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Synopsis

The following thesis deals with the thermodynamics of small, out of equilibrium systems.
The starting point is a recent Letter to Physics Reviews by Aurell, Mejia-Monasterio,
Muratore-Ginanneschi [1] (we will denote it as AMM in the following). The paper devel-
ops a powerful technique to solve isothermal optimal control problems for thermodynamic
stochastic functionals. For the optimization it makes use of Bellman optimality principle.
The striking result is the mapping of the involved stochastic transport problem into the
deterministic mass transport and Burgers equations of fluid dynamics. The optimization
can be performed for any probability distribution and shape of the controlling potential. In
this sense it represents a generalization of the solutions derived by Seifert and Schmiedl for
the harmonic case [2] which had revealed peculiar properties of stochastic transport such
as discontinuous optimal protocols. Mesoscopic thermodynamics can be used to study the
energetic properties of Brownian motors. It is also possible to provide a formal thermody-
namical description for molecular motors which actually exist in nature (see for example
the review by Jülicher, Ajdari and Prost [9]). It is interesting to apply the optimization
method to such motors and investigate their optimal properties and their structural limi-
tations. In fact, comparing the characteristics of the theoretically optimal motors with the
ones existing in nature can give some further hints about their biological functions or the
constraints under which they have to operate. One can, for instance, compute the efficiency
at maximum power and see if the molecular motors operate close to the theoretical limit
or not. If not, one can speculate that the function of the motor does not require a high
efficiency at maximum power or that it is biologically difficult to approach the limit. To
take a step into this direction we consider the optimization of the mesoscopic Carnot cycle
described by Schmiedl and Seifert in [3] and compute its efficiency at maximum power
making use of the AMM optimization method. As for a classical Carnot engine there are
two adiabatic and two isothermal transformations. The non-isothermal steps call for a
generalization of the AMM optimization method. The contribution of this thesis consists
of this generalization of [1] to the non-isothermal case which is suitable for the study of
generic thermodynamic cycles. Particular attention is paid to which are the conditions and
the functionals allowing the solution to be mapped into Burgers equation. To get a closer
insight we consider separately the case of temperature depending on time only and the one
of temperature depending both on space and time. The results show how the optimization
of heat for temperature changing settings does not lead to Burgers equation and its simpli-
fying consequences. If one considers instead the optimization of entropy production in the
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environment, the solution can again be mapped into Burgers equation for some modified
space and time variables. The change of variables is different if temperature depends on
time only or also on space. It is worth remarking that, operating the change of variables
directly on the initial SDE for temperature depending on time only and on space only, the
definition of the heat functional is mapped into the definition of entropy production in the
environment. These results suggest that the arising of Burgers equation is connected to the
optimization of entropy production and solves heat only for the isothermal case in which
it differs from entropy production in the environment just by a constant. To conclude the
study we suggest some applications of this entropy production optimization. Since it holds
for non-constant temperatures it is possible to compute the minimum entropy production
for any thermodynamic cycle. We initially show a trivial cycle which displays some non
trivial differences from its macroscopic equivalent. Finally we compute the work associated
with this minimum entropy cycles and compare it to the optimal work for the isothermal
case.

The thesis is structured as follows. The first chapter provides the readers with an outline
of stochastic energetics and the optimization method by Bellman. Chapter 2 contains a
detailed presentation of the AMM optimization method. Explicit use of its results is made
in chapter 3 to solve in an alternative way the optimal transport problems proposed by
Schmiedl and Seifert in [2]. In chapter 4 some of the basic features of stochastic motors
are presented and the example of a mesoscopic Carnot engine is studied in details. The
generalization to non-isothermal settings of the optimization method is developed and
presented in chapter 5. The last chapter contains some applications of the generalized
method.
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Chapter 1

Stochastic thermodynamics and
optimal control

Before starting the actual description of the work it is useful to introduce and frame the
basic concepts of stochastic thermodynamics and the optimization techniques that will
later be extensively used.

1.1 Introduction to stochastic energetics

The following introduction to stochastic energetics is based on the works by Sekimoto [4],[5]
and Chétrite, Gawȩdzki [6]. The aim of such field is to study the energy exchanges and
statistical properties of small systems in analogy with macroscopic equilibrium thermody-
namics. Quantities such as mesoscopic internal energy, heat, work and entropy production
are therefore introduced. It is important to sketch what is meant by small systems and
we refer here to [14]. The distinctive trait of a small system is to involve small amounts
of energy (of the order of 10 ÷ 1000KBT ). This feature can be met by systems made of
few components (e.g. molecules) and therefore low energy or by considering short time
scales for more extensive ones1. For such settings, fluctuations play a more relevant role
than for macroscopic systems. In fact, from statistical mechanics we know that the relative
amplitude of fluctuations scales with one over the square root of the number of components

(O
√

1
N

). For classical thermodynamic systems, which typically consist of 1023 particles,

this quantity vanishes. For small systems instead, fluctuations are clearly not negligible.
As a consequence, single realizations can differ strongly from mean values (which are the
quantities more closely related to the macroscopic ones) and it is important to specify
which of them we are considering. The properties and fluctuations of large systems are
mostly determined by environmental conditions (pressure, temperature, etc.) whereas the
stronger fluctuations of small ones carry some information about the actual structure of

1Conversely a molecular sized system considered over a very long time can be considered as a macro-
scopic one.
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the system. Studying these extreme fluctuations sheds therefore some light on the arrange-
ment of the system and its non-equilibrium properties. Experiments on small systems can
therefore be used to investigate non-equilibrium thermodynamics. A typical experimental
set up that has been widely studied displays a single colloidal particle suspended in a so-
lution and controlled by an optical trap (see also chapter 3). It is possible to record the

( , )V z t
Figure 1.1: Optical tweezers inducing a potential on a mesoscopic particle

motion of the micron sized particle and to measure the amount of energy discharged in the
solution (heat). Since the intensity and the focus of the optical trap are determined by the
experimenter we also have information on the work applied on the particle.
Biological fluctuating settings can be described as small systems. Molecular motors (see

Figure 1.2: Measured tweezers intensity and particle trajectory as in [15]

chapter 4) are in fact small in size (few nanometers) and they operate with small energies
(tens of kBT ) and extremely short time scales. An experimental study of molecular motors
can be performed by controlling the two ends of a DNA chain with optical tweezers and
measure the sliding motion of RNA Polymerase (an enzyme responsible for copying the
DNA sequence into RNA). Such motion is in fact determined by the action of a molecular
motor.

Making use of optical tweezers it is also possible to stretch and unzip the double helix
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Figure 1.3: (a) Sequence and secondary structure of RNA. (b) Force-extension unfolding
curves as depicted in [16]

of DNA molecules or RNA hairpins. Measuring the forces applied through the tweezers it
is possible to evaluate the coupling forces between base pairs and the conformational and
statistical properties of different sequences.

In order to give a wider overview we choose to present both Sekimoto and Chétrite-
Gawȩdzki approaches. The former provides an intuitive definition of stochastic thermody-
namics starting from the physics involved in the one dimension Langevin equation. The
latter develops an extremely general mathematical formalism for multidimensional diffu-
sion processes which is more suitable for the generalizations we present in chapter 5 and
6.

1.1.1 Physical perspective

Our starting point is a one dimensional Langevin Equation in the overdamped (i.e. negli-
gible inertia) case.2

dx

dt
= −1

γ

dU

dx
+

√
2

γβ
ẇt (1.1)

Where ẇt is a Gaussian white correlated noise with the following properties 〈ẇt〉 = 0 and
〈ẇtẇt′〉 = δ(t − t′). β is the inverse temperature and γ the viscous friction. The relation
between the factor in front of the noise term (squared root of the diffusion coefficient)
and the viscous friction is known as Einstein relation. We will consider it to hold true
throughout this work even in non equilibrium settings. However, several studies about
fluctuation relations outside of equilibrium have been carried out and we point to [8] for

2The underdamped version can be of interested when considering heat leaking fluxes in temperature
changing settings
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a review. To proceed in our study it is useful to tell the various components involved in
Langevin equation and clearly define their meaning. One way to do it is to consider three
of them: the system, the thermal environment and the external system.

• The system is a properly defined part of the world described in terms of the coordinate
x. It contributes to the equation with the term dx

dt
and its characteristic timescale is

the mesoscopic one. In a single colloidal particle experiment would be the particle
itself.

• The thermal environment is a sort of heat bath and is fully described by its tem-
perature. It returns instantaneously to equilibrium if perturbed and takes into no
account the influences from the systems and the conservation laws for total energy,
mass or momentum. It couples with the system through the coefficient γ and the
temperature which determine the magnitude of the fluctuating force. Its timescale
is the microscopic one. In an experiment would be the solution in which the particle
moves.

• The external system is at the macroscopic level and acts on the system by externally
controlling the potential energy through some control parameter. In the equation
it is responsible for the drift term − 1

γ
dU
dx

and can be experimentally realized as an
optical trap of variable intensity.

If we consider the energy balance between the three different components we can derive
a relation analogous to the first law of thermodynamics. Let us first focus on the interaction
between the system and the thermal environment. Through noise, the thermal environment
exerts a (random) force on the particle which is then coupled to the environment via the
friction term γ dx

dt
. The balance of forces exerted by the thermal environment onto the

system is then given by −γ dx
dt

+ γ
√

2
γβ
ẇt. If the law of action reaction holds, the particle

reacts with an opposite force to the environment i.e. −(−γ dx
dt

+ γ
√

2
γβ
ẇt). If we now

consider dx(t) as the evolution of the position of the particle during a time dt we can
define the infinitesimal work done by the reaction force of the particle on the system.
Since we have considered only the “dissipative” terms, i.e. the ones coupling the heat
bath to the system we can regard this work as the heat exchanged between the thermal
environment and the system in the infinitesimal step.

δQ = −(−γ dx
dt

+ γ

√
2

γβ
ẇt) ◦ dx (1.2)

Where ◦ indicates the Stratonovich product. Some attention must be paid to the signs.
Here we define heat as the energy damped by the system into the environment. This
convention is opposite to the usual thermodynamic one where the δQ is the heat absorbed
by the system. Other works adopt different sign conventions (e.g. [5]). It is also interesting
to note that rearranging the above formula one can compute the released heat during a

8



process taking place from time t0 to tf

Q = −
∫ tf

t0

(−γ dx
dt

+ γ

√
2

γβ
ẇt) ◦

dx

dt
◦ dt (1.3)

Let us now consider the interaction of all three components and their energy balance. From
Lagevin equation we have

−(−γ dx
dt

+ γ

√
2

γβ
ẇt −

dU

dx
) ◦ dx = 0 (1.4)

In case the potential energy does not depend on any external control parameter the last
term in brackets simplifies to the total differential of the potential U . Hence the energy
balance now reads

δQ+ dU = 0 (1.5)

If we consider also the action of the external system on the potential through a control
parameter λ equation (1.4) takes the form

−(−γ dx
dt

+ γ

√
2

γβ
ẇt −

∂U(x, λ)

∂x
) ◦ dx = 0 (1.6)

To recover the total differential of U, dU , in the formula one needs to add on both sides
the quantity ∂U(x,λ)

∂λ
dλ:

δQ+ dU =
∂U

∂λ
dλ (1.7)

The quantity ∂U(x,λ)
∂λ

dλ can be defined as the infinitesimal work done by the external system
through changes in the potential U by changes of the control parameter λ. Again the sign
is opposite to the usual thermodynamic description.

δW ≡ ∂U

∂λ
dλ (1.8)

Some care is required for the correct understanding of the definition. The work defined
above does not represent the work done on the particle by the potential U but the one done
by the external agent on the system. In fact if we consider a constant potential applying
a constant force f0 on the particle, the work f0dx is done on the particle but according
to our definition (1.8) we have no mesoscopic work done by the external system on the

system. We count −f0dx as part of the change in internal energy ∂U(x,λ)
∂x

◦ dx = dU . In
fact, being in the overdamped case, we consider it as the dissipation of potential energy by
the friction due to the motion of the particle and it is therefore taken into account in the
heat term. In contrast, if the external system changes the potential, work is done on the
system.
With such definitions of heat (1.2) and work(1.8) we are able to express the energy balance
in terms of the first law of thermodynamics:

dU = δW − δQ (1.9)

9



1.1.2 Mathematical perspective

The work by Chétrite and Gawȩdzki [6] deals with general multidimensional diffusion
processes and adopts a notation that differs from the one used in the other sections of
this thesis. To maintain the generality and make explicit contact with the original paper
we keep their notation and present a table of equivalence (tab 1.1) to the one dimension
Langevin equation and the formalism used in the other sections.

They define stochastic thermodynamic quantities as specific cases of fluctuation rela-
tions for Langevin dynamics. Rather than considering the energy balance to obtain the
first law of thermodynamics, they focus on irreversibility and derive the second law. The
key quantity defined is therefore entropy production in relation to irreversibility. Such a
definition is derived by comparing the expectation values over a stochastic process forward
in time with a backward one. Their differences and relations arise because of irreversibility
and are therefore a way of quantifying it. For isothermal transformations, heat can then
be derived in relation to entropy.
This section aim is to illustrate the line of reasoning behind [6] while listing the main results
needed to define entropy production. We start by reporting their notation in the definition
of diffusive processes and expectation values and follow their derivation of backward pro-
cesses. For more rigorous and extensive explanations and proofs refer directly to the paper.

