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Résumé

Le Soleil présente un fort champ magnétique, mais son origine n'est
pas encore complètement comprise. Certains scienti�ques sont donc
amenés à penser qu'il manque certains phénomènes physiques dans les
divers modèles proposés. Basé sur un article de 2003, écrit par Cline,
Brummel et Cattaneo, nous avons essayé de comprendre l'in�uence que
pouvait avoir le cisaillement dans les phénomènes de base qui peuvent
avoir une in�uence dans la dynamo solaire. A l'aide de simulations
avec le Pencil Code, il nous a été possible de voir un puissant champ
magnétique se développer en présence de cisaillement et d'un champ
poloïdal initial. Ce rapport présente certains phénomènes physiques qui
peuvent expliquer cette évolution à long terme du champ magnétique,
et décrit ce qui semble se passer.

Summary

The Sun possesses a strong magnetic �eld, but its origin is not yet fully
understood. This leds some scientists to believe that some physics is
still missing in the various models that have been proposed. Based on
an article of 2003, written by Cline, Brummell and Cattaneo, we tried
to understand the in�uence of the shear on basic processes in the solar
dynamo. Thanks to simulations with the Pencil Code, we were able
to see a strong magnetic �eld increase in presence of shear and of an
initial poloidal �eld. This report presents some of the physics which
can explain this long-lived magnetic �eld, and describes what seems to
happen.
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Introduction

1 Theory

1.1 Magnetic equations

In this paragraph we are going to present the induction equation. The
induction equation binds the evolution of B with other magnetohydro-
dynamic variables. To obtain it, we need three equations :

• Faraday's equation, which describes how the temporal evolution
of the magnetic �eld is linked to the spatial evolution of the elec-
tric �eld.

∂B

∂t
= −∇×E (1)

• Ampere's law, describes the spatial evolution of the magnetic
�eld. Due to the factor 1/c2, and to the fact that in a conductive
material, J and E are proportional, we will always neglect the
Ampere's current in this equation.

∇×B = µ0J +
1

c2

∂E

∂t
≈ µ0J (2)

• Ohm's law, in a conductive material. We will also assume that
the conductivity σ is constant in the material.

E =
1

σ
J − u×B (3)

Combining these three equations, and with the fact that ∇ ·B = 0,
we now obtain

∂B

∂t
= ∇× (u×B) +

1

µ0σ
∇× (∇×B) (4)

and by de�ning η = 1
µ0σ

, this leads us to the induction equation.

∂B

∂t
= ∇× (u×B) + η∇2B (5)

1.2 Fluid Magnetohydrodynamics

In Magnetohydrodynamics, we also use the classical hydrodynamic
equations. First of all, mass conservation implies

∂ρ

∂t
+ u ·∇ρ = −ρ∇.u (6)
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Then there is the impulsion conservation, in which we take all the
forces into account : the gravity, which will be in the following con-
sidered as constant, the magnetic force, the pressure force and the
dissipative term :

∂u

∂t
+u ·∇u = −1

ρ
∇P +g+

1

ρ
J×B+ν(∇2u+

1

3
∇ ·∇ ·u+

↔
S ∇lnρν)

(7)
At last, there is the entropy conservation, which will be preferred to

the temperature equation, because it was easier to implement it with
the Code :

∂s

∂t
+ u ·∇s = 0 (8)

1.3 Dimensionless numbers

To have an idea of the behaviour of the magnetic �uid, a set of dimen-
sionless numbers are useful :

1.3.1 Reynolds number

Reynolds number is de�ned as the ratio of inertial momentum to dif-
fusivity.

Re =
UL

ν
(9)

where U is a characteristic speed of the �uid, L a characteristic length
scale, and ν the di�usivity of the �uid.

1.3.2 Magnetic Reynolds number

Rem =
convection

diffusion
=
τdiff
τconv

(10)

Rem = µ0σUL (11)

where σ is the plasma conductivity, U a characteristic speed, and L the
depth of the nap.

