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Abstract

Renormalization group analysis is a useful tool for studying critical behaviour of
stochastic systems. In this thesis, field-theoretic renormalization group will be applied to
the scalar model representing directed percolation, known as Gribov model, in presence of
the random velocity field. Turbulent mixing will be modelled by the compressible form of
stochastic Navier-Stokes equation where the compressibility is described by an additional
field related to the density. The task will be to find corresponding scaling properties.
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Introduction

The foundation of quantum field theory

In 1928 Paul Dirac postulated a relativistic equation of motion for the electron [1]. This
led to an enormous development in theoretical physics and to the formulation of quantum
field theory. Historically, the first theory to be constructed was quantum electrodynamics
which describes the electromagnetic interactions between electrons, positrons and pho-
tons. A new theoretical framework became available for the perturbative calculation of
particle scattering processes in high energy physics. Despite its early successes, quantum
field theory was plagued by several serious technical difficulties. While the calculation of
the low orders of perturbation theory was quite successful, higher order approximations
were giving divergent contributions. These divergences, which arise from the large and
small momentum scales, were clearly unphysical, since the measurements were showing
finite results. It later also appeared that this is not only the problem of quantum electro-
dynamics, but the problem of quantum field theories in general. The problem of infinities
was approached by many physicists and solved in the late 1940s mainly by Feynman,
Schwinger, Tomonaga, Dyson [2]. They invented a method of eliminating these diver-
gences without destroying the physical meaning of the theory. This method is known as
renormalization.

After the divergences were successfully eliminated, the discovery of the running cou-
pling constant was made. For example the electric charge e was no longer a constant but
its exact value depended on the scale at which it was measured. This led to the important
concept of the renormalization group, which was constructed in a solid form in the mid
1950s by Bogoliubov and Shirkov based on the work of previous authors [2, 3]. From
a practical point of view, the renormalization group technique is an effective method of
calculating correlation functions at large or small momentum scales (or equivalently at
small or large spatial scales).

About the same time, a different field of physics was dealing with another unsolved
problem related to scale invariance. Roughly speaking, scale invariance is a feature of
objects or laws that do not change if length scales or other scales are multiplied by a com-
mon factor. These structures typically obey a non-trivial power-law scaling behaviour.
In statistical physics, scale invariance is an important property of a system that un-
dergoes certain phase transitions. Namely, so called second order phase transitions are
characterized by a divergent correlation length which forces the system to be in a unique
scale-invariant state. Measurements show [2] that various different systems have the same
large-scale properties, while undergoing this type of phase transition. Properties such as
power laws appear to be universal and independent of the microscopic structure of the
system. This led to the concept of universality classes, which groups various systems
with identical large-scale properties together, depending only on their general character-
istics such as symmetry of the system, dimensionality of the space etc. In 1971 Wilson
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introduced a systematic renormalization procedure based on eliminating the microscopic
degrees of freedom [4, 5]. Starting from a path integral formulation of the quantum field
theory he explained the existence of universality. This was the first appearance of path
integral renormalization group in statistical physics.

Even though the renormalization group was initially developed for solving problems in
particle physics and critical phenomena, it was later realized to be useful also for solving
other problems, such as dynamical processes.

Field theory approach to dynamical processes

The term dynamics in a broad sense refers to any system evolving in time. General
properties of macroscopic systems are almost impossible to describe rigorously due to large
degrees of freedom. In order to avoid this complex construction, one introduces a random
”noise” that mimics the microscopic properties of the system. Corresponding solutions
are then non-deterministic and one is able to predict only the probabilistic evolution of the
system. In 1973 Martin, Siggia and Rose [6] introduced the idea that an additional field
related to the random force plays an important role in stochastic processes. This concept
was later modified by De Dominicis and Janssen[7], which showed that the Martin-Siggia-
Rose models can be reformulated in terms of path integrals. Here, methods from quantum
field theory were particularly useful to study their universal properties. The path integral
formulation also allows to forget about the quantum origin of the fields and treat them
as classical objects. A quantum field operator then represents a classical fluctuating field
and one can work in an euclidean rather than in a relativistic Minkowski metric. This
allows us to investigate properties of different classical systems such as fully developed
turbulence.

The problem of fully developed turbulence has puzzled physicists for more than four
hundred years. An important aspect of fluid flow is that especially at high velocities, the
flow may become unstable and the transition to a chaotic turbulent flow may occur. By
considering large-scale high speed flow, the system seems to have scale-invariant proper-
ties. Measurements also show that the energy spectrum of the fully developed turbulence
has a universal power-law behaviour that is independent from the origin of turbulence.
These facts led to the stochastic formulation of turbulence. A significant progress in this
field was made by Wyld [8]. Using a graphical representation of his calculations, Wyld
showed that one can construct a perturbation series equivalent to Feynman diagrams from
quantum field theory. Later Foster, Nelson and Stephen investigated the large scale and
long time asymptotic properties using methods of renormalization group [9, 10].

The field-theoretic formulation of fully developed turbulence was first done by De Do-
minicis and Martin [11]. This allows us to use methods of quantum field theory to study
universal properties of the turbulent fluid. Later, additional stochastic problems were
approached using the field-theoretic renormalization group, e.g. stochastic magnetohy-
drodynamics and turbulent diffusion [12]. In the latter case for example, the path of the
diffusing particle in a turbulent flow shows scale-invariant properties which do not agree
with the dimensional analysis. This is also referred to as anomalous diffusion.

Another approach to stochastic processes was done by Doi and Peliti [13, 14]. Based
on Doi’s approach, Peliti showed that reaction-diffusion processes can also be reformu-
lated in terms of field-theoretic models. One of these processes is also known as directed
percolation. This process can generally describe various problems in nature from epidemic
processes and forest fires to laminar-turbulent phase transitions. It can be easily imag-
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ined as an agent spreading an infection among some species or fire spreading among trees.
The important feature is that this process also shows a second-order phase transition,
where the path of the agent shows scale-invariant properties. However, directed perco-
lation represents a much wider universality class than just a reaction-diffusion system.
It also describes the phase transition between active (fluctuating) phase to an inactive
(absorbing) phase. This type of transition is observed in many different phenomena in
physics, biology, chemistry and sociology. However, experimental results are inconsistent
with theoretical predictions of directed percolation. It is believed that this might be
due to additional external effects such as impurities or defects of the environment that
are not taken into account in the original formulation of this process. Therefore various
different modifications have been done, such as taking into account effects of long-range
interactions[15], immunization[16] or mutation[17]. Another way to study external influ-
ences on the directed percolation phase transition is to consider the influence of a random
environment. This can be done by considering the directed percolation process as a
reaction-diffusion process advected by a turbulent velocity field, which is the motivation
for our work. Several attempts have already been made [18, 19, 20] some of which we will
discuss in this thesis.

Outline

The main aim of this thesis is to study universal properties of the directed percolation
process advected by a compressible turbulent fluid using methods of the perturbative
field-theoretic renormalization group. The problem of compressible turbulence is however
even less understood than the incompressible one. Our approach is based on the model
derived by Antonov [21] which represents the simplest known field-theoretic model based
on the compressible form of Navier-Stokes equation. The physical relevance of this model
is still however questionable, since it suffers from certain mathematical difficulties. The
solution to this model is also known only to the first order of perturbation theory. The
aim is therefore to study its influence on the directed percolation phase transition and
compare the results with already known results obtained previously in the literature.

The outline of this thesis goes as follows: In Chapter 1 we introduce all the math-
ematical methods necessary for our calculation. Due to the complex structure of our
model, we describe perturbative renormalization group using a simple Landau-Ginzburg
φ4 model. This is later generalized to the case of dynamical models. The field-theoretic
models for reaction-diffusion processes using the Doi-Peliti approach are described in the
end. Chapter 2 is devoted to the directed percolation phase transition. Here, all prop-
erties necessary to our problem are described and the field-theoretic formulation is then
derived using methods from the first Chapter.

Since we are interested in the turbulent advection of directed percolation process, in
Chapter 3 we will describe the properties of fully developed turbulence. The incompress-
ible and compressible cases are discussed independently and the field-theoretic formulation
is given at the end. In the following Chapter 4 we investigate the influence of compressible
turbulent mixing on the directed percolation process. The large-scale properties are found
using the field-theoretic renormalization group and finally, we conclude and discuss our
results in Chapter 5.
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Chapter 1

Field-Theory approaches to
stochastic processes

The aim of this Chapter is to describe all the methods used in this thesis. They involve
various different fields that have been developed in the last decades. However, since they
are technically very complex, we are not going to describe them in detail, but rather give
the reader a brief explanation. For more detailed description we recommend the reader
to see [2, 16, 22, 23, 24, 25] and the references cited therein.

The renormalization group is a powerful tool for investigating the large-scale and long
time properties of various scale invariant systems. These methods, originally developed
for particle and condensed matter physics later appeared to have a more universal char-
acter. In this thesis we will work with the field-theoretic renormalization group approach
to stochastic systems such as fully developed turbulence and reaction-diffusion systems.
However, this approach has a very complex structure and therefore a description in terms
of a simplified model is necessary. In these sections we start by discussing the simplest
known - Ginzburg-Landau φ4 model. This model, originally introduced for investigating
the properties of continuous phase transitions, represents one of the simplest field-theoretic
models. However, it is not solvable analytically and therefore a perturbative approach
is necessary. Based on that, tools of renormalization group will be introduced. In the
section 1.3 this approach will be generalized for the case of stochastic dynamical systems.

The general description of stochastic processes is given in terms of the Langevin equa-
tion that describes the stochastic dynamical evolution of a particle or a field of parti-
cles1[26]. In section 1.3 we will show that these systems are completely equivalent to
field-theoretic models in which the methods of field-theoretic renormalization group can
be easily applied. An alternative way of constructing a model of stochastic systems is
given in terms of a Master equation which describes the probabilistic time evolution of
the systems which can be in various states [26]. This description is especially useful for
studying the reaction-diffusion processes. In section 1.4 we show an alternative approach
based on Doi’s formalism, which allows us to construct field-theoretic models directly
from the Master equations. This point is crucial to our work, since the field-theoretic
description of both models allows us to study both processes simultaneously, which is the
purpose of this thesis.

It should be stated that this chapter is purely technical and requires some knowledge
of field-theoretic approach to condensed matter physics.

1Or equivalently in terms of Fokker-Planck equation, that describes the evolution of the probability
distribution of the system.
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2 1. Field-Theory approaches to stochastic processes

1.1 Scaling in the theory of static critical phenomena

Phase transitions are a phenomena that can be observed in many different occurrences
of nature. Typical examples are solid-liquid, superfluid He4 or para-ferromagnetic phase
transitions. Qualitatively phase transitions can be divided into two groups, depending
on the behaviour of the order parameter (e.g. density, magnetization) near the critical
point (e.g. critical temperature). The order parameter can change either continuously
or discontinuously. In the first case, the correlation length diverges, which is causing the
system to be in a certain universal state. The behaviour of the order parameter arround
the critical point is described by critical exponents and measurements show [2] that they
are universal for various systems, i.e. they are independent of microscopic properties of
the systems and they depend only on few parameters (e.g. the dimension of the space).

A significant progress in developing the theory of continuous phase transitions was
done by Lev Landau [27]. His theory was based on the assumption, that the free energy
can be expanded as a Taylor series in terms of the order parameter, Φ

F(Φ)−F(0) = τΦ2/2 + gΦ4/4! + · · · , (1.1.1)

where τ ∝ T − Tc is the deviation from the critical temperature, g is a positive constant
and the absence of odd powers of Φ reflects the Φ ↔ −Φ symmetry2. By looking at the
minimum of (1.1.1) one can find that the order parameter behaves as

Φ ∝
{

(Tc − T )β, T < Tc

0, T > Tc
, (1.1.2)

where β = 1/2 is the corresponding critical exponent. Although Landau’s theory gave
a good qualitative description of the phase transitions, quantitatively it was inconsistent
with experiments [2]. The problem with models such as (1.1.1) is, that they neglect
fluctuations of the order parameter field Φ. This approximation is not valid for continuous
phase transitions, since the correlation length ξ generally diverges. Approximations such
as this are usually referred to as mean-field approximations and they are valid only a
above certain critical dimension dc. It can be shown in the case of Landau’s theory of
magnetic phase transition dc = 4 [2]. Below this dimension, these fluctuations cannot be
neglected and a different approach has to be taken.

Field theory gives us tools for investigating properties of second order phase transi-
tions. The celebrated field-theoretic model is the Ginzburg-Landau φ4 model with a given
(static) action functional3 [22, 28]

S[φ] =

∫
ddx

(
1

2
(∂φ(x))2 +

τ

2
φ2(x) +

g

4!
φ4(x)

)
, (1.1.3)

where φ(x) represents the space dependent order parameter scalar field, (∂φ)2 = ∂iφ∂iφ
is the squared gradient, ∂i = ∂/∂xi, repeated indices are always summed over and g is
a coupling constant describing the magnitude of the quartic interaction. The partition
function is defined as4

Z[h] = N−1

∫
Dφ exp{−S[φ] + hφ} , (1.1.4)

2Inversion symmetry is the direct consequence of for example spin inversion in Ising spin model.
3In standard literature, (1.1.3) is referred as an effective Hamiltonian. In order to be consistent with

later convention, we will refer to it as an action functional.
4We have rescaled parameters and field in order to eliminate the factor β = 1/kBT from the integrand

exponential [29].
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1.1. Scaling in the theory of static critical phenomena 3

where N is the normalization constant to be determined, hφ =
∫

dx h(x)φ(x), h is an ex-
ternal magnetic field that acts as a source of perturbation and

∫
Dφ represents integration

over all possible configurations of fields. The reason of introducing h will become clear in
the next section when we will talk about perturbation theory. In statistical physics field
φ(x) can be interpreted as a classical random field with a probability distribution in the
space of fields

Dφ exp{−S[φ]} . (1.1.5)

The functional integral formulation (1.1.4) includes fluctuations of the order parameter
field φ which were absent in Landau’s theory. In order to obtain mean-field results, one
just neglects these fluctuations by taking the minimum of (1.1.4) (and assuming spatial
hommogenity with h = 0).

We can use simple dimensional analysis to study the critical exponents themselves
[29]. For example, let us take the two point correlation function

G(x− x′) ≡ 〈φ(x′)φ(x)〉 , (1.1.6)

where the mean value 〈· · · 〉 is taken over all possible configurations of fields φ. Since
the exponential of (1.1.4) must be dimensionless, straightforward dimensional analysis of
(1.1.3) and (1.1.6) tells us that

[φ] = L
(2−d)/2

, [τ ] = L−2, [g] = Ld−4, [G(x− x′)] = L2−d =⇒ [G(k)] = L2 ,
(1.1.7)

where L is the unit of length and G(k) is a Fourier transformation of G(x−x′). Thus, if
we make a change of the units of length by factor of λ from L to L′ = λL, then G should
transform according to the rule that G′L′2 = GL2 which in the vicinity of the critical
point τ ≈ 0 implies that5

G′(k′) = λ−2G(k) , (1.1.8)

where k′ = λk. This result must always be true - it follows simply from definition of the
two point function. It will be shown later, that in the zeroth order of perturbation theory
(represented by subscript 0) the two point correlation function is

G0(k) =
1

k2 + τ
. (1.1.9)

It is easy to see, that this correlation function satisfies (1.1.8) if we rescale lengths, namely
k as k′ = λk, and τ according to (1.1.7) as τ ′ = λ2τ . In contrast to Eq. (1.1.8), direct
measurements [2] show that in the vicinity of the critical point τ ≈ 0 the large scale
behaviour k→ 0 of the correlation function behaves as

G0(k) ∝ k−2+η , (1.1.10)

where η is in general nonzero exponent. It can be clearly seen from the derivation above,
that the general dimensional considerations must be augmented, unless η = 0. Another

5We are using the convention that a physical quantity Qp represented by the symbol Q is actually
given by Qp = Q× [Q]. Under a change of units, Q changes, while Qp is, of course, invariant.

3



4 1. Field-Theory approaches to stochastic processes

such example is the correlation length ξ. From the dimensional analysis it can be shown
that ξ ∝ τ−1/2 ([ξ] = L), but experiments [2] show ξ ∝ τ−ν where ν 6= 1/2.

The results above appear to be incorrect. Any value for the critical exponents other
than one given by a mean-field (or Landau) theory seems to violate the dimensional
analysis. There is, however, another length scale, which we did not take into account. The
only other length scale in the problem apart from the correlation length is the microscopic
length scale – the lattice spacing a ([a] = L). The correlation length can, in principle, at
critical temperature take the following form

G(k) ∝ k−2f(ak) , (1.1.11)

where f(z) is some function of a dimensionless variable z. Since the lattice spacing is small
and we are looking at the large scale behaviour (ak → 0) (1.1.11) can be approximated
as

f(z) ≈ zη =⇒ G(k) ∝ aηk−2+η , (1.1.12)

and therefore it satisfies both (1.1.8) and (1.1.10). Similarly, for the correlation length we
conclude that

ξ = τ−1/2f(τa2) ∝ a2θτ−1/2+θ , (1.1.13)

if τa2 → 0. Thus the critical exponent governing the divergence of the correlation length
is ν = 1

2
− θ. The difference between this result and that of mean-field theory is the

anomalous dimension θ. In the case of (1.1.11), the existence of a nonzero value of η can
be considered to come from the fact that φ has acquired an anomalous dimension η/2.

Since classical dimensional analysis gives us incorrect results in our scale-invariant
system, the anomalous dimension in fact reveals the fractal structure of our model. These
dimensions can be computed in a controllable fashion by the Renormalization group (RG)
techniques.

1.2 Perturbation theory, Renormalization group

Here we will give a schematic description of the perturbation theory and Renormalization
group that have been employed in this thesis. A detailed description can be found in [2,
22, 24, 28].

In classical field theory, statistical averages can be calculated from the generating
functional (1.1.4). All Green’s functions, i.e. averaged products of any number of fields at
different points, are expressed as functional derivatives of the partition function Z with
respect to the source h at h = 0

G(n)(x1, · · · ,xN) ≡ 〈φ(x1) · · ·φ(xN)〉 =
δnZ[h]

δh(x1) · · · δh(xn)

∣∣∣∣∣
h=0

. (1.2.1)

Unfortunately, the only path integral that can be easily evaluated exactly is Gaussian, and
therefore in most cases these calculations have to be treated perturbatively. Perturbation
theory then goes as follows. The action functional can be written as a sum of the quadratic

4



1.2. Perturbation theory, Renormalization group 5

(free, Gaussian) and the interaction part S = S0 + SI. The partition function (1.1.4) will
then have the form

Z[h] = N−1

∫
Dφ exp{−S0[φ]− SI [φ] + hφ} . (1.2.2)

The main idea of the perturbation theory is to expand the interaction part SI in terms of
small parameters (coupling constants) and evaluate path integrals in the free theory

Z[h] = N−1

∫
Dφ

∞∑
n=0

(−SI [φ])n

n!
exp{−S0[φ] + hφ} . (1.2.3)

Since the interaction term is usually a product of fields, it can be formally re-expressed
as an operator containing functional derivatives with respect to the external field h. For
example in the case of model (1.1.3) the interaction part is

SI [φ] =

∫
ddx

g

4!
φ4(x)→ SI [δ/δh] ≡

∫
ddx

g

4!

δ4

δh4(x)
, (1.2.4)

where this transformation holds only inside of the integrand (1.2.3). The term SI [δ/δh]
can be taken out from the functional integral (1.2.3) and re-summed into the exponential
operator. The resulting functional integral is then quadratic and therefore it can be
integrated out [28]

Z[h] = N−1 exp{−SI [δ/δh]}×

×
∫
Dφ exp

{
−1

2

∫
ddxddx′ φ(x)D(x,x′)φ(x′) +

∫
ddx h(x)φ(x)

}
(1.2.5)

= N−1 exp{−SI [δ/δh]} exp

{
1

2

∫
ddxddx′ h(x)G0(x,x′)h(x′)

}
, (1.2.6)

where D(x,x′) is the quadratic operator of the action functional S0 and G0(x,x′) is a
corresponding Green’s function defined as∫

ddx′ D(x,x′)G0(x′,x′′) = δ(x− x′′) . (1.2.7)

Eq. (1.2.6) represents the general expression for calculating perturbative corrections in
the interacting field theory. In order to calculate correlation functions, one expands the
interaction operator into the required order and performs functional derivatives (1.2.1).
The calculation of two-point correlation function in the zero-th order of perturbation
theory (in the free theory) shows that up to normalization it is equal to the Green’s
function

G0(x,x′) ≡ G
(2)
0 (x,x′) = 〈φ(x)φ(x′)〉0 . (1.2.8)

In the statistical field-theoretic models, translation invariance is usually satisfied, and
therefore the correlation functions depend only on the difference of its arguments G(x,x′) =
G(x−x′). For example the quadratic part and the Green’s function in the Fourier space
for the model (1.1.3) is

D(x,x′) = (−∂2
x + τ) δ(x− x′) =⇒ G0(k) =

1

k2 + τ
, (1.2.9)

5



6 1. Field-Theory approaches to stochastic processes

This proves Eq. (1.1.9). Function G0 is called a propagator in most of the literature.
One may notice another very important property. Statistical averages calculated from
(1.2.6) are expressed as a sum off all possible products of Green’s functions G0(x1,x2)
(propagators) calculated in the free (Gaussian) theory. This property is called Wick’s
theorem6. For example the first order contribution to the two point correlation function
of (1.1.3) involves evaluating ∫

ddy
g

4!
〈φ(x1)φ(x2)φ4(y)〉 . (1.2.10)

The expression (1.2.10) is due to Wick’s theorem expanded into the sum of all possible
products of propagators including the integration over the interaction variable y. This
can be schematically represented by Feynman diagrams using the following diagramatic
technique. In (1.2.10), the interaction argument y that is integrated out is called an
internal point whereas the arguments of the two point correlation function x1 and x2 are
called the external points. After the Wick’s expansion, propagators are represented by
a solid line, where endings correspond to its arguments. An internal point, connecting
four propagators with integration over the corresponding variable is represented by a dot
(vertex)

G0(x1,x2) = , −g
∫

ddy = . (1.2.11)

Wick’s expansion of (1.2.10) will then require an evaluation of the following diagrams:

1

2
=
−g
2

∫
ddy G0(x1,y)G0(y,y)G0(y,x2) , (1.2.12)

1

8
= G(x1,x2)

−g
8

∫
ddy G(y,y)2 . (1.2.13)

Numerical factors in (1.2.12) and (1.2.13) are called the symmetry factors and they arise
due to the numerical factor 1/4! in the interaction term of the action functional, the order
of perturbation theory and from the fact, that diagrams can be constructed in several
ways by permuting propagators.

These mathematical tools allows us to calculate corrections to correlation functions
in any order of perturbation theory. The full calculation can be technically difficult and
therefore a simplification is necessary.

1.2.1 Connected correlation function

Perturbation expansion described in the last section involves calculation of many Feynman
diagrams. Therefore it is convenient to perform some simplifications of the calculation.

Internal mathematical structure of the diagram (1.2.12) does not allow us to separate
it as a product of two independent products of propagators. Diagrams of this type are
called connected diagrams. On the other hand, the mathematical structure of the diagram
(1.2.13) can be separated. These diagrams are called disconnected diagrams and they can
be always expressed as a product of connected parts. For example the diagram (1.2.13)
can be schematically expressed as

= × , (1.2.14)

6A more general idea in probability theory is called the Isserlis’ theorem.
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1.2. Perturbation theory, Renormalization group 7

where we have suppressed the explicit variable dependence. The last diagram in (1.2.14)
is not connected to any external point and therefore it is often called a vacuum diagram.
Multiplicative properties of disconnected diagrams lead to a significant simplification of
correlation functions. For example the two point correlation function can be schematically
expressed as (symmetry factors are suppressed):

G(x1,x2) = + + + + + · · · (1.2.15)

=

(
+ + + · · ·

)
×

×
(

+ + + · · ·
)
, (1.2.16)

where the first bracket contains the sum of all diagrams that are connected to the external
points and the second bracket contains the sum of all vacuum diagrams. In the case of
the two point correlation function the first bracket contains only the connected diagrams.
One should note however, that the higher order correlation functions might contain dis-
connected diagrams connected to the external points. For example one diagram for the
four point correlation function might be

1

4
=
−g
2

∫
ddy1 G0(x1,y1)G0(x2,y1)G0(y1,y1)×

× −g
2

∫
ddy2 G0(x3,y2)G0(x4,y2)G0(y2,y2) . (1.2.17)

Due to the mathematical structure of Feynman diagrams, sums of all possible connected
and disconnected diagrams can be re-summed into exponentials containing only connected
diagrams. This is a direct result of the linked-cluster theorem[24]. The general form of
the n-point correlation function is then

G(n)(x1, · · · ,xn) = exp

{∑ Connected diagrams
with n external lines

}
× exp

{∑ Connected
vacuum diagrams

}
.

(1.2.18)

Eq. (1.2.6) implies, that the sum of all vacuum diagrams is equal to Z[0] and the proper
normalization is then N = Z[0] = 1. In order to obtain the sum of all connected diagrams
with n external lines, one introduces the generating functional of connected correlation
functions 7 as

W [h] = lnZ[h] , (1.2.19)

where the n-point connected correlation functions G
(n)
c can be obtained in the usual way

by taking the functional derivatives with respect the the external field at zero field

G(n)
c (x1, · · · ,xn) =

δnW [h]

δh(x1) · · · h(xn)

∣∣∣∣
h=0

. (1.2.20)

7Quantity analogous to the free energy from statistical mechanics.
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8 1. Field-Theory approaches to stochastic processes

1.2.2 Saddle-point approximation, vertex functions

Another simplification can be made by finding the Gaussian approximation of the model
under consideration and then calculating corresponding leading corrections. This proce-
dure is known as a saddle-point approximation. The general idea is the following [2, 22,
28].

Consider a general form of the partition function

Z[h] =

∫
Dφ exp{−S[φ] + hφ} . (1.2.21)

The integrand can be approximated by the leading contribution of the saddle point of
exponential, i.e. around the field Φ

h(x) =
δS[φ]

δφ(x)

∣∣∣∣
φ=Φ

=⇒ φ(x) = Φ(x) + φ′(x) . (1.2.22)

Using this formula, one can approximate the exponential in (1.2.21) in the following way

−S[φ] + hφ = −S[Φ] + hΦ− 1

2

∫∫
ddxddx′

δ2S[φ′]

δφ′(x)φ′(x′)

∣∣∣∣
φ′=Φ

φ′(x)φ′(x′) + · · · (1.2.23)

The remaining integral in (1.2.21) is then Gaussian, and can therefore be easily evaluated

Z[h] ≈
(

detS(2)
Φ

)−1/2

exp{−S[Φ] + hΦ}, S(2)
Φ =

δ2S[φ′]

δφ′(x)φ′(x′)

∣∣∣∣
φ′=Φ

. (1.2.24)

By introducing the generation functional of connected correlation functions (1.2.19), one
finds

W [h] = −S[Φ] + hΦ− 1

2
Tr lnS(2)

c +O[(φ′)3] , (1.2.25)

where we have neglected irrelevant constants. One can see that the classical field Φ can
be obtained from (1.2.25) as

Φ(x) ≡ δW [h]

δh(x)

∣∣∣∣
h=0

. (1.2.26)

This is suggesting that we should define the effective potential8 Γ as a Legendre transfor-
mation of W

W [h] = Γ[Φ] + hΦ , (1.2.27)

and so we find a relation between effective potential and action functional

Γ[Φ] = −S[Φ]− 1

2
Tr lnS(2)

Φ + · · · . (1.2.28)

In order to give an interpretation of the effective potential Γ we need to make some
definitions. As mentioned before, Feynman diagrams can be connected to the external
points. Lines connecting these points are called external lines and the rest of them are
called internal lines. Any diagram that can not be separated by cutting one internal
line is called one-particle irreducible (1-PI) diagram. Typical examples can be seen on

8



1.2. Perturbation theory, Renormalization group 9

Fig. 1.1. The second term in (1.2.28) represents the first order contribution in the loop
expansion, i.e. the contribution from 1-PI diagrams. The general form is then9

Γ[Φ] = −S[Φ] + (1-PI loop diagrams) . (1.2.29)

This effective potential Γ is also the generating function of the vertex functions. They
can be found as functional derivatives with respect to the field Φ(xi)

Γ(n)(x1, · · · ,xn) =
δnΓ[Φ]

δΦ(x1) · · · δΦ(xn)
. (1.2.30)

An interpretation of vertex function can be seen from the factorization of the n-point
correlation function in the case of one field. It can be shown that [2]

G(n)(x1, · · · ,xn) =

∫
ddx1′ · · · ddxn′ Gc(x1,x1′) · · ·Gc(xn,xn′)Γ

(n)(x1′ , · · · ,xn′)+

+Q(n)(x1, · · · ,xn) , (1.2.31)

where Q(n)(· · · ) stands for a one-particle reducible function. Since only the first term
represents the 1-PI contributions, we can imagine the vertex function as the loop correc-
tions that are constructed from 1PI diagrams by cutting the external lines (cutting all
Gc(xi,xi′)). Moreover, from (1.2.29) we find

Γ(n)(x1, · · · ,xn) = − δnS[Φ]

δΦ(x1) · · · δΦ(xn)
+

(
loop corrections

from amptutated diagrams

)
. (1.2.32)

The last formula tells us how to calculate the n-point vertex functions directly from the
action functional.

1.2.3 Renormalization

In field-theoretic lattice models, the translational invariance is usually assumed, and there-
fore in order to simplify our calculations we can perform a Fourier transformation. For
example the action (1.1.3) becomes

S[φ] =

∫
ddk φ(k)(k2 + τ)φ(−k)

+ g

∫
ddk1ddk2ddk3ddk4 δ(Σiki)φ(k1)φ(k2)φ(k3)φ(k4) . (1.2.33)

8Analogical quantity to the Gibbs free energy in the statical mechanics.
9Different authors use different conventions. For example in [22] authors define partition function as

Z =
∫
D exp{S}, where the minus sign is inside the action functional. This results in the redefinition of

the Legendre transformation (1.2.27) and the Eq. (1.2.29) still holds, but with a plus sign in front of S.

Figure 1.1: On the left - 1PI diagram, i.e. diagram that cannot be separated by cutting
one internal line. On the right - non 1PI diagram. This diagram can be separated by
cutting the middle internal line connecting two vertexes (represented by the crossed line).
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10 1. Field-Theory approaches to stochastic processes

In Fourier space, the calculation of Feynman diagrams is different. Propagators are no
longer described by points x1,x2 but by a single momentum k. Delta function δ(Σiki)
at the interaction term (1.2.33) ensures the momentum conservation at each vertex. In-
tegration over variables xi is replaced by the integration over internal momenta – loops.
These loops are generally divergent and in order to eliminate these divergences, one has
to renormalize the theory.