Let us consider the forward process and its related formalism and operators. The
starting point is the definition of a generic Stratonovich stochastic differential equation as

ẋ = ut(x) + vt(x) (1.10)

where ut(x) represents the deterministic drift and vt(x) the time dependent noise term being
a Gaussian random vector field withe zero mean and < vit(x)vjs(y) >= δ(t− s)Dij

t (x, y).
The equivalent of (1.10) in the Itô formalism is given by

ẋ = ut(x) + ũt(x) + vt(x) (1.11)

Where

ũit(x) =
1

2
∂xjD

ij
t (x, y)|x=y (1.12)

is the Stratonovich drift.
As usual, we can define the generator of the process described by the SDE (1.10) and it
reads

Lt = ûit∂i +
1

2
∂jd

ij
t ∂i (1.13)

where

dijt (x) = Dij
t (x, x) (1.14)

is the diffusion matrix and

ûit(x) = uit(x)− 1

2
∂yjD

ij
t (x, y)|x=y (1.15)
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is the modified drift taking care of the position of the diffusion matrix with respect to the
two space derivatives. It is worth remarking that

∂jd
ij
t = ∂xjD

ij
t (x, x) = ∂xjD

ij
t (x, y)|x=y + ∂yjD

ij
t (x, y)|x=y (1.16)

Let us now consider constrained expectation values of functionals of xt obeying (1.10)
for a process starting in position x at time t0. They can be expressed in terms of the
transition probabilities of the process. In fact, they write

Ex,t0g(xt) =

∫
Pt0,t(x, dy)g(y) ≡ (Pt0,tg)(x) (1.17)

This relation defines the transition probabilities Pt0,t(x, dy) and the operator Pt0,t

Pt0,t(x, dy) = Ex,t0δ(xt − y)dy (1.18)

which satisfy the Chapman-Kolmogorov rule∫
Pt0,t(x, dy)Pt,t′(y, dz) = Pt0,t′(x, dz) (1.19)

The time evolution of the expectation value can be proven to be determined by the
generator of the diffusion process introduced in equation (1.13)

d

dt
Ex,t0g(xt) = Ex,t0(Ltg)(xt) (1.20)

As a consequence, the Fokker-Planck equation describing the evolution of the probability
density for this diffusion process is determined by the adjoint of the generator

∂tmt = L†tmt (1.21)

Where m is the probability density.
Making use of the definition of the operator Pt0,t (1.17) in relation (1.20) we can obtain a
differential equation

∂tPt0,t = Pt0,tLt (1.22)

which, with the initial condition Pt0,t0 = 1, allows us to write the operator in terms of the
time ordered exponential

Pt0,t =
−→
T exp[

∫ t

t0

Lsds] (1.23)

As mentioned in the opening lines, we want to quantify irreversibility by relating the
characteristics of processes forward and backward in time. To do so we need to define a
diffusion process which can be considered as the backward version of the original one. The
time inversion of a process taking a time T is the transformation:

(t, x)→ (T − t, x∗) ≡ (t∗, x∗) (1.24)
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Before proceeding to the inversion it has to be noted that, in dissipative dynamics,
the two time directions are not equivalent and special care must be taken. In fact, if
one was to naively revert the diffusion processes in time one would face anti-dissipative
dynamics which make no physical sense. In other words, dissipation specifies a preferential
time direction. To take this into account we split the deterministic drift into two parts: a
dissipative one ut,+ and a conservative one ut,−

ut = ut,+ + ut,− (1.25)

that behave differently upon time inversion avoiding non-physical processes. If we denote
the time reversed process as x′t we can write its evolution in terms of the reversed SDE

ẋ′ = u′t(x
′) + v′t(x

′) (1.26)

and the different rule of inversion for the two components of the drift

u′t,+(x) = ∂kx
∗i(x∗)ukt∗,+(x∗)

u′t,−(x) = −∂kx∗i(x∗)ukt∗,−(x∗) (1.27)

avoid the possibility of anti-dissipative dynamics. The sign of the inversion of the random
force is not relevant as its covariance is not affected by the choice and

D′ijt (x, y) = ∂kx
∗i(x∗)Dkl

t∗(x
∗, y∗)∂lx

∗j(x∗) (1.28)

The process generator can be defined also for the reversed case and split in a conservative
and a dissipative part too

L′t = L′t,+ + L′t,− (1.29)

where

L′t,+ = û′
i

t,+∂i +
1

2
∂jd
′ij
t ∂i

L′t,− = û′
i

t,−∂i (1.30)

It is interesting to notice that upon definition of the involution operator R acting on
functions

Rf(x) = f(x∗) (1.31)

we can express the reversed process generator in a clearer fashion

L′t = RLt∗,+R−RLt∗,−R (1.32)

The averages taken over the backward process with initial condition x′t0 = x are described
by

E ′x,t0g(x′t) = (P ′x,t0g)(x) (1.33)

P ′x,t0 =
−→
T exp[

∫ t

t0

L′sds] (1.34)
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In the abstract mathematical formulation of diffusion processes there are several ways of
choosing the splitting between conservative and dissipative drift in (1.25) according to
the specific problem addressed. The different possibilities, their meaning and their conse-
quences are precisely described in [6]. For the sake of this thesis we restrict to the study
of the overdamped Langevin equation which has a straightforward physical interpretation.
Considering the physical meaning of overdamped dynamics, we can take the conservative
drift as vanishing and the total drift coincides with the dissipative ones (see table 1.1).

After having defined the backward process, it is necessary for the definition of thermo-
dynamic functionals, to find a way of relating its expectation values with the ones taken
over the corresponding forward process. According to the Cameron-Martin-Girsanov the-
orem it is possible to express averages taken over a perturbed process yt in terms of the
original one xt weighted with some exponential functional −

∫ t
t0
Jsds

Ex,t0g(y) = Ex,t0g(x)e
−

∫ t
t0
Jsds (1.35)

What is then needed is an expression for the generator of the backward process as a
perturbed version of the forward one. If this is found, the backward and forward process are
related and the functional weight indicates the difference between the two time directions
and can be therefore thought as a measure of irreversibility.
If we consider the perturbed version of the generator of the forward process

L1
t = Lt − 2ûit,+∂i − (∂iû

i
t,+) + (∂iu

i
t,−) (1.36)

we notice that is possible to express it in terms of the backward generator as

R(L1
t )
†R = RLt,+R−RLt,−R = L′t∗ (1.37)

so that
L1
t = (RL′t∗R)† (1.38)

In analogy with (1.23), we can write the perturbed evolution operator as

P 1
t0,t

=
−→
T exp[

∫ t

t0

L1
sds] = (RP ′t∗,t∗0R)† (1.39)

which in terms of operator kernels yields

dxP 1
t0,t

(x, dy) = dyP ′t∗,t∗0(y∗, dx∗) (1.40)

As already mentioned, through a joint use of the Cameron-Martin-Girsanov theorem and
the Feynman-Kac formula cf [6, Appendix D] we can express the kernel P 1

t0,t
(x, dy) as

an expectation for the forward process exponentially weighted by a functional. Recalling
(1.35) and (1.18) we get

P 1
t0,t

(x, dy) = Ex,t0e
−

∫ t
t0
Jsdsδ(xt − y)dy (1.41)
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where if dijt (x) is invertible for all x and t

Jt = 2ût,+(xt)d
−1
t (xt) ◦ ẋt − 2ût,+(xt)d

−1
t (xt)ut,−(xt)− (∇ut,−)(xt) (1.42)

and the first product is meant in the Stratonovich way. Notice that for overdamped
Langevin dynamics only ût,+ is non zero and the expression greatly simplifies (see table
1.1).
Given relation (1.40) between the perturbed process P 1 and the backward one P ′ we have

dxEx,t0e
−

∫ t
t0
Jsdsδ(xt − y)dy = P ′t∗,t∗0(y∗, dx∗) (1.43)

Which is the result we were looking for: an explicit relation between the transition prob-
ability of the backward process and and the expectation in the forward process weighted
with an exponential factor.

In order to investigate the thermodynamic meaning of this functional weight it is useful
to introduced its modified version W . If we express the probability density in terms of
exponential as

m(x, 0) = e−ϕ0(x)

m(x, T ) = e−ϕT (x) (1.44)

associated to the time inversed ones

m′(x, 0) = e−ϕ
′
0(x) = e−ϕT (x∗)

m′(x, T ) = e−ϕ
′
T (x) = e−ϕ0(x∗) (1.45)

we can introduce a new functional

W = ∆ϕ+

∫ T

0

Jtdt = logm(x0)− logm(xT ) +

∫ T

0

Jtdt (1.46)

Such a functional leads to generalizations of equation (1.43) which can be used to derive
Jarzynski equality. For the derivation we refer to [6] and list here the main results. It can
be proven that for a generic functional F(xt)

〈F(xt)e
−W〉 = 〈F(x̃t)〉′ (1.47)

where x̃t = x∗t∗ is the reversed trajectory for the reversed time of the backward process and
〈〉′ denotes an average over the reversed probability measure.

In case F(xt) = 1 we obtain the equality

〈e−W〉 = 1 (1.48)

which, for some specifications of W , such as the one in Langevin dynamics for which
W = β(W −∆F ), yields Jarzynski equality

〈e−βW 〉 = e−β∆F (1.49)
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From equation (1.48) and the Jensen inequality follows also

〈W〉 ≥ 0 (1.50)

The averaged functional 〈W〉 can be shown to be the relative entropy of the trajectory
measure of the backward process with respect to the forward one. In fact the relative
entropy of a probability measure ν(dx) with respect to an other one µ(dx) is defined as

S(µ|ν) =

∫
log

ν(dx)

µ(dx)
µ(dx) (1.51)

and, since equation (1.47) can be seen as a relation between the probability measures M
of the forward and backward process

e−WM(dx) = M ′(dx̃) (1.52)

we can now see that upon definition of M ′(dx̃) = M̃ ′(dx)

S(M̃ ′|M) =

∫
Wµ(dx) = 〈W〉 (1.53)

If we now consider the probability density m(x, T ) as the evolution corresponding to m(x, 0)
at time T , the relative entropy takes the meaning of global entropy production during
the forward process. The positivity of 〈W〉 sates now the positivity of the global entropy
production and therefore inequality (1.50) is a version of the second law of thermodynamics.
In order to get a deeper thermodynamic understanding of the terms involved let us write
explicitly the average of W from its definition of equation (1.46)

〈W〉 = 〈logm(x0)〉 − 〈logm(xT )〉+ 〈
∫ T

0

Jtdt〉 (1.54)

By definition −〈logm(xT )〉 is the entropy associated with a probability distribution m(xT )
and therefore the first two terms represent the change of entropy of the fixed time distri-
bution along the process. Since the total sum yields the global entropy production the
term

∆Senv =

∫ T

0

〈Jt〉dt (1.55)

must account for the mean entropy production in the environment related to the irre-
versibility of the process. We can then write

〈W〉 = σ(µT )− σ(µ0) + ∆Senv (1.56)

In case of an isothermal process we can express heat in terms of the entropy production
from standard thermodynamic reasoning

1

β

∫ t

t0

Jsds =

∫ t

t0

1

β
Jsds = Q (1.57)
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For the overdamped Langevin equation of (1.1) the functional reduces to

Jt = (−β∂xUt)(xt) ◦ ẋt (1.58)

and consequently heat becomes

Q =

∫ tf

t0

−(∂xUt) ◦ ẋtdt (1.59)

which is equal to (1.3) if we consider that from Langevin equation (1.1) 1
γ
dU
dx

= −dx
dt

+√
2
γβ
ẇt. It is remarkable as, through a completely different reasoning from Sekimoto the

same result is recovered.

1.2 Introduction to Bellman equation

We briefly sketch the concepts underlying dynamic programming and Bellman equation
in the field of optimal control. To illustrate the basic ideas we focus on the deterministic
case and refer to [7] for a thorough exposition and the study of the stochastic case. The
problem consists of finding the control to be operated on a system in order to minimize
a suitably defined cost function. Typically the evolution of the system is described by a
differential equation involving the external control bt

dx

dt
= ft(x, b) (1.60)

In the absence of a terminal cost, the cost function is defined as

Jt(x, b) =

∫ tf

t

Ls(x, b)ds (1.61)

where Ls(x, b) is the running cost. The intuition of dynamic programming is to decompose
the control interval in sub-intervals and to consider the last one as already optimal. The
optimization then reduces to considering only the first step and is therefore simplified. An
iteration of the procedure allows to optimize the whole control interval. To formalize the
idea it is fundamental to introduce the concept of value function.

Vt(x) = minb{Jt(x, b)} (1.62)

The value function at time t and position x is the minimum cost achievable by any possible
control needed to run the process from time t to the end of the control interval. It therefore
corresponds to the cost function of the process having already been optimized. Given the
value function we want to compute the optimal cost of the whole process. Since the global
cost consists of the sum of the costs of the sub intervals we can write for t′ < t

Jt′(y, b) =

∫ t

t′
Ls(y, b)ds+

∫ tf

t

Ls(x, b)ds (1.63)
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The corresponding value function can be proven to be

Vt′(y) = minb{
∫ tf

t′
Ls(y, b)ds}+ Vt(x) (1.64)

and its expression is called Bellman equation. We are therefore able to compute the optimal
cost of the process starting at time t′. It is evident that the optimization concerns now
only the first term and is clearly simpler. If we iterate the process we are then able to
compute the minimum cost of the whole process. Moreover, assuming the value function
to be differentiable we can consider an infinitesimal time step and obtain the dynamic
programming equation as

∂tVt′(x) +minb{Lt(x, b) + ft(x, b)∂xVt(x)} = 0 (1.65)
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Object CG formalism Thesis formalism and 1D
Langevin equivalent

Deterministic drift uit(x) bt(x)
γ

= − 1
γ
∂U
∂x

Noise term vit(x)
√

2
γβt(x)

ẇt

Diffusion matrix Dij
t (x, y) 2

γ

√
1

βt(x)βs(y)

Diffusion derivative ∂jd
ij = ∂xjD

ij
t (x, x) 2

γ
∂x(

1
βt(x)

)

Noise induced drift ũit = 1
2
∂xjD

ij
t (x, y)|x=y

1
2γ
∂x(

1
βt(x)

)

Modified drift ûit(x) = uit(x)− 1
2
∂yjD

ij
t (x, y)|x=y

bt(x)
γ
− 1

2γ
∂x(

1
βt(x)

)

Diffusion generator Lt = uit(x)∂i + 1
2
∂jd

ij
t ∂i

1
γ
[bt(x) + 1

2
∂x(

1
βt(x)

)]∂x + 1
2γβt(x)

∂2
x

Transition probability Pt0,t(x, dy) P (y, t|x, t0)dy

Expectation value Eg(xt) 〈g(xt)〉

Conservative part of
drift

ut,−(x) 0

Dissipative part of
drift

ut,+(x) bt(x)
γ

Instantaneous entropy
production

Jt βb ◦ ẋt

Table 1.1: Table of equivalence between the general formalism of [6] and the specific case
considered in other sections
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Chapter 2

Stochastic control and optimal
transport

In this chapter we are going to carefully analyze the results presented in [1] and describe
them from a slightly different point of view. Let us consider a stochastic process trans-
porting a mesoscopic particle. The transport is induced by varying the potential trapping
the particle. From the definitions of section 1.1.2 we can see that the heat released and
the work needed along the process obviously depends on the potential which is driving it.
The general aim of the paper is to individuate the external control on the potential which
optimizes these thermodynamic quantities. This would provide information on which is
the way to transport a particle spending the least work possible. Instead of minimizing
the functionals via Euler Langrange they make use of the Bellman equation.

2.1 Optimization procedure

Let us start by expressing the drift as bt = −∂xUt so that (1.1) becomes

ẋt =
1

γ
bt +

√
2

γβ
ẇt (2.1)

where wt is a Wiener process with zero mean and variance equal to dt. In this chapter we
restrict to constant values of the diffusion coefficient and postpone the study of space and
time dependent ones to chapter 5.

From definition (1.59) we can write an expression for the heat released from the system
into the thermal environment during a process starting at time t0 and ending at time tf as

δQ =

∫ tf

t0

bt ◦ ẋtdt (2.2)

Similarly, we can get the expression for work needed for a process taking place between
time t0 and tf from equation (1.8)

δW =

∫ tf

t0

∂U(x, λt)

∂λ
· dλ
dt

(2.3)
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Given the stochastic nature of the process, single trajectory thermodynamic values
fluctuate widely and we therefore focus on average quantities. We can define the average
of a generic quantity G, over the process xt as

〈Gt(xt)〉 =

∫
dxmt(x)Gt(x) = EGt(xt) (2.4)

where mt(x) is a probability density evolving according to the Fokker Planck equation
corresponding to equation (1.1). For the study of mean values it is more suitable to express
the stochastic quantities in terms of Itô integrals. In fact their non anticipating properties
simplify greatly the computation (see for example [11]). The thermodynamics quantities
derived in section 1.1 are defined in terms of Stratonovich integrals and we therefore need
to translate them into the Itô formalism.
Let us now consider the definition of heat (2.2). The fact that the integral is defined in
the sense of Stratonovich means∫

ẋt · btdt =

∫
[xt+dt − xt][

bt+dt(x) + bt(x)

2
] (2.5)

To convert it to an Itô formulation let us evaluate all terms at time t and get rid of the
anticipativity of the process. We can start by Taylor expanding b about x

bt+dt(x) + bt(x)

2
' bt(x) +

1

2
∂xbt(x) · (xt+dt − xt) (2.6)

Now let us consider the full product in (2.5) making use of (1.1).