1.3.3 Prandtl number

Pr =
viscous diffusion rate

thermal diffusion rate
(12)

Pr =
ν

α
=
cP µ

k
(13)
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where ν is the kinematic viscosity, k the thermal conductivity, and α
the thermal di�usivity.

1.3.4 Magnetic Prandtl number

The magnetic Prandtl number estimates the ratio of momentum di�u-
sivity to magnetic di�usivity.

Prm =
momentum diffusivity

magnetic diffusivity
=
ν

η
=
Rem
Re

(14)

with η = 1
µ0σ

1.3.5 Chandrasekhar number

Q =
Lorentzforce

viscosity
(15)

Q =
B2d2

µ0ρνη
=
B2

0d
2

µ0µη
(16)

where η is the magnetic di�usivity, ν the kinematic viscosity

1.3.6 Rayleigh number

Ra =
buoyancyforce

thermal ∗momentum diffusivity
(17)

The buoyancy force is due to the di�erence of density, or of temper-
ature, and can be expressed either like g∆ρV or like gV ρ0β∆T , with
β the thermal expansion coe�cient. The thermal di�usivity is k, and
the momentum di�usivity is ν.

We can now write the Rayleigh number :

Ra =
ρ0gβ∆TD3

νk
(18)

where D the depth of the material.

1.3.7 Peclet number

Pe = Re× Pr =
LV

α
(19)

α =
k

ρ cP
where k is the thermal conductivity, ρ the density and cP the heat
capacity.
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1.4 the ω-e�ect

Observations have shown that the sun cannot be considered as a solid
in rotation. On the contrary, there is a di�erential rotation, which is
meaningful. The equator rotates quicker, and then there is a di�eren-
tial rotation until the poles. Therefore, there is a shear in the velocity
�eld, which is localised in the tachocline. The purpose of our simu-
lations is to understand the consequences of this e�ect on the solar
dynamo.

To understand this, we will work with a linear velocity shear, and
try to predict the e�ects on the magnetic �eld.

For instance, we can use a magnetic �eld

B =

 Bx

By

Bz


and a velocity �eld

U =

 Ux = 0
Uy = S × x
Uz = 0


Then the equations will give us

U ×B =

 0
Sx
0

×
 Bx

By

Bz

 =

 S x Bz

0
−S x Bx

 (20)

To simplify, let's assume that Bz = 0.. It will then ensue that

∇×(U×B) =

 ∂
∂x
∂
∂y
∂
∂z

×
 S x Bz

0
−S x Bx

 =

 − ∂
∂y

(S x Bx)
∂
∂x

(S x Bx)
0

 (21)

So we now see that such a shear changes the magnetic �eld, and
modi�es it with the predominant term S Bx. The magnetic �eld will
behave according to the shear �eld.

This ω-e�ect can just create a �eld orthogonal to the direction of
the shear. For instance with the sun, the direction of the shear is radial.
It means that the created �eld will be toroidal. But it won't create a
poloidal �eld. Considering only the ω-e�ect does not allow to explain
the solar dynamo.
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1.5 The α-e�ect

Now let's analyse what happens when U (x, t) and B(x, t) are turbu-
lent. We can then part these �elds, and write them as

B(x, t) = B(x, t) + b(x, t) (22)

U (x, t) = U (x, t) + u(x, t) (23)

using the induction equation,

∂B

∂t
= ∇× (U ×B) + η∇2B (24)

and take its mean and �uctuating parts. We have then the mean
equation

∂B

∂t
= ∇× (U ×B) + ∇× E + η∇2B (25)

with
E = 〈u× b〉

and the �uctuating equation

∂b

∂t
= ∇× (U × b) + ∇× (u×B) + ∇×G + η∇2b (26)

with
G = u× b− 〈u× b〉

What is really interesting, is that we can now see that one source
of the dynamo comes from the turbulence, with the coupled term
E = 〈u× b〉. It is the mean electromotive force. If we can express
this term with the mean values U and B, then we would be able to
integrate this equation, and to know the temporal evolution of B.