Let us now analyze the two point correlation function G(k). The sum of all two point
1PI diagrams is called self energy Σ0(k). Diagrams that are not 1PI are not interesting,
since they can always be written as a product of some 1PI diagrams. The two point
correlation function can be written as a geometric series of products of propagators G0

and 1PI diagrams (represented by the blob)

G(k) = + + + · · · (1.2.34)

= G0(k) +G0(k)Σ0(k)G0(k) +G0(k)Σ0(k)G0(k)Σ0(k)G0(k) + . . . (1.2.35)

=
1

G−1
0 (k)− Σ0(k)

(1.2.36)

=
1

( )−1 −
. (1.2.37)

In the denominator we identify the two point vertex function

−Γ(k) ≡ G−1(k) = G−1
0 (k)− Σ0(q) , (1.2.38)

which can be easily seen from (1.2.32). As mentioned above, the self energy function
Σ0(k) contains divergences from loop integrals. For example, the φ4 theory (1.1.3) in one
loop level gives

Σ(1)(k) =
1

2
=
−g
2

∫
ddq

(2π)d
1

q2 + τ
∝
∫ ∞

0

dq
qd−1

q2 + τ
. (1.2.39)

There are two types of divergences. First, one notices that the integral is infinite at the
lower limit q → 0 for d ≤ 2 if τ = 0 (T = Tc). Such a divergence is called infrared (IR) and
this is the reason why we cannot simply put τ = 0 even if we are studying the behaviour
around the critical point. Another way how to avoid this divergence is to introduce an
IR cutoff m in the integration domain

∫∞
m

as will be explained later in Chapter 3.4. The
integral (1.2.39) also clearly diverges for d ≥ 2 as q →∞. This is called ultraviolet (UV)
divergence. Since we are not interested in physics beyond the atomic scale a, we introduce
UV cut-off Λ = a−1 in momentum space so the integral becomes

∫ Λ

0
dk. This process of

eliminating divergences is called regularization. There are several ways how to regularize
a theory but this one has a clear physical interpretation. In this case, divergences will
be stored in terms containing Λ. One now has to modify the theory in such a way, that
the theory will become finite after taking the limit Λ → ∞, but without changing the
physical properties of the model. This process is called renormalization and it can be
done by renormalizing parameters and fields of the model. It can be shown [2], that the
φ4 model (1.1.3) can be renormalized by introducing the renormalization constants Zi
such that10

φ0 = ZφφR, τ0 = ZττR, g0 = ZggR , (1.2.40)

10Note that this choice of renormalization differs from the usual convention. In classical literature Zφ is

a normalization constant for correlation function and therefore the field is renormalized as φ0 = Z
1/2
φ φR.

10



1.2. Perturbation theory, Renormalization group 11

where the τ0 is the deviation from the criticality and, from now on, we will use subscripts
R and 0 to denote renormalized and unrenormalized quantities. Note, that constants Zi
are naturally dimensionless. If we write normalization constants as Zi(Λ) = 1+ δi(Λ), the
two point correlation function (1.2.36) for φ4 model can be then written as

GR(k) =
1

Z2
φ

G0(k) ≈ 1

1 + 2δφ

1

k2 + (1 + δτ )τR − Σ0(k)
(1.2.41)

≈ 1

k2 + τR − ΣR(k)
=

1

ΓR(k)
, (1.2.42)

where we have introduced renormalized self-energy ΣR(k) = Σ0(k)−2δφk
2− (2δφ+δτ )τR.

We are free to choose renormalization conditions [2, 22, 28]. We take them to be

ΓR(0) = τR, ∂k2ΓR(k)|k2=0 = 1 . (1.2.43)

Using these conditions we see directly from (1.2.42) that

Σ0(0) = (2δφ + δτ )τR, ∂k2Σ0(k)|k2=0 = 2δφ . (1.2.44)

In order to have a physical theory, we need to eliminate all divergences. They can be
found from the loop corrections of vertex functions (1.2.32). In momentum space, n-point
correlation and vertex functions can be renormalized as

G
(n)
R ({ki}) = Z−nφ G

(n)
0 ({ki}), (1.2.45)

Γ
(n)
R ({ki}) = Zn

φΓ
(n)
0 ({ki}) . (1.2.46)

For example the four point vertex function for model (1.1.3) is

Γ
(4)
0 ({ki}) = −g0 +

3

2
+

(
higher loop
corrections

)
= −g0 + Π0({ki}) , (1.2.47)

where Π0(k) is some function containing a divergence in Λ. Considering the normalization

of the four point vertex function Γ
(4)
R = Z4

φΓ
(4)
0 one can show that

Γ
(4)
R = −gR + ΠR({ki}), ΠR({ki}) = Π0({ki})− (4δφ + δg)gR , (1.2.48)

and furthermore by imposing the normalization condition we find that

Γ
(4)
R ({0}) = −gR =⇒ Π0({0}) = (4δφ + δg)gR . (1.2.49)

Now, one has to rewrite the action functional in terms of renormalized quantities. Eq.
(1.1.3) then becomes

SR[φR] =

∫
ddx

(
Z2
φR

1

2
(∂φR(x))2 + ZτZ

2
φR

τR
2
φ2
R(x) + ZgZ

4
φR

gR
4!
φ4
R(x)

)
(1.2.50)

=

∫
ddx

(
1

2
(∂φR(x))2 +

τR
2
φ2
R(x) +

gR
4!
φ4
R(x)

)
+ (1.2.51)

+

∫
ddx

(
2δφR

1

2
(∂φR(x))2 + (δτ + 2δφR)

τR
2
φ2
R(x) + (δg + 4δφR)

gR
4!
φ4
R(x)

)
.
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12 1. Field-Theory approaches to stochastic processes

The action (1.2.51) represents renormalized perturbation theory. From the last row, one
can identify counterterms that have to be added to the original action in order to renor-
malize it. Their structure is obtained from the renormalization conditions (1.2.43) and
(1.2.49)

δφ = ∂k2Σ0(k)|k=0/2 , (1.2.52)

δτ = ∂k2Σ0(k)|k=0 + Σ0(0)/τR , (1.2.53)

δg = 2∂k2Σ0(k)|k=0 + Π0({0})/gR . (1.2.54)

In fact, these normalization conditions tell us that the corrections we are looking for are
in the case of two point correlation function proportional to k2 and τR, and in the case of
four point vertex function proportional to gR. An alternative way of finding counterterms
is to introduce renormalization constants such as

Z1 = Z2
φ, Z2 = ZτZ

2
φ, Z3 = ZgZ

4
φ , (1.2.55)

in the action functional (1.2.52), calculate corresponding corrections and then invert them
to find Zφ, Zτ , Zg.

Although cut-off regularization is very intuitive for statistical field theory, it is techni-
cally difficult. Another way to regularize the theory is to use dimensional regularization
[2, 28, 30, 31]. In this case, instead of dealing with a momentum cut-off, we set Λ → ∞
(continuum limit) and store divergences in the Laurent series of the parameter ε = 4− d
which describes the deviation from the upper critical dimension dc. It is also convenient to
introduce a renormalized coupling constant gR dimensionless, introducing arbitrary mass
scale µ

g0 = µεgR , (1.2.56)

The exact form of the normalization constants also depends on the scheme that we choose.
For practical calculations it is also convenient to use a minimal subtraction (MS) scheme,
where the counterterms would contain only the divergent part of the diagrams. In such
case, the normalization constants would have the form

Zi = 1 +
∞∑
n=1

Ain(gR(µ))

εn
, (1.2.57)

where Ani are some finite dimensionless functions that depend only on gR(µ). Correlation
and vertex functions attain then the following form

G
(n)
R ({ki}; τR(µ), gR(µ), µ) = Z−nφ (gR(µ))G

(n)
0 ({ki}; τ0, g0) , (1.2.58)

Γ
(n)
R ({ki}; τR(µ), gR(µ), µ) = Zn

φ (gR(µ))Γ
(n)
0 ({ki}; τ0, g0) , (1.2.59)

with11

τR(µ) = τ0Z
−1
τ (gR(µ)), gR(µ) = g0µ

−εZ−1
g (gR(µ)) . (1.2.60)

11One should always keep in mind the convention. For example in [16], the author introduces massless
τR via τ0 = τRµ

2Zτ . Here we are still assuming that [τR] = 2. This convention can be found for example
in [2, 22, 28].

12



1.2. Perturbation theory, Renormalization group 13

The only question now is how to find out which vertex functions have to be renormalized.
This can be done by the means of dimensional analysis. We introduce a formal UV
exponent dΓ of a vertex function Γ. In momentum space it is defined as [2, 22, 28]

dΓ = d− nφdφ . (1.2.61)

Divergences that need to be eliminated are present in those vertex functions, for which

δΓ ≡ dΓ|ε=0 ≥ 0 . (1.2.62)

This formal UV exponent needs to be sometimes modified due to the presence of deriva-
tives in the interaction terms SI . Let us for example consider interactions of the form
(∂φ)4. Since the field φ enters the vertex together with its derivative, there must be a ∂
on each external field φ in the all 1-irreducible functions Γ. The real UV exponent is then
reduced by the number of fields φ that enter Γ (or number of external fields φ)

δ′Γ = δΓ − nφ , (1.2.63)

and the vertex functions that need renormalization must have δ′Γ|ε=0 ≥ 0.

1.2.4 Anomalies in scale invariance

The elimination of divergences will create anomalies in scale invariance. To give quantita-
tive description, we start with the definition of generalized homogeneity for an arbitrary
function F

F (λd1e1, . . . , λ
dnen) = λdFF (e1, . . . , en) , (1.2.64)

where ei are all parameters of the function F and di are corresponding dimensions. By
taking the derivative with respect to λ and setting λ = 1 one finds a differential equation
equivalent to (1.2.64) (∑

e

deDe − dF
)
F ({ei}) = 0, De = e∂e . (1.2.65)

Using this property, one can derive a differential equation describing scale invariance of
any quantity of a scale invariant model. For example let us consider the model (1.1.3). As
already mentioned above, canonical dimensional analysis is insufficient since there is an
additional relevant length scale – a microscopic length scale. In dimensional regularization
and MS scheme, this is represented by an scale-setting parameter µ. Dimensional analysis
of renormalized theory yields(

Dµ +Dk + 2DτR − ndkφ
)
G

(n)
R ({ki}; τR, gR, µ) = 0 , (1.2.66)

where dkφ stands for the canonical dimension in the momentum space (Notice that there
is no contribution from gR since it was rescaled to be dimensionless in (1.2.56)). The
existence of the anomalous dimension mentioned in the Chapter 1.1 is due to first term
Dµ. Without it, classical dimensional analysis would be valid. In order to get rid of this
term, one has to consider the following.

13



14 1. Field-Theory approaches to stochastic processes

Correlation functions of the non-renormalized theory, i.e. G
(n)
0 in (1.2.58) clearly do

not depend on the arbitrarily introduced mass scale µ. Performing the derivative with
respect to lnµ, while holding g0 and τ0 fixed, we find the renormalization group equation

(Dµ + βg∂gR − γτDτR + nγφ)G
(n)
R ({ki}; τR, gR, µ) = 0 , (1.2.67)

with

βg ≡ D̃µgR, γφ,τ ≡ D̃µ lnZφ,τ , (1.2.68)

where Dµ = µ∂µ|gR,τR represents the derivative with holding renormalized parameter fixed
and D̃µ = µ∂µ|g0,τ0 the derivative with holding un-renormalized parameters fixed. The first
formula in (1.2.67) is usually called the beta function and it describes how the running
coupling constant gR changes with the change of the scale. Since it depends on µ via
(1.2.60), it can be calculated as

βg = −gR(ε+ γg) . (1.2.69)

In order to calculate the beta functions, it is useful to rescale the renormalization mass
as µ̃(l) = µl, so it becomes

βg = DlgR . (1.2.70)

For the large scale behaviour l → 0 the running coupling constant will approach the IR
fixed point g∗R if βg(g

∗
R) = 0 and if ∂gRβg|gR=g∗R

> 0. The purpose of the second term in
(1.2.68) is obvious if we express Dµ in (1.2.67) and put it back into (1.2.66). By looking
at the large scale behaviour (βgR(g∗R) = 0) one gets(

Dk + (2 + γ∗τ )DτR − n(dkφ + γ∗φ)
)
G

(n)
R ({ki}; τR, gR, µ) = 0 , (1.2.71)

where γ∗i = γi(g
∗
R). As we can see here, γi functions are modifying canonical dimensions

of our theory and are therefore called anomalous dimensions12. They can be calculated
from the normalization constants (1.2.57)

γi = βg∂gR lnZi (1.2.72)

≈ −gR(ε+ γgR)∂gR

∞∑
n=1

Ain(gR)

εn
(1.2.73)

≈ −DgRAi1(gR) , (1.2.74)

providing the fact that the anomalous dimensions must be UV finite [22]. It is also
important to mention, that vertex functions with negative UV exponent (1.2.62) do not
influence the IR behaviour of the system and therefore can be neglected [22].

1.3 Critical dynamics

Since this thesis is about non-equilibrium critical phenomena, we will turn our attention
to dynamical systems. An intuitive generalization of the static systems can be done

12The existence of anomalous dimensions is a direct consequence of the thermodynamic limit [2].
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1.3. Critical dynamics 15

as follows [22, 29]. In equilibrium, the saddle point spatial configuration of the order
parameter is given by

δSStat[φ]

δφ(x)
= 0 , (1.3.1)

where SStat is some static functional, for example (1.1.3). If the system is slightly out of
equilibrium, it is not unnatural to guess that the rate at which the system relaxes back to
equilibrium is proportional to the deviation from equilibrium. This assumption of linear
response is purely phenomenological, and leads to the following equation for the rate of
change of the order parameter:

∂tφ(x, t) = −DδS
Stat[φ]

δφ(x)

∣∣∣∣
φ(x)→φ(x,t)

, (1.3.2)

where D is some proportionality constant. This equation might not give the correct
description of the equilibrium state, because the equilibrium state is actually a global
minimum of SStat[φ]. In order to ensure that the system does not evolve into the local
minimum, we must remember that the order parameter dynamics might exhibit fluctua-
tions that arise from the microscopic degrees of freedom. To ensure this, we introduce a
noise term η(x, t) into (1.3.2) such that

∂tφ(x, t) = −DδS
Stat[φ]

δφ(x)

∣∣∣∣
φ(x)→φ(x,t)

+ η(x, t) , (1.3.3)

where the random force is usually taken as a Gaussian variable that is δ-correlated in
time

〈η(x, t)〉 = 0, 〈η(x′, t′)η(x, t)〉 = δ(t− t′)D(x′,x) . (1.3.4)

Eq. (1.3.3) is a more general form of the Langevin equation describing stochastic processes
[26]. The main difference is that the description above is given in terms of the field
φ(x) instead of the single variable x. In dynamical systems, the objects of interests are
the correlation functions (as in the case of static systems) and the response functions
describing the response to an external force, i.e. the quantities

G(n,n′)({xi, ti}) =

〈
δnφ(x1, t1) · · ·φ(xn, tn)

δη(x1′ , t1′) · · · η(xn′ , tn′)

〉
, (1.3.5)

where the symbol 〈· · · 〉 denotes the average taken over all possible configurations of the
random field η.

It is also worth mentioning, that dynamical critical systems are generally described by
two ”correlation lengths”. For example the Langevin equation for the φ4 theory (1.1.3)
(also known as model A [22]) has the following form in the Gaussian approximation

∂tφ(x, t) = −D(−∂2 + ξ−2)φ(x, t) + η(x, t) , (1.3.6)

where we have identified the correlation length ξ0 ∝ τ−1/2. The solution for the classical
field Φ(k, t) = 〈φ(k, t)〉 can be found in the k, t representation as

Φ(k, t) ∼ e−t/τk , τk =
1

D(k2 + ξ−2)
, (1.3.7)

15



16 1. Field-Theory approaches to stochastic processes

where τk is the relaxation time (second correlation length). At the critical point T → Tc
for the large scale behaviour k→ 0 one obtains the following relation

τk=0 ∝ ξz , (1.3.8)

where z is called the dynamical exponent. The value of this exponent is 2 in the mean-
field approximation and corrections might be calculated using RG methods. There are,
of course, other values for different models [22].

1.3.1 Iterative solution to the Langevin equation

One of the reasons why equations such as (1.3.3) cannot be solved analytically is due
to nonlinearities on the right hand side. In order to treat nonlinearities perturbatively,
Wyld introduced an iterative diagrammatic method [8]. Here we will give a schematic
description of his approach.

First, we will rewrite (1.3.3) into more compact form

∂tϕ(x, t) = U(ϕ;x, t) + η(ϕ;x, t), 〈η(ϕ;x′, t′)η(ϕ;x, t)〉 = D(ϕ;x′, t′;x, t) , (1.3.9)

where ϕ(x, t) can represent a whole set of fields, η(ϕ;x, t) is a (Gaussian) random force
and U(ϕ;x, t) is a given t-local functional not containing time derivatives of ϕ with a
structure

U(ϕ;x, t) = Lϕ(x, t) + n(ϕ;x, t) . (1.3.10)

Here, Lϕ(x, t) is linear in ϕ(x, t) and all the nonlinear contributions are stored in n(ϕ;x, t).
The linear problem (1.3.9) can be solved exactly, while the nonlinear part n(ϕ;x, t) has
to be solved perturbatively by iterating the equation (1.3.9). To do this, we rewrite it
into (we will now skip writing explicit variable dependencies)

ϕ = ∆12[n(ϕ) + η], ∆12 = (∂t − L)−1 , (1.3.11)

where ∆12 = ∆12(x′, t′;x, t) is the retarded Green’s function (meaning ∆12(x′, t′;x, t) = 0
for t < t′) of the linear operator ∂t − L.

As a simple example, let us consider the case n(ϕ) = gϕ2/2 where g is a coupling
constant. The solution to (1.3.11) can then be represented graphically as

= +
1

2
(1.3.12)

= +
1

2
+

1

2
+ · · · , (1.3.13)

where ϕ is represented by the wavy external line (tail), η by the cross, and ∆12 by the
straight line with marked end corresponding to the argument (x′, t′). In QFT language
this marks propagator and physically it represents the propagation of the perturbation
due to the random force η. The point where the three graphical elements are joined is
associated with the vertex factor g/2. In order to obtain correlation functions we have to
multiply the corresponding number of fields ϕ together and average them over all possible
realizations of the random force η. Graphically this leads to contracted pairs creating the

16



1.3. Critical dynamics 17

correlator D in all possible ways. Therefore we will obtain a new element - pair correlation
functions of the field ϕ in the lowest approximation 〈ϕϕ〉0

∆11 ≡ 〈ϕϕ〉0 = ∆12〈ηη〉∆21 = ∆12D∆21 (1.3.14)

=
〈 〉

= = , (1.3.15)

where the wavy line represents the correlator D from (1.3.9) and

∆21(x′, t′;x, t) = ∆T
12(x′, t′;x, t) = ∆12(x, t;x′, t′) , (1.3.16)

where T denotes the shift of variables with primed variables together with vector indexes.
Physically the propagator can be (1.3.14) interpreted as a propagation of perturbation
towards both sides from the ”two point vertex” in the middle. Corrections to this corre-
lation function are constructed from the graphical elements of (1.3.12) that contain triple
vertices and the lines ∆11 and ∆12〈 〉

= = . (1.3.17)

In this way we can construct a perturbative solution to our problem. One also sees that
we are somehow constructing Feynman diagrams from Chapter 1.2. These are the basic
ideas behind the equivalence of field-theoretic models and stochastic processes that are
going be formulated in the more general theorem in the following section.

1.3.2 De Dominicis-Janssen action functional

The algorithm of calculating expectation values described in the last section is quite
cumbersome. A more effective way of performing perturbation theory is to use field-
theoretic methods. Here we will describe the derivation of the action functional formalism
for classical stochastic processes described by the Langevin equation13 (1.3.9) [6, 11, 16,
22].

From now on, the integration over all variables that are not written explicitly will be
always assumed (if not specified explicitly), i.e.

Aϕ ≡
∫

ddxdt A(x, t)ϕ(x, t) , (1.3.18)

where d is the dimension of the space and A,ϕ are some fields. Consider the stochastic
process described by the Langevin equation (1.3.9) with (1.3.10) and the two-point random
force correlator that is δ correlated in space and time D(ϕ;x′, t′;x, t) = D̃(ϕ;x, t)δ(x −
x′)δ(t− t′). Suppose that the probability distribution for the random force can be found
from (1.3.9) as

W [η] ∝ exp
{
−ηD−1η/4

}
, (1.3.19)

where the integration over all variables and summation over all indexes is implied14.
Since D may generally be an operator involving gradients, D−1 should be understood as

13The construction of the field theory for the stochastic problem can be also done using the Fokker-
Planck equation [32].

14Generally we could have stochastic process described by the set of fields ϕi. Corresponding probability
distribution will be then proportional to exp{−ηi(D−1)ijηj} were ηi is the random force that acts on the
field ϕi.
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18 1. Field-Theory approaches to stochastic processes

a Green’s function. Suppose that ϕ is a solution of (1.3.9) with an initial condition ϕ0

at t→ −∞ and a given force η. The generating functional of the correlation functions of
the stochastic problem is the functional

Z[A] =

∫
DηW [η] exp {Aϕ} , (1.3.20)

where A represents an external source of perturbations and the normalization Z[0] = 1 is
implied. The right hand side can be rewritten using the following formula

exp {Aϕ} =

∫
Dϕ δ(ϕ− ϕ) exp {Aϕ} , (1.3.21)

with a δ function δ(ϕ−ϕ) ≡ Πx,t(ϕ(x, t)−ϕ(x, t)). We know that ϕ will be our solution
ϕ only if the Langevin equation is satisfied, i.e. ϕ = ϕ⇔ Q(ϕ, η) = −∂tϕ+U(ϕ)+η = 0.
Therefore, the following coordinate transformation can be performed

δ(ϕ− ϕ) = detM δ(Q(ϕ, η)), M =
δQ

δϕ
. (1.3.22)

Performing the Fourier transformation of the delta function and then substituting iϕ′ → ϕ′

we obtain

exp{Aϕ} =

∫
Dϕ′Dϕ detM(ϕ) exp {ϕ′Q(ϕ, η) + Aϕ} , (1.3.23)

where one has to keep in mind that ϕ′ generally represents a complex field. Now one can
easily integrate out a random force η from (1.3.20) and obtain

Z[A] =

∫
Dϕ′Dϕ exp {−S[ϕ′, ϕ] + Aϕ} , (1.3.24)

S[ϕ′, ϕ] = −1

2
ϕ′Dϕ′ + ϕ′(∂tϕ− U(ϕ)) , (1.3.25)

where detM(ϕ) has been skipped, since it yields only an unimportant constant[16, 22].
Action functional (1.3.25) is also known as De Dominicis-Janssen action functional [11]
and the field ϕ′ is sometimes referred as Martin-Siggia-Rose response field. It is usually
convenient to also introduce the source A′ of the field ϕ′ so that the correlation function
can be found as

G(n,n′)({xi, ti}) =
1

Z[0, 0]

δNZ[A,A′]

δA(x1, t1) · · · δA(xn, tn)δA′(x1′ , t1′) · · · δA′(xn′ , tn′)

∣∣∣∣
A,A′=0

.

(1.3.26)

The variational derivative with respect to sources A and A′ reproduces both correlation
functions of a type (1.2.1) and the response functions (1.3.5). The role of η is therefore
played by the value of A′ in the final expressions. Similarly we can obtain the vertex
functions Γ(n,n′) from the effective action Γ as in the case of static models (see section
1.2.2).

Perturbation theory of models such as (1.3.24) goes in the standard way as in the case
of static systems described in the section 1.2. Propagators are found from the quadratic
part of the action functional, while the vertex factors are obtained from the interaction
part. However, models such as (1.3.24) usually contain a multi-component field action

18



1.3. Critical dynamics 19

functional and the quadratic part therefore has a form of scalar product of a matrix and
two multi-field component ”vectors” . For example, in the case of model A [22], the action
functional reads

S[φ, φ′] = −1

2
φ′Dφ′ + φ′(∂t −D(−∂2 + τ))φ+

g

3!
φ′φ , (1.3.27)

where the integration over all variables is implied, D(x, t,x′, t′) = D̃δ(x− x′)δ(t − t′) is
the random force correlator and D̃ is some constant. The quadratic part can be rewritten
as

S0[φ′, φ] =
1

2

(
φ′

φ

)†(
(−D̃) ∂t −D(−∂2 + τ)

{∂t −D(−∂2 + τ)}† 0

)(
φ′

φ

)
. (1.3.28)

Inverting the above matrix, propagators are found to be [22]

Gφφ′

0 (k, ω) =
1

−iω +D(k2 + τ)
, Gφφ

0 (k, ω) =
D̃

ω2 +D
2
(k2 + τ)2

, (1.3.29)

or in the (k, t) space

Gφφ′

0 (k, t) = θ(t) exp{−D(k2 + τ)t} , (1.3.30)

Gφφ
0 (k, t) =

D̃

k2 + τ
exp{−D(k2 + τ)|t|} , (1.3.31)

where θ(t) is the Heaviside step function. One should notice that propagators Gφφ′

0 and

Gφ′φ
0 = (Gφφ′

0 )† are retarded and advanced Green’s functions.
The calculation of Feynman diagrams in the case of dynamical systems is more com-

plex. In contrast to static processes, where in the momentum space the loop integration
goes only over the loop momentum, in dynamical systems the integration has to be taken
also over the loop frequency. Usually, these integrals do no not contain divergences, and
residue theorem can easily be applied. This also leads to some simplifications in the cal-
culation of the Feynman diagrams [22]. Consider vertex function with zero external fields
φ′. Loop corrections will contain calculation of closed loops of retarded Green’s functions
Gφφ′

0 and they will therefore vanish. In other words, for the calculation of vertex functions,
it is sufficient to consider only functions with at least one field φ′.

1.3.3 Dynamical Renormalization group

In the field-theoretic formulation of dynamical systems such as (1.3.24) one struggles with
the infinities arising from the loop calculations as well. On the other hand, methods of
renormalization and renormalization group introduced for static systems in 1.2 can be
applied with a straightforward generalization [16, 22].

First, one has to correctly renormalize the correlation and vertex functions, which in
momentum space reads

G
(n′,n)
R ({ki}, {ωi}; gR(µ), τR(µ), µ) = Z−n

′

ϕ (gR(µ))Z−nϕ′ (gR(µ))G
(n′,n)
0 ({ki}, {ωi}; g0, τ0) ,

(1.3.32)

Γ
(n′,n)
R ({ki}, {ωi}; gR(µ), τR(µ), µ) = Zn′

ϕ (gR(µ))Zn
ϕ′(gR(µ))Γ

(n′,n)
0 ({ki}, {ωi}; g0, τ0) ,

(1.3.33)
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20 1. Field-Theory approaches to stochastic processes

where {ki} and {ωi} are the whole sets of momenta and frequencies, g is a set of massless
parameters, τ the whole set of massive parameters and µ is the renormalized mass scale
introduced in (1.2.56). After the renormalizaton, one can then find anomalous behaviour
in the large scale and long time scaling properties of the systems similarly as described
above.

In contrast to static systems, any dynamical quantity F is described by two num-
bers – the frequency dimension dωF and the momentum dimension dkF such that [F ] ∼
[L]−d

k
F [T ]−d

ω
F . From the Fourier transformation (A.1.1) we can identify relations

dkk = −dkx = 1, dkω = dkt = 0 , (1.3.34)

dωω = −dωt = 1, dωk = dωx = 0 . (1.3.35)

Using generalized homogeneity (1.2.65), independent equations for renormalized (n′, n)
point correlation functions are derived, one for space and one for time scale dimension(

Dµ +Dk + dkeDe − dkϕn− dkϕ′n′
)
G

(n′,n)
R ({ki}, ω, eR(µ)) = 0 , (1.3.36)(

Dω + dωeDe − dωϕn− dωϕ′n′
)
G

(n′,n)
R ({ki}, ω, eR(µ)) = 0 , (1.3.37)

where again De = e∂e with e being the set of all parameters of the theory (masses and
coupling constants). The idea now is to introduce the total canonical dimension dF (or
the total scaling dimension) for the quantity F that will take the same role as the classical
canonical dimension in static systems. In order to do that we sum equations (1.3.36) with
(1.3.37) multiplied by a frequency dimension dω and obtain

(Dµ +Dk + dωDω + deDe − dϕn− dϕ′n′)G(n′,n)
R ({ki}, ω, eR(µ)) = 0 , (1.3.38)

where the total canonical dimension is

dF = dkF + dωd
ω
F . (1.3.39)

One has to keep in mind that this is not a real dimension in any way. It only tells us
how the parameters of the theory are going to be scaled within our choice of dω

15. The
reason for the multiplication with dω is the following. The linear operator L in dynamical
systems (1.3.9) usually has the form of ∂t+const·∂dω . The proper choice of dω can actually
make the proportionality constant dimensionless, which will simplify the renormalization
procedure. We shall take this dimension to be16 dω = −dkν/dων , where ν is some parameter
of the theory that will become dimensionless (usually viscosity or a diffusion constant).
In the language of RG it means that ν is marginal. The RG equation then tells us

(Dµ + βg∂gR − γν∂νR − γτ∂τR)G
(n′,n)
R ({ki}, ω, gR(µ), νR(µ), τR(µ)) = 0 , (1.3.40)

where gR represents the whole set of renormalized dimensionless (in both momentum and
frequency space) parameters, νR is massless only due to the proper choice of dω and τR
can be the whole set of parameters with nonzero total dimension. If one tries now to use
the last equation in order to eliminate Dµ from (1.3.38)(while looking at the large scale
and long time behaviour described by the IR fixed point βgR(g∗R) = 0), one will obtain

15In the sense of Wilsonian RG that would mean that we scale variables as k → k
′

= bk, ω → ω′ =
bdωω.

16It most of the models the choice is dω = 2 (for example model A,C and reaction diffusion systems),
but in some other cases dω = 4 (for example model B,J). See [22] for more details.
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1.4. Reaction-diffusion processes 21

the scaling equation that will still contain γ∗νRDνR . This term can be eliminated using the
frequency space homogeneity equation (1.3.37), and the result will be the total effective
homogeneity differential equation

(Dk + ∆ωDω + ∆τDτR −∆ϕn−∆ϕ′n
′)G(n′,n)

R ({ki}, ω, gR(µ), νR(µ), τR(µ)) = 0 ,
(1.3.41)

where

∆i = dki + ∆ωd
ω
i + γ∗i i ∈ {τR, ϕ, ϕ′}, ∆ω = −d

k
ν + γ∗ν
dων

. (1.3.42)

As we can see again from (1.3.41), the arbitrarily mass scale µ modifies the total canonical
dimension of parameters of the model, and we obtain the effective dimensions ∆F .