[
b

γ
dt+

√
2

γβ
dwt][bt(x) +

1

2
∂xbt(x) · (xt+dt − xt)] =

= [
b

γ
dt+

√
2

γβ
dwt][bt(x) +

1

2
∂xbt(x) · ( b

γ
dt+

√
2

γβ
dwt)] =

=
b2

γ
dt+

b

γ
∂xb

b

2γ
(dt)2 +

b

2γ
∂xb

√
2

γβ
dwtdt+

+ b

√
2

γβ
dwt +

b

2γ
∂xb

√
2

γβ
dwtdt+

2

2γβ
∂xb(dwt)

2 (2.7)

We can now take the average and should note that for non anticipative processes the
functions are independent of the time increments and we can factorize them in separate
averages. For example, for the products involving dwt we have

〈b
√

2

γβ
dwt〉 = 〈b

√
2

γβ
〉〈dwt〉 (2.8)

and we can exploit the fact that by definition

〈dwt〉 = 0

〈(dwt)2〉 = dt (2.9)
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Dropping the terms of order higher than dt and keeping in mind that dwt ∼ O(
√
dt) we

obtain the expected amount of released heat in the Itô convention.

〈δQ〉 =

∫ tf

t0

dt

γ
〈b2
t +

1

β
∂xbt〉 (2.10)

In order to cast the optimization of released heat in terms of Bellman equation it is
useful to introduce the control functional St(x) = 〈δQ〉x,t = Ex,tQ . This is the expected
heat released, not during the whole process, but starting from an intermediate time t in
position x and evolving to tf .

Let us write explicitly the expected released heat over a random process representing
our global cost

〈δQ〉 = E[δQ] =

∫
Ex0,t0 [

∫ tf

t0

dt

γ
(b2
t +

1

β
∂xbt)]mt0(x0)dx0 (2.11)

Where it is more evident that it is an average over the possible positions at initial time
weighed with the appropriate probability density. The control functional (the cost of the
operation from an intermediate time t to the end) is the conditional expectation

St(x) = Ex,t[

∫ tf

t

dt

γ
(b2
t +

1

β
∂xbt)] (2.12)

And we can introduce the state averaged control functional

S̄t =

∫
dxmt(x)St(x) (2.13)

Where obviously S̄t0 = 〈δQ〉. The control functional St(x) is suitable for a study along the
line of Bellman principle of optimality (cf section 1.2). In fact, we are going to consider the
process starting at time t as optimized, so that St(x) plays the role of the value function
(1.62), and propagate it backwards in time by a step dt. We then optimize over the step
we have taken and iterate the process. To carry out the optimization of the step we need
to consider a process starting from position y at time t− dt and passing through x at time
t.

St−dt(y) = Ey,t−dt[

∫ tf

t−dt

dt′

γ
(b2
t′(x) +

1

β
∂xbt′(x))] =

Ey,t−dt[

∫ t

t−dt

dt′

γ
(b2
t′(x) +

1

β
∂xbt′(x)) +

∫ tf

t

dt′

γ
(b2
t′(x) +

1

β
∂xbt′(x))] (2.14)

The first term between braces features the expectation value of an integral over an in-
finitesimal interval constrained to the initial position. We can approximate it with the
value of the integrand function at the initial position y multiplied by dt since the other
contributions will be of higher order.

Ey,t−dt[

∫ t

t−dt

dt′

γ
(b2
t′(x) +

1

β
∂xbt′(x))] ' dt

γ
(b2(y) +

1

β
∂xb(y)) (2.15)
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For the second term in (2.14) we can make use of the relations between propagators
and expectation values (1.17) and Chapman-Kolmogorov property (1.19)

Ey,t−dt[

∫ tf

t

dt′

γ
(b2
t′(x) +

1

β
∂xbt′(x))] =

=

∫
dx′dxP (x, t|y, t− dt)P (x′, t′|x, t)

∫ tf

t

dt′

γ
(b2
t′(x) +

1

β
∂xbt′(x)) =

=

∫
dxP (x, t|y, t− dt)Ex,t[

∫ tf

t

dt′

γ
(b2
t′(x) +

1

β
∂xbt′(x))] =

=

∫
dxP (x, t|y, t− dt)St(x) (2.16)

This shows how (2.14) is an iterative equation and can therefore be later used to derive
Bellman equation. To compute the value of (2.16) we need an approximate expansion of
the propagator for small times. Since the dynamics follow equation (2.1) and we know
that dw is a white random Gaussian term with zero mean and variance dt we can obtain
the approximate expansion

P (x, t|y, t− dt) ∝ exp [− 1

2dt

βγ

2
(xt − yt−dt −

btdt

γ
+
∂xbtdxdt

2γ
)2] (2.17)

For small time steps we can stop at a first order approximation, neglecting the term ∂xbdxdt.
This corresponds to considering the drift as time-independent over small time intervals and
therefore a Gaussian propagator. Since the propagator represents the transition probability
from state y we need to express St(x) in terms of St(y) and this can be done by Taylor
expanding around y.

∫
dxP (x, t|y, t− dt)St(x) '

'
∫
dx[St(y) + ∂xS(y) · (x− y) +

1

2
(x− y)∂2

xS(y) · (x− y)]e−
βγ
4dt

(x−y− bdt
γ

)2 =

= St(y) +
dt

γ
b∂xS(y) +

dt

βγ
∂2
xS(y) (2.18)

Where the last step exploited the fact that the propagator is a normalized Gaussian
with defined mean and variance. Adding this expression to (2.15) and dropping the explicit
space dependence gives

St−dt − St = dt(
b

γ
∂xS +

1

βγ
∂2
xS +

b2

γ
+
∂b

βγ
) (2.19)

Leading to

−∂tS −
b

γ
∂xS −

1

βγ
∂2
xS =

b2

γ
+
∂b

βγ
(2.20)
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Which is the Hamilton-Jacobi-Bellman (HJB) equation for the problem. The left hand
side displays the adjoint of the Fokker Planck operator describing the backward evolution
of the process. This backward time direction accounts for the time derivative and the
diffusion term ∂2

x having the same sign. The right hand side is instead the running cost
of the considered problem. In the search for an optimal functional, one can always derive
a HJB equation but, of course, different evolution operators and different running costs
result in different HJB equations. When considering a diffusion process the specific form
of the Langevin equation determines its related Fokker Planck operator, therefore changes
in its form result in changes of the left hand side of equation (2.20).
We are now interested in finding the optimal drift which minimizes the released heat.
Carrying on along the line of Bellman optimality principle, we split the control interval. Let
us consider the state averaged control S̄t−dt. We assume to know the control b′ optimizing
the process from time t to the final time tf so that we can consider it as the value function
(1.62). To optimize S̄t−dt we then have to find the control b optimizing the step from t−dt
to t. The process in the interval between t0 and t − dt is governed by a yet unspecified
control b′′.

t0 t-dt t tf

b b'

y(t-dt)

x(t)

b''

Figure 2.1: Splitting of the control interval for a generic stochastic process

We therefore obtain Bellman equation for the value function S̄

S̄t−dt =

∫
dymt−dt(y)St−dt(y) = (2.21)

dt

∫
dy(

b2

γ
+
∂b

βγ
)mt−dt(y) +

∫
dymt−dt(y)

∫
dxP (x, t|y, t− dt)St(x)

Since in the second term we are integrating over all possible starting states of the propagator
we can directly change the probability density to that of the arrival state∫

dymt−dt(y)

∫
dxP (x, t|y, t− dt)St(x) =

∫
dxmt(x)St(x) (2.22)

and Taylor expanding m in time around t− dt we get to the expression

mt(x) ' mt−dt(x) + dt∂tmt−dt(x) (2.23)
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so that

S̄t−dt =
dt

γ

∫
dx(b2 +

∂b

β
)mt−dt(x) +∫

dxmt−dt(x)St(x) + dt

∫
∂tmt−dt(x)St(x)dx (2.24)

We note that in the first integral in the second line there is no dependence on b since the
probability density up to time t−dt: mt−dt(x) depends on the parameter b′′ and that St(x)
depends on b′. We denote it as A and remark that it is not relevant to the search for the
optimal b. We now express the time derivative of m through the Fokker Planck equation
corresponding to equation (1.1),

∂tm = −∂x(bm)

γ
+

1

βγ
∂2
xm (2.25)

obtaining

S̄t−dt = A+ dt

∫
dx(+

b2

γ
+
∂xb

βγ
)mt−dt(x) +

+dt

∫
St(x)(−∂x[bmt−dt(x)]

γ
+

1

βγ
∂2
xmt−dt(x))dx (2.26)

Integrating the last term by parts we move the derivatives to St(x), changing the sign of
the first order one. We then get to the following expression

S̄t−dt = A+
dt

γ

∫
dx(b2 +

∂xb

β
+

1

β
∂2
xS + b∂xS)mt−dt(x) (2.27)

To find the optimal drift it is now fundamental to use the explicit form of the functional we
want to optimize. In fact we now differentiate with respect to b and we would get a different
optimal drift for each different functional. Let us notice that since we have restricted the
optimization to this infinitesimal interval the derivative over b does not indicate a functional
derivative but the differentiation over the value of b in the interval.

∂S̄t−dt
∂b

=
dt

γ

∫
dx(2b+

∂

∂b
(
∂xb

β
) + ∂xS)mt−dt(x) (2.28)

We do not get any contribution from the differentiation of the probability density mt−dt(x)
as the process, up to t− dt, is controlled by b′′ and therefore independent of b. The term
in ∂b needs to be integrated by parts yielding:

∂S̄t−dt
∂b

=
dt

γ

∫
dx(2b− 1

β

∂xm

m
+ ∂xS)mt−dt(x) (2.29)

And introducing the potential corresponding to equilibrium part of m as

R =
1

β
logm (2.30)
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we finally get
∂S̄t−dt
∂b

=
dt

γ

∫
dx(2b− ∂xR + ∂xS)mt−dt(x) (2.31)

Hence the optimal value of b resulting in a minimum released heat is

b∗ =
1

2
∂x(R− S) (2.32)

If we now plug this optimal drift into the Fokker Planck equation (2.25) we get

∂tm = −∂x[
∂x(R− S)

2γ
m] +

1

βγ
∂2
xm (2.33)

For a generic Fokker Planck equation it is always possible to split the drift into an equi-
librium part and remainder one and recover the deterministic transport equation with the
remainder part as a velocity. Explicitly, splitting the drift into

b = ∂xR + ∂xψ (2.34)

The Fokker Planck now reads

∂tm+ ∂x[
∂x(R + ψ)

γ
m]− 1

βγ
∂2
xm =

∂tm+ ∂2
x

(R + ψ)

γ
m+

∂x(R + ψ)

γ
∂xm−

1

βγ
∂2
xm (2.35)

and considering that

∂R =
1

β

∂m

m
(2.36)

∂2
xR =

1

β
(
∂2
xm

m
− (

∂m

m
)2) (2.37)

We see that the derivative of the drift cancels the diffusion term and we get to

∂tm+
1

βγ
∂2
xm−

1

γβ

∂xm

m
+

1

γ
∂x[(∂xψ)m] +

1

γβ

∂xm

m
=

1

βγ
∂2
xm (2.38)

Which after straightforward simplifications reduces to the deterministic transport equation
in the gradient of the remainder term of the drift ψ:

∂tm+
1

γ
∂x[(∂xψ)m] = 0 (2.39)

What happens to the Hamilton-Jacobi-Bellman equation (2.20) for the optimal drift
(2.32) upon substitution of the splitting (2.34) is instead characteristic of this optimization.
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∂tS + ∂xS
∂x(R + ψ)

2γ
+ ∂2

xS
1

βγ
= − [∂x(R + ψ)]2

4γ
− ∂2

x(R + ψ)

2βγ
(2.40)

Equation (2.32) enforces a relation between the functional S and the optimal drift. By
splitting the drift, we can express the functional S in terms of the equilibrium potential R
and ψ

S = −(2ψ + 2R−R) = −2ψ −R (2.41)

where the relation holds for the optimal drift only. Plugging it in the HJB (2.40) we get

−2∂tψ − ∂tR− ∂x
(ψ +R)

γ
∂x(2ψ +R)− ∂2

x(2ψ +R)

βγ
=

− [∂x(R + ψ)]2

γ
− ∂2

x(ψ +R)

βγ
(2.42)

Which expanding and simplifying yields

−2∂tψ − ∂tR− 2
∂xψ∂xψ

γ
− 2

∂xψ∂xR

γ
− ∂xψ∂xR

γ
−

∂xR∂xR

γ
− ∂2

xψ

βγ
= −(∂xR)2

γ
− (∂xψ)2

γ
− 2

∂xψ∂xR

γ
(2.43)

Which after immediate simplification becomes

−2∂tψ − ∂tR−
∂xψ∂xψ

γ
− ∂xψ∂xR

γ
=
∂2
xψ

βγ
(2.44)

If we now express explicitly R in terms of m

−2∂tψ −
∂tm

βm
− [∂xψ]2

γ
− ∂xψ∂xm

βγm
− ∂2

xψ

βγ
=

−2∂tψ −
[∂xψ]2

γ
− 1

βm
(∂tm+

∂xψ∂xm

γ
+
∂2
xψ

βγ
m) = 0 (2.45)

Which includes the Fokker Planck equation (2.39) and therefore reduces to

∂tψ +
[∂xψ]2

2γ
= 0 (2.46)

That, surprisingly, is the inviscid Burgers equation for the velocity potential ψ
γ

.