The electromotive force can be written as :

εi = αijBj + βijk
∂Bj

∂xk
+ ... (27)

where these coe�cients are pseudo-tensors. They can be determined
from the mean �eld U, the statistical properties of u and η.

If we now consider the leading term, which is

ε
(0)
i = αijBj
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we can develop it into symmetric and antisymmetric parts, and write
consequently

ε
(0)
i = αsijBj + (a×B)i (28)

We can then de�ne an e�ective mean velocity, U eff = U + a, and
we just have one term left.

We have already seen that for one-dimensional averages we can write
the electromotive force as a function of the mean of the magnetic �eld:

εi = αijBj − ηijJj (29)

The simulations we did are anisotropic because of the gravity, which
is in the z-direction. As a consequence, all the averages were calculated
by averaging over all x and y. B is no longer a function of x and y.
We have now:

∇×B =

 −∂By/∂z
∂Bx/∂z

0

 (30)

With Faraday's law, ∇×B = µ0J , it leads to this new form :

εi = αijBj − ηijJj (31)

if we put the factor µ0 inside the vector J . The new coe�cients ηij
are related to the old ones by ηi1 = ηi23 and ηi2 = −ηi13.

1.6 Magnetic helicity

In this paragraph, we study the magnetic helicity, and its properties.

As in the hydrodynamic equations, where we can de�ne the helicity

Im =

∫
Vm

u.ω dτ

where ω = ∇× u, we will de�ne the magnetic helicity as :

Im =

∫
Vm

A.B dτ (32)

where Vm is a characteristic volume. This magnetic helicity will have a
large value if the lines of the magnetic �eld are twisted and shrunk. It
can be positive or negative, depending on the handedness of the mag-
netic lines.
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In the general magnetohydrodynamic case, following equations gov-
ern the evolution of the magnetic �eld :

• the equation of the conducting material, which obeys to Ohm's
law :

J = σ(E + u)×B) (33)

• Poisson's law, which comes from Ampere's law

∇2A = −µ0J (34)

• the equation of the electric �eld, which comes from Faraday's
equation

E = −∇Φ− ∂A

∂t
(35)

With these three equations, we can now �nd a law for the evolution
of the potential vector A, which is written without any approximation.
Everything comes from Maxwell equations and Ohm's law.

∂A

∂t
= u× (∇×A)−∇Φ + λ∇2A (36)

λ =
1

µ0σ
(37)

In the case of high conductivity, we can consider λ = 0. This
approximation means that we neglect the dissipation term. It will be
a valid approximation if

u× (∇×A)

λ∇2A
<< 1

To have an idea of the value of this ratio, we can estimate it roughly
by

u× (∇×A)

λ∇2A
≈ u0l0

λ
= u0l0µ0σ = Rm (38)

with Rm the magnetic Reynolds number. If Rm is higher than 1, then
our approximation is valid, and the following calculations are right.
Otherwise, the dissipation is too high to be neglected.

With this simpli�cation, we can now calculate the material deriva-
tives of A and B.

DA

Dt
=
∂A

∂t
+ (u ·∇)A = −∇Φ + u · (∇A) (39)
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DB

Dt
=
∂B

∂t
+ (u ·∇)B = −∇×E + (u ·∇)B = (B ·∇)u−B(∇ ·u)

(40)
We will also need to know the evolution of the density. The mass

conservation gives us the well-known equation :

∂ρ

∂t
+ ∇ · (ρu) = 0 =

∂ρ

∂t
+ ρ∇ · u + u ·∇ρ (41)

and we can deduce from it the material derivative :

Dρ

Dt
=
∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u (42)

We are now able to calculate all the derivatives we will need to
calculate the variation of the magnetic helicity in a volume.

