), N = 40 Slowicka et al. (2019), N=400 Chakrabarti et al.
(2020)

𝑈!
x

y

Figure 8: Comparison with experimental results: We reproduce the ex-
perimental results of Ref. Liu et al. (2018). The filament lies along the x-axis.
It is advected by a flow U = (γ̇y, 0), where γ̇ is the shear rate. The flow
is constant in time. We observe different dynamical behavior for different µ.
The grey background are figures from Ref. Liu et al. (2018), and the white
background are results of our simulation. Initially, we add small perturbation
to the filament but ignore thermal fluctuations. The µE and µS are the values
of µ from experiments and our simulations respectively.
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Appendix C. Detailed description of the dynamical
phases

Our simulations reveal five different dynamical phases which we call – straight,

buckling, two-period, complex and complex–transients (see Fig. 3 from main

text).

For each case, we describe the dynamics through the morphology of the

filament. This we do in two ways:

1. Extrinsic (real space) – actual shape of the filament.

2. Intrinsic (configurational space) – curvature (κ) of the filament as a

function of the material coordinate(s). Our classification of dynamical

phase is based on the intrinsic coordinates. Conversion between extrinsic

to intrinsic coordinates is done using (16) – this conversion is unique.

Although the inverse is not true. To impose uniqueness, we fix the

position of the first bead and slope of the bond to the next one.

C.1. Straight (S)

The filament does not buckle but remains straight all through its evolution, the

curvature remains zero always.

C.2. Periodic buckling (B)

The filament develops buckling instability. The filament settles into periodic

behavior after initial transients and repeats itself stroboscopically (after every

cycle) both extrinsically and intrinsically.

C.3. Two-period (2P)

The filament does not repeat itself after every period but after every two

periods. Also, the filament does not come back to its position but is rotated

after two-cycles – which we call swimming.

C.4. Complex (C)

The filament rotates in the first half of the cycle (see Fig. 1). In the second half,

it buckles. In Fig. 9 (A), we plot the filament at the end of 1st, 10th, 19th and

28th cycle for µ = 3.35× 106, σ = 1.5) – the filament never repeats itself. In

Fig. 9 (B), we plot the curvature (κ) of the filament as a function of arc-length

(s) at the same times. This shows too that the shape of the filament never

repeats at the end of each cycle. Even at late times t > 60T , the filament does

not repeat itself at the end of a cycle – see Fig. 9(C) where we plot the shape

of the filament at t = 35T, 45T, ..., 75T . The corresponding plot of κ versus

s is shown in Fig. 9(D). Here it may seem that the filament comes close to
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its previous shapes but a careful look tells us that it never completely repeats

itself. Note that, the κ – s plot for t = 35T is very close to the one at t = 65T ,

although not exactly the same. The same is true for t = 45T and t = 75T .

This suggests that there maybe a very high period solution to the stroboscopic

map. A sine transform of the κ(s) to κ̂(q) shows several peaks, For q ' 20 the

κ̂ is practically zero (Fig. 10) This demonstrates that our simulations are well

resolved to capture the phenomena we observe.

Note that, in some cases of this complex phase, at late times, the filament

achieves the most buckled state (as measured by total elastic energy) not at

the end of the cycle but somewhere in between. One such case is shown in

Fig. 11 for µ = 6.7× 106 and σ = 0.75. The κ–s plot at the end of every cycle

comes very close to repeating itself – Fig. 11(B). The corresponding plots of the

filament in real space, is shown in Fig. 11(A), are also very close to one another

although do not overlap everywhere. However, if we loook at intermediate

times e.g. at t = 65.7T...75.7T , we find that the filament does not repeat itself,

Fig. 11(C,D).

To measure the disturbances in the flow due to moving filament, we calculate

the time series of flow disturbance (U−U0) at an Eulerian point r = [0, L/2, 2d].

The numerical method is described in the main body of the paper, see also

chapter 8 of Ref. Kim and Karrila (2013). The Eulerian point is chosen to

be just above the XY plane such that the filament does not overlap with it.

We show the phase portraits of fluctuating velocity at late times (t = 40T to

t = 75T ) in Fig. 9, Fig. 11(E,F) respectively. Note that, the velocity values are

larger compared to the straight phase (Fig. 9(E,F)).