∂tv + (v∂x)v = 0 (2.47)

On the other hand equation (2.39) is the equation of mass transport by the corresponding
velocity field. The complicated original optimization problem has been reduced to the so-
lution of Burgers equation for which several numerical methods already exist. The forward
Fokker-Planck evolution determines the initial conditions while the backward evolution de-
rived from Bellman equations enforces final ones. It is worth remarking that optimization
via a Bellman-like procedure is possible for a variety of functionals but only in specific
cases does one recover an auxiliary problem reducing to Burgers equation.
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2.2 Solution of Burgers equation

It is noteworthy that, since the Burgers equation in (2.46) is the result of mixed forwards-
backwards dynamics, it is not reasonable to regularize the problem by adding ν∂2

xψ or
−ν∂2

xψ since choosing one of the two would mean choosing a direction in time. Without
shocks the solutions of Burgers equation describe a free-streaming motion. This can be
easily seen by considering the velocity as the derivative of the potential velocity field
vi = 1

γ
∂iψ. Differentiating Burgers equation we get

1

γ
∂i(∂tψ −

[∂xjψ]2

2γ
) = ∂tvi +

1

γ2

∂ψ

∂xj

∂2ψ

∂xi∂xj
(2.48)

And since ψ is a potential field we can commute the order of the derivatives getting to

∂tvi +
1

γ

∂2ψ

∂xi∂xj
vj = ∂tvi +

∂vi
∂xj

vj (2.49)

From equation (2.49) one can see that the convective derivative of the velocity is zero. This
means that the solution will be a straight line and that the evolution is linear in time. Once
on a streamline a particle will not leave it. It is therefore possible to define a Lagrangian
map connecting the initial position of each particle with its final one. Denoting as a = xti
the initial position.

xtf (a) = a+ (tf − ti)vti(a) (2.50)

The fact that every particle is associated with one single velocity line reduces the problem
of reconstructing the dynamics associated with the transport equation (2.39) to the one of
assigning the initial positions to the final ones [13]. Such an interpretation points towards a
connection with the known optimal transport problem proposed my Monge. The problem
dates back to 1781 and originated from civil engineering. It consists of finding the optimal
way of carrying earth from cuts to fills.

Figure 2.2: Cartoon of Monge problem as depicted in [13]

It can be shown [12] that the solutions of Burgers equation correspond to the solutions
of Monge problem in case its cost function is quadratic in the distance between initial and
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final positions

K = γ

∫
(a− xf )2

(tf − ti)
mti(a)da (2.51)

constrained with the evolution of probability (2.39) and mass conservation. A varia-
tional analysis of the cost shows that it is minimum if the velocity is a gradient. So that
again

v =
1

γ
∇ψ (2.52)

and therefore

xtf (a)− a =
(tf − ti)

γ
∇ψti(a) (2.53)

Which, means

ψtf (xf ) = ψti(a) + γ
(a− xf )2

2(tf − ti)
(2.54)

In more than one dimension this is described by

Ψti(a) =
1

2
a2(x)− (tf − ti)

γ
ψtf (xf ) (2.55)

a = ∇Ψti(a) (2.56)

Let us remark that mass conservation

mti(a)da = mtf (xf )dxf

Mi(a) = Mf (x) (2.57)

implies that the cumulative mass functions are equal. As a consequence, solutions of the
assignment problem solve Monge-Ampre equation

det
∂a

∂xf
= det

∂2Ψti(a)

∂xjxi
=
mtf (xf )

mti(a)
(2.58)

The positivity of the probability densities results in the Hessian of Ψti(a) being everywhere
positive and therefore the function being convex. If we now interpolate it between initial
and final state and define its values at intermediate times

ψt(x) = ψtf (xf ) + γ
(x− xf )2

2(tf − t)
(2.59)

we can check that it is a solution of Burgers equation as

∂xψ = γ
x− xf
tf − t

(2.60)

∂tψ = −γ[
x− xf
tf − t

]2 (2.61)
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2.3 Computation of the optimal work with given final

control

It is possible to make use of the optimization method for heat to compute the optimal
work for a given initial state and given final potential. In fact, through the first law of
thermodynamics (1.9) we can express work in terms of heat as

〈δW 〉 = 〈dU〉+ 〈δQ〉 =

∫
mtf (x)Utf (x)dx−

∫
mti(a)Uti(a)da+ (S̄ti − S̄tf ) (2.62)

The optimization has now to include also the changes in internal energy and will therefore
be different. Recalling equation (2.41) for the optimal drift, we can expand the expression
for optimal heat as

S̄ti − S̄tf =

∫
(−2ψti(a)−Rti)mti(a)da−

∫
(−2ψtf −Rtf )mtf (x)dx = (2.63)

−
∫

1

β
log [mti(a)]mti(a)da+

∫
1

β
log [mtf (x)]mtf (x)dx+

−2

∫
ψti(a)mti(a)da+ 2

∫
ψtf (x)mtf (x)dx =

Tσti(a)− Tσtf (x)− 2

∫
ψti(a)mti(a)da+ 2

∫
ψti(a)mtf (x)dx+ 2

∫
(a− xf )2

2(tf − ti)
mtf (x)dx

The condition in equation (2.57) allows the two integrals containing ψ to cancel off so that,
for an isothermal transformation, we can write work as

〈δW 〉 = ∆U − T∆σ +

∫
(a− xf )2

tf − ti
mtf (x)dx (2.64)

Which makes very much thermodynamic sense, giving

〈δW 〉 = ∆F +

∫
(a− xf )2

tf − ti
mtf (x)dx (2.65)

This is an expression of work as the difference of free energy between two states plus some
dissipative, irreversible work. The interpretation of the cost function as dissipated work is
one of the findings of [1]. It is now evident that the optimal solution for work is reached
by solving the assignment problem for the inverse Lagrangian map minimizing the cost
function and the boundary energy terms. This kind of problem has been widely studied
and efficient solving techniques have been found for it.

Let us now explicitly compute the value of equation (2.62) for the case of a quadratic
potential in one dimension in an isothermal process. This can be done analytically if the
final probability distribution is Gaussian too. Let us consider a process starting from an
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equilibrium state with a quadratic potential centered in the origin namely Uti(a) = 1
2
a2.

The initial distribution is then Gaussian with zero mean and variance 1
β
:

mti(a) =
e−βU(a)

N
=

√
β

2π
e−β

a2

2

Rti(a) = −a
2

2
+

1

2β
log

β

2π
(2.66)

The assumption of a final Gaussian distribution may seem too simplifying as, considering
the control moving the center of the non equilibrium distribution in one direction, one would
expect a deformation in its shape and the arising of skewness. However, for a quadratic
potential (i.e. linear drift), a Gaussian distribution with moving mean can satisfy the
Fokker-Planck equation associated to a Langevin . The distribution can therefore remain
Gaussian along its whole evolution. This useful property is explicitly proven in Appendix
A and ensures that the final distribution is Gaussian. The distributions and potentials
needed for the to the computation of the optimal work are only the initial and final time
ones (see equation 2.62). We can consider a generic quadratic final potential centered in µ
and with a stiffness c

Utf (x) =
c

2
(x− µ)2 (2.67)

The final distribution might not have equilibrated yet with the final potential but it is
Gaussian and we denote its (yet unknown) mean by q and variance by 1

βr
.

mtf (x) =

√
βr

2π
e−βr

(x−q)2
2

Rtf (x) = −r(x− q)
2

2
− 1

2β
log

2π

βr
(2.68)

It is important to note that if we let the distribution equilibrate no additional work is done
since the external potential is not changed and this makes the second term in equation
(1.8) zero. Relaxation to equilibrium contributes only to the released heat.

It is now possible to compute all the terms in equation (2.62) starting from the average
final internal energy:

〈Utf (x)〉 =

∫
c

2
(x− µ)2 e

−βr (x−q)2
2

N
dx =

=
c

2N

∫
(x− q + q − µ)2e−βr

(x−q)2
2 dx =

=
c

2N

∫
[(x− q)2 + 2(x− q)(q − µ) + (q − µ)2]e−βr

(x−q)2
2 dx =

=
c

2
[

1

βr
+ (q − µ)2] (2.69)
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Where in the last step we have made use of properties of Gaussian integrals and that (q−µ)
is just constant. Then for the average initial internal energy

−〈Uti(a)〉 = −
∫

1

2
a2mti(a)da = −

∫
1

2
a2 e

−β a
2

2

N
da = − 1

2β
(2.70)

And for the entropy difference

−
∫

1

β
log [mti(a)]mti(a)da+

∫
1

β
log [mtf (x)]mtf (x)dx =

− 1

βNi

∫
[−βa

2

2
− 1

2
log

2π

β
]e−β

a2

2 da+

1

βNf

∫
[−βr(x− q)

2

2
− 1

2
(log

2π

β
− log r)]e−βr

(x−q)2
2 dx =

− 1

β
(−1

2
− 1

2
log

2π

β
) +

1

β
(−1

2
− 1

2
log

2π

β
+

1

2
log r) =

=
1

2β
log r (2.71)

For this quadratic example we can analytically compute the cost term. The initial position
a is related to the final one q by the inverse Lagrangian map describing the process moving
the probability distribution from the origin to the final position: we have that a(q) = 0. To
compute the integral, we need to know what initial position corresponds to a final position
slightly moved from the center of the final distribution: a(q + ∆q). In one dimension we
know that, from mass conservation in the transport equation (2.57), the cumulative mass
functions of the initial and final states are equal. Moreover, for a Gaussian distribution
with mean µ and variance σ2 the following holds: M(x) = 1

2
[erf(x−µ

σ
√

2
)]. We then have

a(x)
√
β = (x− q)

√
βr (2.72)

which for x = q + ∆q yields
a(q + ∆q) = (∆q)

√
r (2.73)

This relation is rigorous in one dimension but is an ansatz for higher dimensions. By
substituting x = q + ∆q with q fixed and ∆q as integrating variable in the cost function
from equation(2.64) we get to∫

(a(x)− xf )2

tf − ti
mtf (x)dx =

=

∫
(a(q + ∆q)− q −∆q)2

tf − ti
1

N
e
−rβ
2

(∆q)2d(∆q) =

=

∫
(−q −∆q(1−

√
r))2

tf − ti
1

N
e
−rβ
2

(∆q)2d(∆q) =

=
1

tf − ti
(q2 +

(1−
√
r)2

rβ
) (2.74)
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Adding all the terms together we can finally write the expression for the optimal work

〈δW 〉 = (
c

r
− 1)

1

2β
+
c

2
(q − µ)2 +

log r

2β
+

1

tf − ti
(q2 +

(1−
√
r)2

rβ
) (2.75)

This expression depends on the final distribution and, since the final state is not given, we
can look for the optimal parameters r, q that minimize it. The unidimensional quadratic
potential setting is the same used by Schmiedl and Seifert in [2] and described in the next
chapter. The procedure followed so far to find the optimal work corresponds to solving
the Euler-Lagrange equation as done by Schmiedl and Seifert. The two approaches yield
exactly the same results. Optimizing also the final distribution is analogous to choosing
optimal constants in the solution of the Euler-Lagrange equation. It is as if in equation
(2.75) we had specified the form and time dependence of the optimal protocol and want
now to choose the coefficients that would optimize the function. If we now differentiate
with respect to q we can find the optimal value for the final distribution mean.

d〈δW 〉
dq

= c(q − µ) +
2q

tf − ti
(2.76)

Which gives

q∗ =
c(tf − ti)

c(tf − ti) + 2
µ =

1

1 + 2
c(tf−ti)

µ (2.77)

This shows how the mean position moves towards the center of the final potential and
actually reaches it for a quasi-static process (i.e. tf − ti → ∞). One can also ask for the
optimal value of r which is obtained by differentiating over r:

d〈δW 〉
dr

=
1

2βr
(1− c

r
) +

1

β(tf − ti)

√
r − 1

−r2
=

1

2βr2
[r − c+ 2

√
r

tf − ti
− 2

tf − ti
] (2.78)

Equating it to zero we have a second order equation in
√
r resulting in

√
r∗ =

1

(tf − ti)
[−1 +

√
1 + 2(tf − ti) + c(tf − ti)2] (2.79)

It is worth remarking that the distribution is determined by the control and that there is a
one to one relation between optimal distribution parameters and optimal control as shown
in equations (2.77), (2.79), (A.10), (A.11). Hence, an optimization over the distribution
parameters results in finding the optimal control as well.
In case we are interested in minimizing the heat released between fixed final and initial
states we would have to consider only

〈δQ〉 = −T∆σ +

∫
(a− xf )2

tf − ti
mtf (x)dx (2.80)

and since the given initial and final state determine fully the entropy term −T∆σ, the

optimization then reduces to the one of the cost function
∫ (a−xf )2

tf−ti
mtf (x)dx which is found

by solving the assignment problem as described in section 2.2. The differentiation over the
parameters of the final distribution is meaningless as they are given by the problem and
can therefore not be optimized.
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Chapter 3

Exactly solvable optimization
problems

In this chapter we briefly describe the examples introduced by Seifert and Schmiedl in
[2]. The solutions for optimal protocols presented there display unexpected discontinuities
rising interesting questions on optimal stochastic control. The AMM method [1] described
in the previous chapter (2) can be seen as a generalization of these examples and we use it
to solve them. The approach in [2] is to cast the definition of the work functional (2.3) in
terms of the parameters of its Gaussian distribution and to minimize it via Euler-Lagrange
equation. Before starting, let us remark that they use a slightly different notation: they
denote the time variable as τ , the total control interval tf − ti ≡ t and the mean position
of the particle as u. Moreover, for simplicity reasons in their computations β, the diffusion
coefficient and the viscous friction are taken to be 1.

3.1 Controlling the center of a quadratic potential

3.1.1 Solution by Schmiedl and Seifert

Their first example deals with a moving laser trap described by a quadratic potential with
time dependent center and constant stiffness.

Ut(x) =
1

2
(x− λt)2 (3.1)

Here λt is the time dependent protocol responsible for the particle transport. By comparing
it to equation (2.67) we see that the final control λtf corresponds to the center of the
potential at final time which we have previously denoted as µ. The stiffness of the trap c
is here constant and equal to be 1. Seifert and Schmiedl start by averaging the Langevin
equation with this sort of potential obtaining an important relationship between the mean
value of the distribution at intermediate time qt and the protocol

q̇t = λt − qt (3.2)
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Which is equivalent to what found in (A.10) and enforces boundary conditions on q̇(t)

q̇(tf ) = λtf − q(tf ) (3.3)

q̇0 = λ0 − q0 = 0 (3.4)

They are now able to express the mean value for work (2.3) in terms of the mean position
of the particle

〈W (λt, x)〉 =

∫ tf

0

q̇(q̇ + q̈)dt =

∫ tf

0

q̇2dt+
1

2
[q̇2]

tf
0 (3.5)

Its associated Euler Lagrange equation reads

q̈ = 0 (3.6)

And it is solved by a linear evolution of the mean of the distribution

qt = lt (3.7)

Where l is a multiplying coefficient and the constant term is zero because of the initial
condition q(0) = 0. Substituting this into the expression for mean work (3.5), recalling the
boundary conditions (3.3) they get

〈δW 〉 = l2tf +
(λf − ltf )2

2
(3.8)

This is equivalent to the expression found in equation (2.75). There we had further opti-
mized by looking for the optimal final distribution, differentiating over q and r. Similarly,
here, after having found the optimal time dependence of the mean position q, it is possible
to compute the coefficient l minimizing the functional. Hence they differentiate (3.8) over
l finding

l∗ =
λtf
tf + 2

(3.9)

which gives an optimal work:

〈δW ∗〉 =
λ2
tf

tf + 2
(3.10)

By means of equation (3.2) it is possible to compute the expression for the optimal protocol

λ∗t =
λtf (t+ 1)

tf + 2
(3.11)

which surprisingly displays two jumps at the beginning and at the end of the control
interval. This discontinuity results by simply imposing continuity for the mean position q
and plugging into equation (3.2) the optimal l. The boundary conditions on u̇ require in
fact discontinuities in its evolution.
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3.1.2 Solution via AMM

Let us now tackle the problem making use of the results of [1] described in the previous
chapter. We start by noting that, if during the process the potential stiffness does not
change, also the variance of the distribution remains constant. In fact, from equation
(2.79) we have that for c = 1 we get r∗ = 1. From equation (2.77) we can compute the
optimal final mean position

q∗ =
tf

tf + 2
λtf (3.12)

and consequently the optimal mean work

〈δW ∗〉 =
λ2
tf

2
(

tf
tf + 2

− 1)2 +
1

tf

t2fλ
2
tf

(tf + 2)2
=

λ2
tf

tf + 2
(3.13)

Which is exactly what found by Seifert and Schmiedl.
So far, the result concerns the final state and carries no information about the time depen-
dent protocol. Nonetheless, we know that the optimal transport problem can be described
by Burgers equation which has a linear time evolution. Consequently the transport is lin-
ear in time and so will be the evolution of the mean and of the standard deviation of the
distribution. Hence

q∗t =
t

tf
q∗ (3.14)

and, through (3.2), we can compute the optimal protocol.