D

Dt
(
B

ρ
) =

1

ρ

DB

Dt
− B

ρ2

Dρ

Dt
=

1

ρ
(B ·∇)u (43)

D

Dt
(
A ·B
ρ

) = A · D
Dt

(
B

ρ
) + (

DA

Dt
) · B

ρ
(44)

=
1

ρ
(AiBj∂jui +Bjui∂jAi)−

B

ρ
.∇Φ =

1

ρ
Bj∂j(Aiui)−

B

ρ
·∇Φ (45)

D

Dt
(
A ·B
ρ

) = (
B

ρ
·∇)(A · u− Φ) (46)

Coming back to the magnetic helicity, we can now calculate its
variation :

dIm
dt

=

∫
Vm

ρ
D

Dt
(
A ·B
ρ

)dτ =

∫
Vm

(B ·∇)(A · u− Φ)dτ (47)

As we always have ∇.B = 0 we can also write this expression as:

dIm
dt

=

∫
Vm

∇ · (B(A · u− Φ))dτ =

∮
Sm

(B · n)(A · u− Φ)dS (48)

using Gauss theorem to turn the triple integral into a double one.
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Now, let's assume that Sm is a material surface, with the interior
Vm, on which B.n = 0 permanently. We can use Gauss theorem, to
change the integral, and we obtain :

dIm
dt

=

∮
Sm

(B · n)(A · u− Φ)dS = 0 (49)

If we now no longer neglect the dissipation :

dIm
dt

= λ

∫
Vm

(B ·∇2A + A ·∇2B)dτ (50)

1.7 Magnetic Buoyancy

The magnetic buoyancy is easy to understand. Where there is a mag-
netic �eld, a term appears in the equations, which can be considered
as a pressure :

Pmag =
B2

2µ0

(51)

The material with an internal magnetic �eld will have the same
pressure as the exterior. As a consequence, the thermal pressure of the
material will decrease, so that

P int
th + P int

mag = P ext
th (52)

In order to decrease the thermal pressure, the density will get
smaller, which will lead to the phenomena of buoyancy. This buoy-
ancy is a consequence of di�erent density, and the expression of the
induced acceleration is :

abuoy =
δρ

ρ
g (53)

In most of the simulations, the gas is ideal, with the polytropic
index γ = 5/3. As a consequence, small variations in density are easily
related to small variations in pressure and small variations in entropy,

dρ

ρ
=

1

γ
[cV

dP

P
− ds] (54)

To have a simple model, we can �rst assume that the variation
of pressure is only a consequence of the magnetic �eld, and we thus
ignore the variations of temperature which could induce other density
variations.
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1.8 Strati�cation

The aim of this project is to study the in�uence of the buoyancy on the
dynamo. In the simulations, the gas is considered as a perfect one. The
adiabatic index is then γ = 5/3. The initial strati�cation is polytropic,
with an index m = 1.6. The gas is stably strati�ed. This means that
the entropy increases with z (upwards). In the Pencil Code, this is
implemented with following equations :

s

cP
= −γ z − zinfty

c2
s0

(55)

ln(
ρ

ρ0

) = −γ z − zinfty

c2
s0

(56)

However, this was one big problem we tackled in the simulations.
In fact, we absolutely wanted to avoid convection appearing, because
then there would be vertical motions which were not due to magnetic
buoyancy. It would then be impossible to make the di�erence between
what is due to the magnetic buoyancy, and what is due to convec-
tion. Convection could appear if the gas is no longer stably strati�ed,
it means if the entropy, instead of increasing, decreases with height.
This situation appeared if there was too much heating and not enough
cooling. Then, the gas would be heated, and the entropy increased,
but with some boundary conditions on the top surface, it could lead to
a reverse of the entropy slope.

As long as the slope of entropy stayed positive, the gas would be
stably strati�ed. Of course, the entropy changes in a very meaningful
way during the simulation, due to the heating and to the shear. As a
consequence, we had to check regularly this slope.