C.5. Complex transients:

The filament shows high mode of buckling. We compare the filament extrinsically

and intrinsically at the end of 24th, 34th, 44th cycle for µ = 3.35× 107, σ = 1.5

respectively in Fig. 12(A,B). The filament shows complex behavior and does not

repeat itself for early periods (t < 60T ), similar to the complex phase. However,

the complex behavior is transient and the filament comes very close to itself

for late periods – at the end of a cycle (t = 80T, 90T, 100T , see Fig. 12(C))

and intermediate times between cycle where the filament shows maximum

buckling (t = 80.8T, 90.8T, 100.8T , see Fig. 12(E)). The corresponding plots

of κ–s are shown in Fig. 12 (D)(F) – this also shows the almost–periodic

behavior of filament at late times. In Fig. 12(G), we show the shapes at

t = 80T, 130T, 180T and 230T . Over such a long time scale, the shape does

change. The corresponding s–κ plots are shown in Fig. 12(H) In Fig. 12(I) and

(J) we show the phase portrait of Eulerian velocity at r = [0, L/2, 2d] for late

times (t > 80T ).
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Figure 9: Evolution of the filament in complex phase (µ = 3.35 × 106,
σ = 1.5) The filament shows complex behavior for cycles at intermediate times,
(A) real space; (B) configurational space. (C,D) For late cycles also, the filament
either does not repeat itself or comes close to repeating itself with very high
time-period. The filament shows maximum compression at the end of cycle.
(E,F) Phase portrait of tracer velocity late cycles t = 45T–75T . For comparison
we also show the phase potrait for a case in the straight phase (organge).

Appendix D. Stroboscopic map

We take a dynamical system approach to analyze the complex dynamics we

observe. Such techniques have been used widely to study highly turbulent

flows Kerswell (2005); Suri et al. (2020); Page et al. (2020) and has also been

applied to other fields of fluid dynamics Franco-Gómez et al. (2018); Gaillard
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et al. (2021). Let us define an operator F such that:

κ(T ) = Fκ(0) (23a)

Fp = FF ...p times...F , (23b)

where κ = [κ1, κ2, . . . κi . . . κN ], where κi is the curvature at point i. For a

given κ, the operator, F , returns the values of κ after evolving the system for

exactly one time-period. We look for fixed points and periodic orbits of this

map Cvitanovic et al. (2005) by solving κ = Fpκ. The task is now to calculate

the solutions of set of the non-linear equations:

Npκ ≡ (Fp − 1)κ = 0 (24)

For example, κ = 0, p = 1, is a solution for straight phase. The periodic

buckling and two–period have non–zero curvature (κ) solution respectively for

p = 1 and p = 2. We use the Newton-Krylov method Knoll and Keyes (2004)

based on Generalized Minimal Residual Method (GMRES) Saad and Schultz

(1986) in jacobian–free way to find the solutions. It is described next.

D.1. Newton–Krylov

The flow-chart of the algorithm is shown in Fig. 13. We start with a guess for

the curvature, κ(0). Then we calculate the positions of the beads given by y ≡
[y1, ...y2j−1, y2j , ...y2N ] ≡ [R1

1, ..., R
1
j , R

2
j , ...R

2
N ]. We call this transformation κ

to y, K−1, such that:

y(0) = K−1κ(0) (25)

Then we evolve in time from t = 0 to t = pT by solving (11) to obtain y(pT ).

Then we apply the inverse transformation, K, to obtain

κ(pT ) = K(y(pT )) (26)
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Figure 11: Evolution of the filament in the complex phase (µ = 6.7×106,
σ = 0.75) The filament shows complex behavior at early cycles respectively in
real space and configuration space. However, for late times (t = 65T, 70T, 75T ),
the filament almost repeats itself at nT , where n is an integer (A,B). Also note
that, highest bending energy of the filament is at (n+ p)T , p 6= 0 instead of nT
(C,D). The filament is shown stroboscopically for p = 0.7 respectively in real
space and configuration space. We observe that the filament does not repeat
itself. (E,F) Phase portrait in (x, y) and (y, z) of Eulerian velocity at one point.

Then we check how accurately (24) is satisfied, i.e. we define

error =
||Npκ||2
||κ(0)||2

. (27)
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Figure 12: Evolution in the complex–transient phase: (µ = 3.35 × 107,
σ = 1.5). The shape of the filament in (A)(C)(E) and the corresponding
curvature is shown in (B)(D)(F). For early cycles (t ≤ 60T), the filament shows
complex behavior and does not repeat itself (A,B), similar to the complex
phase (see Fig. 9). For late cycles (t=70T . . . 100T), although the filament
does not repeat itself, it comes very close after every cycle (C,D,E,F). The
filament shape, from the end of one cycle to next, changes very slowly, e.g. (E)
shows the shape at t = 80.8T, 90.8T, 100.8T . In (G), we show the shapes at
t = 80T, 130T . . . . Over such a long time scale, the shape does change. (I)(J)
Phase portrait of velocity at an Eulerian point for the late cycles.