In dynamical systems the renormalization of vertex functions is considered according to
the total canonical dimension. The total canonical dimension dΓ of 1-irreducible functions
Γ (equivalent to the total canonical dimension (1.2.61) in static systems) with nΦ number
of fields Φ = ϕ, ϕ′ is given by following relations

dpΓ = d−
∑

Φ

nΦd
p
Φ, dωΓ = 1−

∑
Φ

nΦd
ω
Φ , (1.3.43)

dΓ = d+ dω −
∑

Φ

nΦdΦ, dΦ = dpΦ + dωd
ω
Φ . (1.3.44)

While calculating contributions, one has to consider possible modifications (for example
real UV exponent (1.2.63)) and various symmetries e.g. isotropy, Galilean invariance.

1.4 Reaction-diffusion processes

Reaction-diffusion processes describe various problems in nature such as chemical reac-
tions, predator-prey problems etc. The usual approach is made in terms of kinetic rate
equations [26] for the concentration field n(x, t). One can also perform a simple approxi-
mation and assume that the density is spatially homogeneous n = n(t). For example, in
this approximation the kinetic rate equation of the annihilation reaction A + A → Ø is
[26]

∂tn(t) = −Kn2(t) , (1.4.1)

with the solution

n(t) =
n0

1 + n0Kt

t→∞−−−→ n(t) ∝ tγ , (1.4.2)

where K is the reaction rate for the A+ A→ Ø reaction and n0 = n(0). It is clear from
(1.4.2) that the long time behaviour is described by the exponent γ = 1, which seems
to be universal and does not depend on the microscopic properties of the molecule A.
Since we are neglecting density fluctuations, these results are referred to as a mean-field
approximation. Similarly to the in theory of critical phenomena, they are valid above
a certain critical dimension dc, which depends on the structure of the reaction (in this
case it can be shown that dc = 2 [23]). Below dc, another approach has to be taken. In
what follows, we will give a schematic description of a field-theoretic formulation that
can be used for calculating corrections to this mean-field approximation. A more detailed
description can be found in [23, 33].
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22 1. Field-Theory approaches to stochastic processes

1.4.1 Doi’s second-quantized representation

Let us consider the d-dimensional hypercubic lattice with lattice spacing l. The lattice
sites are labeled by i = 1, 2, · · · . Particles A can diffuse on this lattice by hopping to
the nearest lattice sites with the probability D. Let us also consider the simple reaction
process - particles can annihilate with the probability λ. The full description of such a
stochastic problem is given in terms of probabilities P (t, {n}), where {n} = {n1, n2, . . . }
and ni represent the number of particles on the site i, given by a set of the Master
equations [26]

dP (t; {n})
dt

=
∑
m

Rm→nP (t; {m})−
∑
m

Rn→mP (t; {n}) , (1.4.3)

where P (t, {n}) is the probability of the system being in the system configuration {n} at
time t, Rm→n is the transition probability from the state m to the state n, and the sum
goes over all lattice configurations n and m, respectively. Following the work of Doi [13],
this problem can be rewritten in terms of creation and annihilation operators well-know
from quantum mechanics (also known as second quantization). This allows us to find
perturbative solutions to correlations and response functions. If we don’t consider any
restriction on the site occupations we can introduce bosonic operators for each lattice site
i with the following commutation relations

[ai, a
†
j] = δij, [ai, aj] = [a†i , a

†
j] = 0 , (1.4.4)

where the ground state |0〉 is defined as

ai|0〉 = 0 for all sites i. (1.4.5)

The state |{n}〉 that represents the lattice configuration {n} = {n1, n2, · · · } is then defined
as

|{n}〉 = a†n1

1 a†n2

2 . . . |0〉 . (1.4.6)

It can be shown that the following relations hold (note the different normalization that
arises here and in the second quantization method in quantum field theory)

a†i |{n}〉 = |{n1, n2, . . . , ni + 1, . . . }〉 , (1.4.7)

ai|{n}〉 = ni|{n1, n2, . . . , ni − 1, . . . }〉 , (1.4.8)

a†iai|{n}〉 = ni|{n}〉 , (1.4.9)

where in the last row one can define the particle number operator

ni = a†iai . (1.4.10)

We can associate a state in the Fock-Space with a set of probabilities at time t (also
known as the Doi formalism)

|Φ(t)〉 ≡
∑
{n}

P (t; {n})|{n}〉 , (1.4.11)
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1.4. Reaction-diffusion processes 23

where the summation goes over all possible lattice configurations. This allows us to rewrite
the Master equation into a Schrödinger-like form17 for the state vector |Φ(t)〉

d

dt
|Φ(t)〉 = −H|Φ(t)〉 , (1.4.12)

with some ”Hamiltonian” H, which will be calculated later, and its exact form depends
on the system under consideration. The formal solution to last equation can be written
as

|Φ(t)〉 = e−Ht|Φ(0)〉 , (1.4.13)

with an initial state |Φ(0)〉 that needs to be specified. In the case of chemical reactions,
the initial probability distribution P (0, {n}) is usually known, and therefore the initial
state can be calculated from (1.4.11). From a technical point of view, in the case of
mono-molecular reactions it is most convenient to chose the Poisson distribution

P (0; {n}) =
∏
i

(
nni

ni!
e−n
)
, (1.4.14)

where n stands for the mean particle number (initial density of the particles). This
corresponds to the initial state

|Φ(0)〉 =
∑
{n1}

e−n
nn1

n1!
a†n1

1

∑
{n2}

e−n
nn2

n2!
a†n2

2 . . . |0〉 . (1.4.15)

In fact, single species reaction processes are unlike bi-molecular reactions independent of
the initial conditions [34].

1.4.2 Single species annihilation reaction-diffusion process

We can separate the full ”Hamiltonian” into two parts: diffusion and reaction. These
parts can be handled separately as follows.

Diffusion. We first derive the diffusion part HD of the full ”Hamiltonian” H which
corresponds to the random walk of the A particles. For simplicity we start only with n1

and n2 particles on sites 1 and 2 respectively. Particles are allowed to perform one-way
hopping process 1→ 2 with the probability D. The master equation (1.4.3) of this process
is

dP (t;n1, n2)

dt
= D

[
(n1 + 1)P (t;n1 + 1, n2 − 1)− n1P (t;n1, n2)

]
, (1.4.16)

where the combinatorial factors n1 +1 and n1 arise from the fact that particles jump inde-
pendently of each other. Multiplying the last equation by the state (1.4.6) and performing
the sum over all possible occupations yields

d

dt

∑
{n1,n2}

P (t;n1, n2)|n1, n2〉 =

= D
∑
{n1,n2}

[
a†2a1P (t;n1 + 1, n2 − 1)|n1 + 1, n2 − 1〉 − a†1a1P (t;n1, n2)|n1, n2〉

]
.

17Or imaginary time Schrödinger equation.
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24 1. Field-Theory approaches to stochastic processes

This can be rewritten using the definition of state (1.4.11) as

d|Φ〉
dt

= D(a†2 − a†1)a1|Φ〉 . (1.4.17)

If we now assume that particles can hop also from site 2 to site 1 we arrive at

d|Φ〉
dt

= −D(a†2 − a†1) (a2 − a1) |Φ〉 =⇒ H(1↔2)
D = D(a†2 − a†1) (a2 − a1) , (1.4.18)

where we identify 1 ↔ 2 hopping Hamiltonian H(1↔2)
D . This procedure can be easily

generalized to include all the lattice sites via the Master equation

dP (t; {n})
dt

=D
∑
〈i,j〉

[
(ni + 1)P (t; . . . , ni + 1, nj − 1, . . . )− niP (t; . . . , ni, nj, . . . )

]
,

(1.4.19)

where 〈i, j〉 represents sum over nearest neighbours. The resulting Schrödinger-like equa-
tion and diffusion Hamiltonian are

d|Φ〉
dt

= −D
∑
〈i,j〉

(a†i − a†j) (ai − aj) |Φ〉 =⇒ HD = D
∑
〈i,j〉

(a†i − a†j) (ai − aj) . (1.4.20)

Reactions. Let us now consider the single species annihilation reaction A+A
λ−→ ∅ on

a single site. The corresponding Master equation of this process is

dP (n)

dt
= λ

[
(n+ 2)(n+ 1)P (n+ 2)− n(n− 1)P (n)

]
, (1.4.21)

where (n+i) are again combinatorial factors that arise from the fact that any particles can
react together. Similar to above algebra, (1.4.21) can be rewritten into the Doi formalism

d|Φ〉
dt

= λ(a2 − a†2a2)|Φ〉 . (1.4.22)

This can be generalized to the whole lattice by summing over all lattice sites and after
that we identify corresponding reaction Hamiltonian to be

H(A+A→∅)
R = λ

∑
i

(a†2i − 1)a2
i . (1.4.23)

In conclusion we see that the process contributes to HR with two terms of the form

(rate)
[
(reactants)− (reactions)

]
, (1.4.24)

(reactants) creation and annihilation operators for each reactants (normal ordered)
(reactions) annihilation operators for each reactions, creation operator for each product
(normal ordered)

Some examples are [23]

A+ A
λ−→ ∅ : λ

[
a†2a2 − a2

]
,

A
ρ−→ A+ A : ρ

[
a†a− a†2a

]
,

Hop 1
D−→ 2 : D

[
a†1a1 − a†2a1

]
,

A+B
σ−→ C : σ

[
a†b†ab− c†ab

]
.

(1.4.25)
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1.4. Reaction-diffusion processes 25

1.4.3 Observables and coherent state path integral formalism

The whole Hamiltonian of the single particle reaction-diffusion system is

H = HD +HR = D
∑
〈i,j〉

(
a†i − a†j

)(
ai − aj

)
+ λ

∑
i

(
a†2i − 1

)
a2
i . (1.4.26)

Non-hermiticity of such a Hamiltonian means that the reaction rates in (1.4.3) do not
satisfy the detailed balance condition and thus the equilibrium state cannot be character-
ized by the Gibbs distribution. In addition, physical observables O in the Doi formalism
cannot be given as a bilinear product 〈Φ|O|Φ〉 since according to (1.4.11) this would mean
that they would be bilinear in the probability P (t; {n}). It is physically reasonable to
assume that O can be expressed as a function of the occupation numbers O = O({n}).
The ensemble average of O is given by

O =
∑
{n}

P (t; {n})O({n}) . (1.4.27)

In order to eliminate the problem of having the product that is bilinear in the probability
we try to find the projection state18 〈P| such that the following identity is valid

〈O(t)〉 =
∑
{n}

P (t; {n})〈P|O({a†a})a†n1

1 a†n2

2 . . . |0〉 = 〈P|O|Φ(t)〉 , (1.4.28)

where the operator Ô({a†a}) can be obtained fromO({n}) with the substitution ni → a†iai
at every site i. Comparing (1.4.28) and (1.4.27) one can find that the projection state
〈P| has to satisfy the following conditions

〈P|a†n1

1 a†n2

2 . . . |0〉 = 1 =⇒ 〈P|a†i = 〈P| ∀i, 〈P|0〉 = 1 . (1.4.29)

This state is then found to be

〈P| = 〈0|e
∑
i ai . (1.4.30)

From the conservation of probability we can find another important property

1 = 〈P|e−H({a†,a})t|Φ(0)〉 (1.4.31)

= 〈P|(1−H({a†, a})t+ . . . )|Φ(0)〉 , (1.4.32)

which requires that 〈P|H = 0 or equivalently using (1.4.29) is

H({a† = 1, a}) = 0 , (1.4.33)

These conditions need to be satisfied for any quasi-Hamiltonian derived using Doi’s for-
malism. Naturally, this is true for our Hamiltonian (1.4.26) and it is an expression for
the conservation of probability.

Starting from this point, one can derive the coherent state path integral formulation
using standard procedures used in condensed matter field theory [2]. There are certain
differences that we will mention, but we will skip the actual derivation here. For a detailed

18Not to be confused with the projection operator.
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26 1. Field-Theory approaches to stochastic processes

derivation see [23]. Following the standard procedures, the expectation value for (1.4.28)
is found to be

〈O(t)〉 =

∫
Dψ′Dψ O[ψ′, ψ] exp{−S[ψ′ + 1, ψ]} , (1.4.34)

with

S[ψ′ + 1, ψ] =

∫
ddxdt

{
ψ′(x, t)∂tψ(x, t)−H[ψ′ + 1, ψ]

}
+ n

∫
ddx ψ′(x, 0) , (1.4.35)

which is known as the Doi-Peliti action functional [14]. In (1.4.34) and (1.4.35), fields
ψ(x, t) and ψ′(x, t) correspond to the coherent state eigenvalues of the bosonic creation
and annihilation operators ai, a

†
i at the position i and the time instance t after performing

the continuum limit. One has to keep in mind that these fields are generally complex and
even though the field ψ′(x, t) represents a complex conjugated field to the field ψ(x, t), it
is quite common in condensed matter physics to tread these fields independently [2].

There are two main differences between (1.4.35) and the usual coherent state path inte-
gral formalism. First is the Doi shift ψ′ → ψ′+1 that can be seen in the action functional
S and it is performed due to the long time behaviour of the primed field ψ′(x, t→∞) = 1
[23]. This shift is also simplifying the structure of the action functional. The second dif-
ference is the appearance of the last term that represents the initial conditions. However,
the long time behaviour of the mono-molecular reaction diffusion systems is independent
from them, as mentioned above.

The action functional Hamiltonian H can usually be separated into two parts

H[ψ′ + 1, ψ] =

∫
ddxdt ψ′(x, t)D∂2ψ(x, t) + (reactions) , (1.4.36)

where D is the diffusion constant and reactions are usually at least of third order in fields19

ψ, ψ′. This means that from (1.4.35) we can identify the quadratic and the interaction
part of the action functional and use perturbative renormalization group for investigating
large scale and long time behaviour. From the quadratic part

S0[ψ′ + 1, ψ] =

∫
ddxdt ψ′(x, t)

(
∂t −D∂2

)
ψ(x, t) , (1.4.37)

we can identify the diffusion propagator Gψψ′

0 (x, t) = 〈ψ(x, t)ψ′(0, 0)〉, which in the
Fourier representation has the form

Gψψ′

0 (k, ω) =
1

−iω +Dk2
, (1.4.38)

or in the k, t representation

Gψψ′

0 (k, t) = θ(t) exp{−Dk2t} . (1.4.39)

The similar situation may occur using the path integral formulation for stochastic pro-
cesses (1.3.24).

19Exceptions are, for example, mass terms that will arise later when we will be describing percolation
processes.
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Chapter 2

Directed percolation

Imagine a simple epidemic process, where an infection is spreading among a number
of species (humans, animals, bacteria etc.). If the density of this species is small, the
infection will stop after some time. On the other hand, if the density is high enough,
then the number of infected will grow exponentially. It is therefore natural to expect that
there is a certain critical point where an epidemic breaks out. As mentioned in Chapter
1, in statistical physics various models show universal behaviour around a certain critical
point. The epidemic break-out is an example of a dynamical second-order phase transition,
called directed percolation (later DP). In fact, DP represents a prototype of a second order
active-to-absorbing phase transition, i.e. transition from fluctuating phase to the phase
from which the system cannot escape. These processes can be seen in various parts of the
nature from physics, chemistry, biology to sociology. In this chapter we give a description
of its basic properties.

First we introduce DP process generally and describe its general aspects. Assuming
a certain microscopic description, we show that there is a continuous phase transition
around the critical point. All critical exponents relevant to our problem are then derived
in the following way. First we introduce static (t → ∞) critical exponents and show,
that their number is reduced due to the time-reversal symmetry. Static scale invariance
then allows us to relate these exponents to physically measurable quantities. The physical
interpretation of correlation lengths and critical exponents is given. Dynamical critical
exponents are then introduced using dynamical scaling and their relation to static critical
exponents is established. It turns out that there are only three independent critical
exponents describing the DP phase transition.

In the following section we generalize the whole concept introducing the DP conjecture
that determines which processes belong to the DP universality class. It turns out that the
DP process is not solvable analytically in any spatial dimensions [35]. This also motivates
us to use field-theoretic methods in order to study its large-scale behaviour. The field-
theoretic formulation is derived using Doi-Peliti formalism described in Section 1.4. The
Langevin formulation is found using the equivalence between field-theoretic models and
stochastic processes and the mean-field critical exponents are derived. In the end we
discuss how to calculate corrections to the mean-field approximation using RG methods
and briefly mention experimental realisations of DP.

Time-reversal symmetry plays an important role, it reduces the number of independent
critical exponents. However, this symmetry can be violated by introducing a random
environment. The concept of time reversal symmetry breaking and its consequences will
be discussed in Chapter 4.
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28 2. Directed percolation

2.1 What is directed percolation?

In general, the term percolation (derived from Latin percolare = to filter) means physical
process of a liquid passing through porous substance, which can be composed of sand,
paper or cloth. This problem turns out to be more general, allowing us to investigate
properties of various problems in nature.

As a simplest example, imagine a lattice, where pores of the medium are represented
by lattice sites. Neighbouring pores are connected via channels (bonds), that can be
either open or blocked1. Percolating medium (liquid) can start from one point and the
percolating agent can pass only through unblocked bonds. There are two fundamentally
different versions of percolation. In the isotropic percolation, agent passes through open
channels in any direction. In the directed percolation, the agent has a preferred direction
of moving which can be caused by the gravitation field, wind force etc. In Fig. 2.1 one
can see different paths constructed in two mentioned cases. In this thesis, we restrict
ourselves only to directed percolation.

We can mimic the microscopic structure of the system by introducing percolation
probability p that tells us how probable it is for the agent to pass through bonds. An
interesting question might be how does this percolating probability control the behaviour
of the system.

As stated above, in DP there is a preferred direction in which the agent is spreading.
Temporal sequence of the individual steps allows us to interpret this specific direction as
time. For example we may identify the vertical direction as time direction and measure
the evolution of number of particles with respect to time N(t). Schematic description is
shown in Fig. 2.2. One can see that the percolating agent is passing through unbroken
bonds and activating lattice sites.

If we take the percolating agent as an A particle we may interpret percolation process
as a reaction diffusion process. For example particles A are diffusing on the lattice A+Ø→
A+ Ø if there is only one unbroken bond to percolate through. If there are two unbroken
bonds, particles undergo offspring production reaction A → A + A. Since there can be
only one particle on the single site, we must consider coalescence process, if two particles

1A different example is a site DP, where the lattice sites are randomly blocked [35].

Figure 2.1: An example of direct and isotropic percolation. In the left Figure, the agent
is spreading isotropically while in right Figure the agent is spreading towards one specific
direction (down).
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2.2. Critical exponents 29

Original seedactive site
inactive site
unbroken bond
broken bond
active bond

Figure 2.2: Reaction scheme for DP. Percolating agent starts at the top site and goes
percolates down (time direction) through unbroken bonds. On the right hand side the
evolution of N(t) is depicted.

meet at a single site. Finally, if there is no unbroken bond, particles perform death process
A→ Ø. Schematic description is depicted in Fig. 2.3.

It is very instructive to perform a simple numerical simulation and vary the percolation
probability pc. The results can be seen in Fig. 2.4. If the percolation probability is small
(smaller than pc) percolation stops after a short amount of time. If the p is large enough
(larger than pc) the number of particles grow indefinitely. This indicates that there might
be a certain critical percolation probability pc between these two active and absorbing
states. It is also interesting to calculate the mean particle value 〈N(t)〉 as it is shown
in Fig. 2.5. Using log-log scale, linear regime can be found at the critical probability
pc = 0.6447. This regime exhibits the power-law behaviour

〈N(t)〉 ∝ tΘ , (2.1.1)

where the critical exponent attains approximate value Θ ≈ 0.302.

2.2 Critical exponents

As has been stated in the section 2.1, DP process can be interpreted as a stochastic
reaction-diffusion process with reactions shown in Fig. 2.3. If the probability of the
offspring production is sufficiently large, system grows towards infinity - it remains in the
active state. On the other hand, if the offspring production is sufficiently small, system
approaches a state with no particles. Such state, from which system cannot escape, is

offspring production      death           coalescence           diffusion

Figure 2.3: Reaction scheme for DP process
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30 2. Directed percolation

Figure 2.4: DP process in 1 + 1 dimension for three different percolation probabilities.

Figure 2.5: Average number of particles 〈N(t)〉 with respect to time t for different
probabilities plotted in the log-log scale. As we can see, for a certain probability pc =
0.6447 we have linear dependence in log-log scale.

called absorbing state. This state cannot be in detailed balance with any active state and
therefore the system is said to be out of thermal equilibrium. DP is therefore claimed
to exhibit non-equilibrium phase transition from the fluctuating phase to the absorbing
state. This transition is also referred to as active-to-absorbing phase transition[35].

As it has been mentioned in the Chapter 1, static as well as dynamic systems that
undergo continuous phase transition can be assigned to certain universality classes which
are uniquely characterized by critical exponents. In following sections we show, that in
the case of DP there are at least 3 independent critical exponents β, ν|| and ν⊥ and we
briefly describe DP scaling properties.
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2.2. Critical exponents 31

2.2.1 Rapidity symmetry

Let us first assume that our model is in active state. In analogy to critical phenomena we
consider quantity τ ∝ p− pc > 0 that plays the role of the deviation from the criticality,
i.e. the ”mass” term. In this case, the system relaxes into a fluctuating steady state with
nonzero numbers of active sites. Space-time trajectory of such state can be interpreted as
a infinite cluster of active particles which can be described with two different quantities
[35]:

• The probability that a given site belongs to the infinite cluster generated at t0 = −∞
from a fully occupied lattice. This probability is equal to the density ρ of active
sites in the stationary state at time t.

• The probability that an isolated seed of activity (a single particle on an empty
lattice) at time t0 will create an infinite cluster when t → ∞. Such quantity is
related to the percolation probability Pperc

Both of these quantities may be chosen as order parameters of our theory, where the first
one is describing the past and the second one the future. In the long time limit t → ∞
we expect them to behave as:

ρ ∼ τβ , Pperc ∼ τβ
′
, (2.2.1)

with two generally different critical exponents β and β′. In the case of bond DP, these
two exponents merge due to the time reversal symmetry, called rapidity symmetry [36].

Let us consider an empty lattice. If we activate a single site at time t0 = 0, we can
ask for the probability of finding at least one active site at time t - the survival probability
Psur(t). Because there is a finite probability that the cluster will survive in active phase
for t→∞, in the long time limit this probability should tend to a constant called ultimate
survival probability. Although, this is nothing else than just the percolation probability

Pperc(τ) = lim
t→∞

Psur(t; τ) . (2.2.2)

As we can observe from Fig. 2.6, the bond DP process running backward in time can be
interpreted as a process running forward in time but the difference is in the exchange of
initialisation and measurement. It can be shown [36], that in the case of DP process the
probability of finding the direct connection between a single site at t0 = 0 and some site
on the horizontal line at time t is equal to the probability of finding a direct connection
between a fully occupied line at t0 = 0 and a particular site at time t

Psur(t) = ρ(t) , (2.2.3)

which implies that the corresponding critical exponents β = β′ are identical. However,
this relation which is the direct result of the rapidity symmetry is not valid for all DP
processes. In fact, it is valid only for bond DP processes and for other realisations of DP
(like for example site DP) this symmetry is not generally exact [35].

2.2.2 Correlation length and correlation functions

Dynamic systems are usually described by two critical exponents. In the case of DP we
can identify the space correlation length ξ⊥ and the time correlation length ξ||. In the
vicinity of the critical point, they should follow power-law behaviour [35]

ξ⊥ ∼ |τ |−ν⊥ , ξ|| ∼ |τ |−ν|| , (2.2.4)
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32 2. Directed percolation

activate single site                          start with fully occupied lattice   

check for global survival                       measure activity at single site 

Figure 2.6: Rapidity symmetry reversal. As we can see, the evolution of our system is
symmetric with respect to the the time reversal symmetry (thick blue line is the same,
just inversed).

where ν|| and ν⊥ stand for two different critical exponents that govern their behaviour.
In the scaling regime, they are found to be related as follows

ξ|| ∼ ξz⊥ , (2.2.5)

where z = ν||/ν⊥ is the dynamical critical exponent [16]. This exponent describes how
fast the local perturbation spreads. Three general cases can be distinguished:

• z = 1 - deterministic (ballistic) spreading

• 1 < z < 2 - superdiffusive spreading

• 2 < z - subdiffusive spreading

In the case of many-particle models that are described by the short range interactions,
the value of this exponent usually varies in the range 1 < z ≤ 2. It is also an universal
quantity, which means that it also has to be determined by the universality class and the
dimension of the system. The physical interpretation of ξ|| and ξ⊥ can be seen in Fig. 2.7.

2.2.3 Scale invariance

The phenomenological scaling theory for DP phase transition is based on the assumption,
that there are only two divergent length scales ξ|| and ξ⊥. This means, that all critical
exponents can be expressed in terms of four independent exponents β, β′, ν||, ν⊥ (where β
and β′ coincide if the rapidity symmetry holds) introduced in the previous section.

The crucial assumption is that if we rescale the control parameter, which in our case
is the deviation from the criticality, as [35]

τ → λτ , (2.2.6)

all other order parameters and correlation lengths are to be rescaled as follows

ρ→ λβρ , Pperc → λβ
′
Pperc , ξ⊥ → λν⊥ξ⊥ , ξ|| → λν||ξ|| . (2.2.7)
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2.2. Critical exponents 33

Figure 2.7: A schematic physical interpretation of the correlation lengths ξ⊥ and ξ||.
Size of the void areas (left) are determined by correlation lengths as well as the slope of
the decay (dashed lines on the right) of the two point correlation functions are equal to
−2β/ν⊥ and −2β/ν||. Results from a simulation can be found for example in [35].

In the same way, scale invariance implies that all measurable quantities and parameters
rescale with λκ, where κ is the scaling power. Since correlation lengths ξ|| and ξ⊥ have
the dimension of time and length, all spatial and temporal intervals rescale in the same
way

∆t→ λ−ν||∆t , x→ λ−ν⊥x . (2.2.8)

This procedure helps us to find specific universal properties from the function under
consideration.

Let us for example take the two point correlation function

C(x1, t1;x2, t2) = 〈s(x1, t1)s(x2, t2)〉 , (2.2.9)

in the active state τ > 0. Due to the spatial and temporal translational invariance and
isotropy, we can rewrite (2.2.9) in the following way

C(x,∆t; τ) = 〈s(x1, t1)s(x2, t2)〉 , (2.2.10)

where ∆t = t2 − t1 and x = |x2 − x1|. Sufficiently close to the critical point τ ≈ 0, we
can write the following relation for the correlation function2

C(λ−ν⊥x, λ−ν||∆t;λτ) ' λκC(x,∆t; τ) , (2.2.11)

which holds for any positive λ. We are now free to choose λ in a suitable way, that will
simplify the last relation. By choosing λ = τ−1, one of the arguments becomes a constant,
i.e.,

C(x,∆t; τ) ' τκC(τ ν⊥x, τ ν||∆t; 1) = τκc(x/ξ⊥,∆t/ξ||) , (2.2.12)

where c(· · · ) is a scaling function that does not depend on τ . The value of the scaling
exponent κ can be determined by looking at the large scale behaviour in the stationary
active state. For the limit x → ∞ any two points become uncorrelated and therefore

2Symbol ' denotes the asymptotic equality, i.e. in this case f(τ) ' g(τ) ⇐⇒ lim
τ→0

f(τ)
g(τ) = 1.
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34 2. Directed percolation

C(∆t,∞; τ > 0) = ρ2. Since we know that the density scales as τβ we find κ = 2β. Eq.
(2.2.12) can be then written as

C(x,∆t; τ) ' λ−2βC(λ−ν⊥x, λ−ν||∆t, λτ) . (2.2.13)

Let us now consider the equal time correlation function

C(x, 0; τ) ' λ−2βc(λ−ν⊥x, 0;λτ) . (2.2.14)

If we now put λ−ν⊥x = 1, we obtain in the vicinity of the critical point (τ → 0)

C(0, x; 0) = x−2β/ν⊥c(0, 1, 0) ∝ x−2β/ν⊥ . (2.2.15)

We can show in the same way that the autocorrelation function (x = 0) is proportional
to (∆t)−β/ν|| . These results can also be seen in Fig. 2.7.

2.2.4 Dynamic scaling, pair-connectedness function

Now we turn our interest to exponents that describe evolution in time [35]. Time depen-
dent order parameters exhibit dynamical scaling and to find the corresponding scaling
behaviour, we start with rescaling the time as

t→ λ−ν||t . (2.2.16)

A simple example might be a decay of a particle density ρ(t; τ) in an infinite system,
which starts at a fully active initial configuration. Scale invariance yields

ρ(t; τ) ' λ−βρ(λ−ν||t;λτ) . (2.2.17)

Following the same procedure as with the equal time correlation function (2.2.14) we find
that at the critical point τ = 0 the density behaves as

ρ(t; τ) ' t−δρ(1; tν||τ) =⇒ ρ(t; 0) ∝ t−δ , (2.2.18)

where δ = β/ν||. Note that arround the critical point τ ≈ 0 , the last scaling relation can
be verified by plotting tδρ(t; τ) as a function of tν||τ .

If we have the nontrivial initial configuration, the best way to describe our system is
via the pair-connectedness function(PCF) G(x1, t1;x2, t2; τ). In the case of DP processes,
this function is defined as the probability of finding a direct path of active sites from
site (x1, t1) to the site (x2, t2). A more general definition might be that it describes the
probability that a generated cluster at (x1, t1) on an empty lattice will activate a site at
(x2, t2). Due to the translational invariance, it can depend only on the differences in the
space and time x = |x2 − x1| and t = |t2 − t1|.