λ∗t = q∗t +
dq∗t
dt

=
(t+ 1)

tf
q∗t = λtf

t+ 1

tf + 2
(3.15)

3.2 Controlling the stiffness of a quadratic potential

3.2.1 Solution by Schmiedl and Seifert

The second example in [2] concerns a potential with a fixed center and a variable stiffness

Ut(x) = λt
x2

2
(3.16)

Schmiedl and Seifert start by obtaining the equation of motion for the variance by multi-
plying the Langevin equation with x2 and averaging:

ẇ = −2λw + 2 (3.17)
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Which is equivalent to what found in (A.12) and which enables them to express the mean
work in terms of the variance of the distribution

〈W 〉 =

∫ tf

0

λ̇
w

2
dt =

= [λ
w

2
]
tf
0 −

∫ tf

0

λ
ẇ

2
dt =

= [λ
w

2
]
tf
0 −

∫ tf

0

ẇ

2w
dt+

1

4

∫ tf

0

ẇ2

w
dt =

=
1

2
[λw − lnw]

tf
0 +

1

4

∫ tf

0

ẇ2

w
dt (3.18)

To minimize it they again make use of Euler-Lagrange equation which reads

ẇ2 − 2wẅ = 0 (3.19)

The equation is solved by a quadratically time dependent variance of the following type

wt = c1(1 + c2t)
2 (3.20)

The first constant is determined by the initial distribution and we have c1 = 1/λ1. The
second one is chosen in order to minimize work. They proceed by plugging the time
dependent variance (3.17) into the expression of work (3.18)

〈W 〉 =
(c2tf )

2

λtitf
− log (1 + c2tf ) +

λtf
2λti

(1 + c2tf )
2 − 1

2
(3.21)

and differentiating over c2 they find

c∗2 =
−1− λtf tf +

√
1 + 2λtitf + λtfλtit

2
f

tf (2 + λtf tf )
(3.22)

and therefore an optimal work of

〈W ∗〉 =
1 + λtf tf −

√
1 + 2λtitf + λtfλtit

2
f

2λtitf + λtfλtit
2
f

− log
1 +

√
1 + 2λtitf + λtfλtit

2
f

(2 + λtf tf )
(3.23)

Through the relation derived in (3.20) they are able to express the optimal protocol as

λ∗t =
λ0 − c∗2(1 + c∗2t)

(1 + c∗2t)
2

(3.24)
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3.2.2 Solution via AMM

If we now try to solve the problem by the general optimization method shown in equation
(2.75) we recover the same result. The procedure is analogous to the one followed for the
first example but we are now looking for the optimal r which is connected to the standard
deviation σ by σtf = 1√

r
. In [2], for simplicity, β and γ are taken to be 1.

Since σtf describes the distribution at final time, to recover the time dependent protocol,
we need to introduce a time dependence as we have done in the previous example. The
solution of Burgers equation imposes a linear time dependence for the standard deviation

σt = 1 +
t

tf
(σtf − 1) (3.25)

Which again satisfies Euler Lagrange (3.19) since

wt = σ2
t = (1 +

t

tf
(σtf − 1))2

ẇ = 2
(σtf − 1)

tf
(1 +

t

tf
(σtf − 1))

ẅ = 2
(σtf − 1)2

t2f
(3.26)

result in

ẇ2 − 2wẅ = (3.27)

= 4
(σtf − 1)2

t2f
(1 +

t

tf
(σtf − 1))2 − 4(1 +

t

tf
(σtf − 1))2

(σtf − 1)2

t2f
= 0

We are now going to use the optimal r∗ derived in equation (2.79) considering that
c corresponds to λtf and that the initial variance is one w(0) = 1 as the initial stiffness
λti = 1. Since the variance is the square of the standard deviation we have

wt = σ2
t = [1 +

t

tf
(σtf − 1)]2 = c1(1 + c2t)

2 (3.28)
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we can then express c2 in terms of σtf and explicit its form

c∗2 =
σtf − 1

tf
=

1−
√
r∗

tf
√
r∗

=
tf −

√
λtf t

2
f + 2tf + 1 + 1

tf (
√
λtf t

2
f + 2tf + 1− 1)

=
(tf −

√
λtf t

2
f + 2tf + 1 + 1)(

√
λtf t

2
f + 2tf + 1 + 1)

tf (λtf t
2
f + 2tf )

=
tf + tf

√
λtf t

2
f + 2tf + 1 + 1 +

√
λtf t

2
f + 2tf + 1−

√
λtf t

2
f + 2tf + 1− (λtf t

2
f + 2tf + 1)

t2f (λtf tf + 2)

=
−1− λtf tf +

√
λtf t

2
f + 2tf + 1

tf (λtf tf + 2)
(3.29)

Which is what found by Schmiedl and Seifert expressed in equation (3.22) in case of an
initial variance and potential stiffness equal to one. If we consider equation (2.75) and plug
in the optimal r (2.79) with the conditions of this example i.e. µ = 0 and c = λtf we get

〈W ∗〉 =
1 + λtf tf −

√
1 + 2tf + λtf t

2
f

2tf + λtf t
2
f

+ log [
1

t
(−1 +

√
1 + 2tf + λtf t

2
f )] (3.30)

which again corresponds to the case of an initial variance and potential stiffness equal to
one of equation (3.23).
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Chapter 4

Brownian motors and mesoscopic
engines

Stochastic mesoscopic settings allow for the design of a variety of engines and motors.
As the ones in classical thermodynamics, such devices, transform thermal (or chemical)
energy into work or vice versa. Some of these models make an active use of the noisy,
fluctuating environment whereas others are just classical thermodynamic cycles realized in
the mesoscopic realm.

4.1 Rectifying motors

Let us begin by briefly sketching some of the fundamental features and some examples
of Brownian motors that structurally differ from macroscopic ones. Their distinguishing

as done by Schmiedl and Seifert

T ’

� �’

T

Figure 4.1: Feynman Ratchet as depicted in [5]

characteristic is the use of the random fluctuating forces to induce directed motion. This
aim is reached through the introduction of some asymmetry that rectifies the random
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fluctuations into a chosen direction. The asymmetry can be brought about by means of
asymmetric potentials or of asymmetric temperature profiles or by exploiting some more
involved cross-coupling between the motion and the thermodynamic forces.

Historically relevant works described in [5] are the Feynman ratchet and the Büttiker
Landauer ratchet. We hint the underlying basic concepts here and point at [5] for actual
and detailed description.
The Feynman ratchet (fig. 4.1) operates between two different heat reservoirs:

Fluctuations of the hot reservoir (T ) randomly move the vane that rotates the ratchet
wheel while fluctuations in the cold one (T ′) shake the pawl. The asymmetric design of the
ratchet wheel makes rotation in one direction more likely and this results in a net average
rotation that can be used to lift a load.

The Büttiker Landauer ratchet (fig.4.2) involves a single mesoscopic particle in a pe-
riodic potential. The thermal environment switches between two different temperatures
with the same periodicity of the potential

x

U(x)

Figure 4.2: Büttiker Landauer Ratchet as depicted in [5]

The dashed line indicates a temperature T ′ lower than T denoted by the full line. We
see that in the region immediately before (left of) the potential barrier the temperature is
higher than immediately after (right of) the barrier. A higher temperature means stronger
intensity of the random forces and this results in the particle having a higher probability
of jumping over the barrier. Since it is now more likely for the particle to jump over the
barrier when the particle is at its left than when it is at its right we have an average flux of
particles rightwards. This shows how asymmetric periodical setting of temperatures (and
therefore fluctuations) in an asymmetric periodic potential is capable of rectifying the noise
and inducing directed transport.

Among isothermal Brownian motors the flashing ratchet (fig.4.3) is a very instructive
example.

It consists of a single mesoscopic particle subject to an asymmetric potential (e.g. a
saw-tooth function) and make explicit use of thermal noise. The potential flashes i.e. it is
periodically turned on and off.

40



Figure 4.3: Flashing Ratchet as depicted in [9] The top shows the probability of overcoming
the position of the barrier during the diffusive step. The bottom shows the potential profile.

The particle therefore switches from motion determined by the potential to free diffu-
sion. The distance between the bottom of the potential and the barrier top to its right
is labeled as a whereas the distance to its left one is b. The ratio b

a
indicates the degree

of asymmetry towards the right. During the potential controlled step the particle drifts
downhill and reaches on average the bottom of the potential which is located next to the
barrier (given the asymmetry) of the potential. The potential is now switched off and the
the particle freely diffuses. When the potential is switched on again the particle has a
probability equivalent to the hatched area of the Gaussian in (fig.4.3) of having diffused to
the next potential well. Once there, it will drift again towards its minimum. On average
this induces a directed motion. Crucial for this model is the asymmetry of the potential
(with a centered minimum of the potential there would be no net transport), the noisy
environment and the choice of the flashing time. In fact, in the potential step, the particle
must have enough time to drift to the bottom of the potential well but not enough to spon-
taneously jump out of the well by effect of the fluctuations (shorter time than the Kramer
one). Also, the diffusive step shall last long enough to allow diffusion for a distance a that
is needed for particle to get right of the barrier but shall last less than the time needed
for diffusing a distance b which might lead the particle to be in the well to the left of the
starting one. The energy needed for the transport is given by the energy needed to flash
the potential and can be provided by chemical reactions.

4.2 Molecular Motors

Many biological settings are properly described by typical mesoscopic stochastic dynamics
[9]. Of particular interest are those systems which are responsible for the transport of
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substances inside the cell. Such systems can be defined as molecular motors. They operate
along filaments which serve as railroads. The most studied ones are myosins which move on
actin filaments and kynesins and dyneins which use microtubules as support. For purposes
of a highly idealized model the filaments can be defined as rigid, periodical (∼ 10nm) and
polar structures. The motors attach to them by two “heads” of size comparable to the
one of the period. Inside a cell the temperature is nearly constant and this rules out the
motor modeled by the Feynman Ratchet from the ones actually realizable in nature. Local
temperature inhomogeneities are possible in a cell, but since the typical periodicity of a
filament is of a few tens of nanometers, the temperature gradients needed to implement a
Büttiker Landauer Ratchet would decay in times of the orders of microseconds making this
motor unfit for transport. The flashing ratchet represents instead a concrete possibility
for providing motion in isothermal, stochastic settings. The somewhat abstract flashing
feature can be realized by considering a two state system. In the first state the particle
is subject to the potential whereas in the second one freely diffuses1. The transition be-
tween the two states is made possible by the chemical energy supplied by ATP or ADP
hydrolisation and it is at its expenses that the motion is possible. The transition rates are
determined by changes in the chemical potential.
Extracellular motions such as muscle contraction can be modeled by the simultaneous ac-
tion of many motors. We refer to [9] for a thorough and detailed exposition and restrict to
listing some the results here. Such models exhibit a richer variety of possible behaviour and
new features can arise. For example, if we consider several particles in the two state poten-
tial described before, all rigidly linked to a backbone, collective effect such as spontaneous
symmetry breaking can come into play and net motion is possible even for symmetrical
potentials. The results remind strongly of the Ising model for a ferro-magnet where the
velocity of the resulting motion plays the role of magnetization, the viscous load to be
transported the one of the external magnetic field and a measure of the chemical energy
used plays the role of the inverse temperature β.

4.3 Classic thermodynamic cycles in stochastic envi-

ronments

In stochastic environments it is also possible to define cyclic transformations in analogy to
classic thermodynamics. To carry out the analogy we need to define the mesoscopic objects
corresponding to the classical ones. The role of the working gas that can be compressed
or expanded by a piston is now played by a colloidal particle in an optical trap (analogous
to the piston) of variable intensity. The source of heating that, classically is fire is now
laser heating. Work, heat and internal energy are defined as in section 1.1. These engines
differ substantially from the rectifying ones since they do not make any explicit use of
the fluctuations but operate only taking them into account (if not despite them). The

1The states do not necessarily need to be two and their potentials can be of more general form than
the one here described
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role of noise is important in the computation of their characteristic and introduce possible
cycles in which no work is extracted but does not change their structure. Moreover, these
mesoscopic thermal engines do not provide directed motion but extract work intended as
change on the controlling potential as in eq. (1.8).
A mesoscopic Carnot cycle is presented in [3]. It displays two isothermal and two adiabatic

U

Tc

Th

U

ma mb

mbma

1

3

4

2

U

U

Figure 4.4: Mesoscopic Carnot Cycle as depicted in [3]

steps. In the first isothermal expansion, work is extracted since the potential is widened.
An instantaneous adiabatic cooling then occurs and, while the distribution does not have
time to change, the potential is allowed to be modified as the time scale for the optical trap
are much smaller than the ones needed for the distribution to equilibrate. An isothermal
compression takes now place and work is needed to accomplish it. For the process to be
a cycle, its final distribution must equal the one of the beginning of the cycle. Finally an
adiabatic transition to the initial temperature is performed. As for classic thermodynamics,
the fact that the two isothermal steps are performed at different temperatures allows the
engine to extract work from the heat bath.
A mesoscopic Stirling cycle can also be defined and it has been experimentally realized
in [15]. For such cycle the instantaneous adiabatic steps are substituted by instantaneous
isochoric ones in which the potential (playing the role of the volume) is kept fixed.
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4.4 Optimal work for the computation of efficiency at

maximum power of a mesoscopic Carnot engine

Since these mesoscopic engines are formalized in terms of stochastic work and heat with
the same definition of [1] it is interesting to apply this optimization procedure to the
transformations they involve. Such study will indicate the optimal protocols allowing the
engine to produce the most work possible and this will give information on its maximum
efficiency. Moreover, since the solution of [1] deals with non-equilibrium transformations,
we are able to compute non-equilibrium and finite-time thermodynamic quantities such as
the efficiency at maximum power.