The case for straight solution is dealt specially because in this case κ = 0. Here
we use:

error =
||Npκ||2
N ∗ tol

(28)
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If the error is less than a preset tolerance, then we accept the guess (κ(0)) as a

solution, otherwise, we generate a new guess by

κ(0) = κ(0) + δκ, (29a)

such that
J · δκ = −Npκ(0). (29b)

Here J is jacobian matrix of the operator Np computed at κ(0). We do not

calculate J , instead we calculate:

J · δκ =
Np(κ(0) + εδκ)−Np(κ(0)− εδκ)

2ε
. (30)

Here ε is a step size Knoll and Keyes (2004). We use the GMRES Saad and

Schultz (1986); Guennebaud et al. (2010) method in matrix-free way using

(30) to find solutions of (29b). The operator Np is implemented as described

in Figure. 13. The value of ε should be small enough such that (30) is well

approximated and large enough such that the floating point round–off errors

are not too large Knoll and Keyes (2004). We compute ε in the following way:

ε = εrel

(
1 +

||κ(0)||2
||δκ(0)||2

)
, (31)

where || · || is the 2nd norm, and εrel = 10−4.

Note that, the conversion from curvature space to real space (K−1) is not

unique. However, if we fix the position of the first bead and slope of the bond

to the next one, it is unique. One advantage of using this method is that, it

accounts for all the continuous symmetries (translation in x,y direction) present

in the system Cvitanovic et al. (2005).

Also note that the κ is the same for two filaments which has the same
shape but are rotated with respect to each other. But the evolution of two

such filaments are not the same, in principle, because the ambient flow depends

on space. In some cases, we find the solutions such that the filament comes

to the same shape as before but rotated. We call these solutions “swimming

solutions”.
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Guess, κ(0)

y(0) = K−1[κ(0)]

Evolve system from

t = 0 to t = pT

using A1 to get y(pT )

κ(pT ) = K(y(pT ))

G ≡ Npκ(0) =

κ(pT ) − κ(0)

Error =

min
(
||G||2
||κ(0)||2 ,

||G||2
N∗tol

)Is

error<tol

solution found, κ0

Use GMRES to

Find δκ such that,

J · δκ = −Npκ(0)

κ(0) = κ(0) + δκ

Yes

No

1

Figure 13: Flowchart for Newton–Krylov iteration. K is co-ordinate transfor-
mation from real to curvature space using equation (16). Similarly, K−1 is the
inverse coordinate transformation from curvature to real space. We use the
notation: J is jacobian of the operator N , described in (24). We use tol = 0.01
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We study a single, freely–floating, inextensible, elastic filament in a linear

shear flow: U0(x, y) = γ̇yx̂. In our model: the elastic energy depends only on

bending; the rate–of–strain, γ̇ = S sin(ωt) is a periodic function of time, t; and

the interaction between the filament and the flow is approximated by a local

isotropic drag force. Based on the shape of the filament we find five different

dynamical phases: straight, buckled, periodic (with period two, period three,

period four, etc), chaotic and one with chaotic transients. In the chaotic phase,

we show that the iterative map for the angle, which the end–to–end vector of

the filament makes with the tangent its one end, has period three solutions;

hence it is chaotic. Furthermore, in the chaotic phase the flow is an efficient

mixer.
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1. Introduction

The dynamics of flexible filaments in flows plays a crucial role in many biological

and industrial processes Duprat (2022). A canonical example is that of cilia and

flagella Brennen and Winet (1977); Sleigh (2016) that takes part in wide variety

of biological tasks, e.g., swimming of microorganisms, feeding and breathing of

marine invertebrates. In such cases, although the flow nonlinearities can often

be safely ignored, due to its elastic nonlinearities and flow–structure interactions

a single isolated filament can show surprisingly complex dynamics in flows.