It should be stressed that the definition of the PCF is different from the ordinary
two-point correlation function in the way that PCF probes the existence of a causal path
between two points. This means that in order to construct the steady state asymptotic
behaviour, we have to take into account two probabilities:

• The probability that the seed at (x1, t1) will generate an infinite cluster, i.e., the
survival probability

• The probability that in the limit t2 → ∞ the randomly chosen site belongs to the
infinite cluster, i.e., the steady state density ρs
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Figure 2.8: Graphical visualization of the backbone

Hence we conclude that the long time behaviour is described as

lim
t→∞

G(t, r; τ) = Pperc(τ)ρs(τ) ∼ τβ+β′ . (2.2.19)

Knowing the above limit, we can assume that the PCF has to be rescaled

G→ λβ+β′G , (2.2.20)

so the corresponding scaling form is

G(t, r; τ) ' λ−β−β
′
G̃(λ−ν||t, λ−ν⊥ ;λτ) . (2.2.21)

Because of the rapidity symmetry (section 2.2.1) these two exponents coincide.
The PCF is very useful for analysis of clusters generated from a single seed on an

empty lattice. It can be determined numerically by activating a seed at the point (x1, t1)
and measuring the response at the point (x2, t2) averaged over many times. As one can
see from Fig. 2.8, not all lattice sites contribute to the response at (x2, t2). The dark path,
that is connecting points (x1, t1) and (x2, t2) is called the backbone of the PCF. Roughly
speaking, the backbone is a set of bonds and lattice sites that are connecting points (x1, t1)
and (x2, t2) by cutting out all dangling ends. PCF is a useful tool for studying the DP
absorbing phase transition and calculating corresponding critical exponents. While in
the absorbing phase τ < 0 generated clusters remains finite, in the active phase τ > 0
a nonzero probability for generating an infinite cluster arises. There are three basic
quantities to characterize cluster growth in both phases:

• the survival probability P (t)

• the number of active sites N(t)

• the mean square spreading R2(t) from the origin (or the squared radius of gyration)

where P (t) and N(t) are averaged over all clusters and were the last is averaged one
only over surviving clusters. These quantities can be at the criticality described by the
following power laws

P (t) ∼ t−δ
′
, N(t) ∼ tΘ, R2(t) ∼ tz̃ , (2.2.22)

where δ is the survival probability exponent, Θ is the slip exponent and z̃ is the spreading
exponent (different from the dynamical exponent z defined in (2.2.5)). Around the critical
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36 2. Directed percolation

point, (2.2.22) should follow scaling laws3:

P (t; τ) ' λ−δ
′ν||P (λ−ν||t;λτ) , (2.2.23)

N(t; τ) ' λΘν||N(λ−ν||t;λτ) , (2.2.24)

R(t; τ) ' λν⊥R(λ−ν||t;λτ) . (2.2.25)

In the active phase, long-time behaviour of the percolation probability is by definition
equal to the ultimate survival probability (2.2.2) and so we conclude

δ′ = β′/ν|| . (2.2.26)

Let us now focus on the exponents Θ and z̃. They can be both calculated from the PCF.
The average number of particles is given by the relation:

N(t; τ) ∝
∫

ddx G(x, t; τ) (2.2.27)

' λ−β−β
′
∫

ddx G(λ−ν⊥x, λ−ν||t;λτ) (2.2.28)

' λdν⊥−β−β
′
N(λ−ν||t;λτ) , (2.2.29)

where in the last expression we have rescaled the space variable with x→ λν⊥x. Compar-
ing this with (2.2.24) we will obtain d-dependent relations called generalized hyper-scaling
relation [37]

Θ =
d

z
− δ − δ′ , (2.2.30)

where δ = β/ν|| and δ′ = β′/ν||. As was already pointed out, due to the rapidity symmetry
β and β′ merge into the one exponent and therefore δ = δ′.

Critical exponent z̃ for the radius of gyration is found in the same way using the
definition

R2(t; τ) = 〈|x|2〉 =

∫
ddx x2 G(x, t; τ)∫

ddx G(x, t; τ)
(2.2.31)

' λ2ν⊥R(λ−ν||t;λτ) , (2.2.32)

from which using relation (2.2.22) we conclude that

z̃ =
2ν⊥
ν||

=
2

z
. (2.2.33)

From equations (2.2.26), (2.2.30) and (2.2.33) we immediately see that there are 4 inde-
pendent critical exponents. However, if the rapidity symmetry holds critical exponents β
and β′ coincide. This gives us a very important conclusion, which is that by measuring
dynamical critical exponents (2.2.22) we can obtain all other exponents by simply using
relations described above.

3These relations follow from the fact, that after the rescaling λ−ν||t = 1 one must obtain (2.2.22).
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2.3 Directed percolation universality class

Description given above might describe a wide range of different physical processes that
differ from each other in their microscopic properties. In order to determine the range
of models belonging to the DP universality class, Janssen and Grassberger formulated
the DP conjecture[35]. According to this conjecture, a physical model belongs to the DP
university class if it satisfies the following conditions:

• the model displays a continuous active-to-absorbing state phase transition,

• the transition is characterized by a non-negative one-component order parameter,

• the dynamic rules are short-ranged,

• the system has no special attributes such as unconventional symmetries, conserva-
tion laws, or quenched randomness.

If the model satisfies the above conditions, critical exponents describing active-to-absorbing
state phase transition must be identical to the DP critical exponents. In fact, several gen-
eralizations have been made and it seems that the range of models that belong to the DP
universality class is even wider. Some of them even violate the above conditions such as
models with several absorbing states or multicomponent order parameters [35].

In contrast to the equilibrium universality classes such as Ising model, which has been
solved up to 2 dimensions, the DP process has not been solved even in 1 + 1 dimensions4.
This also motivates us to use field-theoretic approach to this problem that will be the
object of the following sections.

2.3.1 Field-theoretic formulation of DP

In this section, we derive field-theoretic formulation of DP using the concept described
in section 1.4 [38, 23]. This will allows use the powerful methods of RG described in the
Chapter 1.

Master equations for percolation reactions (see Fig. 2.3) at a single site read5:

A
σ−→ ∅ :

dP ({n})
dt

= σ [(n+ 1)P (n)− nP (n)] , (2.3.1)

A
ρ−→ A+ A :

dP ({n})
dt

= ρ [(n− 1)P (n− 1)− nP (n)] , (2.3.2)

A+ A
κ−→ A :

dP ({n})
dt

= κ [(n+ 1)nP (n+ 1)− n(n− 1)P (n)] . (2.3.3)

Using the same procedure as in section 1.4.2, above equations may be recast into Schrödinger-
like equations with corresponding ”Hamiltonians”

A
σ−→ ∅ :

d|Φ〉
dt

= σ(1− a†)a|Φ〉 =⇒ H(A→∅)
R = σ(a† − 1)a , (2.3.4)

A
ρ−→ A+ A :

d|Φ〉
dt

= ρ(a† − 1)a†a|Φ〉 =⇒ H(A→A+A)
R = ρ(1− a†)a†a , (2.3.5)

A+ A
κ−→ A :

d|Φ〉
dt

= κ(1− a†)a†a2|Φ〉 =⇒ H(A+A→A)
R = κ(a† − 1)a†a2 . (2.3.6)

4This is, however, a mystery since the 2D isotropic percolation model can be mapped onto the q-Potts
model for the limit q → 1, where the critical exponents are known exactly [35].

5It has been shown that the limiting constraint ni ≤ 1 for every lattice site can be using bosonic for-
malism implemented only through reaction A+A→ A in order to avoid more cumbersome representation
in terms of spin operators [39].
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Q ψ′ ψ D τ g κ

dkQ d/2 d/2 −2 2 (2− d)/2 −d
dωQ 0 0 1 0 1 1
dωQ d/2 d/2 0 0 (4− d)/2 2− d

Table 2.1: Momentum, frequency and total scaling dimensions of the model (2.3.8).

To obtain the whole reaction Hamiltonian, we have to sum over all lattice sites

HR =
∑
i

[
σ(a†i − 1)a+ ρ(1− a†i )a†iai + κ(a†i − 1)a†ia

2
i

]
. (2.3.7)

The Doi-Peliti action functional (1.4.35) for the bond DP then reads

SDP[ψ′ + 1, ψ] = ψ′[∂t +D(−∂2 + τ)]ψ − g(ψ′ − ψ)ψψ′ + κψ2ψ′2 , (2.3.8)

where the integration over all variables is implied, τ = (σ − ρ)/D, g =
√
σκ/2, and we

have rescaled fields according to

ψ′ → γψ′ , ψ → γ−1ψ , γ2 = κ/σ . (2.3.9)

The initial term ψ′(x, 0) has also been neglected, since for the long-time and large scale-
behaviour it is irrelevant6.

Equation (2.3.8) shows two different coupling constants g and κ. However, using di-
mensional analysis, one can show that κ does not affect the universal behaviour. Providing
that the action functional (2.3.8) is dimensionless, scaling dimensions are derived and they
are shown on the Tab. 2.1. The RG approach to dynamical systems introduced in the
section 1.3.3 allows us to introduce the total canonical scaling dimension (1.3.42), which
will make one parameter of the system dimensionless. Therefore we choose dω = 2 and
the corresponding dimensionless parameter is the diffusion constant D. By doing this, we
see that the total canonical dimension for coupling constants g and κ are (4 − d)/2 and
2− d. Therefore, we conclude that the upper critical dimension for the bond DP process
is dc = 4 (g becomes dimensionless) and that the coupling constant κ is in the sense of RG
an irrelevant parameter, since around dc it has a negative scaling dimension. Hence, the
last term in (2.3.8) is irrelevant from the RG point of view. It does not affect large-scale
behaviour and in the further considerations it will be neglected.

We thus arrive at the effective field theory action for the bond DP

SDP[ψ′, ψ] = ψ′[∂t +D(−∂2 + τ)]ψ − g(ψ′ − ψ)ψψ′ , (2.3.10)

where we have denoted ψ′ ≡ ψ′ + 1 on the left hand side to make the notation simpler.
This is actually a well known action functional for so-called Reggeon field-theory from
particle physics which describes high-energy hadron scattering [40].

The action functional (2.3.10) is also invariant under the duality transformation

ψ(x, t)↔ −ψ′(x,−t) . (2.3.11)

This symmetry can be considered as a field-theoretic equivalent to the rapidity-symmetry
of DP discussed in the Chapter 2.2.1 [35].

6Or alternatively we can put ψ(x, 0) = δ(x) which yields an irrelevant constant to the action functional.
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2.3.2 Mean-field theory

In this part, we will describe stochastic formulation and find the mean-field approximation
of DP. Even though Doi-Peliti action functional (1.4.35) is derived differently than the
formalism introduced by De Dominicis and Janssen (1.3.24), we can still use the latter to
find the Langevin equation of (2.3.10). This is found to be

∂tψ(x, t) = D(∂2 − τ)ψ(x, t)− gψ2(x, t) + η(x, t) , (2.3.12)

where the noise properties are given by first two moments

〈η(x, t)〉 = 0, 〈η(x, t)η(x′, t′)〉 = gψ(x, t)δ(x− x′)δ(t− t′) . (2.3.13)

One can notice the appearance of the field ψ(x, t) in the correlator (2.3.13). This multi-
plicative noise is connected to the fact, that the fluctuations of ψ(x, t) should vanish in
the absorbing state ψ(x, t) = 0. Note also that the duality symmetry (2.3.11) cannot be
seen in the Langevian formulation of bond DP (2.3.12).

The mean-field approximation can be derived as follows. First, spatial and temporal
correlation lengths in (2.3.12) satisfy the same relation as in section 1.3

ξ⊥ ∼ τ−1, ξ|| ∼ ξ2
⊥ . (2.3.14)

Second, neglecting the random force and the spatial fluctuations Eq. (2.3.12) simplifies
to

∂tΨ(t) = −DτΨ(t)− gΨ2(t) , (2.3.15)

where Ψ is the spatially independent DP field. One also has to remember, that for τ < 0
we get the active state. Asymptotic behaviour is found to be

Ψ(t) ∼ t−1 (τ = 0), Ψ(t =∞) ∼
{

0, (τ > 0)

(−τ), (τ < 0)
. (2.3.16)

In the mean-field approximation, critical exponents describing static properties are

βMF = 1, ν⊥,MF = 1/2, zMF = 2 , (2.3.17)

and the dynamic properties are described by exponents (using (2.2.30) and (2.2.33))

ΘMF = 0, z̃MF = 1, δMF = δ′MF = 1 , (2.3.18)

where we have substituted d = 4. As we can see from (2.3.18) mean-field approximation
of DP is similar to a single particle diffusion (N = const., R(t) ∝ t1/2). However, the
situation is different from the single particle diffusion, since the function N(t) describes
mean particle number and not particle number itself. In addition, the particle density
decay and the survival probability obey identical power law due to the rapidity symmetry.

Let us note, that the same results can be found utilizing the saddle point approxima-
tion, i.e.

δSDP[ψ′, ψ]

δψ′
=
δSDP[ψ′, ψ]

δψ
= 0 . (2.3.19)
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40 2. Directed percolation

Using these constraints, one obtains equations for ψ and ψ′, where in the one ψ′ = 0 is
always fulfilled and the second one yields (2.3.12) without the random force.

It is also worth mentioning that there is a simple alternative way of deriving Langevin
equation for general systems undergoing active-to-absorbing phase transition [23]. Con-
sider a general Langevin equation of the form

∂tψ(x, t) = D(∂2 −R[ψ(x, t)])ψ(x, t) + η(x, t) , (2.3.20)

〈η(x, y)η(x′, t′)〉 = ψ(x, t)N [ψ(x, t)]δ(x− x′)δ(t− t′) , (2.3.21)

where R[ψ] and N [ψ] are some reaction and noise correlation functionals and field ψ has
been factored out from both of them, since in absorbing state the process must remain
inactive. After expanding R[ψ] = τ + gψ + . . . and N [ψ] = g + . . . with respect to the
density ψ and neglecting higher order terms, one arrives at Eq. (2.3.12). There are two
reasons why higher order terms can be actually neglected in such way. The first one is
that in the phase transition, the field ψ is generally small. The second one is, that since
we are interested only in the universal behaviour, higher order terms will be irrelevant in
the sense of RG.

2.3.3 The renormalization group approach

mean-field exponents derived in the previous section are correct only above critical dimen-
sions dc = 4. Below dc, fluctuations of the field ψ(x, t) cannot be neglected, and a more
sophisticated approach has to be made. Here, we will briefly discuss the RG approach to
the DP process. A more detailed calculation can be found in [23, 38].

As mentioned in section 2.3.1, in the case of DP we construct the total canonical
dimension with dω = 2 which implies zero total scaling dimension of the diffusion constant
D. In the large scale and long time limit (k, ω) → 0 the effective scaling dimension of
any quantity F (1.3.42) is then

∆F = dkF + ∆ωd
ω
F + γ∗F , ∆ω = 2− γ∗D , (2.3.22)

from which one can show that

∆ψ =
d

2
+ γ∗ψ, ∆ψ′ =

d

2
+ γ∗ψ′ . (2.3.23)

The anomalous dimensions γ∗F are calculated as a series expansion of the coupling constant
g∗ using methods described in the Chapter 1. Corresponding critical exponents for the
dynamical observables introduced in the section 2.2.4 are then derived as follows. Number
of particles and mean square radius are found in the standard way

N(t) =

∫
ddx 〈ψ′(0, 0)ψ(x, t)〉 ∝ tΘ , (2.3.24)

R2(t) = N−1

∫
ddx x2〈ψ′(0, 0)ψ(x, t)〉 ∝ tz̃, (2.3.25)

while the active density and the survival probability are found using the following formulas
[41]:

ρ(t) = 〈ψ(0, t)〉 ∝ t−δ , (2.3.26)

P (t) = − lim
k→∞
〈ψ′(0,−t)e−k

∫
ddx ψ(x,0)〉 ∝ t−δ

′
. (2.3.27)
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The following formulas are found for above dynamical exponents:

Θ = −
γ∗ψ′ + γ∗ψ

∆ω

, z̃ =
2

∆ω

, δ =
d/2 + γ∗ψ

∆ω

, δ′ =
d/2 + γ∗ψ′

∆ω

, (2.3.28)

where the critical exponents δ and δ′ coincide if the rapidity-symmetry (2.3.11) holds
(since the anomalous dimensions γ∗ψ and γ∗ψ′ will be the same). Relations (2.3.28) hold
only below the critical dimension dc = 4. Above, the anomalous dimensions vanish and
the exponents are equal to their mean-field values (2.3.18) (for d = 4).

2.3.4 Experimental realization of DP

The rareness of the experimental realization of bond DP is surprising, especially since
various possible experimental applications have been proposed (see section 3.4 in [35]).
This problem is still an open question and performing different experimental settings is a
challenging problem for the future.

One may think that the simplest experimental realization of bond DP might be the
percolating water in a porous medium subjected to an external gravitational force. How-
ever, this application, which seems to represent the most natural realization of bond
DP (and even gave it its name), is almost impossible to realise experimentally. This is
due to the fact, that the theoretical model (2.3.10) describes a non-conserved spreading
agent while the percolating liquid model clearly assumes conserved volume of water. Non-
conservation of the DP field is intuitive from the reaction schemes (2.3) and can be seen
directly from the Langevin equation (2.3.12), which (without the random force) does not
have a form of a continuity equation 7.

The most recent measurements show that one possible experimental realization of
the DP process is the laminar-to-turbulent flow phase transition in the Couette flow [42]
(corresponding to 1+1 D percolation, i.e. percolation that is directed in time) or in the
confined 2D channel flow [43] (2+1 D percolation) . Experimental measurements of the
critical exponents are in quite good agreement with theoretical predictions [35]. For other
possible experimental realizations we recommend the reader to [44, 45].

In this thesis however, we are interested in studying the influence of the random envi-
ronment on the DP phase transition. Therefore one should not consider the DP process as
a laminar-to-turbulent phase transition, but rather a percolating agent describing forest
fires or epidemic processes. In the next chapter, we will therefore give a description of
how to model a random environment of the DP process as a fully developed turbulence.

7For more details about the field-theoretic modes for conserved fields see Chapter 3.2 in [16] or Chapter
5.8 in [22].
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Chapter 3

Turbulent mixing

Various physical, chemical and biological processes in nature occur in the presence of a
dynamical environment. In many cases these fluctuations cannot be neglected and there-
fore constructing a suitable model for their description is worthwhile. The aim of this
thesis is to study the influence of the random environment on the bond DP phase transi-
tion. Here we will describe a phenomenon that has attracted the attention of physicists
for more than four hundred years – the fully developed turbulence.

Starting from conservation laws, we introduce the basics of fluid dynamics. Even
if the general description of the fluids is given by a complicated set of coupled partial
differential equations (called the Navier-Stokes equations) under certain conditions there
are only two independent parameters describing the statistics of a flow - Reynolds and
Mach number. These parameters determine the possible symmetries of the system under
consideration. Usually, by increasing the magnitude of the Reynolds number, symmetries
of the system are violated one by one. However in the limit of a high Reynolds number all
possible symmetries are recovered and we approach a self-similar state of fully developed
turbulence.

In Section 3.2 the properties of fully developed turbulence are introduced in terms
of incompressible fluids. It is shown that this state undergoes an energy cascade of the
kinetic energy from the largest to the smallest scales where the energy is dissipated into
heat. In order to maintain the fully developed turbulence steady state an additional source
of kinetic energy must be added into our dynamical equations. This is usually done by
introducing a random Gaussian force. These ideas are then generalized in Section 3.3 for
the case of compressible fluids. Energy dissipation and the structure of the energy spectra
are discussed in both cases. In what follows we construct the field-theoretic models for
both incompressible and compressible turbulence and discuss the properties of the energy
spectra. In the end of this Chapter we briefly discuss turbulent diffusion processes.

It should be noted that even the case of incompressible fully developed turbulence is
an unsolved problem. The methods of the renormalization group that we are going to
use have mostly been used in the last decades in order to investigate properties of in-
compressible turbulence and turbulent diffusion. Few attempts to include compressibility
have been undertaken, where one of the derived models we employ for our purposes. The
physical relevance of this model is however still unclear and the purpose of this thesis is
also to test this model for investigating large-scale and long-time properties of turbulent
reaction-diffusion systems and compare them with results obtained by previous authors.
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44 3. Turbulent mixing

3.1 Basics of fluid dynamics

The basic equations that govern hydrodynamic flow are the mass and momentum conser-
vation equations [46, 47]

∂tρ+ ∂i(viρ) = 0 , (3.1.1)

∂t(ρvi) + ∂jΠij = 0 , (3.1.2)

where ρ, vi are density and velocity of the fluid and Πij is the momentum flux tensor. The
general form of the latter for an inviscid (friction-less) fluid reads

Πij = pδij + ρvivj , (3.1.3)

where p is the pressure of the fluid. This momentum flux represents the reversible transfer
of the momentum that is simply due to the movement of the fluid and the fluid pressure.
Eq. (3.1.1) and (3.1.2) are also know as continuity equations and they describe transport
of the density ρ and the momentum density ρvi where the total mass and total momentum
are conserved.

One can notice from (3.1.1) and (3.1.2) that in the three dimensional case there are
four equations, but five independent variables ρ, vi and p. In order to obtain a solvable
set of equations, we have to impose an additional constraint on our system. General
closure is given by the energy conservation equation and equation of state. If the the
influence of the heat flow in our system is negligible we can express the fluid pressure
as a function of density only. In this case, the solvable set of equations is given without
the energy conservation equation and the corresponding fluid is then called a barotropic
fluid1. There are several ways how to impose such a constraint [46], but in this thesis we
will focus our attention on the isothermal fluids

(p− p) = c2(ρ− ρ) , (3.1.4)

where p, ρ are the mean pressure and density and c is the adiabatic speed of the sound.
By employing this condition we also assume, that the temperature variations of the fluid
are negligible.

3.1.1 Dissipation

In order to obtain general equations of motion describing a viscous fluid we have to
include additional terms into the momentum conservation law (3.1.2). This can be done
by modifying the momentum flux tensor with the additional term σ′ij, which stands for
an irreversible transfer of momentum in the fluid. As we will see later, this term allows
dissipation of energy at the smallest scales. Equation (3.1.3) can then be modified as

Πij = pδij + ρvivj − σ′ij = −σij + ρvivj , (3.1.5)

where σij = −pδij + σ′ij is called the stress tensor and σ′ij the viscous stress tensor. The
tensor σij represents the part of the flux that is not due to the direct transfer of momentum
with the mass of the moving fluid. The main ideas for constructing σ′ij are the following
[47]. Since the friction occurs only when the nearest particles have different velocities,

1Which is a good approximation for the water flow. However, even air is not barotropic in general,
under certain circumstances this approximation can be useful.
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this tensor inevitably contains partial derivatives. In addition, σ′ij must vanish in the case
of a uniform rotation and therefore σ′ij must be symmetric. If one assumes small velocity
gradients, the general form can be written down

σ′ij = A (∂jvi + ∂ivj) + Bδij∂kvk , (3.1.6)

where expressions A and B are proportionality constants also know as Lamé coefficients.
Since only the trace of the stress tensor is responsible for the volume deformations [48] it
is convenient to write this expression as a combination as a traceless and isotropic tensors

σ′ij = η

(
∂jvi + ∂ivj −

2

3
δij∂kvk

)
+ ζδij∂kvk , (3.1.7)

where we have introduced two independent numbers η and ζ being the shear and bulk vis-
cosity. The first term in (3.1.7) in the bracket represents a gradual shearing deformation,
with no change in volume, while the second one is connected to pure volume deformations.
Generally, both viscosities depend on p and T , but in most cases this dependence can be
neglected. From equations (3.1.1) and (3.1.2), we can then obtain a general expression
for the partial differential equation describing non-relativistic fluid dynamics

ρ(∂tvi + vj∂jvi) = η

(
∂2vi +

1

3
∂i∂jvj

)
+ ζ∂i∂jvj − ∂ip , (3.1.8)

known as Navier-Stokes equation (later only NS equation). Physically this equation rep-
resents the second Newton’s law per unit volume.

3.1.2 Reynolds and Mach number

Even though equations (3.1.1) and (3.1.8) with the isothermal closure (3.1.4) represent
a set of complicated coupled second order partial differential equations, under certain
conditions there are only two independent constants describing the statistics of the flow.
Let us assume that the bulk viscosity is small and therefore it can be neglected. This
is a good assumption for diluted mono-atomic gases and it is also known as the Stokes
hypothesis [49]. Expressing the variables in terms of dimensionless quantities

v′i = vi/V, ρ′ = ρ/P, x′i = xi/L, t′ = tV/L , (3.1.9)

where V, P, L are some typical values of variables, we obtain

∂′tρ
′ + ∂′i(ρ

′v′i) = 0 (3.1.10)

ρ′∂′tv
′
i + ρ′v′i∂

′
iv
′
j︸ ︷︷ ︸

inertia

=
1

Re

(
∂2′v′i +

1

3
∂′i∂
′
jv
′
j

)
︸ ︷︷ ︸

dissipation

− 1

Ma2∂
′
iρ
′ , (3.1.11)

where

Re =
LV

ν
=

inertial forces

viscous forces
or

intertia

dissipation
, Ma =

U

c
, (3.1.12)

and ν = η/P is called the kinematic viscosity. The first dimensionless number in (3.1.12)
is known as the Reynolds number (Re) and describes the degree of nonlinearity of the
flow, i.e. the ratio of the inertial forces and viscous forces:
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46 3. Turbulent mixing

• small Re - inertial forces are small and can be neglected in some cases. Flows of
this type are usually stable (laminar).

• large Re - viscous forces can be neglected. These flow are usually unstable and they
easily becomes chaotic.

The latter in (3.1.12) is called the Mach number and it describes the ratio of the
typical velocity (or the root mean squared velocity) of the flow and the speed of sound.
Fluid flow can be divided into several groups by using the Ma number

• Ma ≈ 0 - Incompressible range

• 0 < Ma < 0.8 - Subsonic range

• 0.8 < Ma < 1.2 - Transonic range

• 1.2 < Ma < 5 - Supersonic range

• 5 < Ma - Hypersonic range

High Ma numbers are typical for high compressible fluids, which can create additional
mathematical problems 2.

3.2 Incompressible 3D turbulence

In this section we will give a description of a simplified model of turbulence that arises
in incompressible flow. The incompressibility condition ∂ivi = 0 allows us to simplify the
general form of the NS equations(3.1.8) to

∇tvi = ν∂2vi − ∂ip+ fi , (3.2.1)

where ∇t = ∂t + vi∂i is the covariant (material) derivative, fi is some external force and
we rescaled the viscosity and the pressure with the density, since the assumption ρ =
const. is reasonable for incompressible flows3. Neglecting variations of density implies
that the speed of sound is infinite and therefore Ma = 0. The only number that describes
the statistics of the incompressible flow is then the Re number. In what follows, we will
also consider three dimensional turbulence only. Two dimensional turbulence exhibits
different properties [50].

3.2.1 Fully developed turbulence

Under certain conditions the fluid flow can posses several types of symmetries. Changing
parameters of the model may create instabilities which can modify or destroy symmetries
completely [50].

2For example around Ma ≈ 1 shock waves are present in the fluid which makes the velocity field
discontinuous and therefore a problem of defining derivatives arises. For more details see [47].

3Note that from the continuity equation (3.1.1) the incompressibility condition ∂ivi = 0 generally
does not necessarily imply that ρ = const., but that the volume element is constant along the stream line
∇tρ = 0. In other words, different volume elements can have different densities.
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3.2. Incompressible 3D turbulence 47

Figure 3.1: Schematic visualisation of a flow
of water around a cylinder. From top to
the bottom: i) Laminar flow - Re ≈ 1, ii)
left-right symmetry broken - Re ≈ 10, iii)
Kármán streets - Re ≈ 140, iv) Chaotic flow
- Re ≈ 103, v) Fully developed turbulence -
Re > 104.

A typical example of this situation can
be seen in Fig. 3.1 where a cylindrically
symmetric object is placed into a laminar
flow of water. Here, the flow of water goes
from the left to the right (along the x di-
rection) and different shades of gray colour
represent different streamlines. The first
figure describes the situation for Re ≈ 1.
In this case the flow possesses the follow-
ing symmetries:
• left-right symmetry (x-reversal)

• up-down symmetry (y-reversal)

• time-translation (t-invariance)

• space-translations along the axis of
the cylinder (z-invariance)

By increasing the Re number break-
ing of symmetries occurs. For Re ≈ 10
the left-right symmetry is violated and two
symmetric vortices behind the cylinder ap-
pear. At Around Re ≈ 140 the creation of
periodic vortices called Kármán street be-
hind the cylinder occurs. In this case the
continuous t-invariance is broken in favour
of the discrete t-invariance. Further in-
crease of the Re number leads to the vi-
olation of all symmetries and the system
becomes chaotic. However, at very high
Re number, i.e. about Re ∼ 104, symme-
tries are recovered at least in the statistical
sense. This state, which is characterized by
chaotic changes in pressure and the flow
velocity is called the fully developed turbu-
lence (FDT). Another such an example is a
flow of a liquid through a grid or turbulence
in the atmosphere. In FDT, we assume
that a flow can be separated into a lami-
nar and a turbulent part. Since the lami-
nar part may be eliminated by performing
suitable Galilean transformation, in what
follows we will thus refer to the purely tur-
bulent part as simply the velocity field vi.

For the statistical description of FDT
we will need to define the velocity-velocity
correlation function

Gvv
ij (x) = 〈vi(r)vj(r + x)〉 , (3.2.2)

where r is the reference position and the average 〈. . . 〉 is taken over all the possible config-
urations of the velocity field. We assume fully developed homogeneous turbulence, which
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48 3. Turbulent mixing

implies that the flow is space and time translational invariant and hence the correlation
function (3.2.2) is independent of the reference position r and time t. In addition, we
assume that the flow is isotropic, so the correlation function (3.2.2) will also be indepen-
dent of the direction of x and depend only on its magnitude. The total kinetic energy E
and the kinetic energy spectrum E(k) of the 3D turbulent flow are then defined as

E ≡
∫

d3k Gvv
ii (k) =

∫
dk E(k) =⇒ E(k) = S2k

2Gvv
ii (k) , (3.2.3)

where S2 is the surface of the two dimensional unit sphere, Gvv
ii (k) is the Fourier trans-

formation of (3.2.2) and summation over repeated indices is implied. E(k)dk can be
interpreted as a contribution from turbulent ”eddies” of scales (k, k + dk) to the total
kinetic energy E. Measurements show [50] that the energy spectrum for the fully de-
veloped turbulence has the universal character. In the case of incompressible turbulence
the spectrum can be seen in Fig. 3.2. One can clearly see certain range of scales, called
inertial range, where the energy spectrum obeys a power law

E(k) ∝ k−5/3 . (3.2.4)

This is also known as the Kolmogorov 5/3 law. The size of the inertial range is determined
by two length scales: Λ, which is called the integral scale and m, which is called the
dissipation scale. A more detailed explanation of these length scales will be given later.