For instance in the upper picture, we can see that the entropy and
the entropy slope are both increasing. It means that the gas is still
stably strati�ed at every height. What is not very intuitive, and is
revealed by the picture, is that by heating the gas, and under those
particular boundary conditions, the gas becomes stabler with time.
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Figure 1: evolution of the entropy, at t=0, t=8, t=85 and t=8440

2 Energy considerations

In order to better understand the magneto, it is useful to adopt an
energetic point of view. There are four di�erent kinds of energy, which
can be transferred from one into another form : magnetic energy, ki-
netic energy, potential energy, and thermal energy, which are de�ned
as follows :

Emag =

∫
B2

2µ0

dV (57)

Ekin =
1

2

∫
ρv2dV (58)

Eth =

∫
ρedV (59)

Epot =

∫
ρgzdV (60)

In our simulations, there are just two inputs or outputs of energy
: energy given by the shear, which can allow a dynamo to grow, and
radiative energy gained or lost at the top and the bottom of the studied
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box. These energies are de�ned as follows :

εsKin =

∫
SρuxuydS εsMag = −

∫
SBxBydS (61)

F rad
bot =

∫
bottom face

−K∇TdS F rad
top =

∫
top face

−K∇TdS (62)

The energy can be exchanged between these di�erent types as is
explained in following graph

Figure 2: Transfers of energy

The various works have such expression :

WLor =

∫
u.(j ×B)dV (63)

Wbuoy =

∫
ρuzgdV (64)

Wcomp =

∫
−P∇.udV (65)
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εK = 2

∫
νρ
↔
S

2

dV (66)

εM =

∫
ηµ0J

2dV (67)

In all these terms, one can notice the energy coming from Lorentz
force, which couples kinetic and magnetic energy.

PL =< u·(J×B) >=
1

µ0

< u·[(∇×B)×B] >=
1

µ0

< u·(B·∇B)−u·∇(
B2

2
) >

(68)
with

< u ·∇(
B2

2
) >= −1

2
< B2 · u >

17



3 Parameters of the simulations

3.1 The Pencil Code

The simulations were made with the Pencil Code. It is a public code
used in magnetohydrodynamics, which uses sixth-order explicit �nite
di�erences in space and third order accurate time stepping model.

3.2 Initial conditions

Initially, the �ux does not move, and is not sheared. There is a magnetic
�eld present, in the form of a �ux tube. The expression of this magnetic
�eld is :

Bx = 2
1 + ε cos(kx)

1 + r2/R2
0

(69)

By =
y ε k sin(kx)

1 + r2/R2
0

(70)

Bz =
(z − z0) ε k sin(kx)

1 + r2/R2
0

(71)

In all the simulations, we chose ε = 0.3, k = 2π
Lx

= π
2
, R0 = 0.2.

3.3 Boundary conditions

Before running a simulation, numerous choices were possible concern-
ing the boundary conditions. First of all, and in a natural way, it was
chosen to work in a closed box, which meant that at the top and at
the bottom of the box, u has a zero-value in the z-direction. As a
consequence, a symmetric condition was for ux and uy, and an anti-
symmetric one for uz.

Concerning the density, the derivative was chosen to be antisym-
metric, which means that the density had to be constant at the border.

The magnetic �eld had to have the same boundary conditions than
the velocity �eld. We also choose a symmetric condition for Bx and
By, and an antisymmetric one for Bz.

The biggest problem was about the entropy, and its boundary con-
ditions. We could choose between 'a', 'a2', 'c1', 'cT' as boundary con-
ditions. The �rst one, 'a', meant that the entropy had to be zero at
the top and at the bottom of the box. The second one imposed the
�rst derivative to be zero. 'c1' imposed the heating and cooling �ux
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to be constant, equal to their initial value. And �nally 'cT' �xed the
temperature on the top and the bottom faces. It was di�cult to �nd
out which condition was the best one. In fact, the major problem of
these simulations was to avoid convection.