Both active and passive filament, anchored or freely floating, in various steady

flows have been studied extensively, see Ref. Du Roure et al. (2019); Bruot and

Cicuta (2016) and references therein. In steady flows, a single passive filament

has quite complex transient dynamics Becker and Shelley (2001); Guglielmini

et al. (2012); Liu et al. (2018); LaGrone et al. (2019); Slowicka et al. (2019); Żuk

et al. (2021); Kuei et al. (2015); Hu et al. (2021); Chakrabarti et al. (2020). For

active filaments, the focus has been on how a periodic driving can give rise to

symmetry breaking, e.g., swimming Wiggins et al. (1998) or whirling Wolgemuth

et al. (2000); Lim and Peskin (2004); Wada and Netz (2006). This year, three

papers have focussed on, how periodic driving, either of the flow or the filament,

can give rise to secondary instabilities Bonacci et al. (2022) or statistically

stationary state with chaotic/complex dynamics Agrawal and Mitra (2022);

Krishnamurthy and Prakash (2022). For the latter, the shape of the filament, as

described by its curvature as a function of its arc length, is a spatiotemporally

chaotic function. Henceforth we call this phenomena shape chaos. Such chaotic

solutions are particularly interesting because they have the potential to be used

to generate efficient mixing in microfluidics. Two effects determine the fate

of an elastic filament in flow. One is the elastic nonlinearity of the filament

and the other is the viscous interaction between the filament and the flow.
The latter, in all its glory, gives rise to non–local and nonlinear interaction

between two different parts of the same filament. Nevertheless, theoretical

studies Doi and Edwards (1986); Goldstein and Langer (1995); Goldstein et al.

(1998); Wolgemuth et al. (2000) have often approximated the viscous effect as a

local, linear, isotropic drag. Can this local approximation to the flow–structure

interaction still capture the shape chaos of a freely-floating filament ? As we

show in the rest of this paper, the answer is yes; we prove shape chaos using

Sharkovskii and Li and Yorke’s famous result Alligood et al. (1996) – existence

of period orbits of period three implies not only the existence of orbits of all

periods but also senstive dependence on initial condition.
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Figure 1: Sketch of our numerical experiment. Initially the filament is
straight and is aligned vertically. The background shear flow, Equation (1) is
shown as arrow: t = T/4 (top panel) and t = 3T/4 (bottom panel).

In Figure. 1 we show a sketch of our numerical experiment. Initially the

filament is aligned vertically. The background shear flow is given by

U0(x, y) = γ̇yx̂, and γ̇ = S sin(ωt). (1)

Here T = 2π/ω is the time period of the periodic shear and S is a constant.

2. Model

We model the filament using the bead-spring model Larson et al. (1999);

Guglielmini et al. (2012); Nazockdast et al. (2017); Slowicka et al. (2019);

Wada and Netz (2006); Żuk et al. (2021): identical spherical beads of diameter

d are connected by over-damped springs of equilibrium length a. The position

of the center of the i-th bead is Ri, where i = 1 . . . N , the total number of

beads. The equation of motion is:

∂Rαi
∂t

= − 1

3πηd

∂H
∂Rαi

+ Uα0 (Ri), (2)
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where U0 is given in (1). Here η is viscosity of the fluid, ∂(·)/∂(·) denotes

partial derivative, U0 is the velocity of the background shear, and H is the

elastic Hamiltonian of the filament. The Greek indices run from 1 to D, the

dimensionality of the space, and the Latin indices run from 1 to N . The elastic

Hamiltonian Wada and Netz (2006, 2007), has contributions from bending (HB)

and stretching (HS):

H = HB +HS where (3a)

HB = aB
N−1∑

i=0

κ2
i and (3b)

HS =
H

2a

N−1∑

i=0

(|Ri+1 −Ri| − a)
2

; where (3c)

κi =
1

a
|ûi × ûi−1| and (3d)

ûi =
Ri+1 −Ri

|Ri+1 −Ri|
. (3e)

Here B is the bending modulus of the filament and H is its stretching modulus.

We ignore thermal fluctuations and torsion. Three dimensionless parameters

determine the dynamics. We call them, the elasto–viscous parameters, the di-

mensionless frequency and the ratio of stretching to bending defined respectively
as:

µ ≡ 8πηSL4

B
, (4a)

σ ≡ ω

S
, and (4b)

K ≡ Ha2

B
. (4c)

In practice, the filaments are inextensible Powers (2010), which we implement

by choosing appropriately high value of K. We evolve Equation (2) using

adaptive Runge-Kutta Press and Teukolsky (1992) method with cash-karp

parameters Cash and Karp (1990). Our code is freely available 6 and has

been benchmarked against experimental results Agrawal and Mitra (2022). A

complete list of the parameters of the simulation is given in table 1. We study

the problem for a large range of µ and σ all within experimentally realizable

range. Note that, with the local approximation of viscous forces it is possible

for the filament to cross itself. Such unphysical solutions do appear in our

simulations but for values of µ other than that has been considered in this paper.