3.2.2 Kinetic energy dissipation

In the fluid flow, viscous forces are responsible for dissipation of the kinetic energy, which
is transferred into heat. In the case of incompressible turbulence, where the dynamics are
described by the incompressible NS equation (3.2.1) one can show that the mean kinetic
energy E changes with respect to time as [46]

∂tE ≡ ∂t〈v2/2〉 = −2ν〈ω2〉+ 〈fivi〉 , (3.2.5)

where ωi = εijk∂jvk is called the vorticity and here the average is taken over the whole
space (or a periodic domain). It is clear from the Eq. (3.2.5) that in the case of the force
free model fi = 0 the energy is conserved only for the inviscid (ν = 0) or the irrotational
(ω = 0) flow. In the case of rotational viscous flow however, energy is dissipated due to
the first term on the right hand side of (3.2.5) and in order to maintain the steady state

Inertial range

Figure 3.2: Schematic visualisation of the energy spectrum of incompressible turbulence.
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3.2. Incompressible 3D turbulence 49

∂tE = 0 one has to add a nonzero energy source via the external (random) force. The
steady state solution is then

ε ≡ 〈fivi〉 = ν〈ω2〉 , (3.2.6)

where we introduced the external force energy flux ε. For the practical calculations and
numerical simulations, the external force fi is usually taken to be the random Gaussian
variable with zero mean and correlator

〈fi(k, t)〉 = 0, 〈fi(k′, t′)fj(k, t)〉 = δ(t− t′)δ(k − k′)Pij(k)Df (k) , (3.2.7)

with the spectrum Df (k) usually chosen in a way, that the energy pumping comes from the
largest scales k → 0. Transversal projection operator Pij(k) = δij − kikj/k2 is introduced
since the longitudinal modes of the random force would generate sound waves (which we
neglected in the case of and incompressible fluid).

One can notice from the NS equations(3.2.1) that the viscous term is proportional to
the second spatial derivative. It is clear from the Fourier representation that this term
becomes relevant at the smallest spatial scales, i.e., k → ∞. The energy pumping from
the force fi to the system however, is usually assumed to come from the largest spatial
scales, i.e., k → 0. This tells us that there has to be a redistribution of the energy in the
inertial range that is not obvious from the conservation of energy.

Note that Eq. (3.2.5)(sometimes referred to as energy balance equation) does not
contain any contributions from the nonlinear term in the Navier-Stokes equation. In
fact, nonlinearities do not affect the global energy budget, but they are responsible for the
redistribution of energy among various scales. In order to see that, one has to investigate
properties of the incompressible NS equation on different length scales. This can be done
by splitting the spectrum of the velocity field as

vi(x) = v<iK(x) + v>iK(x) , (3.2.8)

where

v<iK(x) =

∫
k≤K

ddk vi(k)eikx, v>iK(x) =

∫
k>K

ddk vi(k)eikx , (3.2.9)

are the low-pass filtered and the high-pass filtered velocity field functions. v<iK represents
the the Fourier spectrum of the function vi that comes from turbulent eddies of the scales
k smaller than K and the v>iK the opposite. Using (3.2.8) one can derive from the NS
equation the scale-by-scale energy budged equation [50] :

∂tEK = −ΠK − ν〈|ω<K |2/2〉+ 〈
−−−−→
f<iKv

<
iK〉 , (3.2.10)

where

EK = 〈|v<iK |2/2〉, ΠK = 〈
−−−−−−−−−→
v<iK(v<jK∂j)v

>
iK〉+ 〈

−−−−−−−−−→
v<iK(v>jK∂j)v

>
iK〉 , (3.2.11)

are cumulative energy and cumulative energy flux and arrows are denoting the direction
of the flux in each term. Eq. (3.2.10) can be interpreted as follows: the rate of change of
the energy EK at scales down to l = K−1 is equal to the energy injected at such scales by

the force 〈−−−−→f<iKv
<
iK〉 minus the energy dissipated at such scales ν〈|ω<K |2/2〉 minus the flux of

energy ΠK to smaller scales (to > K) due to nonlinear interaction. Since the dissipation
of the energy is equal to the energy flux from the largest scales in the stationary case
(3.2.6) and the energy flux goes only in one direction, the energy flux remains constant
in the whole inertial range.
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50 3. Turbulent mixing

3.2.3 KO41 theory

In 1941 Kolmogorov and Obukhov introduced their famous theory of turbulence (later
only KO41)[51]. Here we will briefly describe the phenomenological interpretation that is
a direct outcome of his theory and conclude with the similarity hypothesis [50].

The central assumption of KO41 theory is the self-similarity of the velocity field in
the inertial range. Richardson came up with a very intuitive idea of self-similar energy
cascade inside the inertial interval [52]. The energy from an external source flows into
the system form large scale structures (eddies) of size L = m−1, where m is the integral
scale. Non-linearities presented in (3.2.1) are then redistributing the energy over the
inertial range by continuously splitting turbulent eddies down to smaller scales. At the
smallest lengths ld = Λ−1, where Λ is the dissipation scale, the viscosity begins to play an
important role and the energy is dissipated to the internal energy. This process is called
an energy cascade and it is qualitatively depicted in Fig. 3.3.

Figure 3.3: Richardson cascade

The energy spectrum can be qualitatively guessed using simple assumptions and di-
mensional analysis in the following way. Let us consider vl to be a typical value of the
velocity associated with scales ∼ l inside of the inertial range (or the velocity differences
between two points at the distance l). The eddy turnover time τl, i.e. the typical time
for a structure (e.g. turbulent eddy) of size ∼ l to undergo a significant distortion due to
relative motion of its components is defined as

τl =
l

vl
. (3.2.12)

From the dimensional analysis, one assumes that the energy flux on the scale l has the
form

Πl ∼
v2
l

τl
∼ v3

l

l
. (3.2.13)
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3.2. Incompressible 3D turbulence 51

Since in the inertial range, there is neither energy input nor energy dissipation, one may
assume a constant energy flux independent of the length scale

ε ∼ Πl . (3.2.14)

Using (3.2.3) the energy spectrum for the 3D turbulence is then found to be

E(k) = CKε
2/3k−5/3 , (3.2.15)

where CK is the Kolmogorov constant and its experimental value around 1.5 [53]. Until
now, there is no satisfactory theory for the power law (3.2.15). One should also note that
the value −5/3 is not precise. There are some small corrections that cannot be obtained
for isotropic and homogeneous FDT using the dimensional analysis [50].

Phenomenologically we can also obtain another important scale of the fully developed
turbulent system [50]. From the dimensional analysis, the typical time τ νl for the viscous
forces to dissipate the energy of the eddy of size l is

[ν] = L2T−1 =⇒ τ νl ∼
l2

ν
. (3.2.16)

One may notice that the dissipation time increases quadratically with the size of the eddy.
It then follows that the dissipation scale ld at which the viscous forces become relevant is

[ε] = L2T−3 =⇒ ld ∼
(
ν3

ε

)1/4

. (3.2.17)

The quantity (3.2.17) is also known as Kolmogorov (dissipation) length scale and it basi-
cally represents the size of the smallest eddies in the fluid. Using the ratio of the integral
scale L and the Kolmogorov length scale, one can find

L

ld
∼
(
L3v3

L

ν3

)1/4

∼ Re3/4 . (3.2.18)

This relation gives us the size of the inertial range for a specific Re number that should
exhibit universal Kolmogorov scaling.

From the phenomenological ideas above, one can conclude that the fully developed
turbulence is characterized by a large Re number and therefore large inertial range m�
k � Λ and a frequency range ωmin � ω � ωmax. The maximal time scale can be
taken as an inverse of the dissipation time (3.2.16), i.e. ωmax = (τ νld)

−1 = ν0Λ2 and the
minimal time scale can be calculated from the integral scale eddy turnover time (3.2.12),
i.e. ωmin = (τ νld)

−1 = ε1/3m2/3. The Kolmogorov-Obukhov theory is then based on two
hypotheses [12]

• Hypothesis 1 : Within the range k � m, ω � ωmin simultaneous distribution func-
tions of spatial Fourier components of the random velocity field v(k, t) depend on
the energy pumping ε but are independent of ”details of its construction”. In par-
ticular it does not depend on the energy pumping scale m and converges to a finite
limit as m/k → 04.

4This hypothesis was originally formulated in a different way for the dynamic correlator, but it later
appears to be incorrect so a modification was necessary. For the original formulation see [54].
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52 3. Turbulent mixing

• Hypothesis 2 : In the range k � Λ, ω � ωmax, the above distribution does not
depend on the viscosity coefficient ν.

Using these hypotheses and dimensional analysis, one can derive the following represen-
tation for the static (equal-time) pair correlator

〈vi(k′, t)vj(k, t)〉 = (2π)dδ(k′ + k)Pij(k)Dst(k), Dst(k) = ε2/3k−11/3f(m/k) , (3.2.19)

with a dimensionless function f(m/k) and transversal projection operator Pij(k) = δij −
kikj/k

2 is introduced since the momentum space representation of the incompressibility
condition kivi = 0 implies that the velocity field vi is transversal. According to Hypothesis
1 the function f(m/k) has a finite limit m/k → 0. After taking the limit m/k → 0 and
using the relations for the energy spectrum (3.2.3) one can find that the function f(0) is
related to the Kolmogorov constant introduced in (3.2.15).

3.3 Compressible 3D turbulence

The description given in the last section is valid only for turbulence with negligible Mach
number. However a purely incompressible flow does not exist and in order to obtain a
more realistic description, one has to imply corrections due to compressibility. A lot of
work on the compressible turbulence has been done in the last years also due to advanced
computer simulations. In this section we will briefly describe some recent results. A good
general overview of this topic can be found in [55, 56]. In this thesis however, we will
restrict ourselves to isothermal compressible turbulence.

3.3.1 Kinetic energy dissipation

The situation for compressible turbulence is much more difficult than it is for the incom-
pressible case. Here, the incompressibility condition ∂ivi = 0 is not valid anymore and we
have to consider the full set of hydrodynamic equations

∇tρ = −ρ∂ivi , (3.3.1)

ρ∇tvi = η

(
∂2vi +

1

3
∂i∂jvj

)
+ ζ∂i∂jvj − ∂ip+ fi , (3.3.2)

(p− p) = c2(ρ− ρ) . (3.3.3)

Dissipation of kinetic energy (3.2.5) now requires certain modifications. Using compress-
ible NS equations(3.3.2) one can show that the mean kinetic energy change is equal to
[46]

∂tEc ≡ ∂t〈ρv2/2〉 = −η〈ω2〉 −
(

4

3
η + ζ

)
〈(∂ivi)2〉 − 〈vi∂ip〉+ 〈fivi〉 . (3.3.4)

Comparing with (3.2.5) one can see the appearance of additional terms in (3.3.4) due to
compressibility. The stationary state can also be assumed here if the external force is
balancing the dissipation forces.

In contrast to (3.2.7), the random force is now taken to be

〈fi(k, t)〉 = 0, 〈fi(k′, t′)fj(k, t)〉 = δ(t− t′)δ(k − k′)(Pij(k) + αQij(k))D(k) , (3.3.5)
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3.3. Compressible 3D turbulence 53

where we have introduced the longitudinal projection operator Qij(k) = kikj/k
2 responsi-

ble for the generation of sound waves and the parameter α describing the structure of the
random force (ratio of the transversal and longitudinal modes). One should note however,
that the limit α → 0 does not correspond to an incompressible limit. This can be seen
from the following argument. Consider the full stochastic NS equations(3.1.8) with an
external (random) force fi in the more compact form

∂t(ρvi) + ∂j(ρvjvi) = ∂j(σ
′
ij − pδij) + fi , (3.3.6)

where σ′ij is the viscous stress tensor (3.1.7). By taking the divergence of (3.3.6) and
inserting it into the time derivative of the continuity equation (3.1.1) we obtain

∂2
ttρ− c2∂2ρ = ∂i∂j(ρvjvi − σ′ij) + ∂ifi , (3.3.7)

where we have used the isothermal condition (3.1.4). Without the random force term this
inhomogeneous wave equation is know as the Lighthill equation of aeroacoustics and it
describes the behaviour of sound waves in the medium [57]. It is easy to see that even
if the random force is purely transversal (∂ifi = 0), sound waves may be generated by
nonlinear terms of the right hand side, i.e. transversal modes of the velocity field. The
velocity field can therefore have both transversal and longitudinal modes, for any values
of α.

In the highly compressible fluid another important length scale appears. Consider
a flow with high Ma number, within the super-sonic range. As stated in section 3.2.2
viscosity becomes relevant at small scales. Dissipation of energy is therefore faster at
smaller scales which will cause the large-scale super-sonic turbulence to become sub-sonic
at smaller scales. The scale at which this transition occurs is called the sonic scale ks
[56].

The question of the energy flux in the case of compressible turbulence is also much
more difficult than it is in the case of incompressible turbulence. The reason for that
is that there are additional terms arising in the scale-by-scale energy budget equation
(3.2.10) due to invalidity of the incompressibility condition ∂ivi = 0. These calculations
are technically very difficult so we will not go into details of the problem, but we mention
some results that were previously accomplished.

It has been shown [58] that compressible nonlinearities of the equation (3.2.10) creates
an additional energy flux in the system with an oscillating direction in the scale. Therefore
one can introduce an effective energy flux εeff that fluctuates in time in the following way.
When the system is in the process dilatation (positive divergence) additional terms are
negative and the effective energy εeff is smaller than ε. On the other hand in the phase
of compression, εeff becomes larger than ε. Even though the effective energy flux εeff is
different from classical energy flux ε, its value is still positive and the direction goes from
the larger to smaller scales. A schematic picture of this situation can be seen in the
Fig. 3.4. This problem can be eliminated by introducing the mean effective flux εeff that
will play the same role in deriving the structure of the energy spectra as in the case of
incompressible turbulence.

3.3.2 Energy spectra

Since the velocity field in the compressible turbulence has two components - transversal
and longitudinal - two energy spectra are expected as well [56]. The spectrum can be
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54 3. Turbulent mixing

Figure 3.4: Effective flux of the energy for the compressible turbulence. The blue arrows
represent the classical energy flux ε in the case of incompressible turbulence. If the
compressibility is employed, additional energy related to the dilation of the fluid arises.
In the case of dilatation, the additional flux behaves as an inverse energy cascade process,
while in the process of compression, it flows in the classical direction (from larger to
smaller scales). The resulting effective flux εeff shows an oscillating behaviour.

separated as

Ec(k) = E⊥(k) + E||(k) , (3.3.8)

where E⊥ and E|| are the transversal and longitudinal energy spectrum and the final form
of (3.3.8) depends on the magnitude of the Ma number and the structure of the random
force (3.3.5).

In [59] a direct numerical simulation of isothermal 3D turbulence for Ma = 6 with the
forcing parameter α = 2/3 has been done and the total energy spectrum with exponent
≈ −1.95 instead of Kolmogorov −5/3 has been found. It has also been proposed, that
the Kolmogorov spectrum can be obtain if one uses the density-weighted velocity field as

wi = ρ1/3vi . (3.3.9)

In [60] authors where numerically studying the influence of different structures of the
random force on the energy spectra for 3D isothermal turbulence at Ma ≈ 5.5. The total
energy spectrum was found to be ≈ −1.86 for purely transversal forcing (α → 0) and
≈ −1.94 for the longitudinal forcing (α → ∞). A spectrum close to Kolmogorov −5/3
was found using the density weighted velocity field (3.3.9) only for purely transversal
forcing, while the longitudinal forcing showed ≈ −2.1. As stated in [55] the problem of
the latter might be connected with a wrong interpretation of the inertial range. It was
also pointed out, that the observed −2.1 spectrum might belong to the super-sonic scale,
while the proper redefinition of the inertial range will yield a −1.64 exponent, i.e. a power
spectrum close to the Kolmogorov −5/3 law.

Similar results were found in [58] where it was shown by using dimensional analysis
that the energy spectrum obeys

Ew
c (k) ∼ ε

2/3
eff k

−5/3 , (3.3.10)

where Ew
c stands for the density weighted velocity field (3.3.9) energy spectrum and εeff

being the mean effective energy flux mentioned in the previous section. In compressible
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turbulence however, the assumption that the energy flux is independent of the energy
scale might not be correct. If one assumes that the effective energy flux is also scale
dependent one can expect deviations from the Kolmogorov −5/3 law at the largest scales
k → 0. According to [58] this spectrum can be up to −19/9 ≈ −2.1. This transition may
occur at the sonic scale.

For the case of small Mach number, the phenomenological Kolmogorov-Obukhov the-
ory can be generalized in the following way. A static correlator (3.2.19) can be written
for the case of the finite speed of sound c as

Dstat(k) = ε2/3k−11/3F
(
ε2/3k−2/3c−2

)
, (3.3.11)

where we have already taken the limit m/k → 0. The function F can be expanded in
terms of small 1/c and the corresponding energy spectrum will be

Dstat(k) ∝ ε2/3k−11/3(1 + const Ma2(Lk)−2/3) , (3.3.12)

where the relations ε ∼ v3
rmsL

−1 and Ma = vrms/c, with vrms being the root-mean-squared
velocity of the flow, have been used. This phenomenological relation has been verified
for the purely transversal random force α = 0 using RG methods in [61]. Eq. (3.3.12)
is also independent of the viscosity ν which proves that the KO41 theory (3.2.19) can be
extended to the case of a small Ma number.

However, the numerical simulations show, that the energy spectrum of the weakly
compressible turbulence should have negligible deviations from the KO41 −5/3 spectrum
[62]. This might be due to the fact, that the proportionality constant in (3.3.12) is not
determined by the RG methods.

3.4 Field-theoretic formulation of turbulence

The field-theoretic RG approach to fully developed turbulence and related problems is
very complex. First attempts of using RG in turbulence were done in [10, 11] where
Wilson’s recursion RG approach, i.e. a method based on the approach described in section
1.3.1 was employed. In this thesis we are going to use the equivalence of field-theoretic
models and stochastic differential equations (section 1.3.2) and directly use the methods
of field-theoretic RG. A more detailed description of this approach can be found in [12].

Since we will be interested only in the turbulent behaviour of a fluid, in the following
we will assume that the velocity vi in (3.1.8) represents only the turbulent part of the flow
and that the laminar flow was subtracted. The theoretical formulation of the turbulent
flow problem can be done in two ways:

• Statistically - by defining the velocity field vi as a Gaussian random variable

• Dynamically - by defining the velocity field vi as a solution to a stochastic dynamical
(usually NS) equations

The first model is a drastic simplification of the problem that has often been used for
studying anomalous scaling in turbulent reaction-advection-diffusion processes [63]. The
latter one is more complicated but also represents the more realistic case. In this thesis
we are interested only in the dynamically modelled turbulence. However, since we also
want to compare our results with previous works, we start by introducing the statistical
description of turbulence.
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56 3. Turbulent mixing

The simplest statistical description of turbulence that is suitable for the use of field-
theoretic RG methods is the Kraichnan or Rapid-Change model [64]. In this case, the
two point velocity field correlator takes the following form

〈vi(x′, t′)vj(x, t)〉 =
δ(t− t′)D

(2π)d

∫
ddk k−d−ξ(Pij(k) + αQij(k)) exp{ik(x− x′)} ,

(3.4.1)

where D, d are the amplitude and the dimension of the space, ξ is the RG expansion pa-
rameter, equivalent to ε from the theory of critical phenomena (see sec. 1.2.3) and Pij(k)
and Qij(k) are the transversal and longitudinal projection operators defined in (3.3.5).
The parameter α is an independent parameter describing the ratio of the longitudinal and
transversal modes (e.g. sound waves and turbulent flow) of the velocity field v. The value
α = 0 represents the incompressible case where the velocity field becomes transversal. It
should be noted however that in models such as (3.4.1) the physical value of the parameter
α should be small since large values imply a high degree of compressibility and additional
problems such as shock waves arise. The physical value of the parameter ξ is 4/3, which
after performing RG approach yields the Kolmogorov −5/3 energy spectrum [63].

The model (3.4.1) was later also modified for the case of infinite correlation time using
equation for the ”synthetic” velocity field that is not Galilean invariant [65]. This model
is also useful for studying diffusion in random environments that are ”frozen in time”
(static random environment). However the model (3.4.1) is still only an approximation
and the real dynamics are believed to be found using dynamical equations for turbulent
flow as will be explained in the following sections.

3.4.1 Incompressible Navier-Stokes equation

The field-theoretic formulation of fully developed turbulence using incompressible NS
equation is the following [12]. The De Dominicis-Janssen action functional (1.3.24) for
(3.2.1) is found to be

SNS[v′,v] = −v′iDf
ijv
′
j/2 + v′i

{
∇t − ν0∂

2
}
vi , (3.4.2)

where v′i is the Martin-Siggia-Rose response field, Df
ij(x

′, t′,x, t) = 〈fi(x′, t′)fj(x, t)〉 is
the two point random force correlator, ν0 is the non-renormalized kinematic viscosity and
the summation and integration over all indices and variables is implied. The random force
is taken to be Gaussian with the following properties.

〈fi(x, t)〉 = 0, 〈fi(x′, t′)fj(x, t)〉 =
δ(t− t′)

(2π)d

∫
ddk Pij(k)Df (k) exp{ik(x− x′)} ,

(3.4.3)

where Df (k) is the spectrum of the random force to be determined and Pij(k) is the
transversal projection operator, since in the incompressible case we do not allow generation
of sound waves. Note that the pressure term in (3.4.2) has been eliminated using the
transversality of the v′i field.

There is no unique rule for choosing the random force correlator for the stochastic NS
equation. In RG theory of turbulence both physical and technical arguments have to be
given in order to construct the correlator. Physical arguments are such that the realistic
pumping for this problem must come from the large scale structures k ∼ m = L−1 → 0,
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3.4. Field-theoretic formulation of turbulence 57

i.e. from the IR region. On the other hand, in order to use standard field-theoretic RG
technique it is necessary to have a power law asymptote at large k. The latter is satisfied
if we choose the correlator to be [11, 66]

Df (k) = Dk4−d(k2 +m2)−y/2 , (3.4.4)

where D is the amplitude (coupling constant), d is the dimension of space and y > 0
is an independent parameter of the model that plays the same role as the expansion
parameter ε = 4− d does in the RG approach to the theory of critical behaviour5. In this
case however, it is completely unrelated to the dimension of space and it determines the
spectrum of the random force. In the range 0 < y < 4 the integral (3.4.3) diverges for
k →∞ and an upper momentum cut-off Λ is necessary. This can be chosen to be Λ = l−1

d

where ld is the dissipation length (3.2.17). The energy pumping is then W ∼ Λ4−y which
means that it comes from the smallest scales and it is therefore said to be ultraviolet.
The realistic pumping occurs only for y > 4 where the integral (3.4.3) is dominated by
the smallest scales and W ∼ m4−y - infrared pumping. The parameter m here plays a
role of the IR (k → 0) cut-off and we can choose it to be the inverse of the integral scale
m = L−1.

In most RG studies of fully developed turbulence and related phenomena a simpler
random force correlator is considered [22]

Df (k) = Dk4−d−y , (3.4.5)

which corresponds to the ”massless” (m → 0) version of (3.4.4). This choice is suitable
if we are only interested in the IR scaling properties such a scaling dimensions of the
system. In this case it can be shown [12] that the random force correlator (3.4.3) with
the spectrum (3.4.5) (or (3.4.4)) is related to the energy pumping flux ε via the following
relation:

ε =
d− 1

2(2π)d

∫ Λ

ddk Df (k) . (3.4.6)

By calculating the corresponding integral in the UV domain y → 4− one obtains the
following relation for the bare random force correlator and the energy flux

D =
2(4− y)

Sd
εΛy−4 . (3.4.7)

Inserting this back into (3.4.5) for the limit y → 4− one finds 6

Df (k) =
2ε

Sdkd
lim
y→4−

(4− y)

(
k

Λ

)4−y
= 2εδ(k) . (3.4.8)

It follows from above that the random force correlator (3.4.5) in the boundary limit
y → 4− between the UV and IR energy pumping (in the massless case m→ 0) represents
the most realistic case of the energy pumping that comes from the largest scales k→ 0. It
can be shown [22] that in this boundary limit, the energy spectrum of 3D incompressible
turbulence satisfies the Kolmogorov −5/3 law (3.2).

5In the language of regularization, the correlator (3.4.4) represents the case of the analytic regulariza-
tion.

6Where we used the modified power-law representation for the δ function [22]

δ(k) = lim
∆→0+

∫
ddx (Λx)−∆ exp{ik · x} = S−1

d k−d lim
∆→0+

∆(k/Λ)∆ .
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3.4.2 Compressible Navier-Stokes equation

The compressible form of NS equation represents one of the most general description of
non-relativistic fluids. Compressibility in the simplified Kraichnan model of turbulence
(3.4.1) was modelled by considering longitudinal modes of the velocity-velocity correlator
(e.g. longitudinal projection operator Qij) with a corresponding ”compressibility” param-
eter α. In the case of NS the situation is more difficult. The general RG approach to
weakly compressible fluids was studied in detail in works [21, 61, 67]7.

Following mainly the work of [21] we will now describe this model. Let us first start
with the general form of the NS equations(3.1.8) and divide it by ρ

∇tvi = ν[δij∂
2 − ∂i∂j]vj + uν∂i∂jvj − ρ−1∂ip+ fi , (3.4.9)

∇tρ = −ρ(∂ivi) , (3.4.10)

where we replaced ρ in the viscous term with its mean value, ν = µ/ρ is the kinematic
viscosity and u is related to the bulk viscosity ξ in the following way

ν(u− 1) = ν/3 + ζ/ρ . (3.4.11)

The purpose for separating the transversal and longitudinal parts of the Laplace operator
in (3.4.9) is to simplify the derivation of propagators in the field-theoretic formulation.
The approximation of replacing ρ with its mean value in the viscous terms was implicitly
justified by the analysis of [67] and it is needed to obtain a renormalizable field-theoretic
model. In order to obtain a full set of equations we imply the isothermal closure (3.1.4).
Defining the new density related field as

φ = c2 ln ρ/ρ , (3.4.12)

we derive the De Dominicis-Janssen action functional (1.3.24) for the compressible stochas-
tic NS equation

ScNS[v′,v, φ′, φ] = − 1

2
v′iD

f
ijv
′
j + v′i

{
∇tvi − ν[δik∂

2 − ∂i∂k]vk − uν∂i∂kvk + ∂iφ
}

+

+ φ′
{
∇tφ+ c2∂ivi

}
, (3.4.13)

where Df
ij is again the two point random force correlator now defined as

〈fi(x)fj(x
′)〉 =

δ(t− t′)
(2π)d

∫
k≥m

ddkDf (k) (Pij(k) + αQij(k)) exp{ik(x− x′)} . (3.4.14)

Here, k ≥ m is the IR cut-off and D(k)f is the spectrum of the random force (3.4.5).
Properties of the model (3.4.13) were investigated in [61] in 3 dimensions using RG

methods where the spectrum of the random force was chosen in the same simplified form
as in the case of incompressible turbulence (3.4.5) (up to the longitudinal projection
operator). In the first order of perturbation theory, authors have shown that in the large
scale ”energy pumping” limit y → 4 the static velocity-velocity correlator (3.3.11) has the
following form

Dstat(k) ∝ ε2/3k−11/3
(
Pij(k) + α(1 + aMaRe1/4(kL)−2/3)Qij(k)

)
, (3.4.15)

7RG approach to compressible turbulence was first done in [68] but as stated in [21] authors did
not pay attention to the multiplicative renormalization of their model and therefore their approach was
mathematically inconsistent.
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3.4. Field-theoretic formulation of turbulence 59

with a being some proportionality constant that cannot be determined by the means of
RG. One can see corrections to the Kolmogorov −5/3 law due to the Ma number and the
corrections increase with higher value of α. It seems that the −5/3 law is obtained in the
limit α → 0. However, as stated in section 3.3.1 the limit α → 0 does not correspond to
an incompressible limit.

3.4.3 Turbulent diffusion

There are two main models describing advection-diffusion processes in compressible flow
[47]

• Advection of the tracer field θ(x, t)

∂tθ + (vi∂i)θ = D∂2θ + f , (3.4.16)

where D is the diffusion constant and f = f(x, t) is an external (random) force.
This equation describes a quantity that is conserved in the absence of the diffusivity
and the random force along the Lagrangian trajectories ∇tθ = 0. (e.g. entropy,
temperature).

• Advection of the passive scalar density field ρ(x, t)

∂tρ+ ∂i(viρ) = D∂2ρ+ f , (3.4.17)

where we used the same notation as above. Eq. (3.4.17) without the right hand side
has a form of the continuity equation and therefore the total ”mass”

∫
ρ(x, t)ddx is

conserved (e.g. density of the pollutant).

Note that equations (3.4.16) and (3.4.17) coincide for the incompressible case. However,
in the compressible case we have to distinguish them. In order to study the turbulent
advection generally we can replace the temporal derivative by the generalized Galilean-
invariant covariant derivative

∂tθ → ∂tθ + (1− a)vi∂iθ + a∂i(viθ) = ∇tθ + a(∂ivi)θ , (3.4.18)

where we introduce a new dimensionless parameter a that corresponds to advection of
the tracer field (3.4.16) for a = 0 and to advection of the scalar field (3.4.17) for a = 1.

The field-theoretic formulation for the models above can be done by finding the De
Dominicis-Janssen action functional (1.3.24). The substitution (3.4.18) can also be used
for coupling the velocity field to fields describing reaction-diffusion processes described in
section 1.4 and we will also use it in order to study turbulent advection of the percolation
process in the next chapter. By means of the RG methods we can then find scaling
dimensions for corresponding fields and parameters. In some special cases however (and
not only incompressible cases), one can simply work with models (3.4.16) or (3.4.17) and
obtain the same results for both models (see for example [69]).

59





Chapter 4

Directed percolation process
advected by compressible turbulent
fluid

There are few experimental realisations of the DP phase transition. One of the reasons
might be that additional external factors play an important role in this type of phase
transition. Several modifications of the DP model have been done in the past years [15,
16, 17, 23]. In this chapter we will study the influence of the random environment on the
DP phase transition.

A schematic visualisation of this process is displayed in Fig. 4.1. The black path
that starts from the single seed on the left-hand side and spreads to the right-hand side
represents the path of the percolating agent. The background represents the fully de-
veloped turbulence. It can be imagined as a disease spreading among species that are
randomly moving around (e.g. animals, bacteria). Another example of this process might

Figure 4.1: Schematic picture of the DP process influenced by the turbulent mixing.
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62 4. Directed percolation process advected by compressible turbulent fluid

be a forest fire advected by the turbulent air. In this case, the laminar component of the
air forces the fire to move towards one direction, and we will study only the influence
of the turbulent component to the DP phase transition. This example is, however, not
completely precise since it assumes stationary species on which the percolation transition
occurs. One should also keep in mind that Fig. 4.1 is only a schematic picture and not a
proper visualisation of this process, since there are currently no experimental realisations
or simulations of this process.