3.4 Other parameters

In all the simulations, we had to �x some physical values, as the vis-
cosity, the magnetic di�usivity, and the heat conductivity. It was hard
to give any sense to these parameters, because as they were non di-
mensional, I could not turn them into the real values. Moreover, the
simulations cannot reproduce exactly the behaviour of the sun, because
we have too little meshpoints. As a consequence, the spectrum of en-
ergy is not good enough, and we already know that we cannot have
access to any phenomenon. The simulation should not reproduce the
sun, but allows us to understand some physics, which could then be
applied to the sun.
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4 Simulations

4.1 Summary of the simulations

run Boundary conditions K ν η m collapse
64b c1:cT 5.10−2 5.10−2 5.10−2 1.6 ?
64d c1:cT 5.10−3 5.10−3 5.10−4 1.6 ?
64e c1:cT 5.10−3 5.10−3 1.10−4 1.6 ?
64f c1:cT 1.10−3 5.10−3 1.10−4 1.6 ?

64viob c1:cT 0.1 2.10−3 5.10−4 2 yes
ad64a a 2.10−3 2.10−3 5.10−4 1.5 ?
ad64b a 2.10−3 2.10−3 1.10−4 1.5 ?
c1_64a c1 2.10−3 2.10−3 5.10−4 1.5 ?
c1_64a2 c1 2.10−3 2.10−3 5.10−4 1.5 ?
c1_64b c1 2.10−3 2.10−3 1.10−4 1.5 ?
c1_64c c1 0.1 2.10−3 5.10−4 1.6 ?
c1_64d c1 0.1 2.10−3 5.10−4 1.6 no

c1cT_64a2 c1:cT 0.1 2.10−3 5.10−4 3 ?
c1cT_64a3 c1:cT 0.1 2.10−3 5.10−4 3 ?
c1cT_64b c1:cT 0.1 2.10−3 5.10−4 1.5 ?
c1cT_64d c1:cT 0.1 2.10−3 5.10−4 1.5 ?
c1cTnu_64 c1:cT 0.1 1.10−2 5.10−4 1.5 ?
ce_64a ce 1.10−3 2.10−3 2.10−5 1.6 ?
ce_64o ce 1.10−3 5.10−3 1.10−4 1.6 ?

c1cT_64e c1:cT 0.1 1.10−2 5.10−4 1.6 ?
c1cT_64g c1:cT 0.1 2.10−3 5.10−4 1.6 no
a_64a a2 0.1 2.10−3 5.10−4 1.6 no
a_64b a2 1.10−3 2.10−3 5.10−4 1.6 ?
ac1_64a a2:c1 0.1 2.10−3 5.10−4 1.6 no
acT_64a a2:cT 0.1 2.10−3 5.10−4 1.6 yes

4.2 Situation without shear

As said above, there is initially a horizontal magnetic tube, centered
around z0 = −3, i.e. in the lower quarter of the box. If there was
no shear, then the gas pressure would decrease where there is a strong
magnetic �eld. As a consequence, the density would also decrease, and
the buoyancy work would make the gas ascend. We can see that it
is happening thanks to following picture, which represents the mean
magnetic �eld averaged in the x and y directions, respectively.

We can �rst see that the magnetic �eld in the x direction ascends
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Figure 3: Evolution of the magnetic �eld without shear

at early times. This reveals the ascension of the gas where there is
this magnetic �eld. In fact, with the approximation of a frozen �uid,
we know that the magnetic �eld is twisted by the velocity �eld so
that it has the same shape. We can also see that the upwards motion
can be well �tted for low times, (t < 8) by a parabola of expression:
0.015 ∗ t2 − 3. This means that the buoyancy force is constant at the
beginning.

Another conclusion of this �rst picture is that there is no conversion
of Bx into By, or so little conversion that it can be ignored.

We can also look at the picture of the velocity, when there is no
shear. We can then see that there is almost no motion in the x and y
directions. But as foreseen, there is a lot of motion in the z-direction.
We can see two sound waves propagating in the box. As there are
boundary conditions, these waves can keep propagating. The waves
come from the di�erence of pressure. The �rst one goes upwards, while
the second one goes downwards. After a short time, these two waves
seem to mix, and we can just see an oscillation in the z-direction.
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Figure 4: Evolution of the kinetic �eld without shear

4.3 Initial evolution of the magnetic and kinetic �elds

By putting shear in the simulation, we are now changing many things.
First, we create the ω-e�ect. As seen in the theory, it will create a
strong magnetic �eld in the y-direction from the �eld in the x-direction.
Then, it will also give energy to the system, into kinetic energy, but
also into magnetic energy.