4.4.1 Optimal work for a non-equilibrium initial state

To proceed to such an extension of the method some care must be taken as, in a cycle,
the initial distribution of a step of the engine is the same as the final one of the previous
step. This means that if the final distribution of a step has not had time to equilibrate
with the potential (feature that we had previously considered) also the initial distribution
of the following step will be a non-equilibrium one (whereas we had assumed an equilib-
rium starting point). We therefore need to generalize the formalism to settings displaying
non-equilibrium initial states. This leads to a slight modification of the average work of
equation (2.75).
Furthermore, all thermodynamic engines operate between different temperatures and ex-
tract work from this difference. For AMM solution to describe these features we need to
extend it to processes with non constant temperature and therefore with varying β and
consequently diffusion coefficient. This is not straightforward and affects the optimization
procedure solution at various points. We focus here on the isothermal step and postpone
such discussion to chapter 5.
Let us now extend AMM to the case of a non equilibrium initial state. We will here consider
an initial distribution with a generic variance wti instead of the 1

β
as used for simplicity

before. With a slight change of notation we will describe the final distribution in terms of
its variance wtf = 1

βr
instead of the parameter r. Let us consider which terms of equation

(2.75) are affected by a non-equilibrium initial state. The averages taken at initial time,
equation (2.70) and the entropy term (2.71) are now clearly different since the initial dis-
tribution is changed. A different initial variance affects also the inverse Lagrangian map
connecting xf to xi because of the relation involving the error functions at initial and final
state.
To avoid confusion let us recompute the optimal work step by step for a non-equilibrium

initial state with initial potential Uti =
λti
2
x2 and final one Utf =

λtf
2

(x − µ)2 . Note that
this is not the most general setting as we are considering an initial potential and distri-
bution centered in the origin whereas this is not always the case. Anyway, mesoscopic
thermodynamic cycles of interest and specifically the example in [3] deal with origin cen-
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tered potentials and distributions and we therefore restrict our generalization to such case.
The average final internal energy (2.69) is not affected as only the initial settings are now
different. In terms of wtf it takes the form

〈Utf 〉 =
λtf
2

[wtf + (q − µ)2] (4.1)

The initial internal energy gives

−〈Uti〉 = −λti
2
wti (4.2)

in case of non origin centered distribution and potential it takes a form analogous to (4.1).
For the entropy change we have

−
∫

1

β
log [mti(a)]mti(a)da+

∫
1

β
log [mtf (x)]mtf (x)dx =

= − 1

βNi

∫
[− a2

2wti
− 1

2
log 2πwti ]e

− a2

2wti da+

+
1

βNf

∫
[−(x− q)2

2wtf
− 1

2
(log 2πwtf )]e

− (x−q)2
2wtf dx =

= − 1

β
(−1

2
− 1

2
log 2πwti +

1

2
+

1

2
log 2πwtf ) =

=
1

2β
log

wti
wtf

(4.3)

Where N is the normalization constant of the distribution. The entropy change has the
same form if the initial distribution and potential are not centered in the origin.
The cost function is affected only by changes in the Lagrangian map

a(x)
√
wti

=
(x− q)
√
wtf

(4.4)

which for x = q + ∆q yields

a(q + ∆q) = (∆q)

√
wti√
wtf

(4.5)

Leading to ∫
(a(x)− xf )2

tf − ti
mtf (x)dx =

1

tf − ti
(q2 + (1−

√
wti√
wtf

)2wtf ) =

1

tf − ti
(q2 + (

√
wtf −

√
wti)

2) (4.6)
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In case of a non centered distribution instead of having only q2 we would have the difference
between the initial and final mean position. It is important to remember that in general
the variance of the distribution depends on the temperature. Adding all the terms together
we get the expression for the optimal work between to non-equilibrium states.

〈δW 〉 =
λtf
2

[wtf + (q − µ)2]− λti
2
wti +

1

2β
log

(wti)

(wtf )
+

1

tf − ti
(q2 + (

√
wtf −

√
wti)

2) (4.7)

4.4.2 Explicit solution of a Carnot mesoscopic engine via AMM

With the tools derived above we can now consider the Carnot engine described in [3] and
solve it in the case of a quadratic potential. Let us see in detail the steps of the model:

1. Isothermal transition at high temperature TH taking a time t1. The initial potential
is Uti = λti

x2

2
and the final one is Ut1 = λt1

x2

2
. The process changes a distribution

centered in the origin with variance wa to another, still centered in the origin but
now with variance wb.

2. Adiabatic instantaneous step from high temperature TH to a cold one TC . Being
the transformation instantaneous the distribution does not have time to change so
the variance is still wb. The potential is allowed to change and takes the value
Ut1+ = λt1+

x2

2

3. Isothermal transition at low temperature TC taking a time t3. For the process to be
cyclic we need the final distribution of this step to be equal to the initial one of step
1. Therefore the variance will be wa again. This constrains the possible values of the
potential and the temporal length of the step. The final potential is Ut1+t3 = λt1+t3

x2

2
.

4. Adiabatic instantaneous step from the low temperature TC to the original hot one
TH . Again the distribution does not change but the potential does. For the process
to be a cycle it needs to match the initial one λt1+t3+ = λti .

It is worth remarking that, in order to make the process cycle, some conditions constrain
the control. Let us highlight them once more. First, the final distribution in step 3 must
be equal to the one at the beginning of the cycle. The joint effect of distribution at the
beginning of the step, time duration of the step, final potential and temperature must
account for that. Furthermore the final potential of the cycle must equal the starting one
but this is a more evident and easy to fulfill requirement.
The final aim is to compute the efficiency at maximum power of the engine. This quantity
is interesting because the (unconstrained) maximum efficiency of an engine is achieved for
quasi-static transformations which, taking an infinite time, yield vanishing power. One is
usually interested in engines capable of supplying power and therefore it is more relevant
to consider the efficiency at maximum power which is a finite time quantity. In analogy
with the solution proposed in [3] we split the problem in two steps: first we look for the
protocol which enables the greatest power production and then we compute the value of
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efficiency associated to it. To derive the protocol for maximum power we first find the
functional time dependence of the variance which optimizes work production (as done in
[1]) and then optimize over time duration and initial and final distributions the functional
corresponding to power production which is different from the one of work and will there-
fore lead to different protocols.

Let us now consider each step and write down its value of the optimal work. The first
step reads

〈δW 〉1 =
λt1
2
wb −

λti
2
wa +

1

2

1

βH
log

wa
wb

+
1

t1
(
√
wb −

√
wa)

2 (4.8)

As discussed before, the method developed in [1] is not suitable for the optimization of
processes taking place in temperature changing settings. Moreover, steps 2 and 4 are
instantaneous and therefore the distributions do not have time to change. This means that
there is no time nor room for an optimal protocol, in fact, even if we allow the potential
to change it would just display a discontinuous jump. The specific choice of the potential
jump is also irrelevant to the final computation of work as, for the process to be cyclic all
the contributions given by potential changes must be null.

4∑
i=1

∆Uti =
4∑
i=1

∆i(λw) = 0 (4.9)

The steps are adiabatic which means that there is no heat exchange and therefore the work
reduces to the change in potential energy.

〈δW 〉2 = ∆U2 =
λ(t1+)

2
wb −

λt1
2
wb (4.10)

Then step 3 is similar the first one

〈δW 〉3 =
λt3+t1

2
wa −

λ(t1+)

2
wb +

1

2

1

βC
log

wb
wa

+
1

t3
(
√
wa −

√
wb)

2 (4.11)

and finally step 4 resembles step 2

〈δW 〉4 = ∆U4 =
λt3+t1+

2
wa −

λt3+t1

2
wa (4.12)

Adding them together we get the total work done on the system for a cycle. Since it
is a cyclic process, the energy contribution must cancel out and this indeed happens when
we impose the cycling condition i.e. that the final potential energy equals the initial one
λ(t3+t1+)

2
= λti .

〈δW 〉1,2,3,4 =
1

2

1

βH
log

wa
wb

+
1

t1
(
√
wb −

√
wa)

2 +

+
1

2

1

βC
log

wb
wa

+
1

t3
(
√
wa −

√
wb)

2 =

= (
1

t1
+

1

t3
)(
√
wa −

√
wb)

2 + (
1

βH
− 1

βC
)
1

2
log

wa
wb

(4.13)
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Which is in perfect agreement with what found in [3, equation (15)]. If we were to
proceed in the optimization as in section 3.2 we would further optimize this process by dif-
ferentiating over the intermediate variance wb and, (whether not specified by the problem)
the initial variance wa. Since we now want to maximize power, we must differentiate its
functional and not the one of work. The power supplied by the considered engine is

P =
−W
t1 + t3

=
1
2
(TH − TC) log wb

wa
− ( t3+t1

t1t3
)(
√
wa −

√
wb)

2

t1 + t3
=

=
1

2(t1 + t3)
(TH − TC) log

wb
wa
−

(
√
wa −

√
wb)

2

t1t3
(4.14)

It is now interesting to look for the optimal duration for the cycle as it has a more involved
role than in the case of heat or work. In fact, whereas on one hand a slow cycle allows for
greater denominator (work production), a fast one minimizes the denominator in (4.14)
increasing the power. Let us then differentiate over the duration of steps t1, t3 . Given
their symmetrical roles the two times would have the same optimal value, we can therefore
impose t1 = t3 and differentiating (4.14) over t1 we get

dP

dt1
=
d[ 1

4t1
(TH − TC) log wb

wa
− (
√
wa−

√
wb)

2

t21
]

dt1
=

−(
1

t21
)[

1

4
(TH − TC) log

wb
wa
− 2

(
√
wa −

√
wb)

2

t1
] (4.15)

giving an optimal time time interval of

t∗1 = t∗3 = 8
(
√
wa −

√
wb)

2

(TH − TC) log wb
wa

(4.16)

which means that the work done on the system at maximum power is

〈δW ∗〉1,2,3,4 = −1

4
(TH − TC) log

wb
wa

(4.17)

To evaluate the efficiency it is not relevant to compute the optimal variances wb and wa as
their contribution to the work is canceled by their contribution to the heat uptake which
is

〈δQ∗〉1 = S̄ti − S̄t1 =
TH
2

log
wa
wb

+
1

t∗1
(
√
wb −

√
wa)

2 =

TH
2

log
wa
wb

+ (TH − TC)
1

8
log

wb
wa

= (3TH + TC)
1

8
log

wa
wb

(4.18)

Again in agreement with what found in [3].
We can finally explicitly write the efficiency at maximum power

η∗ =
1
4
(TH − TC) log wa

wb

(3TH + TC)1
8

log wa
wb

=
2(TH − TC)

3TH + TC
(4.19)
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It is interesting to express it in terms of Carnot efficiency ηC = 1− TC
TH

η∗ =
2ηC

4− ηC
(4.20)

It is also noteworthy that, as stressed in [3], it differs from the expression of efficiency at
maximum power derived by Curzon-Ahlborn.
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Chapter 5

Optimization in a temperature
changing setting

Several problems of physical and biological interest display processes taking place in tem-
perature varying environments (see chapter 4). In the following chapter we discuss the
differences that arise with respect to the isothermal case and suggests a generalization of
the AMM optimization procedure [1]. We focus on which features persist despite the non-
constant temperature and especially on the arising of Burgers equation. It is important
to note that changing the temperature affects also the viscous friction γ but for simplicity
reasons we now neglect this effect.

5.1 Definition of heat

When temperature is spatially inhomogeneous it can act as a driving force contributing
to the drift experienced by the mesoscopic particle. It becomes crucial to specify if the
noise term in Langevin equation is meant in the Itô or Stratonovich way. In fact the two
formalisms differ by a term 1

2
∂x(

1
β
) which alters the stochastic functionals of section 1.1

and the optimization technique of chapter 2. For instance, if Langevin equation is intended
in the Itô convention

γ
dx

dt
= −∂xU(x, λ) +

√
2

β(x)
· ẇt (5.1)

its Stratonovich equivalent reads

γ
dx

dt
= −∂x(

1

2β(x)
+ U(x, λ)) +

√
2

β(x)
◦ ẇt (5.2)

the first law of thermodynamics derived in (1.9) becomes

dE = δW − δQ (5.3)
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where E is defined as

E =
1

2β(x)
+ U(x, λ) (5.4)

and heat is defined as

δQ = −
∫
∂x(

1

2β(x)
+ U(x, λ))dx (5.5)

The definition of work is unchanged unless we consider the temperature to be controllable
through a parameter λ′. In this case it reads

δW =

∫
∂λ(U(x, λ))dλ+

∫
∂λ′(

1

2β(x, λ′)
)dλ′ (5.6)

Beside these definition issues, a non constant temperature (and consequently diffusion
coefficient) brings about more fundamental differences in the optimization described in [1].
As mentioned in the closing of section 1.1 a constant temperature allows a close relation
between entropy production in the environment and heat released (1.57) which makes it
possible to define heat from the functional J . One could in fact say that, in the isothermal
case, heat optimization corresponds to the optimization of the functional J and therefore
to the minimization of the irreversibility of the process. This correspondence is lost as
soon as β is not constant and can therefore not filter across the integral. In the following
sections we analyze in details what happens for the optimization of both heat and entropy
production in the environment and highlight their differences.

5.2 Temperature depending on time only

We start by considering the case of temperature depending on time but constant in space.
The time dependence of temperature spoils the validity of relation (1.57) but does not
introduce any spurious drift nor ambiguities in the definition of Langevin equation (see eq
5.1 and 5.2) as ∂x(

1
βt

) = 0

5.2.1 Heat Optimization for time dependent temperature

We are now interested in the minimization of average heat released during a transformation
taking place with a time dependent temperature. The general idea is to perform the
optimization including temperature as a parameter. As a result we will be able to compute
the optimal control to be exerted on the potential as a function of temperature for any given
temperature protocol. We follow the same optimization procedure described in section 2.1
for the constant temperature case. Since the derivation is performed over infinitesimal
time steps, the temperature time dependence introduces only higher order corrections and
does not modify the first results and we recover the same HJB equation (2.20). Also the
expression for the optimal drift (2.21) and the splitting of the drift (2.34) mapping Fokker-
Planck equation into deterministic transport (2.39) remain unchanged. What does change
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is that in the definition of the equilibrium potential (2.30). The previously constant factor
1
β

now depends on time

Rt(x) =
1

βt
logmt(x) (5.7)

This plays a role in the mapping of HJB into Burgers equation. In fact it involves a
time derivative of S which, according to equation 2.41, includes R. Making explicit the
dependence we have

St(x) = −2ψt(x)−Rt(x) = −2ψt(x)− 1

βt
logmt(x) (5.8)

so that now

∂tSt(x) = −2∂tψt(x)− 1

βt
∂t logmt(x)− ∂t(

1

βt
) logmt(x) (5.9)

Since all the other terms involved in (2.20) have not changed, the extra term ∂t(
1
βt

) logmt(x)
given by ∂tS is not compensated. As a result, for a time dependent temperature there is
a source term in Burgers equation

∂tψ +
[∂xψ]2

2τ
= −1

2
∂t(

1

βt
) (5.10)

5.2.2 Entropy production optimization for time dependent tem-
perature

Let us now consider entropy production in the environment as defined in equation (1.55).
For our Langevin equation we can write

< ∆SENV >=

∫ tf

ti

< βtb(xt) ◦ dxt > (5.11)

To perform an optimization analogous to AMM we have to start by defining the value
function, corresponding to what S (2.12) was for heat. It now takes the meaning of
entropy produced in a process taking place from an intermediate time t to the the final
one tf

Σt(x) =

∫ tf

t

(βtb
2
t + ∂xbt)dt (5.12)

expressed in the Itô convention where again

Σ̄ti =< ∆SENV > (5.13)