The problem of the DP process advected by turbulent flow has been already studied by
several authors [18, 19, 20]. In [19], the field-theoretic model of the random environment
was based on the incompressible NS equation. It has been shown, that in the physical
region, the percolation should be irrelevant and the system belongs to the universality
class of the turbulent diffusion. A similar result have been obtained in [18], where the
random environment was modelled by the compressible Kraichnan model (3.4.1). By
considering a certain degree of compressibility, the DP process becomes relevant. This
also motivates us to study this process using the compressible form of the NS equation.
It should be noted that all calculations previous in works have been done only in the
one-loop approximation.

In the beginning of this chapter we define the field-theoretic formulation for both – DP
and compressible NS turbulence and describe the structure of the perturbation theory.
Multiplicative renormalization based on the analysis of UV divergences is then discussed.
Here we assume several aspects of perturbation theory that determine the form of the
counterterms necessary to eliminate all UV divergences. An important fact is that the
rapidity symmetry is violated which has not been discussed by the previous authors when
they introduced incompressible NS turbulence [19]. The model is then renormalized. In
contrast to the incompressible case, our model shows an additional divergence around
dimension d = 4. Since the upper critical dimension of the DP process is dc = 4, in order
to be mathematically consistent, we must also consider additional divergences arising in
the compressible NS model. Both models are then renormalized. The counterterms are
calculated in a double-expansion form of y and ε, where y describes the formulation of
the turbulent velocity random force and ε = 4− d is the deviation from the upper critical
dimension.

Since in this thesis we assume only the passive advection of the DP process, i.e. the DP
field does not influence the compressible NS velocity field, the analysis of the fixed points
and their stability can be discussed separately. The long-time and large-scale properties
of the turbulent mixing are discussed. This analysis has been calculated independently
and published recently in [70]. In what follows, we analyse the asymptotic behaviour of
the DP process advected by compressible turbulent fluid.

It should be noted however that our model properly describes only the situation with
d = 3, while the case d = 2 is not accessible. This is due to the additional divergences
arising in the process of the renormalization of the compressible NS model around d = 2
[71]. It is also unclear how to approach the two dimensional case of the DP process with
this model, since it would require an expansion of the DP process around d = 2.
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4.1. Definition of the model, perturbation theory 63

4.1 Definition of the model, perturbation theory

In order to study compressible turbulent advection of the DP process, we have to study
the field-theoretic model given by the sum

S[v′0,v0, φ
′
0, φ0, ψ

′
0, ψ0] = ScNS[v′0,v0, φ

′
0, φ0] + SDP[ψ′0, ψ0] + SAdv[ψ′0, ψ0,v0] , (4.1.1)

where ScNS,SPer are the action functionals for the compressible NS model and DP process
and SAdv is the turbulent advection action functional. From now on, the summation over
all doubled indices and integration over all variables is implied, if not specified explicitly.
In addition, non-renormalized quantities are labelled with subscript 0, while renormalized
ones without subscript.

Following section 3.4.2, the field-theoretic formulation for the compressible NS equa-
tions is

ScNS[Φ0] = − 1

2
v′i0D

f
ijv
′
j0 + v′i0

{
∇tvi0 − ν0[δij∂

2 − ∂i∂k]vk0 − u0ν0∂i∂jvj0 + ∂iφ0

}
+

+ φ′0
{
∇tφ0 − ṽ0ν0∂

2φ0 + c2
0∂ivi0

}
, (4.1.2)

where Φ0 = {v′0,v0, φ
′
0, φ0}, all fields and parameters have the usual meaning and the

random force correlator in the momentum-frequency space is now

Df
ij(k, ω) = g10ν

3
0k

4−d−y (Pij(k) + α0Qij(k)) + g20ν
3
0δij . (4.1.3)

In (4.1.2) and (4.1.3), the terms ṽ0ν0∂
2φ and g20ν

3
0δij with coupling constants ṽ0, g20 have

been added in order to ensure the multiplicative renormalizability as will be explained
later. The physical value of these parameters is 0 and their appearance emerges during
the renormalization procedure.

The field-theoretic formulation means that all correlation and response functions
(1.3.5) are represented by the functional averages over the full set of fields with the
functional weight exp{−ScNS} (1.3.26). Feynman diagramatic techniques can then be
applied. The propagators are found as an inverse of the quadratic part of ScNS (see the
Appendix A)

G
vivj
0 (k, ω) ≡ 〈vivj〉0 =

df1
|ε1|2

Pij + df2

∣∣∣ε3
R

∣∣∣2 Qij ,

G
v′ivj
0 (k, ω) ≡ 〈v′ivj〉0 =

1

ε∗1
Pij +

ε∗3
R∗
Qij ,

G
v′iφ
0 (k, ω) ≡ 〈v′iφ〉0 =

ic2
0ki
R∗

,

Gviφ
′

0 (k, ω) ≡ 〈viφ′〉0 =
−iki
R

,

Gφφ
0 (k, ω) ≡ 〈φφ〉0 =

c4
0k

2

|R|2 d
f
2 ,

Gφ′φ
0 (k, ω) ≡ 〈φ′φ〉0 =

ε∗2
R∗

,

Gviφ
0 (k, ω) ≡ 〈viφ〉0 =

ic2
0ε3ki
|R|2 df2 ,

(4.1.4)
where the following abbreviations have been introduced

ε1 = −iω + ν0k
2,

ε2 = −iω + ν0u0k
2,

ε3 = −iω + ν0ṽ0k
2,

df1 = ν3
0(α0g10k

4−d−y + g20),

df2 = ν3
0(g10k

4−d−y + g20),

R = ε1ε2 + c2
0k

2.

(4.1.5)

The physical interpretation of the above propagators is the following. The propagators
constructed from any primed field ϕ′ and any un-primed field ϕ represent a response func-
tion from ϕ′ to ϕ. The propagator Gvv

0 is connected to the kinetic energy spectrum, while
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64 4. Directed percolation process advected by compressible turbulent fluid

Figure 4.2: Feynman correspondence rules for the compressible NS model (4.1.2). Explicit
formulas for propagators are given in (4.1.4).

propagator Gφφ
0 is connected to the spectrum of the density variations in the free theory.

In the incompressible limit c0 → ∞, propagators Gvv′
0 , Gvv

0 become purely transversal

while Gvφ′

0 , Gφφ′

0 and Gvφ
0 vanish. This means that the velocity field vi decouples from the

density field φ and it can be treated independently1. The field vi becomes transversal,
which satisfies the incompressibility condition ∂ivi = 0. One should also note, that the
incompressible limit can be obtained by performing the limit u → ∞ which gives the
additional constraint ∂ivi = 0 to our system. In this case the propagators Gvv

0 and Gv′v
0

become purely transversal and the velocity field decouples from the density field.
The vertex factors can be obtained from the Fourier transformation of the interaction

part of the action (4.1.2) (see Appendix A.2)

−v′ivj∂jvl → V cNS
ijl = −i(pjδil + qlδij) , (4.1.6)

−φ′vi∂iφ→ V cNS
i = −iki . (4.1.7)

Feynman diagramatic techniques can then be defined as seen in Fig. 4.2.
The field-theoretic formulation of the DP process has been introduced in section 2.3.12

SDP[ψ′0, ψ0] = ψ′0
{
∂t +D0(−∂2 + τ0)

}
ψ0 −

D0λ0

2

{
ψ′0 − ψ0

}
ψ′0ψ0 , (4.1.8)

where the coupling constant has been rescaled to a more convenient form g0 = λ0D0

and the rest of the parameters and fields have the usual meaning. The first bracket in
(4.1.8) stands for the diffusion part, while the latter stands for the DP interaction part. In
order to study advection by the turbulent compressible fluid flow, one assumes temporal
dependence of the spatial variables x = x(t). The time derivative is then replaced by the
total time derivative and this leads to appearance of the advection action functional

SAdv[ψ′0, ψ0,v0] = ψ′0
{
vi0∂i + a0(∂ivi0)

}
ψ0 , (4.1.9)

where we have introduced the additional term with a parameter a0 in order to ensure the
multiplicative renormalization (see below). The physical value of this parameter is 0 or
1 which corresponds to the advection of the tracer field or the scalar density field (see
section 3.4.3). Note that the rapidity symmetry (2.3.11) for the full model (4.1.8) with

1The fact that the density field does not decouple from the velocity field (Gv
′φ

0 does not vanish) is
unimportant to us, since the density field does not influence turbulent diffusion directly.

64



4.2. UV divergences, the renormalization group 65

Figure 4.3: Feynman correspondence rules for the DP process advected by the velocity
field.

(4.1.9) is violated, since the action functional for the velocity field (4.1.2) is in general not
invariant with respect to time inversion. This implies that the number of independent
critical exponents describing the DP phase transition (see section 2.2) increases from three
to four.

Propagators and vertex factors are found in the standard way:

Gψ′ψ
0 (k, ω) ≡ 〈ψ′ψ〉0 =

1

−iω +D0(k2 + τ0)
, (4.1.10)

D0λ0ψ
′2ψ = −D0λ0ψ

′ψ2 → V Per = D0λ0 , (4.1.11)

−ψ′{vi∂i + a0(∂ivi)}ψ → V Per
i = −i(ki + a0qj) . (4.1.12)

The graphical representation is depicted in Fig. 4.3. Note, that the DP field ψ is not
affecting the compressible turbulence determined by (4.1.2) and therefore we can interpret
it in terms of passive reaction-diffusion process.

4.2 UV divergences, the renormalization group

As mentioned in section 1.3.3 dynamical models involve two independent scales. In or-
der to apply RG methods the introduction of the total canonical dimension (1.3.39) is
necessary. The choice dω = 2 makes the viscosity coefficient dimensionless and the total
canonical dimension is then

dF = dkF + 2dωF . (4.2.1)

The canonical dimensions for the model (4.1.2) are summarized in Tab. 4.1. The total
canonical dimension for any vertex function Γ (1.3.44) yields

dΓ = d+ 2−
∑

Φ

dΦNΦ, dΦ = dkΦ + 2dωΦ , (4.2.2)

Q v′0 v0 φ′0 φ0 m,µ,Λ ν0, ν c0, c g10 g20 u0, v0, u, v, g1, g2, α0, α

dkQ d+ 1 −1 d+ 2 −2 1 −2 −1 y ε 0
dωQ −1 1 −2 2 0 1 1 0 0 0
dQ d− 1 1 d− 2 2 1 0 1 y ε 0

Table 4.1: Canonical dimensions of the bare fields and bare parameters for the model of
velocity fluctuations. Parameters m and Λ play the role of IR and UV cut-off and µ is
the scale setting parameter.
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66 4. Directed percolation process advected by compressible turbulent fluid

where Φ is the set of all fields that the vertex function is constructed from, dΦ is the
corresponding total canonical dimension and NΦ is the number of fields Φ entering the
vertex function.

The choice dω = 2 is related to the dispersion law for diffusion modes ω ∼ k2 and
it merely means, that we are interested in the correlated long time and large scale limit
ω ∼ k2 → 0. Another choice, for example dω = 1 would lead to the analysis of sound in
a turbulent media. However, this choice leads to unrenormalizable model [69].

4.2.1 Renormalization of the velocity field

Renormalization of the model (4.1.2) was done in [21] in three dimensions. Since the
upper critical dimension of the DP process is four, in order to perform consistent RG
calculation, the model (4.1.2) must be also renormalized around d = 4. This can be done
by eliminating all possible UV divergences arising in the vertex function (see section 1.2.3)
around d = 4. The following calculations have been done independently and recently
published in [70]. Superficial divergences that require elimination by counterterms are
present in the vertex functions Γ with non-negative UV exponent (1.2.62),(1.3.44),

δΓ = dΓ|d=4 = 6− 3Nv′ −Nv − 2(Nφ′ +Nφ) . (4.2.3)

UV exponents for various vertex functions are given in Tab. 4.2. However, additional
facts have to be taken into account:

• As explained in the section 1.3.2 all vertex functions with zero response fields Nv′ = 0
or Nφ′ = 0 are equal to zero, therefore no such a counterterms appear.

• The field φ appears in the vertex φ′(vi∂i)φ together with its derivative and hence
the real UV exponent is reduced as (1.2.63) to

δ′Γ = δΓ − nφ , (4.2.4)

For example, the function Γφ
′φ has δΓ = 2, but δ′Γ = 1 and φ must enter the

counterterms with at least one ∂. The counterterm φ′∂tφ is therefore forbidden and
the only possible structure is φ′∂2φ. Similar situations apply for vertex functions
containing vi, since it enters the vertex as v′i(vj∂j)vi.

• The Galilean invariance of the model (4.1.2)

vwi (x, t) = vi(x + wt, t)− wi, Φw(x, t) = Φ(x + wt, t), Φ = {v′, φ, φ′} , (4.2.5)

where wi is a constant vector, requires that the covariant derivative ∇t must enter
the counterterms as a whole. As a consequence, the counterterm for Γφ

′vφ with
δ′Γ = 0 which can only have the form φ′(vi∂i)φ is forbidden, since φ′∂tφ is also
forbidden.

δΓ 4 3 2 1 0

Γ
v2 v3 v4 φ2 v5 v2v′ v6 v2φ2 v′2 φ3

vφ v2φ φφ′ v3φ v′φ v4φ v2φφ′ vv′φ φ2φ′

vφ′ v2φ′ φ′2 v3φ′ v′φ′ v4φ′ v2φ′2 vv′φ′ φφ′2

vv′ v3v′ φ′3

Table 4.2: The vertex functions with non-negative UV exponent.
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• For Γv
′v we have δΓ = 2(δ′Γ = 1) and for Γv

′vv we have δΓ = 1(δ′Γ = 0). These
divergences can be eliminated by the counterterms v′i∂

2vi and v′i∇tvi. The latter is
forbidden by the same reason, as φ′∇tφ. In fact, v′i∇tvi is invariant also with respect
to the generalized Galilean invariance [11]

vwi (x, t) = vi(x + wt, t)− wi(t), Φw(x, t) = Φ(x + u, t) , (4.2.6)

ui(t) =

∫ t

−∞
wi(t

′)dt′, Φ = {v′, φ, φ′} . (4.2.7)

It should be stressed, that the action functional (4.1.2) is not generally invariant
with respect to the above transformation since S[Φw] = S[Φ]+v′i∂twi. However, the
relation between the action functional and the effective potential (1.2.29) is invariant
and therefore counterterms are invariant.

• From the explicit form of the propagators in (4.1.4), Gv′φ
0 and Gvφ

0 are proportional
to c2

0 while Gφφ
0 is proportional to c4

0. Since these factors have positive total canonical
dimension, they appear as an external factor to every diagram. The real index of
UV divergence is reduced with the number of fields containing this factor. The

vertex function with Nφ′ > Nφ contains c
2(Nφ′−Nφ)

0 . The counterterm for Γφ
′v with

δΓ = 3 then necessarily reduces to c2
0φ
′(∂v) and the structure φ′∂2(∂v) and similar

are forbidden. In the same way, Γφ
′vv with δ = 2 reduces to c2

0φv
2 while φ(∂v)2 is

forbidden. In fact, c2
0φv

2 cannot appear because of Galilean invariance as well.

Taking into account all above considerations, we conclude that all UV divergences can be
removed by the following counterterms:

φ′∂2φ, c2
0φ
′(∂ivi), (v′i∂i)φ, v′i∂

2vi, (v′i∂i)(∂jvj), v′iv
′
i . (4.2.8)

The last term in (4.2.8) is a new counterterm that does not appear in the renormalization
around d = 3. A similar situation occurs for d = 2 in case of incompressible turbulence,
where this term represents the thermal fluctuations [71]. Renormalization of the action
functional is then ensured by the multiplicative renormalization of the parameters and
fields

g10 = g1µ
yZg1 ,

ν0 = νZν ,

vi0 = Zvivi,

g20 = g2µ
εZg2 ,

c0 = cZc,

v′i0 = Zv′iv
′
i,

u0 = uZu,

m0 = Zmm,

φ0 = Zφφ,

ṽ0 = ṽZṽ,

α0 = Zαα,

φ′0 = Zφ′φ
′.

(4.2.9)

where we have suppressed the subscript ”R” for the renormalized variables for simplicity.
The renormalized action functional of the model (4.1.2) reads

ScNS
R [v′,v, φ′, φ] = − 1

2
v′iD

f
ijv
′
j + v′i

{
∇tvi − Z1ν[δij∂

2 − ∂i∂k]vk − Z2uν∂i∂jvj + Z4∂iφ
}

+

+ φ′
{
∇tφ− Z3vν∂

2φ+ Z5c
2∂ivi

}
, (4.2.10)

with the random force correlator

Df
ij(k) = g1µ

yν3k4−d−y (Pij(k) + ZααQij(k)) + Z6g2µ
εν3 , (4.2.11)

and the relations for the renormalization constants are

Zg1Z
3
ν = 1,

Zφ′Zφ = 1,

Z1 = Zν ,

Z2 = ZuZν ,

Z3 = ZṽZν ,

Z4 = Zφ,

Z5 = Zφ′Z
2
c ,

Z6 = Zg2Z
3
ν ,

ZvZv′ = 1,
(4.2.12)
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68 4. Directed percolation process advected by compressible turbulent fluid

from which inverted relations are readily obtained

Zφ = Z4,

Zφ′ = Z−1
4 ,

Zg1 = Z−3
1 ,

Zg2 = Z6Z
−3
1 ,

Zu = Z2Z
−1
1 ,

Zṽ = Z3Z
−1
1 ,

Zν = Z1,

Zc = (Z4Z5)1/2,

Zα = 1,

Zm = 1.
(4.2.13)

Whereas the absence of the renormalization of α and m follows from the fact that non-
local terms do not renormalize [22]. Also note, that no normalization of the fields v, v′

is needed due to the absence of the normalization fo v′∇tv. The full set of constants
are found from divergent parts of all possible 1PI diagrams with amputated external
propagators. The expressions for the 1PI functions in one loop approximation are then
computed from (4.2.10) using (1.2.32)

Γv
′
ivj = iω − ν(δijk

2 − kikj)Z1 − uνkikjZ2 + (4.2.14)

Γφ
′φ = iω − ṽνk2Z3 + + (4.2.15)

Γv
′
iφ = −ikiZ4 + (4.2.16)

Γφ
′vi = −ikic2Z5 + + + (4.2.17)

Γv
′
iv
′
j = g1µ

yν3k4−d−y (Pij(k) + αQij(k)) + g2µ
εν3δijZ6 +

1

2
(4.2.18)

The explicit forms of divergent part of Feynman diagrams and renormalization constants
can be found in appendices (B.1) and (C.2).

4.2.2 Renormalization of percolation field

Multiplicative renormalizability of model (4.1.8) was discussed in [18, 19], where the
velocity field was modelled by Kraichnan (rapid-change) model (3.4.1) and in the latter
by the incompressible NS model (3.4.13). In order to study turbulent reaction-diffusion
processes, it is convenient to rescale the diffusion constant as D0 = w0ν0 where the new
dimensionless parameter w0, an inverse of the Prantl number, has been introduced. The
canonical dimensions of model (4.1.8) are shown in Tab. 4.3. We can see, that our model
becomes logarithmic for ε = 0 and the formal index of UV divergence (1.3.44) for any
vertex function is

δΓ = 6− 3Nv′ −Nv − 2(Nφ′ +Nφ +Nψ +Nψ′) . (4.2.19)

Vertex functions with non-negative UV exponents can be found in Tab. 4.4. We have
also introduced a new coupling constant g30 = λ2

0 since the actual expansion is λ2
0 (see for

example the normalization constants in Appendix C). Construction of the counterterms
needs to consider additional facts [18, 19]:

Q ψ′ ψ λ0 D0 g30 = λ2
0 w0 = D0/ν0 λ, a, a0

dkQ d/2 d/2 ε/2 −2 ε 0 0
dωQ 0 0 0 1 0 0 0
dQ d/2 d/2 ε/2 0 ε 0 0

Table 4.3: Canonical dimensions of the bare fields and bare parameters for the model of
directed percolation process
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δΓ 3 2 1 0

Γ
ψv ψv2 ψφ ψv3 ψ2v ψφv ψv4 ψφv2 ψφ2 ψ2φ ψ3

ψ′v ψ′v2 ψ′φ ψ′v3 ψψ′v ψ′φv ψ′v4 ψ′φv2 ψ′φ2 ψψ′φ ψ2ψ′

ψ2 ψφ′ ψv′ ψ′2v ψφ′v ψv′v ψφ′v2 ψφ′φ ψ′2φ ψψ′2

ψψ′ ψ′φ′ ψ′v′ ψ′φ′v ψ′v′v ψ′φ′v2 ψ′φ′φ ψ2φ′ ψ′3

ψ′2 ψφ′2 ψψ′φ′

ψ′φ′2 ψ′2φ′

Table 4.4: Vertex functions with non-negative UV exponent dΓ for the model (4.1.8) and
(4.1.9)

• Due to the structure of propagators, any vertex function that does not contain at
least one field ψ and at least one field ψ′ will contain a closed loop of retarded
Green’s functions and vanishes.

• As in the case of compressible NS mode, Galilean invariance implies that divergences
in Γψ

′ψ and Γψ
′v can be eliminated by counterterms containing ∂2, τ and ∇t.

We conclude, that the necessary counterterms are

ψ′∂tψ, ψ′∂2ψ, τψ′ψ, ψ′(v∂)ψ, ψ′(∂v)ψ, ψ′ψ2, ψ′2ψ . (4.2.20)

The fifth term has not been included in the original action functional, and therefore it
is assigned with a dimensionless parameter a0. In order to eliminate UV divergences,
parameters and fields in (4.1.8) and (4.1.9) have to be renormalized as follows

g30 = g3µ
εZg3 , D0 = DZD, τ0 = τZτ , ψ0 = Zψψ, (4.2.21)

λ0 = λµε/2Zλ, w0 = wZw, a0 = aZa, ψ′0 = Zψ′ψ
′, (4.2.22)

where we have included the new coupling constant g3 = λ2. The full renormalized action
functional for the advected DP process then attains the expected form

SDP
R [ψ, ψ′] = ψ′

{
Z7∂t − Z8D∂

2 + Z9τ
}
ψ − Dλµε/2

2

{
Z10ψ

′ − Z11ψ
}
ψ′ψ, (4.2.23)

SAdv
R [ψ, ψ′,v] = ψ′

{
Z7vi∂i + Z12a(∂ivi)

}
ψ, (4.2.24)

where the relations between renormalization constants are

Z7 = Zψ′Zψ,

Z8 = Zψ′ZψZD,

Z9 = Zψ′ZψZDZτ ,

Z10 = Z2
ψ′ZψZDZλ,

Z11 = Zψ′Z
2
ψZDZλ,

Z12 = Zψ′ZψZa,
(4.2.25)

together with their inverses

Zψ = (Z7Z11Z
−1
10 )1/2,

Zψ′ = (Z7Z
−1
11 Z10)1/2,

ZD = Z8Z
−1
7 ,

Zτ = Z9Z
−1
8 ,

Zλ = Z−1
8 (Z−1

7 Z10Z11)1/2,

Zw = ZDZ
−1
ν = Z8Z

−1
7 Z−1

1 ,

Za = Z12Z
−1
7 ,

Zg3 = Z2
λ.

(4.2.26)
Note that the velocity field in (4.2.24) generally breaks down the duality symmetry (rapid-
ity symmetry) (2.3.11). Renormalization constants are found from the following relations
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70 4. Directed percolation process advected by compressible turbulent fluid

for the vertex functions

Γψ′ψ = iωZ7 −Dk2Z8 −DτZ9 +
1

2
+ (4.2.27)

Γψψ′ψ′ = Dλµ
ε
2Z10 + + 2 + 2 (4.2.28)

Γψ′ψψ =−Dλµ ε
2Z11 + + 2 + 2 (4.2.29)

Γψ′ψvi =− ipiZ7 − iqiZ12 + + + + (4.2.30)

+ + + (4.2.31)

The explicit forms of the divergent parts of Feynman diagrams and renormalization con-
stants calculated in the form of double expansion of y and ε can be found in appendices
B.2 and C.2.

4.3 Asymptotic behaviour

The investigation of the large-scale behaviour requires analysis of the Green’s functions
at different scales. The Green’s functions for the full model (4.1.1) are normalized in the
following way (see section 1.3.3)

G({ki}, {ωi}, e0) = Z
Nφ
φ (g)Z

Nφ′

φ′ (g)Z
Nψ
ψ (g)Z

Nψ′

ψ′ (g)G({ki}, {ωi}, e, µ), (4.3.1)

e0 ≡ {g10, g20, g30, u0, ṽ0, w0, ν0, c0, τ0}, (4.3.2)

e ≡ {g1, g2, g3, u, ṽ, w, ν, c, τ}, (4.3.3)

g ≡ {g1, g2, g3, u, ṽ, w}, (4.3.4)

where e0, e = e(µ) are the full sets of unrenormalized and renormalized parameters and
g = g(µ) is the full set of renormalized charges. Note the absence of the normalization
constants Zv and Zv′ since they are equal to unity. By performing the partial derivative
with respect to lnµ (see section (1.2.4) and (1.3.3)) we obtain the basic RG equation

{DRG +Nφγφ +Nφ′γφ′ +Nψγψ +Nψ′γψ′}G({ki}, {ωi}, e, µ) = 0 , (4.3.5)

where DRG is the operation D̃µ expressed in terms of renormalized variables:

DRG = Dµ + βg1∂g1 + βg2∂g2 + βg2∂g3 + βu∂u + βṽ∂ṽ + βw∂w

− γνDν − γcDc − γτDτ . (4.3.6)
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The beta functions are found using relations between the renormalized and unrenormalized
parameters (4.2.9) and (4.2.21) as

βg1 =D̃µg1 = g10D̃µµ−yZ−1
g1

= g1(−y − γg1),
βg2 =D̃µg2 = g2(−ε− γg2),
βu =D̃µu = u(−γu),
βṽ =D̃µṽ = ṽ(−γṽ),

βg3 =D̃µg3 = g3(−ε− γg3),
βw =D̃µw = w(−γw),

βa =D̃µa = a(−γa),
(4.3.7)

while the anomalous dimension γF for a quantity F is defined as

γF = D̃µ lnZF . (4.3.8)

The IR fixed point g∗ is then defined by the vanishing values of the Beta functions βg(g
∗) =

0 and its stability is determined by the eigenvalues of the matrix

Ωij =
∂βgi
∂gj

∣∣∣∣
g=g∗

, (4.3.9)

which in the case of the IR stable point must be positive definite.
Anomalous dimensions are calculated from the normalization constants whose struc-

ture is found to be

ZF (y, ε, g) = 1 + c
(1)
F

g1

y
+ c

(2)
F

g2

ε
+ c

(3)
F

g3

ε
+

c
(4)
F

2y − ε
g2

1

g2

, (4.3.10)

where c(i), i ∈ {1, 2, 3, 4} are some finite expressions that can depend only on parameters
u, ṽ, w, a and α. The anomalous dimensions are found in a similar way as (1.2.74)

γF =
(

(D̃µg1)∂g1 + (D̃µg2)∂g2 + (D̃µg3)∂g3

)
lnZF (4.3.11)

≈ −
(
g1c

(1)
F + g2c

(2)
F + g3c

(3)
F +

g2
1

g2

c
(4)
F

)
. (4.3.12)

Eq. (4.2.13) and (4.2.26) then imply the following relations between the anomalous di-
mensions

γv′ = γv = γα = γm = 0 ,

γφ = −γφ′ = γ4 ,

γc = (γ4 + γ5)/2 ,

γṽ = γ3 − γ1 ,

γu = γ2 − γ1 ,

γg2 = γ6 − 3γ1 ,

γg1 = −3γ1 ,

γν = γ1 .

γg3 = −γ7 + γ10 + γ11 − 2γ8 ,

γψ = (γ7 + γ11 − γ10)/2 ,

γψ′ = (γ7 − γ11 + γ10)/2 ,

γw = γ8 − γ7 + γ1 ,

γτ = γ9 − γ8 ,

γD = γ8 − γ7 ,

γa = γ12 − γ7 ,

(4.3.13)

4.3.1 Stable fixed points of compressible NS model

The explicit form of anomalous dimensions and beta functions can be found in appen-
dices C.3 and C.4. This analysis was technically difficult and therefore programmatical
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72 4. Directed percolation process advected by compressible turbulent fluid

assistance was used to confirm the results 2. Since in the one loop approximation the beta
functions for the compressible NS model does not depend on the DP charges g3, w, a, the
stability can be treated individually. Direct analysis of the beta functions βg1 , βg2 , βu, βṽ
shows, that there are nine fixed points, shown in Tab. 4.4. The trivial (Gaussian) fixed
point FPTc has zero effective values for charges g∗1, g

∗
2 while the parameters u∗, ṽ∗ are

not fixed. Another fixed point is FPIc where the coupling constant describing non-local
interactions g∗1 is effectively zero, the local interactions are nonzero g∗2 6= 0 and the value
of other parameters are u∗ = 1, ṽ∗ = 1. This regime is absent in the 3D analysis of this
model and it represents ubiquitous thermal fluctuations of the velocity field. The most
interesting point is FPIIc where both local and non-local interactions are relevant. In con-
trast to the 3D case [21], in this regime the coupling constant g∗1 depends on the parameter
α and the local interaction g∗2 emerges. However, it can be shown, that these differences
modify only the Kolmogorov constant and the energy spectrum can be obtained in the
same manner as in [21] (see Eq. (3.4.15)). This problem is beyond the purpose of this
work and this problem is left for future studies. It is also interesting that for the purely
transversal forcing α→ 0 the coupling constant g∗2 vanishes while the charge g∗1 attains a
value g∗1 = 16/9y. The limit for the purely longitudinal forcing requires slightly different
investigation. In this case, the purely transversal forcing vanishes and therefore taking
the bare limit α → ∞ is insufficient. Performing the following re-parametrization of the
non-local part of the random force solves this problem

g1(Pij(k) + αQij(k)) = g′1(Pij(k)/α +Qij(k)), (4.3.14)

g∗1(g′1
∗) g∗2 u∗ ṽ∗

FPTc 0 0 NF NF

FPIc 0 8
3
ε 1 1

FPIIc 16y(2y−3ε)
9((α+2)y−3ε)

16αy2

9((α+2)y−3ε)
1 1

FPIIcα=0
16y
9

0 1 1

FPIIcα→∞
16
9

(2y − 3ε) 16
9
y 1 1

FPIIIc 0 8
3
ε ∞ C

FPIVc 8
3
y 0 ∞ C

FPVc 0 8
3
ε 1 ∞

FPVIc 16y(2y−3ε)
9((α+2)y−3ε)

16αy2

9((α+2)y−3ε)
1 ∞

FPVIIc 0 8
3
ε ∞ ∞

FPVIIIc 8
3
y 0 ∞ ∞

Figure 4.4: Table of fixed points for the bare com-
pressible NS model. The constant C = (

√
13−1)/2

and NF stands for ”not fixed”.

where the new parameter g′1 = αg1

has been introduced. This parameter
must be taken fixed while performing
this limit and therefore derivation of
the new beta function is necessary

βg′1 = D̃µ(αg1) (4.3.15)

= αβg1 |g1→g′1/α . (4.3.16)

The resulting beta functions can
be found in the Appendix C.4 and
the corresponding IR fixed point
FPIIcα→∞ is shown on the Tab. 4.4.