6https://github.com/dhrubaditya/ElasticString
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The computational complexity of the model, where the viscous interaction is

modelled by the non–local Rotne–Pregor tensor Agrawal and Mitra (2022), is

O(N2) where N is the number of beads, whereas the computational complexity

of the model with local viscosity is O(N). This allows us to run our simulations

for much longer times than it was possible in Ref. Agrawal and Mitra (2022).

3. Results

A rigid ellipsoid in a periodic shear may show chaotic three–dimensional rota-

tion under certain conditions Ramamohan et al. (1994); Kumar et al. (1995);

Lundell (2011); Nilsen and Andersson (2013). Such behavior emerges due to the

nonlinearities present in the Euler’s equations of rigid body rotation. Here we

consider a filament with no inertia, hence such chaotic solutions are not present

in our system. For a filament with high bending rigidity (small µ) we find that

the filament merely translates and rotates coming back to its initial position

and shape at the end of every period.

For a fixed dimensionless frequency (σ) as the bending rigidity is decreased

(µ is increased) an kaleidoscope of dynamic behavior emerges. We show an

example in Figure. 1. During the first half-period the flow is extensional and the

filament rotates. In the second half the flow is compressional and the filament

can undergo buckling transition – the shape of the filament after one period

is no longer straight but buckled. Furthermore, it may not come back to its

initial position but may come back translated or rotated, neither of which are

of interest to us in this paper – we focus on the shape of the filament. Under

subsequent iterations of the periodic shear the buckled filament can go through

many changes in shape.

We show a dynamic phase diagram in Fig. 2(A). Overall, at late times, the

following possibilities exists:

1. The filament is always straight.

2. The filament reaches the same buckled shape at the end of each period.

3. The shape of the filament shows periodic behaviour with two-cycle,

three-cycle, four-cycle, etc.

4. The shape of the filament is spatiotemporally chaotic. In Fig. 2(A) such

solutions are marked complex.

5. The filament shows chaotic behavior for a long time but such behavior

turns out to be transient. At late times the filament settles down to a
complicated shape which changes very slowly. In Fig. 2(A) such solutions

are marked complex transients.

We have observed the same qualitative behavior before Agrawal and Mitra

(2022), for the case where the viscous forces are modeled by the non-local Rotne-

Pregor tensor, with two crucial quantitative differences. We did not observe any
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Figure 2: (A):Phase diagram in the µ–σ plane; We find 5 different quali-
tatively different dynamical phases: Straight(•); periodic (H) with n-period,
where n=2(�), 3(J), 4(I); complex (F) complex-transients (�) (B) Solutions
of stroboscopic map: The stroboscopic map has many periodic solutions at
every point in µ–σ plane. We show time period of the lowest cycle in Sharvoskii
ordering.

three–period solution before and for large µ we obtained complex transients

for all values of σ we used whereas here we observe the reappearance of the

complex phase for the higher µs. Nevertheless, we conclude that the model
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with local viscosity is able to capture the feature of the problem we consider

essential – a rich dynamical phase diagram that includes complex shapes.

3.1. Stroboscopic map

The dynamical system described by (2) is non-autonomous because γ̇ is an

explicit function of time. Integrating (2) over exactly one time period T gives

us the position of every bead of the filament at t = T . Recall that the shape of

the filament is fully specified by its curvature κ as a function of arc length s.