All the following simulations have the same parameters, but di�er-
ent boundary conditions. It seems that the short-term consequences of
the boundary conditions are very weak, so I will just speak of one case.

We notice immediately that there is a very big di�erence in the y
direction. There is a strong magnetic �eld created. In a very short time
(t ≈ 10), it happens to be as strong as Bx. This �ts well the theoretical
calculations which were done in the theoretical presentation. In fact,
we had

∂By

∂t
≈ SBx

This expression implies that, if Bx is considered as constant, By

becomes as strong as Bx in a time τShear = 1/ |S| = 10, which is what
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Figure 5: Evolution of the magnetic �eld with shear

we can see in the picture.

We can also notice that the shear does not really change the com-
ponent of the Bx-�eld: there is still the same curve which �ts the
ascension of the �eld at the shorter times. However, we can still notice
that, while there was a slight decay without shear, this does not hap-
pen anymore in the presence of shear. This is surprising and suggests
the presence of some additional ampli�cation mechanism.

There is no big di�erence between the kinetic evolution with or
without shear. We still can see the sound waves propagating upwards
and downwards in the z-velocity �eld. As there is the same scale in the
x and y component, we can easily compare them. We can notice that
when there is shear, the velocity �eld increases at the top of the box,
which was not the case without shear.
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Figure 6: Evolution of the kinetic �eld with shear

Figure 7: Evolution of the magnetic �eld with shear
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4.4 Long-term evolution of the kinetic and magnetic �elds

In this subsection, I will focus on the simulation with an ′a2′ boundary
condition at the top and the bottom. It is noticeable that even if the
boundary conditions can modify deeply the results, there is always the
same global behaviour, which is not yet understood.

We can here notice that there is a global decay of the magnetic �eld
with time. However, given that the resistive time scale is less than
1000 time units, and as the simulation ran for more than 8000 time
units, we can at least call it a long-lived turbulence. But other simu-
lations which ran during more than 16000 time units showed that the
behaviour seems steady after such a long time, so it is probable that
this system really is a dynamo.

We notice that Bx decays a lot at the beginning, and then stays
steady at a value which is about one percent of its initial value, and
of course much less localized. It is however relevant to notice that this
x-component of the magnetic �eld seems still to be around z = −3,
which was its initial location, even if after a very short time it had
ascended far away from this position.

The y-component increases signi�cantly at the beginning, then de-
cays slowly during two or three magnetic-dissipation-times, and then
stays steady. After 5000 time units, the graphs really show us that ev-
erything is steady. This y-component is also centered around z = −3.

This spatial distribution of the magnetic �eld, which is much stronger
in the middle of the box than up or down, can lead to turbulence driven
by magnetic buoyancy. We can indeed see that at the top of the box,
there are motions of convection, but which are probably due to mag-
netic buoyancy, given that the entropy slope is still positive.

It is also interesting to look at the velocity pro�le. This pro�le seems
to be divided into three di�erent parts. First, from the beginning and
until around 1000 time units, there is a strong vertical velocity, and al-
most no horizontal velocity. Then, between 1000 and 5000 time units,
we can see a horizontal velocity developing at the top of the box, while
there are still rapid vertical motions. After 5000 time units, the veloc-
ity �eld also seems to be steady. It may also be relevant to notice the
reversal of sign in the y-velocity.
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Figure 8: Evolution of the kinetic �eld with shear

4.5 In�uence of boundary conditions

In the following simulations, all the parameters were the same except
the z-boundary conditions for the entropy. Given the di�erences, it
seems to be a crucial choice. Of course, no boundary condition will be
perfect, but we would like to �nd one which would allow an increase of
the magnetic �eld due to turbulence driven by magnetic buoyancy.