In order to obtain the full set of
fixed points we must also consider the
limit cases u → ∞ and ṽ → ∞. As
in the case of purely longitudinal ran-
dom force, the structure of the beta
functions is inconvenient for taking
this limit. In the first case, one must
introduce a new parameter t = 1/u

and modify beta functions in the following way

βt = −t−2βu|u→t , βg → βg|u→1/t , (4.3.17)

2 For the source code contact the author viktoroslavs@gmail.com.
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4.3. Asymptotic behaviour 73

where g is the set of all coupling constants except u. The limit u→∞ then corresponds
to t → 0. The resulting fixed points are FPIIIc and FPIVc in the Tab. 4.4. In the first
case, the non-local random force is irrelevant and the universality class is determined by
the local random force. Note, that this regime is not present in the original formulation
of incompressible NS turbulence [12]. The latter regime represents the incompressible
fixed point, which is in agreement with previous works [12] up to the value of ṽ∗. The
limit ṽ → ∞ can be obtained in a similar manner as u → ∞. Introducing f = 1/ṽ and
modifying beta functions similarly to (4.3.17) one obtains fixed points FPVc and FPVIc.
Note that these fixed points are identical to FPIc and FPIIc up to the value ṽ∗. This
is caused by fact that ṽ is present only in the βṽ function and this limit does not affect
effective values of other coupling constants (see Appendix C.4). The same situation occurs
for the (u, ṽ)→∞ limit, where fixed points FPVIIc and FPVIIIc are identical to FPIIIc

and FPIVc (up to the value ṽ∗).
The stability matrix (4.3.9) has the following form in the case of compressible NS

ΩcNS =


∂g1βg1 ∂g2βg1 ∂uβg1 ∂ṽβg1
∂g1βg2 ∂g2βg2 ∂uβg2 ∂ṽβg2
∂g1βu ∂g2βu ∂uβu ∂ṽβu
∂g1βṽ ∂g2βṽ ∂uβṽ ∂ṽβṽ


∣∣∣∣∣
g=g∗

, (4.3.18)

and the resulting eigenvalues for different fixed points are shown in Tab. 4.5. The Gaussian
FPc is stable for y < 0 and ε < 0 while the local fixed point FPIc is stable for ε > 0
and 3ε > 2y. The fixed points FPIIIc, FPIVc, FPVc, FPVIIc and FPVIIIc are clearly
unstable for any values of (y, ε). The stability of FPIIc was found by also taking into
account, that charges g∗1 and g∗2 must be positive. As a result, this regime is stable for
y > 0 and 3ε < 2y. The last fixed point FPVIc is due to the minus sign in λ4 unstable for
any (y, ε). The resulting phase portrait is shown in the Fig. 4.5. The point representing
physical values of parameters (y, ε) = (4, 1) lies in the region FPIIc which belongs to the

λ1 λ2 λ3 λ4

FPTc −y −ε 0 0

FPIc 1
2
(3ε− 2y) ε 7

18
ε 5

6
ε

FPIIc A+
√
B

C
A−
√
B

C
D y((4α+6)y−(α+9)ε)

6((α+2)y−3ε)

FPIIcα=0 y 1
3
(2y − 3ε) 11

54
y 1

2
y

FPIIcα→∞
1
3
(y +

√
y(9ε− 5y)) 1

3
(y −

√
y(9ε− 5y)) 1

54
(20y − 9ε) 1

6
(4y − ε)

FPIIIc ε− y ε −1
3
ε 2(

√
13+13)

3(
√

13+1)2
ε

FPIVc y y − ε −1
3
y 2(

√
13+13)

3(
√

13+1)2
ε

FPVc 1
2
(3ε− 2y) ε 7

18
ε −1

2
ε

FPVIc A+
√
B

C
A−
√
B

C
D −1

3
ε

FPVIIc ε− y ε −1
3
ε −1

3
ε

FPVIIIc y y − ε −1
3
y −1

3
y

Table 4.5: Table of the fixed points eigenvalues for the compressible NS model. Expres-
sions A,B,C and D are found in the Appendix (C.1).
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FPT
(trivial)

FPI
(local)

FPII
(nonlocal+local)

ε

y

ε>2y/3

-1 0 1 2 3 4 5

0.0

0.5

1.0

1.5

- 5 0 5 10 15

- 5

0

5

10

15

Figure 4.5: Left: Phase portrait for the compressible NS model in the y-ε plane. Different
regions are denoted by different colors. The dashed line represents the physical value of
the parameter ε = 1(d = 3) and the physical point (y, ε) = (4, 1) is denoted by the red
dot. Only the FPTc, FPIc and FPIIc are present, while other fixed points are unstable.
Right: RG flow for the charges g1 and g2 for the case (y, ε, α)→ (4, 1,∞). Full square –
FPTc, empty square – FPIc, empty circle – FPIIc.

universality class of FDT with relevant local and non-local fluctuations. These results
differ from the ones obtained by performing RG analysis around d = 3 [21], where the g∗2
was not present at all.

4.3.2 Stable fixed points of advected DP process

Here we present the first part of the main results of this thesis - the IR behaviour of
the DP process advected by compressible turbulent flow. Critical scaling and comparison
with previous works will be discussed in the next section. The IR fixed points g∗ for this
model are determined by vanishing beta functions βg3 , βw, βa together with fixed points
obtained from the compressible NS model. Together, eleven fixed points have been found,
whose final form is listed in Tab. 4.6.

First, let us consider only those compressible NS fixed points, that are not completely
unstable. Six regimes with different effective values of parameters are found. The first
is the Gaussian (trivial) fixed point FPT where the velocity and DP field are irrelevant,
while parameters u∗, ṽ∗, w∗, a∗ remain not fixed. The second fixed point FPI describes the
pure DP process where the velocity field is irrelevant. The value a∗ = 1/2 is interesting,
since it is connected to the velocity field. FPII represents the DP process advected by the
thermal fluctuations of the velocity field. In this case, parameters w∗ and a∗ do not attain
a fixed value, but rather may represent the whole line of fixed points whose length may
be determined by the stability of this fixed point. This is due to the structure of βa, that
also vanishes for g3 = 0 and therefore only the βw function determines the values of w∗

and a∗ (see Appendix C.4). The next fixed point FPIII belongs to the universality class
of DP process advected by thermal fluctuations of the velocity field. In this case, fixed
points g∗3 and w∗ are calculated numerically. The most interesting fixed points are FPIV
and FPV, where both non-local and local interactions of the velocity field are relevant. In
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4.3. Asymptotic behaviour 75

the first case, percolation triple interactions are irrelevant and this regime belongs to the
universality class of turbulent diffusion (advected by compressible NS equations). This
regime also shows a non-universal behaviour with respect to the parameter a∗ as in the
case of FPII. The most non-trivial fixed point is FPV which describes the DP process
advected by compressible NS turbulence. The special case α → 0 of these fixed points
are also shown in the table. It seems that in the case of FPIV this leads to the fixation
of w∗ = 1 while a∗ remains unfixed. The limit case α → ∞ was not possible to solve in
analytical fashion and therefore a numerical simulation is necessary (see below).

The complete set of fixed points is closed with the limit cases u∗, ṽ∗, w∗ → ∞. Fixed
points for u∗ →∞ with other parameters finite are FPVI-FPIX. The first two, FPVI and
FPVII represent the advection of the passive scalar by the local interactions, while the
latter one the DP process advected by thermal fluctuations of the velocity field. FPVIII
and FPIV describe similar processes, but advected solely by the non-local term. This
fixed point represents the incompressible limit case that will be compared later with [19].
It is also important to note the apparent similarity between FPIVα→0 and FPIX. Fixed
points with ṽ → ∞ are not present, since in the one-loop calculation they differ from
already mentioned fixed points only in the value of the ṽ∗ (and they are all unstable).
The last fixed point is FPX with w = D/ν → ∞ and any compressible NS fixed point.
Straightforward analysis of DP Feynman diagrams (see Appendix B) shows, that in this
limit the contributions from the velocity field to the DP process vanish. On the other
hand, diagrams that do not contain velocity field remain unchanged. Hence all fixed
points with w∗ →∞ belong to the universality class of the bare DP process.

Stability of the above fixed points is again determined by the analysis of the eigenvalues

g∗1 g∗2 u∗ ṽ∗ g∗3 w∗ a∗

FPT 0 0 NF NF 0 NF NF

FPI 0 0 NF NF 4
3
ε 0 1

2

FPII 0 8
3
ε 1 1 0 NF NF

FPIII 0 8
3
ε 1 1 0.3505(0)ε 1.0819(2) 1

2

FPIV 16y(2y−3ε)
9((α+2)y−3ε)

16αy2

9((α+2)y−3ε)
1 1 0 NF NF

FPV 16y(2y−3ε)
9((α+2)y−3ε)

16αy2

9((α+2)y−3ε)
1 1 g∗3(y, ε, α) w∗(y, ε, α) 1

2

FPIVα→0
16y
9

0 1 1 0 1 NF

FPVα→0
16y
9

0 1 1 8
15

(3ε− 2y) 1
2

(√
1− 40y

ε−4y
− 1
)

1
2

FPVI 0 8ε
3

∞ C 0 C NF

FPVII 0 8ε
3

∞ C 8ε
15

1
6

(√
129− 3

)
1
2

FPVIII 8y
3

0 ∞ C 0 C NF

FPIX 8y
3

0 ∞ C 8
15

(3ε− 2y) 1
2

(√
1− 40y

ε−4y
− 1
)

1
2

FPX any from FPTc-FPVIIIc 4
3
ε ∞ 1

2

Table 4.6: List of fixed points, where C = (
√

13−1)/2 and NF - not fixed. The description
is given in the text above.
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λ1, λ2, λ3, λ4 λ5 λ6 λ7

FPT FPTc (y < 0 ∧ ε < 0) −ε 0 0

FPI FPTc (y < 0 ∧ ε < 0) ε − 1
12
ε 1

6
ε

FPII FPIc (3ε > 2y ∧ ε > 0) 0 λII
6 (a∗, ε) λII

7 (a∗, ε)

FPIII FPIc (3ε > 2y ∧ ε > 0) 0.0438(1)ε 0.2165(2)ε 0.8083(8)ε

FPIV FPIIc (3ε < 2y ∧ y > 0) λIV
5 (a∗,∆) λIV

6 (a∗,∆) λIV
7 (a∗,∆)

FPV FPIIc (3ε < 2y ∧ y > 0) λV
5 (∆) λV

6 (∆) λV
5 (∆)

FPIVα→0 FPIIc (3ε < 2y ∧ y > 0) 1
3
(2y − 3ε) y

2
0

FPVα→0 FPIIc (3ε < 2y ∧ y > 0) 1
15

(3ε− 2y) λV0
6 (∆) λV0

7 (∆)

FPX FPIc (y < 0 ∧ ε < 0) ε 1
12
ε 1

6
ε

FPX FPIc (3ε > 2y ∧ ε > 0) ε −19
60
ε 1

6
ε

FPX FPIIc (3ε < 2y ∧ y > 0) ε 1
12

(ε− 4y) 1
6
ε

Table 4.7: List of fixed points where ∆ = {y, ε, α}, C = (
√

13 − 1)/2 and NF – not
fixed. Fixed points FPVI-FPVIII and FPX with other compressible NS fixed points are
not present, since the corresponding compressible NS fixed points are already unstable
for all y and ε. The structure of some eigenvalues is rather lengthy and therefore they are
not displayed.

of the following matrix

ΩPer =

∂g3βg3 ∂wβg3 ∂aβg3
∂g3βw ∂wβw ∂aβw
∂g3βa ∂wβa ∂aβa

∣∣∣∣∣
g=g∗

, (4.3.19)

together with eigenvalues obtained for the bare velocity field (Tab. 4.5). The results
are shown in Tab. 4.7. As one can notice, the Gaussian fixed point FPT is stable for
ε < 0 and y < 0 (as expected) and the pure DP process is unstable everywhere. The
asymptotic cases u∗, ṽ∗ → ∞ are not displayed, since they are generally unstable even
for the bare velocity field (see Tab. 4.5). The limit case w∗ → ∞ represented by fixed
points FPX-FPXIII are clearly unstable for all (y, ε). The most interesting fixed points
are FPII-FPV. Here, only FPIII has a trivial structure which tells us that it is a stable
fixed point for ε > 0 and 2ε and 2y. The stability of the fixed points FPIV and FPV is
trivial only in the limit α → 0. In this case FPIVα→0 is stable for 3ε < 2y and y > 0
while FPV remains unstable everywhere. For nonzero values of α, the stability is too
complicated and therefore a numerical solution is called for.

The physically most interesting fixed points FPII, FPIV and FPV show difficult struc-
ture of eigenvalues. In addition the FPII and PFIV to be also non-universal and the final
form of the eigenvalues depends on the parameter a∗. In order to solve this problem,
we have performed a numerical solution of Gell-Mann’s equations. This can be done by
re-parametrizing the arbitrary introduced mass scale as µ(l) = µl and solving the result-
ing beta functions in the limit l → 0 (see section 1.2.4). By doing this, one obtains the
fixed points values g∗3 shown on the Fig. 4.6. In these figures, g∗3 is plotted in the (y, ε)
plane for the values α = {0, 1,∞}. The solid and the dashed grey lines represent the lines
y = 0, ε = 0 and the physical line ε = 1(d = 3).
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4.3. Asymptotic behaviour 77

Figure 4.6: Results of the numerical so-
lution for the coupling constant g∗3 at the
(y, ε) for the limits α→ {0, 1,∞} (from
top to the bottom).

The most realistic value (y, ε) = (4, 1) is
marked by the red dot. Here, several regimes
denoted by different planes separated by solid
black lines. The FPT is presented in the y < 0
and ε < 0 area and the FPIII is present for the
values ε > 0 and 3ε > 2y. These regimes do not
change by varying α. The fixed point FPII is
not not present at all. For α = 0 only the FPIV
is present, while FPV is unstable everywhere.
By increasing of value α the most non-trivial
regime emergences - FPV - the compressible
turbulent advection of the DP process. How-
ever, this regime remains small even for the lim-
its α→∞. In the limit of the purely longitudi-
nal random force, i.e. α→∞ the boundary be-
tween FPIV and FPV does not cross the phys-
ical point (y, ε) = (4, 1). The realistic point
therefore corresponds to the universality class
of passive compressible turbulent advection for
all values of α. In this regime however, the val-
ues of w∗ and a∗ remain un-fixed and the they
depend on the initial values of in the RG flow.

In order to visualise the situation occurring
for (y, ε) = (4, 1), we plot the RG flow in the
(a, w, g3) plane for the various values of α. The
results can be seen in Fig. 4.7. These plots
have been obtained by numerically solving the
DP beta function, βg3 , βw, βa at the fixed point
FPIIc for α = {0, 1,∞}. One can see, that
in all cases, the DP is irrelevant, i.e. g∗3 = 0.
In the case α = 0, the fixed point value w∗ = 1
(dashed line) which matches with the analytical
solutions (see Tab. 4.6). The value a∗ depends
on the initial value a and there is no restriction
about the fixed point value from the stability
matrix (see Tab. 4.7). By increasing α, the
value w∗ 6= 1 and a different line of stability
emerges (second dashed line). In addition, the
parameter a∗ is being attracted to the ”centre” represented by the line a∗ = 1/2, g∗3 = 0
. Note that this graph is symmetric along the plane a = 1/2. In the limit α → ∞, the
graph becomes quantitatively more different. The points close to g∗3 = 0 and a∗ ∈ {0, 1}
are obviously unstable, since only a small perturbation drives the RG flow away from the
g∗3 plane but then attracts it back close to a = 1/2. We conclude that the line of fixed
points is therefore shrinking with increasing α. The similar result has been obtained by
considering Kraichnan model for the velocity field [18], where the line of stability becomes
a fixed point a∗ = 1/2 for the limit α→∞3. The fixed point value is in this case shifted
away from w∗ = 1. This situation might change in the higher-loop approximation.

3One should keep in mind, that in the Kraichnan model the α represents the degree of compressibility.
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78 4. Directed percolation process advected by compressible turbulent fluid

Figure 4.7: The RG flow for the parameters (g3, w, a) for the values (y, ε) = (4, 1) eval-
uated at the FPIIc. From top to the bottom: the limits α → {0, 1,∞}. In all cases
percolation is irrelevant g∗3 = 0 and parameters w∗, a∗ represent a whole line of stability.
In the case α → 0 the fixed point values are w∗ = 1 and a∗ remains unfixed. This is
represented by dashed line in the upper Figure. By increasing the value of α the line of
stable points shifts from w∗ = 1 to slightly larger values and it becomes curved (second
dashed line). In the limit α → ∞, the points close to a ∈ {0, 1} becomes unstable and
they are driven closer to a∗ = 1/2. The diagram is symmetric around a = 1/2.
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Figure 4.8: Phase portraits: top - our
mode, middle - incompressible NS model
[19], bottom - Kraichnan model [18].

The above results allow us to construct a
schematic phase diagram in the (y, ε) plane.
This can be seen in Fig. 4.8 where we have
also plotted results obtained by other authors.
The upper diagram corresponds to our model.
As stated before, only 4 regimes are present.
The Gaussian fixed point (FPT) is stable for
0 < ε ∧ 0 < y. In addition, for α = 0 only DP
process advected by thermal fluctuations of the
velocity field (FPIII) and passive compressible
turbulent advection (FPIV) are present. Their
stability is denoted by the green and orange ar-
eas separated by the line ε = 2y/3. By increas-
ing value of α, the regime for the compress-
ible turbulent advection of DP process (FPV)
is present, denoted by red area. Dashed lines
represent the limits α ∈ {0, 1,∞}. For α→∞,
the area stops growing and the boundary with
passive advection does not cross the physical
fixed point (y, ε) = (4, 1) represented by the
red dot. The bare DP process is not present at
all.

In the middle panel of Fig. 4.8 results ob-
tained using incompressible model of NS equa-
tion are displayed [19]. Here, the bare DP pro-
cess is present for ε > 4y. The DP process
advected by incompressible turbulent mixing is
present in the region ε < 4y and ε > 2y/3.
The passive incompressible turbulent advection
is present in the same region as for our model
in the case α→ 0.

The last panel describes results obtained by
using the compressible Kraichnan model for the
velocity field instead of NS equations [18] (see
section 3.4). Here, the expansion parameter is
ξ instead of y and the physical value is ξ = 4/3
which leads to the Kolmogorov spectrum. The
phase portrait has been rescaled for our pur-
poses. For the limit α → 0 one can see that,
even though the values of the parameters are
quantitatively different, the graph is qualita-
tively the same as in the case of incompressible
NS model (middle panel). This is a reasonable
result, since the parameter α in this model de-
scribes the degree of compressibility and thus
the limit α → 0 represents an incompressible limit (represented by dashed line in the
Figure).

The increasing value of α leads to a crossover between the universality class of the
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80 4. Directed percolation process advected by compressible turbulent fluid

passive turbulent advection and the turbulent advection of the DP process. This occurs
for α = 5 and it is in contrast to our results, since we don’t observe any crossover in our
model.

4.3.3 Critical scaling

In this final section we discuss universal properties of the DP process advected by com-
pressible turbulent flow. However, algebraic solutions of some of the fixed points are too
complicated or they depend on the non-universal parameter a∗. Therefore, we do not
express their final form. This applies also for the physical point (y, ε) = (4, 1).

Anomalous dimensions obtained for this model are displayed in Tab. (4.8). In the case
of the Gaussian fixed point they are zero (as expected) while anomalous dimensions for the
bare DP process FPI are in agreement with the results obtained in [38]. The fixed point
FPII, which is generally unstable for all y and ε has a non-universal value depending on the
parameter a∗. Anomalous dimensions for the FPIII have been calculated numerically. The
most interesting fixed points FPIV and FPV also show a non-universal behaviour. The
passive advection FPIV that is stable for physical values of parameters is non-universal
in the sense that it depends on the parameter α and the final value a∗ in the RG flow (see
Fig. 4.7). This situation might change in the higher-loop approximation. The most non-
trivial fixed point FPV shows only the non-universality with the parameter α. Similar
non-universality has been obtained in [18].

The complete set of anomalous dimensions is given by calculating also the limit cases
u∗, w∗ → ∞ (the limit v∗ → ∞ collides with other fixed points, see section 4.3.1 ). In
the incompressible limit u∗ fixed points FPVI and FPVII are not presented in [19]. The
results for FPVIII and FPIX that correspond to passive advection and advection of the

γ∗ψ γ∗ψ′ γ∗τ γ∗D

FPT 0 0 0 0

FPI − 1
12
ε − 1

12
ε −1

4
ε 1

12
ε

FPII γ∗IIψ (a∗) γ∗IIψ′ (a∗) γ∗IIτ (a∗) γ∗IID (a∗)

FPIII −0.0603583ε −0.0603583ε −0.543813ε 0.5ε

FPIV γ∗IVψ (a∗,∆) γ∗IVψ′ (a∗,∆) γ∗IVτ (a∗,∆) γ∗IVD (a∗,∆)

FPV γ∗Vψ (∆) γ∗Vψ′ (∆) γ∗Vτ (∆) γ∗VD (∆)

FPIVα→0 0 0 −1
3
y −1

3
y

FPVα→0
1
30

(2y − 3ε) 1
30

(2y − 3ε) −1
5
(y + ε) 1

3
y

FPVI 0 0 1
3
ε 1

3
ε

FPVII − 1
30
ε − 1

30
ε −2

5
ε 1

3
ε

FPVIII 0 0 −1
3
y −1

3
y

FPIX 1
30

(2y − 3ε) 1
30

(2y − 3ε) −1
5
(y + ε) 1

3
y

Table 4.8: Anomalous dimensions for fixed points 4.6 (∆ = {y, ε, α}). Some gamma
functions are not displayed due to their complicated structure. In the most of the cases
γ∗ψ = γ∗ψ′ , since it does not depend on the non-universal parameter a∗. Anomalous dimen-
sions for FPX are not displayed, since they are identical to FPI. Note that FPIVα→0 and
FPVα→0 coincide with FPVIII and FPIX .
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4.3. Asymptotic behaviour 81

DP process in the incompressible limit are in agreement with the previous work obtained
in [19]. Note also that anomalous dimensions FPIVα→0, FPVα→0 are identical to FPVIII
and FPIX. This is a very interesting result, because the limit α → 0 does not generally
correspond to the incompressible case. The results for FPX-FPXIII are not present, since
they are generally identical to FPI.

One may also notice another important result. Anomalous dimensions for the γ∗ψ and
γ∗ψ′ are identical for all fixed points except FPII and FPIV. This is also due to the fact,
that these anomalous dimensions are identical for the value a∗ = 1/2 (see Appendix C.3).
In the case FPII and FPIV the fixed point value a∗ depends on the initial condition of
the RG flow, but the anomalous dimensions γ∗ψ and γ∗ψ′ are symmetric arround a∗ = 1/2,
i.e. symmetric with respect to the transformation

a→ (1− a) . (4.3.20)

As stated in [38], these anomalous dimensions are identical if the rapidity symmetry is
satisfied (see section 2.2.1). This is an interesting result, because our model is generally
not invariant with respect to the symmetry (2.3.11). This is due to the fact, that the
velocity field introduced by the compressible NS model (4.1.2) generally breaks down this
symmetry.

A similar result has been obtained by authors in [18], where the velocity field has been
modelled by the compressible Kraichnan model (3.4.1). It has also been shown, that their
model is invariant with respect to the transformation

ψ(x, t)↔ ψ′(−x,−t), vi(x, t)→ vi(−x,−t), a0 → (1− a0), λ0 → −λ0 , (4.3.21)

where the parameter a0 has the same meaning as it does in our case. The transformation of
λ0 is unimportant here, since it enters the counterterms as λ2

0. Due to the transformation
(4.3.21), anomalous dimensions possessed the symmetry (4.3.20) which implied that the
critical exponents δ and δ′ were identical. It is unclear why our anomalous dimensions
are also invariant with respect to the transformation (4.3.20), since our model does not
posses the symmetry (4.3.21).

In [19], where the incompressible NS model of the velocity field was used, authors have
claimed, that the DP action functional (4.1.8) is invariant with respect to the transfor-
mation

ψ(x, t)↔ ψ′(−x,−t), λ0 → −λ0 . (4.3.22)

This is of course true, but their NS model for the velocity field breaks down this sym-
metry. In fact, authors have not discussed the transformation of the velocity field at
all. However, invalidity of this symmetry does not change the process of renormalization
(the construction of the counterterms and so on) and therefore their results seem to be
correct. Anomalous dimensions for the fields ψ and ψ′ were also identical, which implies
the reduction of the critical exponents to three. Their argumentation is, in our opinion
unsatisfactory.

Critical exponents derived for this model can be seen in Fig. 4.9. The values of α and δ
are identical for all fixed points except FPII and FPIV. Therefore in these cases there are
only three independent critical exponents describing the universal properties of the DP
phase transition. However, as stated before, the most realistic fixed point (y, ε) = (4, 1)
corresponds to the FPIV which is non-universal with respect to the values α and a∗. The
similar non-universality was obtained in the previous work [18]. The coincidence of the
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82 4. Directed percolation process advected by compressible turbulent fluid

z̃ Θ δ, δ′

FPT 1 0 1− 1
4
ε

FPI 1 + 1
14
ε 1

12
ε 1− 1

4
ε

FPII z̃II(a∗) ΘII(a∗) δII(a∗) 6= δ′II(a∗)

FPIII 1 + 0.0109532ε 0.0219064ε 1− 1
4
ε

FPIV z̃IV(a∗,∆) ΘIV(a∗,∆) δIV(a∗,∆) 6= δ′IV(a∗,∆)

FPV z̃V(∆) ΘV(∆) δV(∆) = δ′V(∆)

FPIVα→0 1 + 1
6
y 0 1− 1

4
ε+ 1

24
(4− ε)y

FPVα→0 1 + 1
6
y 1

10
ε− 1

30
(4− ε)y 1− 3

10
ε+ 1

20
(4− ε)y

FPVI 1 + 1
6
ε 0 1− 1

12
ε

FPVII 1 + 1
6
ε 1

30
ε 1− 1

10
ε

FPVIII 1 + 1
6
y 0 1− 1

4
ε+ 1

24
(4− ε)y

FPIX 1 + 1
6
y 1

10
ε− 1

30
(4− ε)y 1− 3

10
ε+ 1

20
(4− ε)y

Table 4.9: Critical exponents for various fixed points (∆ = {y, ε, α}). As one can see,
α and δ are identical in most of the cases (except FPII and FPV) because they don’t
depend on the non-universal parameter a∗. Critical exponents for FPX is not displayed
since they are identical to FPI.

limits FPIVα→0,FPVα→0 and FPVIII, FPIX remains unclear. It seems that in the one loop
approximation the limit α→ 0 shows the same universal properties as the incompressible
limit. This situation might change in the higher loop approximation.
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Chapter 5

Conclusion

In this thesis we have studied the influence of the compressible turbulent mixing on the
DP phase transition. First we introduced all methods that have been used. Then we
described the basic properties of the DP process and following the standard literature
[23] we have derived a field-theoretic formulation using Doi-Peliti action functional. In
the following chapter we described the basic properties of the fully developed turbulence
and discussed the differences between the incompressible and compressible turbulence.
The field-theoretic formulation was later derived in terms of De Dominicis-Janssen ac-
tion functional. In contrast to the previous works, compressibility was modelled by an
additional scalar field related to the density.

In order to study the turbulent advection of the DP process, we have coupled the
velocity field to the percolation field by introducing the generalized covariant derivative.
We have shown that the model is multiplicatively renormalizable by renormalizing all
vertex functions with a non-negative degree of divergence. Since the DP model has the
upper critical dimension dc = 4, the velocity field was also renormalized around d =
4. In contrast to the 3D case, an additional divergences was present in the two-point
velocity field correlator. This divergence was eliminated by introducing the local term
to the random force correlator which, from the physical point of view, can be related
to the thermal fluctuations of the fluid. The regularization was done by performing the
double expansion in terms of parameters y and ε, where the former corresponds to the
analytical regularization of the non-local part of the random force correlator and the
latter to the dimensional regularization around the upper critical dimension ε = 4 − d.
The renormalization process then consisted of the calculation of the divergent parts of
twenty two Feynman diagrams, where for the practical calculations the MS scheme was
used. The large scale and long time properties was found by analysing the IR limit of the
beta functions describing the running coupling constant.

Since in the one-loop approximation there was no contribution from the DP field to
the velocity field, the IR behaviour of the latter could be investigated separately. Eight
non-trivial fixed points were found, where only three were stable in some region of the
parameter space y, ε, α. Most non-trivial fixed points, where both local and non-local
parts of the random force were relevant, were found to be stable for the physical values
of parameters (y, ε) = (4, 1). These results have been calculated independently and
published recently in [70].

The main part of our work was the IR behaviour of the DP process advected by the
compressible velocity field. Here ten non-trivial fixed points were found, four of which
appeared to be stable in the parameter space (y, ε). We showed that the bare DP process
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84 5. Conclusion

is completely unstable, which is in contrast to previous works [18, 19]. Several new uni-
versality classes were found, such as passive scalar and DP process advected by thermal
fluctuations and the DP process advected by compressible turbulent mixing. The advec-
tion of the passive scalar by the compressible turbulent mixing was also obtained. This
regime together with the DP advected by compressible turbulence shows non-universal
properties, i.e. they both depend on the parameter α which describes the structure of the
random force correlator. The boundary between these two regimes seems to vary with
respect to α. The regime of the turbulent advection of the DP process ceases to exist in
the limit of purely transversal force α→ 0 and only the advection of the passive scalar is
present.

Similar non-universalities have been found in previous works, where authors were using
Kraichnan model of the velocity field. In their work, the parameter α describes the degree
of compressibility and the limit α → 0 represents the incompressible limit. In our case
the situation is different, since the parameter α describes the structure of the random
force correlator. However, in the limit α → 0 we have obtained scaling behaviour of the
DP process that was obtained in previous work using the incompressible NS model.