As mentioned in the previous section, the HJB equation can be obtained also for a time
dependent temperature. Since we are now optimizing a different functional we have a
different RHS with respect to equation (2.20). In fact it has a multiplicative factor of β

−∂tΣ−
b

γ
∂xΣ−

1

βγ
∂2
xΣ = β

b2

γ
+
∂b

γ
(5.14)
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Following the same steps as AMM we can derive the expression for the optimal drift

b∗ =
1

2
(∂xR−

1

β
∂xΣ) =

1

2
∂x(R−

1

β
Σ) (5.15)

It is of course similar to what found for S (2.21) but in terms of 1
β
Σ. This is dimensionally

correct since Σ is an entropy and not an energy. Upon the same splitting of the drift (2.34)
into an equilibrium part and a remainder we can again express

Σ = −βR− 2βψ (5.16)

As for the isothermal case, the splitting maps Fokker Planck equation into deterministic
transport induced by the velocity field ψ (2.39).
The problem we had encountered when taking the time derivative of S in the case of heat
is now avoided by the fact that Σ contains a term in βR and not only R. Substituting in
the HJB (5.14) we therefore get

∂t(βψ) +
1

2γβ
(∂x(βψ))2 = 0 (5.17)

which upon definition of
βψ = ϕ (5.18)

and time re-parametrization as
β∂t = ∂τ (5.19)

becomes

∂τ (ϕ) +
1

2γ
∂x(ϕ)2 = 0 (5.20)

Which is Burgers equations for the modified time. The deterministic transport equation
in the new variables reads again

∂τm+
1

γ
∂x(∂xϕm) = 0 (5.21)

These two equations fully describe the transport process and can be solved via MAK
reducing to an assignment problem of initial and final conditions minimizing the cost
function in terms of τ ∫

(xi − xf )2

2(τf − τi)
mtidxi (5.22)

From this first generalization it seems that the arising of Burgers equation is connected
to the optimization of entropy production and it is met by heat optimization only in the
isothermal case.
It is interesting to apply the change of variables (5.19) to the SDE describing the process
(i.e. Langevin equation). Considering that dt = βdτ we get

dxτ =
βb

γ
dτ +

√
2

γ
dwτ (5.23)
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and that its expression for heat yields

< Q(τ) >=

∫ τf

τi

1

γ
〈(β2b2 + β∂xb)dτ〉 =

∫ tf

ti

1

γ
〈βb2 + ∂xb〉dt = 〈∆SENV 〉 (5.24)

which is the expression for entropy production (5.11) for the usual SDE .

5.3 Temperature dependent on time and space

Let us now take the generalization of AMM a step further and consider the case of tem-
perature depending both on time and space. If temperature depends not only on time but
also on space more involved modifications are necessary and it becomes fundamental to
specify if we are considering a Stratonovich or an Itô Langevin equation (see section 5.1).
In the following we consider a Stratonovich Langevin process

dxt =
dt

γ
b+

√
2

γβ(x, t)
◦ dwt (5.25)

which in the Itô formulation reads

dxt =
dt

γ
(b+

1

2
∂x(

1

β(x, t)
)) +

√
2

γβ(x, t)
· dwt (5.26)

The Fokker Planck equation corresponding to (5.25) displays to the spurious drift involved
in the Itô SDE

∂tm = −1

γ
∂x[(b+

1

2
∂x(

1

β
))m] + ∂2

x(
m

γβ
) (5.27)

It is interesting to note that inhomogeneous temperature scenarios also affect the gener-
ality of the Gaussianity of the particle distribution in a quadratic potential shown before
equation (2.68). In fact, the thermally induced drift alters the symmetries of the potential
and lead to non-Gaussian space dependent mean and variance. In the formalism, the dif-
ferences arise from the new form and space dependence of Fokker-Planck equation (5.27)
and results in the following conditions (analogous to A.10, A.12) coming respectively from
the constants, the first order and the second order balance in x

ẇ = 2[D − (
c

γ
+ ∂2

xD)w] (5.28)

q̇ =
c

γ
(µ− q)− 3

2
∂xD (5.29)

ẇ = 2[D − c

γ
w] (5.30)
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5.3.1 Heat optimization for time and space dependent tempera-
ture

We focus first on the optimization of average released heat. Since the expression for heat is
written in the Itô notation it is affected by the presence of the spurious drift and, compared
to (2.2), has an extra term

< QSD >=

∫ tf

ti

dt

γ
< b2 +

1

2
b∂x(

1

β
) +

∂xb

β
> (5.31)

If we carry out the usual AMM optimization procedure for this new functional and Fokker-
Planck equation, the HJB equation (2.20) describing the evolution of the functional S
changes on both sides. The left hand side displays the additional spurious drift of the
Fokker Planck equation and the right hand one bears the consequences of the different
definition of heat.

−∂tSSD −
b

γ
∂xSSD −

1

2
∂x(

1

β
)∂xSSD −

1

βγ
∂2
xSSD =

b2

γ
+

1

2γ
b∂x(

1

β
) +

∂b

βγ
(5.32)

Since the derivation of the evolution of S̄ involves the term ∂tm (2.24), it is also affected
by the change in Fokker-Planck equation.

S̄SD(t− dt) =
dt

γ

∫
dx(b2 +

1

2
b∂x(

1

β
) +

∂b

β
)mt−dt(x) +

+

∫
dxmt−dt(x)SSD(x, t) + dt

∫
∂tmt−dt(x)SSD(x, t)dx (5.33)

from which, recalling that now β depends also on space when integrating by parts, we get

S̄SD(t− dt) = A+
dt

γ

∫
dx[b2 +

1

2
b∂x(

1

β
)− b

m
∂x(

m

β
) +

+
1

β
∂2
xSSD + b∂xSSD +

1

2
∂x(

1

β
)∂xSSD]mt−dt(x) (5.34)

And finding the extremal condition by differentiating with respect to b we get

2b+
1

2
∂x(

1

β
)− 1

m
∂x(

m

β
) + ∂xSSD = 0 (5.35)

yielding an optimal drift

b∗SD =
1

2
(
1

β

∂xm

m
+

1

2
∂x(

1

β
)− ∂xSSD) (5.36)

Another difference introduced by an inhomogeneous temperature is that the equilibrium
potential RSD takes a more involved form than (2.30). In fact, if we consider Fokker Planck
equation at equilibrium (∂tm = 0) and denote the drift as −∂xU = b we have

−(−∂xU +
1

2
∂x(

1

β
))meq + ∂x(

meq

β
) = 0 (5.37)
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which integrated yields

log [meq

√
1

β
] = −

∫
∂xUβdx (5.38)

The potential gradient associated with the equilibrium is therefore given by

∂xRSD =
1

β
∂x log [m

√
1

β
] =

∂xm

mβ
+

1

2
∂x(

1

β
) (5.39)

With this definition of ∂xRSD the splitting of the drift (2.34) maps the Fokker Planck
equation (5.27) into the deterministic transport (2.39). It is interesting to note that the
expression for the optimal drift (5.36) can now be expressed as

b∗SD =
1

2
∂x(RSD − SSD) (5.40)

which is the same as what found in the isothermal case (2.21) but with a different
expression for the equilibrium drift ∂xR and the running cost S.
As for the case of time dependent temperature, the substitution of the optimal and the split
drift in HJB equation (5.32) does not result in a complete cancellation . Upon derivation
of

R =

∫ x 1

β
∂x log [m

√
1

β
]dx =

∫ x 1

β
∂x log [m] +

1

2

1

β
(5.41)

we get to Burgers equation plus an involved combination of five other terms.

2∂tψ +
1

γ
(∂xψ)2 + ∂t

∫ x 1

β
∂x log [m]dx+

1

2
∂t(

1

β
) +

+
1

γ

∂xψ∂xm

mβ
+

1

γ
∂xψ∂x(

1

β
) +

1

βγ
∂2
xψ = 0 (5.42)

which can be re-written as

−2∂tψ −
1

γ
(∂xψ)2 = ∂t

∫ x 1

β
∂x log [m]dx+

1

2
∂t(

1

β
) +

1

γm
∂x[(∂xψ)

m

β
] (5.43)

5.3.2 Entropy production optimization for time and space de-
pendent temperature

Let us now consider the case of minimization of entropy production into the environment.
The functional is defined in expression (1.55) and can be put in an Itô fashion by explicitly
carrying out the Stratonovich products. In showing it we adopt the notation of section
1.1.2

Senv =

∫
〈Jt〉dt =

∫
2〈[ûd−1 +

1

2
∂x(ûd

−1)dx]dx〉 =

=

∫
2〈[ûd−1 +

1

2
∂x(ûd

−1)
√
ddwt][(u+ ũ)dt+

√
ddwt〉 (5.44)
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neglecting the terms of higher order, taking the average and exploiting the relation

u+ ũ− 1

2d
∂xd = û (5.45)

deriving from 1.16 we get to ∫
〈Jt〉dt =

∫
〈2ûd−1û+ ∂xû〉dt (5.46)

and making use of the explicit expressions of û and d (see Table 1.1) we obtain

Senv =

∫
〈Jt〉dt =

∫
〈βb2 + ∂xb− βb∂x(

1

β
) +

β

4
[∂x(

1

β
)]2 − 1

2
∂2
x(

1

β
)〉dt
γ

(5.47)

We can now apply the usual AMM optimization to entropy production in the environment,
carefully considering the space dependence of temperature and the new functional.

The HJB equation now reads

−∂tΣSD −
b

γ
∂xΣSD −

1

2
∂x(

1

β
)∂xΣSD −

1

βγ
∂2
xΣSD =

=
1

γ
(βb2 + ∂xb− βb∂x(

1

β
) +

β

4
[∂x(

1

β
)]2 − 1

2
∂2
x(

1

β
)) (5.48)

and the expression for Σ̄SD is

Σ̄SD(t− dt) = A′ +
dt

γ

∫
[
1

β
∂2
xΣSD + b∂xΣSD +

1

2
∂x(

1

β
)∂xΣSD +

+βb2 + ∂xb− βb∂x(
1

β
) +

β

4
[∂x(

1

β
)]2 − 1

2
∂2
x(

1

β
)]mt−dt(x)dx (5.49)

where A′ denotes a term independent of b and we have expressed the time dependence in
brackets to avoid confusion in the subscript.
Looking for the extremal value of b we differentiate obtaining

∂xΣSD + 2βb− ∂xm

m
− β∂x(

1

β
) = 0 (5.50)

corresponding to an optimal

b∗SDent =
1

2
(
∂xm

βm
+ ∂x(

1

β
)− 1

β
∂xΣSD) (5.51)

Making use of relation (5.39) we can express it as

b∗SDent =
1

2
(∂xRSD +

1

2
∂x(

1

β
)− 1

β
∂xΣSD) (5.52)
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where it is evident that the space dependence of temperature contributes with an extra
term to the expression of the optimal drift. This did not happen for the optimization of
heat (5.40).
We want now to express ΣSD in terms of RSD and ψ making use of the relation for the
optimal drift.

∂xΣSD = −β∂xRSD +
β

2
∂x(

1

β
)− 2β∂xψ = −∂x logm− 2β∂xψ (5.53)

which means that

ΣSD = − logm− 2

∫
β∂xψdx (5.54)

Substituting this and the usual split for the drift (2.34) in the HJB (5.48) and making use
of equation (2.39) we get to

2∂t

∫
β∂xψdx+

β

γ
(∂xψ)2 = 0 (5.55)

If we consider that ∂xψ = 1
β
∂x

∫
β∂xψdx and define

Φ =

∫
β∂xψdx (5.56)

we get to

∂tΦ +
1

2γβ
(∂xΦ)2 = 0 (5.57)

which is analogous to the equation found for the time depending temperature (5.20).
The equation for transport for m (2.39) in terms of the new field Φ reads

∂tm+
1

γ
∂x[(

1

β
∂xΦ)m] = 0 (5.58)

Multiplying both sides by 1
β

and operating the following change of variables

1

β
∂t = ∂T (5.59)

1

β
∂x = ∂X (5.60)

we can express it as

∂Tm+
1

γ
∂X [(∂XΦ)m] = 0 (5.61)

This change of variables is different from the one used for the time dependent temperature
(5.19) but is still suitable for mapping equation (5.57) into Burgers equation

∂T Φ +
1

2γ
(∂XΦ)2 = 0 (5.62)
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This result confirms that the AMM method leads to Burgers equation when applied to the
minimization of entropy production. The possibility of solving the optimization problem
for heat through Burgers equation is then limited to the isothermal case.
In analogy to what done in the closing of section 5.2 we try to perform the change of
variables (5.59) directly in the SDE (5.26) and consider its related expression for heat.
Through Itô lemma we obtain

dXT =
∂X
∂T

dT +
dT
γ

[b− 1

2
∂x(

1

β
)] +

√
2

γ
dwT (5.63)

dT = βdt (5.64)

The presence of the time derivative of X does not allow the change of variables to map heat
in what is entropy production. If we instead restrict to the case of temperature depending
on space only, the troublesome term disappear. Upon interpretation of b − 1

2
∂x(

1
β
) as the

modified potential drift1 we can define the modified heat as

〈δQ(X , T )〉 = 〈
∫

[b− 1

2
∂x(

1

β
)] ◦ dXT 〉 =

=

∫
〈βb2 + ∂xb− βb∂x(

1

β
) +

β

4
[∂x(

1

β
)]2 − 1

2
∂2
x(

1

β
)〉dt
γ

(5.65)

which is exactly the expression for entropy production in the environment of (5.47). Con-
sidering also the result of (5.24) we can remark that when temperature does not depend
on both space and time the change of variables needed to map the auxiliary problem into
Burgers equation transforms the Langevin SDE in in another one of which the expression
for heat corresponds to entropy production.

1The interpretation is not straightforward as we are including also the noise induced drift. See section
5.1
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Chapter 6

Minimum entropy cycles

In this chapter we apply the optimization techniques for entropy production developed
in chapter 5 to cyclic processes. The possibility of carrying out the optimization for any
temperature protocol makes it a suitable tool to study the mesoscopic realizations of any
thermodynamic engine. In view of considerations regarding efficiency at maximum power
we compute the work yielded by the minimum entropy producing cycles. A first study
reveals that zero entropy producing cycles do not provide mean work and therefore a
method for minimizing non vanishing entropy is suggested. For simplicity reasons we
restrict to the case of temperature depending only on time.