Thus we can define the stroboscopic map, F , that allows us to obtain κ(s, T )

from κ(s, 0):

κ(s, T ) = Fκ(s, 0). (5)

The stroboscopic map is no longer an explicit function of time. Following

Refs. Auerbach et al. (1987); Cvitanovic et al. (2005), we study the shape-chaos

by obtaining the fixed points and periodic orbits of the stroboscopic map using

the Newton–Krylov method, which is described in detail in appendix D1 of our

earlier paper Agrawal and Mitra (2022). In general, for any fixed value of µ

and σ we obtain many periodic orbits. We list all of them in table 4. We sort

the cycles using Sharkovskǐı’s ordering Sharkovski (1995):

3 ≺ 5 ≺ 7 ≺ 9 ≺ 11 . . . ≺ 2 · 3 ≺ 2 · 5 ≺ . . .
. . . ≺ 22 · 3 ≺ 22 · 5 . . . ≺ 23 · 3 ≺ 23 · 5 ≺ . . .
. . . ≺ 23 ≺ 22 ≺ 2 ≺ 1, (6)

In Fig. 2(B) we show the leading period of stroboscopic map, as it appears in

Sharkovskii’s ordering, as a function of µ and σ – we do find orbits of period

three. Although many periodic orbits appear as solutions of the map most of

them are not stable and do not appear in the solution of dynamical equation.

Let us recall the Sharkovskǐı’s theorem Alligood et al. (1996): Consider a

continuous map f on an interval with a period p orbit. If p ≺ q, where q appears

in the Sharkovskǐı’s ordering, then f has a period-q orbit. This implies that if

f possess a period 3 orbit it has all orbits of all other periods. Although this

shows that the map has very complex dynamical behavior it does not necessarily

proves the existence of chaos. Nevertheless, existence of period three does

imply chaos as was proved by Li and Yorke Li and Yorke (2004). Unfortunatley

neither Sharkovskǐı’s theorem nor the result of Li and Young is valid for maps in

dimensions higher than unity7 Hence we conclude that although we demonstrate

the rich complexity of the solutions of the stroboscopic map and we have not

yet conclusively proven the existence of chaotic solutions.

7As a counterexample Kloeden and Li (2006), consider the two dimensional map that rotates
every point in the x− y plane by an angle of 2π/3 in the counter-clockwise direction. Clearly

this map has a period three solution but it is not chaotic.
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Figure 3: Example of a three period solution (for σ = 1, µ = 1.67× 106)
in real space (A) and curvature space (B) and for (σ = 0.75, µ = 3.35× 105) in
1D Θ-space (C). We start from t = 0 and evolve the filament for three cycles.
In (A,B), blue, orange and green curves shows the filament at t = 0, 1T , and
2T respectively. In (B), the κ(s) plots for t = 0 and 3T (blue, red) lie on top of
each other.
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Figure 4: Bifurcation diagram of Θ for σ = 0.75. The system shows chaos at
high enough µ, except certain isolated ranges of µ, where Θ settles into periodic
behavior – a behavior similar to island of order for bifurcation diagram of the
logistic map Alligood et al. (1996).

3.2. Period three and the Θ map

The existence of period three solutions for both the evolution equations and the

stroboscopic map is a key result in this problem. It behooves us to study it in

greater detail. We choose the period-three solution that appears as a solution of

stroboscopic map for σ = 1 and µ = 1.6× 106. This is shown in Fig. 2(B) as a

green triangle. In Fig. 3(A,B) we show the three solutions in real and curvature

space respectively.

Now we attempt an arbitrary dimensional reduction to construct a one-

dimensional map. We draw the straight line that connects the top end of the
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filament to the bottom one and call Θ the angle this line makes with the tangent

to the filament at its top point, see Fig. 3(A). Defined this way, Θ does not

depend on the position or orientation of the overall filament, but only its shape.

In some cases, if shape of the filament shows a period three solution, so does

Θ. One such case is shown in Fig. 3(C) for σ = 0.75, µ = 3.35× 105 8. From

the stroboscopic map we can construct a map for Θ. This is a one dimensional

map for which the Li and Yorke theorem is valid. Thus by demonstrating that

the Θ map has three period we show that this map is chaotic. Further evidence

of chaos is obtained by plotting the bifurcation diagram for Θ in Fig. 4. We

find period two, period four and period three solutions and also chaotic ones.

3.3. Mixing of passive tracers

Next we demonstrate that if we choose µ and σ inside the complex phase, see

Fig. 2(A), then the filament acts as an effective mixer of passive tracers. We

use the same notation and technique used in our earlier paper Agrawal and

Mitra (2022).