The physical point (y, ε) = (4, 1) belongs to the universality class of passive turbulent
advection of the scalar field and no crossover between different regimes has been found.
In the limit α→∞ the boundary between turbulent advection of the passive scalar and
the advected DP process is still far away from the physical point. This is in contrast
to the results obtained in [18], where a certain value of α showed the crossover between
these two regimes. One should keep in mind that in our case the parameter α does not
necessary describe the degree of compressibility.

Another important fact is that the physical regime shows a non-universality with
respect to the coupling constant a. Only in the limit α → 0 the scaling properties do
not depend on this parameter and they are in agreement with the results obtained in
[70]. This means that for a nonzero value of α, this regime is qualitatively different from
the classical universality class of the passive scalar advection obtained in [70], where the
parameter was fixed a = 1 and did not renormalize.

We have also discussed the violation of the rapidity symmetry. Even though this
symmetry is generally violated by introducing the turbulent mixing, most of the regimes
we found seem to have scaling properties as if it would be satisfied. It is unclear why this
is the case. We have also mentioned that the modified reflection symmetry introduced by
authors in [19] is generally not satisfied. However, this fact does not influence the results
obtained in their work.

We therefore conclude that the model (4.1.1) for the compressible velocity field has
interesting properties. Even though the limit α→ 0 does not describe the incompressible
limit, the resulting scaling properties of the advected DP field show behaviour identical
to the incompressible limit. This is also supported by the fact that the energy spectrum
of the compressible turbulence obeys the Kolmogorov power law when α → 0 (see Eq.
(3.4.15)). Investigation of the current problem in higher-loop approximations is necessary.
However, this is beyond the scope this thesis and is left as a subject for possible future
work.
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Appendix A

Derivation of propagators and
vertices

A.1 Propagators

In this thesis, the following convention for the Fourier transformation has been used

f(x, t) =

∫
ddkdω

(2π)d+1
f(k, ω)ei(k.x−ωt) (A.1.1)

f(k, ω) =

∫
ddxdt f(x, t)e−i(k.x−ωt) (A.1.2)

Compressible NS propagators

Propagators for the model (4.1.2) can be found as an inverse of the action functional1

ScNS
0 [Φ] = − 1

2
v′iD

f
ijv
′
j + v′i{∂tvi − ν[δij∂

2 − ∂i∂j]vj − uν∂i∂jvj + ∂iφ+ e∂iψ}
+ φ′{∂tφ− vν∂2φ+ c2(∂ivi)}, (A.1.3)

where Φ = (v′i vi φ
′ φ)† and

Df
ij = df1Pij + df2Qij, df1 = αg1k

4−d−y + g2, df2 = g1k
4−d−y + g2 (A.1.4)

In order to invert the expressions (A.1.3), we need to rewrite them into more suitable
matrix form

ScNS
0 [Φ] =

1

2
Φ†MΦ =

1

2


v′i
vi
φ′

φ


†

T 11
ij T 12

ij V 13
i V 14

i

T 21
ij T 22

ij V 23
i V 24

i

V 31
j V 32

j S33 S34

V 41
j V 42

j S43 S44



v′j
vj
φ′

φ

 (A.1.5)

where Tmnij represents a d × d dimensional block matrix, V mn
i are d dimensional vectors

and Smn are scalars. Together, M is a (2d + 2) dimensional matrix. Using Fourier

1We skip the subscripts ”0” for the unrenormalized quantities for the simplicity.
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transformation (A.1.1) and δij = Pij +Qij, we can rewrite (A.1.3) as

ScNS
0 [Φ] =

1

2
v′iD

f
ijv
′
j + v′i{iω(P k

ij +Qk
ij)vj − νk2P k

ijvj − uνk2Qk
ijvj − ikiφ− eikiψ}

+ φ′{iωφ− vνk2φ− c2ikivi}+ ψ′{iω −D(k2 + τ)}ψ

=− 1

2

{
v′i(−Df

ij)v
′
j + 2v′i[ε1P

k
ij + ε2Q

k
ij)}vj + 2ikiv

′
iφ+ 2ε3φ

′φ+ 2ikic
2φ′vi

2iekiv
′
iψ + 2ψ′Lψ

]
,

(A.1.6)

where the following labelling was used

ε1 = −iω + νk2, ε2 = −iω + νuk2, (A.1.7)

ε3 = −iω + νvk2, L = −iω +D(k2 + τ). (A.1.8)

Using the fact, that 2φ′εiφ = φ′εiφ+ (φε∗iφ
′)†, we find that the matrix M has the form

M =


−df1Pij − df2Qij ε1Pij + ε2Qij 0 iki
ε∗1Pij + ε∗2Qij 0 −ic2ki 0

0 ic2kj 0 ε3
−ikj 0 ε∗3 0

 . (A.1.9)

The inverse of the matrix M is a matrix ∆ for which the following relation holds

∆M = 1 , (A.1.10)

where

1 =


Pij +Qij 0 0 0

0 Pij +Qij 0 0
0 0 1 0
0 0 0 1

 . (A.1.11)

It is reasonable to expect the matrix ∆ to be in the form

∆ =


a11Pij + b11Qij a12Pij + b12Qij a13ki a14ki
a21Pij + b21Qij a22Pij + b22Qij a23ki a24ki

a31kj a32kj a33 a34

a41kj a42kj a43 a44

 . (A.1.12)

After expanding (A.1.10) and comparing terms with Pij, Qij and ki, we arrive at

∆ =



0
1

ε∗1
Pij +

ε∗3
R∗
Qij 0

ic2ki
R∗

1

ε1
Pij +

ε3
R
Qij

df1
|ε1|2

Pij +
df2 |ε3|2
|R|2 Qij −

ikj
R
− ic

2kid
f
2ε3

|R|2
0

ikj
R∗

0
ε∗2
R∗

− ic
2kj
R

ic2kjd
f
2ε
∗
3

|R|2
ε2
R

c4k2df2
|R|2


, (A.1.13)
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A.2. Vertices 89

where R = ε2ε3 +c2k2. From the matrix above, one identifies propagators for compressible
NS:

G
vivj
0 (k, ω) ≡ 〈vivj〉0 =

df1
|ε1|2

Pij + df2

∣∣∣ε3
R

∣∣∣2 Qij ,

G
v′ivj
0 (k, ω) ≡ 〈v′ivj〉0 =

1

ε∗1
Pij +

ε∗3
R∗
Qij ,

G
v′iφ
0 (k, ω) ≡ 〈v′iφ〉0 =

ic2ki
R∗

,

Gviφ
′

0 (k, ω) ≡ 〈viφ′〉0 =
−iki
R

,

Gφφ
0 (k, ω) ≡ 〈φφ〉0 =

c4k2

|R|2 d
f
2 ,

Gφ′φ
0 (k, ω) ≡ 〈φ′φ〉0 =

ε∗2
R∗

,

Gviφ
0 (k, ω) ≡ 〈viφ〉0 =

ic2ε3ki
|R|2 df2 ,

(A.1.14)
with their conjugated propagators. All other propagators are zero.

Percolation propagators

Propagators for the percolation model (4.1.8) are identical to model A, Eq. 1.3.29, with
D̃ = 0 and with τ being the deviation from the percolation criticality.

A.2 Vertices

Vertex (4.1.6)

By performing Fourier transformation (A.1.1) we obtain

V1[v′,v] = −
∫

ddkddk′ddk′′δ(k + k′ + k′′) v′m(k)vn(k′)k′′nvm(k′′). (A.2.1)

Variational differentiations then yields

δV1[φ′, φ,v]

δvl(p)
= −

∫
ddkddk′′ δ(k + p + k′′)v′m(k)ik′′l vm(k′′)− (A.2.2)

−
∫

ddkdk′ δ(k + k′ + p)v′l(k)vn(k′)ipn, (A.2.3)

δ2V1[v′,v]

δvj(q)δvl(p)
= −

∫
ddk δ(k + p + q)i

(
v′j(k)ql + v′l(k)pj

)
, (A.2.4)

δ3V1[v′,v]

δv′i(r)δvj(q)δvl(p)
= −i (δijql + δilpj)︸ ︷︷ ︸

V cNS
ijl

δ(r + p + q), (A.2.5)

where the δ function ensures the momentum conservation at the vertex.

Vertex (4.1.7)

By performing Fourier transformation we obtain

V2[φ′, φ,v] = −
∫

ddkddk′ddk′′δ(k + k′ + k′′) φ′(k)vm(k′)ik′′mφ(k) . (A.2.6)

Variational differentiations then yields

δ3V2[φ′, φ,v]

δφ′(r)δvi(q)δφ(p)
=−ipi︸︷︷︸

V cNS
i

δ(r + p + q) . (A.2.7)
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90 A. Derivation of propagators and vertices

Vertex (4.1.12)

By performing Fourier transformation we obtain

V3[ψ′, ψ,v] = −
∫

ddkddk′ddk′′δ(k + k′ + k′′) ψ′(k){vm(k′)k′′m + a0k
′
mvm(k′)}ψ(k′) .

(A.2.8)

Variational differentiations then yields

δ3V3[v′,v]

δψ′(r)δvi(q)δψ(p)
=−i(pi + aqi)︸ ︷︷ ︸

V Per
i

δ(r + p + q) . (A.2.9)
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Appendix B

Explicit form of Feynman diagrams

Feynman diagrams have been calculated by hand and the results have been checked using
Mathematica. For the source code see this link.

B.1 Feynman diagrams for the compressible NS model

= (−ikic2)× Sd(v − u)

2du(u+ v)3

(
αg1m

−y

y
+
g2m

−ε

ε

)
(B.1.1)

= (−ikic2)× −Sd
2du(u+ v)2

(
αg1m

−y

y
+
g2m

−ε

ε

)
(B.1.2)

= (−ip1c
2)× Sd

d(u+ v)3

(
g1αm

−y

y
+
g2m

−ε

ε

)
(B.1.3)

= (−iki)×
Sd(1− d)

2d(1 + u)(1 + v)

(
g1m

−y

y
+
g2m

−ε

ε

)
(B.1.4)

= (−vνk2)× Sd
2dv

(
d− 1

1 + v

(
g1m

−y

y
+
g2m

−ε

ε

)
+ (B.1.5)

+
u− v

u(u+ v)2

(
αg1m

−y

y
+
g2m

−ε

ε

))
(B.1.6)

= 0, (UV finite, proportional to c2) (B.1.7)

1

2
= (ν3g2δij)×

Sd(d− 1)

2du(1 + u)

(
αg2

1m
ε−2y

(2y − ε)g2

+
(α + 1)g1m

−y

y
+
g2m

−ε

ε

)
(B.1.8)

= − ν(δijk
2 − kikj)I⊥ − uνk1k2I‖ (B.1.9)

I⊥ = −Sd
(
u2d(1− d) + u(8− 2d− 2d2)− d(d+ 3)

4d(d+ 2)(u+ 1)2

(
g1m

−y

y
+
g2m

−ε

ε

)
+ (B.1.10)

+
(1− u)

2du(1 + u)2

(
αg1m

−y

y
+
g2m

−ε

ε

))
(B.1.11)

I‖ =
Sd(d− 1)

2u

u2(d− 1) + u(d+ 4) + 1

d(d+ 2)(u+ 1)2

(
g1m

−y

y
+
g2m

−ε

ε

)
(B.1.12)
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92 B. Explicit form of Feynman diagrams

B.2 Diagrams for the DP model

1

2
= − g3Sd

8

(
+iΩ−Dp2d− 2

d
− 2Dτ

)
m−ε

ε
, (B.2.1)

=
Sda(a− 1)

2u(u+ w)2
(iΩ− τD)

(
g1α

m−y

y
+ g2

m−ε

ε

)
(B.2.2)

+Dp2

(
P

(
g1
m−y

y
+ g2

m−ε

ε

)
+Q

(
g1α

m−y

y
+ g2

m−ε

ε

))
,

P =
Sd(1− d)

2w(1 + w)d
, (B.2.3)

Q =
Sd

2u(u+ w)2

(
w − u
dw

+
a(a− 1)w

u+ w

(
4

d
− u

w
− 1

))
, (B.2.4)

= λD
(1− a)2Sd

2uw(u+ w)

(
αg1m

−y

y
+
g2m

−ε

ε

)
, (B.2.5)

2 = λD
−g3Sd

2

m−ε

ε
, (B.2.6)

2 = λD
a(a− 1)Sd
u(u+ w)2

(
αg1m

−y

y
+
g2m

−ε

ε

)
, (B.2.7)

= − λD a2Sd
2uw(u+ w)

(
αg1m

−y

y
+
g2m

−ε

ε

)
, (B.2.8)

2 = − λD−g3Sd
2

m−ε

ε
, (B.2.9)

2 = − λDa(a− 1)Sd
u(u+ w)2

(
αg1m

−y

y
+
g2m

−ε

ε

)
, (B.2.10)
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B.2. Diagrams for the DP model 93

= (−i)
(
d(1− a)− 3

4da
aqi −

1

2d
pi

)
Sd
g3m

−ε

ε
; ψ(p), vi(q), (B.2.11)

= Sd

(
g1αm

−y

y
+
g2m

−ε

ε

)
(−i) (piA+ aqiB) ; ψ(p), vi(q),

A =
1

2u(u+ w)2

(
−1

d
+ a(a− 1) +

4wa(1− a)

(u+ w)d

)
,

B =
1

2u(u+ w)2

(
−1

d
+ a(a− 1) +

2w(1− a)

(u+ w)d

)
,

(B.2.12)

= Sd

(
g1αm

−y

y
+
g2m

−ε

ε

)
(−i) (piC + aqiD) ; ψ(p), vi(q),

C =
1

2du2(u+ w)2

(
wa (a− 1) (5u+ w)

u+ w
+

3u+ w

2

)
,

D =
1

2du2(u+ w)2

(
(2a− 1)(3u+ w)

2
+

(1− a) (7u2 + 4uw + w2)

2(u+ w)

)
,

(B.2.13)

= Sd

(
g1αm

−y

y
+
g2m

−ε

ε

)
(−i) (piE + aqiF ) ; ψ(p), vi(q),

E =
1

4du2(u+ w)

(
−1 +

2wa(1− a)

u+ w

)
,

F =
1

4du2(u+ w)

(
(1− a)(u+ 3w)

u+ w
+ 2a− 3

)
,

(B.2.14)

= 0, (UV finite, proportional to c2), (B.2.15)

= 0, (UV finite, proportional to c2). (B.2.16)

Note.

In the whole section we denote Sd ≡ Sd
(2π)d

, where Sd = 2πd/2/Γ(d/2) is the surface of
d-dimensional unit sphere and we suppress the subscript ”0” for the non-renormalized
quantities.
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Appendix C

Explicit results

C.1 Some formulas

Formulas from Tab. 4.5

A = 2
(
α2 + 7α + 10

)
y3 − 9(3α + 8)y2ε+ 9(α + 9)yε2 − 27ε3, (C.1.1)

B = − ((α + 2)y − 3ε)2
(
4
(
5α2 + 14α− 1

)
y4 − 12

(
3α2 + 17α + 1

)
y3ε+

+ 9(20α + 3)y2ε2 + 54yε3 − 81ε4
)
, (C.1.2)

C = 6((α + 2)y − 3ε)2, (C.1.3)

D =
y((20α + 22)y − 3(3α + 11)ε)

54((α + 2)y − 3ε)
, (C.1.4)

C.2 Renormalization constants

Renormalization constants for the compressible NS field

Z1 = 1 +
u2d(1− d) + u(8− 2d− 2d2)− d(d+ 3)

4d(d+ 2)(u+ 1)2

(
g1

y
+
g2

ε

)
+ (C.2.1)

+
(1− u)

2du(1 + u)2

(
αg1

y
+
g2

ε

)
, (C.2.2)

Z2 = 1 + (1− d)
u2(d− 1) + u(d+ 4) + 1

2d(d+ 2)u(u+ 1)2

(
g1

y
+
g2

ε

)
, (C.2.3)

Z3 = 1− 1

2vd

(
d− 1

1 + v

(
g1

y
+
g2

ε

)
+

u− v
u(u+ v)2

(
αg1

y
+
g2

ε

))
(C.2.4)

Z4 = 1 +
d− 1

2d(1 + u)(1 + v)

(
g1

y
+
g2

ε

)
, (C.2.5)

Z5 = 1, (C.2.6)

Z6 = 1 +
1− d

4du(1 + u)

(
αg2

1

g2(2y − ε) +
(α + 1)g1

y
+
g2

ε

)
, (C.2.7)
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96 C. Explicit results

Renormalization constants for the DP field

Z7 = 1 +
a(1− a)

2u(u+ w)2

(
αg1

y
+
g2

ε

)
+

1

8

g3

ε
, (C.2.8)

Z8 = 1 + (P + αQ)
g1

y
+ (P +Q)

g2

ε
+R

g3

ε
, (C.2.9)

P =
(1− d)

2w(1 + w)d
, R =

d− 2

8d
, (C.2.10)

Q =
1

2u(u+ w)2

(
w − u
dw

+
a(a− 1)w

u+ w

(
4

d
− u

w
− 1

))
, (C.2.11)

Z9 = 1− a(a− 1)

2u(u+ w)2

(
αg1

y
+
g2

ε

)
+

1

4

g3

ε
, (C.2.12)

Z10 = 1−
(

(1− a)2

2uw(u+ w)
+

a(a− 1)

u(u+ w)2

)(
αg1

y
+
g2

ε

)
+

1

2

g3

ε
, (C.2.13)

Z11 = 1−
(

a2

2uw(u+ w)
+

a(a− 1)

u(u+ w)2

)(
αg1

y
+
g2

ε

)
+

1

2

g3

ε
, (C.2.14)

Z12 = 1 +
a(1− a)

2u(u+ w)2

(
αg1

y
+
g2

ε

)
+

3 + d(a− 1)

4ad

g3

ε
, (C.2.15)

C.3 Anomalous dimensions

Anomalous dimensions for the compressible NS field

γφ = − 3 (g1 + g2)

8(u+ 1)(v + 1)
, (C.3.1)

γφ′ =
3 (g1 + g2)

8(u+ 1)(v + 1)
, (C.3.2)

γg1 =
3(1− u) (αg1 + g2)

8u(u+ 1)2
− (g1 + g2) (3u2 + 8u+ 7)

8(u+ 1)2
, (C.3.3)

γg2 =
3(1− u) (αg1 + g2)

8u(u+ 1)2
− (g1 + g2) (3u2 + 8u+ 7)

8(u+ 1)2
, (C.3.4)

+
3

8u(u+ 1)

(
α
g2

1

g2

+ (α + 1)g1 + g2

)
, (C.3.5)

γu =
(1− u) (αg1 + g2)

8u(u+ 1)2
− (6u3 + 7u2 − 10u− 3) (g1 + g2)

48u(u+ 1)2
, (C.3.6)

γv =
3 (g1 + g2)

8v(v + 1)
− (u− 1) (αg1 + g2)

8u(u+ 1)2
+

(u− v) (αg1 + g2)

8uv(u+ v)2
− (C.3.7)

− (3u2 + 8u+ 7) (g1 + g2)

24(u+ 1)2
, (C.3.8)

γν =
(3u2 + 8u+ 7) (g1 + g2)

24(u+ 1)2
+

(u− 1) (αg1 + g2)

8u(u+ 1)2
, (C.3.9)

γc = − 3 (g1 + g2)

16(u+ 1)(v + 1)
, (C.3.10)

(C.3.11)
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Anomalous dimensions for the DP field

γψ =

(
(a− 1)a

2u(u+ w)2
+

2a− 1

2uw(u+ w)

)
(αg1 + g2)− g3

8
, (C.3.12)

γψ′ =

(
(a− 1)a

2u(u+ w)2
+

1− 2a

2uw(u+ w)

)
(αg1 + g2)− g3

8
, (C.3.13)

γg3 =

(
3(a− 1)a

2u(u+ w)2
+

2(a− 1)a+ 1

2uw(u+ w)
− 4(a− 1)auw + u2 − w2

4uw(u+ w)3

)
×

× (αg1 + g2)− 3 (g1 + g2)

4w(w + 1)
− 3g3

4
, (C.3.14)

γw =

(
u2 − (1− 2a)2w2

8uw(u+ w)3
+

1− u
8u(u+ 1)2

)
(αg1 + g2) +

+

(
3

8w(w + 1)
− 3u2 + 8u+ 7

24(u+ 1)2

)
(g1 + g2) +

g3

16
, (C.3.15)

γa =
(1− 2a)g3

16a
, (C.3.16)

γD =
(u2 − (1− 2a)2w2)

8uw(u+ w)3
(αg1 + g2) +

3 (g1 + g2)

8w(w + 1)
+
g3

16
, (C.3.17)

γτ =
((1− 2a)2w2 − u2)

8uw(u+ w)3
(αg1 + g2)− 3 (g1 + g2)

8w(w + 1)
− 3g3

16
. (C.3.18)

C.4 Beta functions

C.4.1 Beta functions for compressible NS

βg1 = − g1

(
y +

3(1− u) (αg1 + g2)

8u(u+ 1)2
− (3u2 + 8u+ 7) (g1 + g2)

8(u+ 1)2

)
, (C.4.1)

βg2 = − g2

(
ε+

3(1− u) (αg1 + g2)

8u(u+ 1)2
− (3u2 + 8u+ 7) (g1 + g2)

8(u+ 1)2
+

+
3
(
αg21
g2

+ (α + 1)g1 + g2

)
8u(u+ 1)

)
, (C.4.2)

βu =− u
(

(1− u) (αg1 + g2)

8u(u+ 1)2
− (6u3 + 7u2 − 10u− 3) (g1 + g2)

48u(u+ 1)2

)
, (C.4.3)

βv = − v
((

3

v(v + 1)
− 3u2 + 8u+ 7

3(u+ 1)2

)
(g1 + g2)

8
+ (C.4.4)

+

(
u− v

v(u+ v)2
− u− 1

(u+ 1)2

)
(αg1 + g2)

8u

)
. (C.4.5)
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98 C. Explicit results

The limit α→∞

Introducing g′1 = αg1, beta functions are found

βg′1 |α→∞ = αβg1 |g1→g
′
1/α

α→∞ = −g′1
(
y +

3(1− u) (g′1 + g2)

8u(u+ 1)2
− (3u2 + 8u+ 7) g2

8(u+ 1)2

)
, (C.4.6)

βg2 |g1→g
′
1/α

α→∞ = − g2

(
ε+

3(1− u) (g′1 + g2)

8u(u+ 1)2
− (3u2 + 8u+ 7) g2

8(u+ 1)2
+

3 (g′1 + g2)

8u(u+ 1)

)
, (C.4.7)

βu|g1→g
′
1/α

α→∞ =− u
(

(1− u) (g′1 + g2)

8u(u+ 1)2
− (6u3 + 7u2 − 10u− 3) g2

48u(u+ 1)2

)
, (C.4.8)

βv|g1→g
′
1/α

α→∞ = − v
((

3

v(v + 1)
− 3u2 + 8u+ 7

3(u+ 1)2

)
g2

8
+ (C.4.9)

+

(
u− v

v(u+ v)2
− u− 1

(u+ 1)2

)
(g′1 + g2)

8u

)
. (C.4.10)

The limits u→∞

In order to perform this limit we preform a substitution u = 1/t and then take the limit
t→ 0. Beta functions are then

βg1 |u→1/t
t→0 = − g1

(
y − 3

8
(g1 + g2)

)
, (C.4.11)

βg2 |u→1/t
t→0 = − g2

(
ε− 3

8
(g1 + g2)

)
, (C.4.12)

βt|t→0 = − t2βu|u→1/t
t→0 = 0, (C.4.13)

βv|u→1/t
t→0 =

(v2 + v − 3) (g1 + g2)

8(v + 1)
. (C.4.14)

(C.4.15)

The limit v →∞

The limit v →∞ affects only the βv function. In order to perform this limit we substitute
again make v = 1/f which changes the beta function as

βf |f→0 = − f 2βv|v→1/f
f→0 = 0. (C.4.16)

(C.4.17)
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C.4.2 Beta functions for DP

βg3 = − g3

(
ε+

(
3(a− 1)a

2u(u+ w)2
+

2(a− 1)a+ 1

2uw(u+ w)
− 4(a− 1)auw + u2 − w2

4uw(u+ w)3

)
× (C.4.18)

× (αg1 + g2)− 3 (g1 + g2)

4w(w + 1)
− 3g3

4

)
, (C.4.19)

βw =− w
((

u2 − (1− 2a)2w2

8uw(u+ w)3
+

1− u
8u(u+ 1)2

)
(αg1 + g2) + (C.4.20)

+

(
3

8w(w + 1)
− 3u2 + 8u+ 7

24(u+ 1)2

)
(g1 + g2) +

g3

16

)
. (C.4.21)

βa = g3
2a− 1

16
(C.4.22)

The limit α→ 0 in FPIIc

βg3 = − g3

(
ε− 4y

3w(w + 1)
− 3

4
g3

)
, (C.4.23)

βw =
16 (w2 + w − 2) y − 3g3w(w + 1)

48(w + 1)
, (C.4.24)

βa − does not change. (C.4.25)

The limit u→∞ in FPIIc

βg3 = − g3

(
ε− 3 (g1 + g2)

4w(w + 1)
− 3g3

4

)
, (C.4.26)

βw = − w

8

((
3

w(w + 1)
− 1

)
(g1 + g2) +

g3

2

)
, (C.4.27)

βa − does not change. (C.4.28)

The limit w →∞ in FPIIc

βg3 |w→1/m
m→0 = − g3

(
ε− 3

4
g3

)
, (C.4.29)

βm|m→0 = −m−2βw|w→1/m
m→0 = 0, (C.4.30)

βa − does not change. (C.4.31)
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[38] H.-K. Janssen and U. C. Täuber. “The field theory approach to percolation pro-
cesses”. In: Annals of Physics 315.1 (2005), pp. 147–192. issn: 00034916. doi: 10.
1016/j.aop.2004.09.011.

[39] F. Van Wijland. “Field theory for reaction-diffusion processes with hard-core parti-
cles”. In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 63.2 I
(2001), pp. 0221011–0221014. issn: 15393755. doi: 10.1103/PhysRevE.63.022101.

[40] J. L. Cardy and R. L. Sugar. “Directed percolation and Reggeon field theory”.
In: Journal of Physics A: Mathematical and General 13.12 (1980), p. L423. issn:
0305-4470. doi: 10.1088/0305-4470/13/12/002.

[41] H.-K. Janssen. “Survival and percolation probabilities in the field theory of growth
models”. In: Journal of Physics: Condensed Matter 17.20 (2005), S1973–S1993. issn:
0953-8984. doi: 10.1088/0953-8984/17/20/021.

103

http://dx.doi.org/SKUS NAJST DOI
http://dx.doi.org/10.1007/BF02895558
http://dx.doi.org/10.1016/0550-3213(73)90376-3
http://dx.doi.org/10.1016/0550-3213(73)90376-3
http://dx.doi.org/10.1007/BF01316547
http://dx.doi.org/10.1007/BF01316547
http://dx.doi.org/10.1134/S1063779613020160
http://dx.doi.org/10.1007/BF02179861
http://dx.doi.org/10.1007/978-1-4020-8765-3
http://dx.doi.org/10.1016/0003-4916(79)90207-0
http://dx.doi.org/10.1088/0305-4470/27/9/017
http://dx.doi.org/10.1016/j.aop.2004.09.011
http://dx.doi.org/10.1016/j.aop.2004.09.011
http://dx.doi.org/10.1103/PhysRevE.63.022101
http://dx.doi.org/10.1088/0305-4470/13/12/002
http://dx.doi.org/10.1088/0953-8984/17/20/021


104 Bibliography

[42] G. Lemoult et al. “Directed percolation phase transition to sustained turbulence in
Couette flow”. In: Nature Physics 12.March (2016), pp. 254–258. issn: 1745-2473.
doi: 10.1038/nphys3675.

[43] M. Sano and K. Tamai. “A Universal Transition to Turbulence in Channel Flow”.
In: Nature Physics 12.March (2016), pp. 249–254. issn: 1745-2473. doi: 10.1038/
NPHYS3659.

[44] P. Rupp, R. Richter, and I. Rehberg. “Critical exponents of directed percolation
measured in spatiotemporal intermittency.” In: Physical review. E, Statistical, non-
linear, and soft matter physics 67.3 Pt 2 (2003), p. 036209. issn: 1063-651X. doi:
10.1103/PhysRevE.67.036209.

[45] K. A. Takeuchi et al. “Directed Percolation Criticality in Turbulent Liquid Crys-
tals”. In: Physical Review Letters 99.23 (2007), p. 234503. issn: 0031-9007. doi:
10.1103/PhysRevLett.99.234503.

[46] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press,
1967. isbn: 0-521-66396-2. doi: 10.1063/1.3060769.

[47] L. D. Landau and E. M. Lifshitz. Fluid Mechanics: Landau and Lifshitz: Course
of Theoretical Physics, Volume 6. zv. 6. Elsevier Science, 1987, pp. 84–88. isbn:
0-08-033932-8.

[48] L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Pergamon, 1980. isbn:
9780750626330.

[49] G. G. Stokes. “On the theories of the internal friction of cluids in motion”. In:
Transactions of the Cambridge Philosophical Society 8 (1845), pp. 287–305. url:
https://books.google.se/books?id=tQYFAAAAQAAJ.

[50] U. Frisch. Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press,
1995. isbn: 9780521457132.

[51] A. N. Kolmogorov. “The local structure of turbulence in incompressible viscous fluid
for very large Reynolds numbers”. In: Proceedings of the Royal Society of London.
Series A-Mathematical and Physical Sciences 434.1890 (1991), pp. 9–13. issn: 1364-
5021. doi: 10.1098/rspa.1991.0075.

[52] L. F. Richardson. Weather prediction by numerical methods. Cambridge Mathemat-
ical Library. Cambridge University Press, 1922. isbn: 9780521680448. url: https:
//archive.org/details/weatherpredictio00richrich.

[53] K. R. Sreenivasan. “On the universality of the Kolmogorov constant”. In: Physics
of Fluids 7.11 (1995), pp. 2778–2784. issn: 10706631. doi: 10.1063/1.868656.

[54] A. S. Monin and A. M. Yaglom. Statistical Fluid Mechanics Volume 1. MIT Press,
1971, p. 769. isbn: 978-0-486-45883-0.

[55] S. Banerjee. “Compressible turbulence in space and strophysical plasmas: Analytical
approach and in-situ data analysis for the solar wind”. Theses. Université Paris Sud
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