These simulations were run under with the following parameters :
K = 0.1, ν = 2.10−3 and η = 5.10−4. The polytropic index was 1.6,
and the strati�cation as described above, the same as the strati�cation
in the article of Brummell, Cline and Cattaneo was.

Each simulation gives di�erent results from the other ones. We can
draw that in following table.
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bcz < u2 > < b2 > x-symmetry entropy slope shear energy ratio

a2:a2 2.10−5 0.0225 uz, Bx, By 0.20 25

Bz antisymmetric

a2:c1 6.10−6 0.029 uz, Bx,By,Bz neither symmetric 0.20 40

Bz nor antisymmetric

c1:c1 3.10−4 0.0037 Bx,By,Bz neither symmetric 0.013 0.13

Bz nor antisymmetric

4.6 Other observations

4.6.1 Initial condition

Figure 9: Evolution of the magnetic �eld

We would like to have a system which does not depend too much on
the initial conditions. This would mean that whatever we write there,
it could still be a valid model to apply for the Sun, or other stars.
However, by localizing the initial magnetic tube at another height, it
seems that we have di�erent results. In this simulation, with z0 = −2,
the initial magnetic tube was localized in the top half of the box. The
�rst evolution is identical to the one described above. However, when
we look at the evolution at later time (even if they are smaller than the
magnetic dissipation time), we can clearly notice that the magnetic
�elds are no longer centered around z ≈ −3, as it was the case in
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the �rst simulation. Now, By has two di�erent signs, a negative one,
which is also the stronger component, centered around z = −2. The x-
component is still decaying, but now there are also two di�erent signs.
In this situation, there are two maxima of magnetic energy, one at
z ≈ −3.5 and one at z ≈ −2. It may also be due to the fact that the
simulation did not run long enough.

4.6.2 In�uence of the heat conductivity

Figure 10: Variation of magnetic energy for K = 0.01 and for K = 0.1

We can here easily �nd the in�uence of the heat conductivity on
the dynamo process. First, we should notice that, if the energy scale
is the same for both graphs, the time scale is di�erent. So we should
be careful about that.

However, we can easily see that a large heat conductivity does not
allow the magnetic energy to grow quickly. In fact, it seems that the
�rst graph has been truncated, compared to the other graph and this
for times shorter than 4500 time units. This may show that there is not
just magnetic buoyancy working in such a simulation, but also ther-
mal buoyancy. The magnetic energy is indeed converted into thermal
energy thanks to dissipation, and with a bigger heat conductivity, this
heat will get di�use sooner, which explains why there is no real tem-
perature gradient, and as a consequence there is no signi�cant thermal
buoyancy for K = 0.1. On the other hand, with a smaller K, there
can be a larger temperature gradient, which creates thermal buoyancy,
and makes the magnetic �eld stronger.

Another important observation is that after a certain time, the sim-
ulation with weaker heat conductivity has a weaker magnetic �eld than
the other one. It is not yet well understood why it is like that.
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Conclusion

We can draw here the following conclusion. It seems that there can be
a dynamo process due to the presence of shear. This shear converts
an initial poloidal magnetic �eld into a stronger toroidal magnetic �eld
through the ω-e�ect. This allows then magnetic buoyancy to work, and
from the turbulence created by the magnetic buoyancy, the α-e�ect can
create again a toroidal magnetic �eld.

However, it is not yet understood why the magnetic energy seems
to be steady after a longer time. Simulations should also run for longer
time so that we can be sure that there is a real dynamo, and not just
long-lived turbulence.

If this is really true, it may have signi�cant consequences for the
solar dynamo, as the tachocline presents an important shear.

Personally, this internship made me discover the world of research
and I am glad to have done it. However, I needed too many weeks to
understand how the simulations worked and how to work with their
results, but at the end of the internship, I think I had become more
e�cient.
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