Once the filament has reached a statistically stationary state we introduce

Np tracers placed on concentric circles in the x–y plane, Fig. 5(A). They are

colored by radius of the circle on which they lie on at the initial time. For

the rest of this section the time when the tracers are introduced is t = 0. The
equation of motion of the k-th tracer particle whose position at time t is given

by Xk(t), is

dXk

dt
= U(r)δ(r −Xk). (7)

Here U(r), the velocity of the flow at r = (x, y, z), is a superposition of the

background flow velocity U0(r) and the contributions from all the beads in

the filament Rotne and Prager (1969); Brady and Bossis (1988); Guazzelli and

Morris (2011); Kim and Karrila (2013):

Uα(r) = Uα0 (r) + Gαβ(r −Ri)F
β
i , ,where (8a)

Fαi = − ∂H
∂Rαi

, and (8b)

Gαβ(R) =
1

8πηR

[
δαβ +

RαRβ
R2

+
d2

4R2

(
1

3
δαβ −

RαRβ
R2

)]
(8c)

At t = 8T , we find that most of the tracers have moved out of the plane and

have become somewhat mixed, Fig. 5(B). At even later time, t = 128T (not

8It is also possible that the shape shows period three solution but the Θ shows a fixed point
or a period–two solution. Conversely, it is possible for Θ to have a period–three solution

without the shape having a period-three solution.
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Figure 5: Mixing of passive tracer: (A) and (B) Positions of tracer particles
at t = 0 and t = 8T . The parameters σ = 0.75 and µ = 6.7× 107 are chosen
such that we are in the complex phase. Initially, the tracers are placed on
concentric circles, color coded by their distances from the center of the circles.
The mixing of the colors show the mixing of the tracers. (C) Mean square
displacement (MSD),

〈
ρ2
〉

(qT ), defined in (11), as a function of q in log-log
scale. We also plot two lines with slopes 1 and 2.

shown), we find the tracer particles are well mixed. To obtain a quantitative

measure of mixing we define

∆Xk
j ≡Xk((j + 1)T )−Xk(jT ) , (9)
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the net displacement of the k-th tracer particle over the j-th cycle – t = jT to

t = (j + 1)T , where j is an integer. The net displacement of the k-th tracer

after q cycles is

ρk(q) =

q∑

j=1

∆Xk
j . (10)

The total mean square displacement, averaged over all the tracers, at the end

of q cycles is given by

〈
ρ2(q)

〉
≡ 1

Np

Np∑

k=1

|ρk(q)|2 (11)

In Fig. 5(C) we plot
〈
ρ2(q)

〉
versus q in log-log scale. If the tracers diffuse

then we expect
〈
ρ2(q)

〉
∼ q for large q Taylor (1922), which is what we obtain.

Furthermore, we calculate the cumulative probability density function (CPDF)

for each component of the displacement ∆Xk
j . For the out-of-plane component

this CPDF has an exponential tail. For the in-plane components we obtain

a power-law tail of exponent of −3. This implies that the probability density

function (PDF) of each component of the displacement ∆Xk
j is such that

its second moment is well defined. Hence by the central limit theorem the

probability density function of ρ2(q) is a Gaussian and we expect simple diffusive

behavior. However, as the PDF (of displacement) has power-law tail we expect

that very long averaging over very many number of tracer particles is necessary

for convergence. This explains why we observe not-so-clear evidence of diffusion.

4. Conclusion

In this paper we consider a simplified model for a flexible filament in a viscous

flow driven in a time–periodic manner. In particular, the simplicity lies is

approximating the viscous forces by a local drag. We show that the shape

of the filament is spatiotemporally chaotic. This model has only the elastic

nonlinearity of the filament, hence it is solely the elastic nonlinearity that is

responsible for chaos. This is the central message of this paper. An additional

advantage of using the simplified model for viscous forces is that it may be

possible to make theoretical progress following Goldstein and Langer Goldstein

and Langer (1995).

The dimensionless parameters that we consider are within a range that is

experimentally accessible. Although we do not expect exact quantitative agree-

ment with experiment, We hope that, together with our previous work Agrawal

and Mitra (2022), we have now presented convincing evidences that a single

flexible filament in periodically driven Stokes flow can give chaotic solutions

that is able to effectively mix passive scalars even at infinite Peclet number.
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N 256

a 0.005

d 0.005

L 1.28

B 6× 10−6–4× 10−2

S 2

η 10

ω 1–6

∆ 10−4–10−6

µ 12560–8.37× 107

σ 0.5–3

K 16

Table 1: Parameters of simulation: Number of beads, N , equilibrium distance
between beads, a, bead diameter d, filament length L Bending modulus B,
viscosity η, time-step, ∆. The quantities S and ω defined in (1) determined the
space-time dependence of the background flow. The dimensionless parameters
µ, σ and K are defined in (4).
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