6.1 The role of the cost function

From the findings of section 5.2.2 we know we can make use of Burgers equation for the
auxiliary function ϕ in the modified time τ (5.20) to solve the optimization problem of
entropy production in the environment. In analogy to (2.62) we can also express entropy
production as

∆Senv = Σ̄t0 − Σ̄tf (6.1)

which, recalling (5.16) can be expressed as

∆Senv =

= −
∫

log [mti(a)]mti(a)da− 2

∫
ϕimtidxi +

∫
log [mtf (x)]mtf (x)dx− 2

∫
ϕfmtfdxf =

= σ(t0)− σ(tf ) +

∫
(xi − xf )2

(τf − τi)
mtf (x)dx (6.2)

The cost function takes therefore the meaning of overall entropy production during the
process. It is the functional 〈W〉 of equation (1.56) defined in section 1.1.2. Let us consider
it in some more detail

〈W〉 =

∫
(xi − xf )2

(τf − τi)
mtidxi (6.3)
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Intuitively it approaches zero in two cases:

• Infinite denominator which corresponds to a quasi-static transformation

• Vanishing numerator which corresponds to not changing the position

For transport problems between different positions, the vanishing numerator trivially says
that if there is no transport there is no cost. For a cycle, the initial and final state always
coincides therefore we can have minimum entropy production also in finite time. For such
cycle the probability distribution will remain unchanged during the process. To keep the
position fixed despite the change in temperature we have to control the potential in a
way that would compensate the temperature effects on the distribution. Changing the
potential means that we are exerting work on the system. Even though the whole problem
might seem trivial since we are considering a cycle that is actually still, it is interesting to
compute in details the values of entropy production and work needed or produced.

6.2 Constant probability distribution

Let us consider a harmonic potential with controllable stiffness i.e. an Ornstein Uhlenbeck
process with time dependent drift and diffusion coefficient.

U =
λt
2
x2 (6.4)

In equation (A.12) we have derived the equation of motion for a Gaussian distribution in
terms of the control parameters of a quadratic potential. The result holds also in case of
a time dependent temperature and, for the example we are considering now, reads

ẇt = 2(
1

γβt
− λt
γ
wt) (6.5)

It can be easily seen that to balance the effect of the temperature and keep the distribution
still, the spring constant must take the form

λt =
1

βtσ2
(6.6)

Where σ2 is the variance of the initial distribution. The SDE describing the process is now

dxt = − 1

γσ2βt
xtdt+

√
2

γβt
dwt (6.7)

With these tools we can proceed to the computation of entropy production and work. From
relation (1.58) we have

Senv = −
∫
βt
∂U

∂x
◦ dxt = −

∫
βtλtxt ◦ dxt = − 1

σ2

∫
xt ◦ dxt (6.8)
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Which is the integral of a total differential and therefore is zero if initial and final state
coincides. The first result is that entropy production is null along every trajectory.
Let us now consider the work needed to keep the distribution still. Plugging (6.4) in the
definition (2.3) we get

W =

∫ tf

ti

∂U

∂λt
λ̇tdt =

1

2σ2

∫ tf

ti

x2
t

d

dt
(β−1

t )dt (6.9)

The integrand is no longer a total differential and therefore not necessarily zero.
If we instead compute the mean work

< W >=
1

2σ2

∫ tf

ti

< x2
t >

d

dt
(β−1

t )dt (6.10)

since < x2
t >= σ2 and it is constant, we have again the integral of a total differential which,

for a cycle, is zero.
We are facing a process where the entropy production is zero for every trajectory and the
work needed is zero only in average. To sketch the idea of how certain trajectories can
require or produce work without entropy generation let us consider the following hand-
waving argument.

m m

TC TH

W>0

W<0

Ui
Uf

Figure 6.1: Schematic view of a simple temperature protocol

Let us imagine the simplest temperature protocol starting from a low value and mono-
tonically increasing to a high value and then monotonically decreasing back to the starting
point. During the increasing temperature phase ( d

dt
(β−1

t ) > 0) we have to exert work in
order to keep still the distribution (shrinking the potential) and during the cooling phase
( d
dt

(β−1
t ) < 0) we are extracting work (broadening the potential). If we perform the heating

step very quickly (with respect to the characteristic time of xt) we can consider the value
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x2
t as constant along the integration and easily compute the integral. On the other hand,

if the cooling step is carried out slowly, the value of x2
t will tend to the variance σ2 which

is also constant. Therefore for this simple protocol we have approximately

WSP ≈
1

2σ2
[x2
ti

∫ ti+(βH)

ti(βC)

d

dt
(β−1

t )dt+ σ2

∫ tf (βC)

ti+(βH)

d

dt
(β−1

t )dt] =

=
1

2σ2
(x2

ti
− σ2)(β−1

H − β
−1
C ) (6.11)

Where ti is the time at which the fast heating step takes place and the integration extremes
tk(βJ) explicitly show the temperature of the system at the specified time.
It is again evident that the average is zero. It is also showing that if the initial position is
lesser than the standard deviation (which for a Gaussian distribution happens for roughly
68% of the cases) the work is negative and this corresponds to the cycle performing work
on the environment. Hence, though in average we are not extracting any work, most
trajectories produce work. It is conceivable that certain biological mechanisms are not
concerned with mean work but with single trajectory work and might therefore adopt
cycles of this sort.
In order to get a clearer picture of the statistics of work we can compute the values of its
central moments.

< W 2 >= (
1

2σ2
)2

∫ ∫
dt1dt2

d

dt1
(β−1

t1
)
d

dt2
(β−1

t2
) < x2

t1
x2
t2
> (6.12)

< W 3 >= (
1

2σ2
)3

∫ ∫ ∫
dt1dt2dt3

d

dt1
(β−1

t1
)
d

dt2
(β−1

t2
)
d

dt3
(β−1

t3
) < x2

t1
x2
t2
x2
t3
> (6.13)

The values inside the averages can be expressed in terms of products of correlation
functions < xtixtj > through Wick’s theorem. As a preliminary study let us start by
computing the values for the specific temperature protocol described above.
The case is much simpler than the general one as the term x2

ti
is outside the integral and,

since it always refers to the initial time of the cycle, the correlation reduces to the variance

< W 2
SP >= (

1

2σ2
)2 < (x2

ti
− σ2)2 > (β−1

H − β
−1
C )2 =

=
1

2
(

1

σ2
)2σ4(β−1

H − β
−1
C )2 =

1

2
(β−1

H − β
−1
C )2 (6.14)

Similarly
< W 3

SP >= (β−1
H − β

−1
C )3 (6.15)

The distribution is skewed to the right and therefore asymmetric. Together with the con-
siderations about the probability of being less than one standard deviation away from the
mean, this shows that negative values of work during single trajectories are more common
but smaller in absolute value than the positive ones.
For the opposite protocol (it sufficient to swap the subscripts of the temperatures in the for-
mula) we have that most of the trajectories need external work to be done. The asymmetry
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of the work distribution should not be surprising as it is compensating for the asymmetry
of the temperature protocol.
To compute variance and skewness for a generic temperature protocol we need to derive
the expression for the time correlation of the process. This is possible for this Ornstein-
Uhlenbeck process and yields in case t2 > t1

< xt1xt2 >= e
− 1
γσ2

∫ t2
t1

dr
βr (x2

t0
e
− 2
γσ2

∫ t1
t0

dr
βr +

2

γσ2

∫ t1

t0

ds

βs
e
− 2
γσ2

∫ t1
s

dr
βr ) (6.16)

If we now consider the time re-parametrization of (5.19) we have that

dτ =
dt

βt
(6.17)

and denoting

τ(t1) = τ1 (6.18)

τ(t2) = τ2

< xt1xt2 >= (x2
τ0
− 1)e

− 1
γσ2

(τ2+τ1−2τ0)
+ e

− |τ2−τ1|
γσ2 (6.19)

Making use of Wick’s theorem we can express

< x2
t1
x2
t2
>=< x2

t1
>< x2

t2
> +2 < xt1xt2 >

2 (6.20)

The terms involving the variance give no contribution, as shown before, and
expressing it in terms of τ using relation (5.19), the work variance reads

< W 2 >=
1

2σ4

∫ ∫
dτ1dτ2

d

dτ1

(β−1
t1

)
d

dτ2

(β−1
t2

)[(x2
τ0
− 1)e

− 1
γσ2

(τ2+τ1−2τ0)
+ e

− |τ2−τ1|
γσ2 ]2 (6.21)

For the third moment we have to deal with a term < x2
t1
x2
t2
x2
t3
> that we can again expand

and, neglecting the terms involving variances, we have

< W 3 >=
1

σ6

∫ ∫ ∫
dτ1dτ2dτ3

d

dτ1

(β−1
t1

)
d

dτ2

(β−1
t2

)
d

dτ3

(β−1
t3

) ·

·[(x2
τ0
− 1)e

− 1
γσ2

(τ2+τ1−2τ0)
+ e

− |τ2−τ1|
γσ2 ] ·

·[(x2
τ0
− 1)e

− 1
γσ2

(τ3+τ1−2τ0)
+ e

− |τ3−τ1|
γσ2 ] ·

·[(x2
τ0
− 1)e

− 1
γσ2

(τ3+τ2−2τ0)
+ e

− |τ3−τ2|
γσ2 ] (6.22)

Its positivity varies according to the chosen temperature protocol.
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6.3 A pin-point approach to minimum entropy cycles

The previous section showed that minimizing the cost function over an unconstrained cy-
cle yields a null average work. This can be understood if we consider the thermodynamic
role played by the cost function. From equation (6.3) we see that it represents the overall
entropy production during a process. The minimization of such functional differs from the
one of work. In fact, in order to minimize the work needed to carry out a transformation,
one is interested in minimizing the irreversible work (which is always positive and is as-
sociated with the entropy production in the environment) and having the most negative
reversible work (associated with the difference in entropies at initial and final state ∆σ).

< W >=< ∆U > −T∆σ +Wirr (6.23)

The difference is more evident if we consider a cycle (for simplicity we consider the Carnot
one)

< W >cycle= −(TH − TC)∆σ +Wirr(TH) +Wirr(TC) (6.24)

To have a negative value for work (corresponding to work done by the cycle) one needs a
positive (and large) value of ∆σ which is possible only if the distribution changes during the
isothermal steps. One then needs to minimize the entropy production in the environment
but to maximize the difference in entropy between intermediate state. Global entropy pro-
duction is the sum of the two quantities and therefore its unconstrained minimization does
not take this feature into consideration. In fact, for a cycle, it reduces to the minimization
of entropy production in the environment

∆S =
∑

Senv (6.25)

which is a positive function. For a non quasi-static process it can vanish, and therefore
be minimum, only if the distribution is constant at all times so that the numerator of the
cost function (6.3) equals zero. A constant distribution results in zero reversible work as
shown in (6.24).
In order to maximize work production using minimum entropy it is necessary to enforce
a change of distribution along the cycle and then proceed to minimize entropy under this
constraint. This results again in the minimization of the irreversibility of the process and
can be solved by the assignment problem minimizing the non vanishing cost function. One
of the possible ways to enforce the constraint is to split the cycle into two transformations
imposing that the distribution at the end of the first one (i.e. at the beginning of the
second one) is different from the initial one.

To shed light on this sort of procedure let us apply this pin-point solution to the example
of a quadratic potential with controllable stiffness (6.4). We are going to compute the work
associated with the constrained minimum entropy for the two steps and then add them
together. We follow a procedure similar to the one described in [3] and in section 4.4 and
express work in terms of the probability variance and derive its optimal functional form.
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From the optimization of entropy production into the environment we know (cf equation
5.20) that the optimal transport problem is mapped into Burgers equation in the trans-
formed time τ . As a result, the evolution of the standard deviation minimizing entropy
production is linear in τ and we can write

στ = σti(1 +
τ − τi
τf − τi

(
σtf
σti
− 1)) (6.26)

wτ = wti(1 +
τ − τi
τf − τi

(

√
wtf
wti
− 1))2 (6.27)

we can also compute

d

dt
wτ = 2wti(1 +

τ − τi
τf − τi

(

√
wtf
wti
− 1))(

√
wtf
wti
− 1)

1

βt(τf − τi)
(6.28)

Where the last factor comes from the relation in eq (5.19) and equation (6.5) enforces
boundary conditions.
Inverting equation (6.5) we can write down the expression for the optimal control param-
eter.

λt = γ

2
γβt
− d

dt
wτ

2wτ
=

1

βwτ
− γ

2

d
dt
wτ

wτ
(6.29)

Its time derivative reads

dλ

dt
=

d

dt
(

1

βwτ
)− γ

2

d2wτ
dt2

wτ
+
γ

2
(
d
dt
wτ

wτ
)2 (6.30)

From equation (6.29) we can express the second order derivative of the variance in terms
of the control parameter as

d2wτ
dt2

= 2
d

dt
(

1

βγ
)− 2

d

dt
(λtwτ ) (6.31)

To compute the mean work needed to run the first transformation of the cycle we make
use of the definition 2.3 noting that for this potential

∂U

∂λ
=

1

2
x2
t (6.32)

The expression for the average work for the protocol minimizing entropy production is
then

< W >=
1

2

∫ tf

ti

dλ

dt
wtdt = (6.33)

=
1

2

∫ tf

ti

wt
d

dt
(

1

wtβt
)dt− 1

2
[

1

βt
]
tf
ti +

1

2
[λtwt]

tf
ti +

γ(
√
wtf −

√
wti)

2

(τf − τi)2

∫ tf

ti

1

β2
dt
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and integrating by part the first term we get to

< W >= −1

2

∫ tf

ti

1

wtβt

d

dt
(wt)dt+

1

2
[λtwt]

tf
ti +

γ(
√
wtf −

√
wti)

2

(τf − τi)2

∫ tf

ti

1

β2
dt (6.34)

In order to understand the meaning of each term and to make an explicit connection
with our previous results let us consider the isothermal case for which τ = t

β
. We then get

to

< Wiso >=
1

2β
log

wti
wtf

+
1

2
[λtwt]

tf
ti +

γ

(tf − ti)
(
√
wtf −

√
wti)

2 (6.35)

which coincides with (4.7) for an origin centered potential and can be rewritten as

< Wiso >= −T∆σ+ < ∆U > +Wirr (6.36)

For an isothermal step, entropy minimization yields the same result of work optimization
before the differentiation over the final distribution coefficients1. This equivalence shows
that, upon similar interpretation of the adiabatic steps, the formalism can be used to solve
the Carnot cycle described in [3].
In order to conclude the computation of the work associated with the cycle we have to sum
the two steps. We denote the initial variance and time as wt0 , t0 the intermediate ones as
wt1 , t1 and the final ones as wt2 = wt0 , t2. Upon piecewise definition of the variance

wτ =

 w0(1 + τ−τ0
τ1−τ0 (

√
w1

w0
− 1))2 for τ0 < τ < τ1

w1(1 + τ−τ1
τ2−τ1 (

√
w0

w1
− 1))2 for τ1 < τ < τ2

We obtain

< Wcycle >= −
∫ t2

t0

1

β

d

dt
(logwτ )dt+ (6.37)

+γ(
√
w1 −

√
w0)2(

1

(τ1 − τ0)2

∫ t1

t0

1

β2
t

dt+
1

(τ2 − τ1)2

∫ t2

t1

1

β2
t

dt)

which can be evaluated for any temperature protocol and consequently used to compute
the work production of any thermodynamic cycle. Some further care is required in the
definition and interpretation of instantaneous transformations with finite changes in tem-
peratures such as the adiabatic steps in [3].

1Entropy optimization is analogous to heat optimization and can be performed between given final and
initial states. A further optimization on the final distribution is therefore meaningless.

67



Concluding Remarks

The main finding of the present work is that for entropy production in the environment the
AMM optimization method leads to Burgers equation also for non constant temperatures
whereas for released heat only in the isothermal case. When temperature is constant, heat
differs from entropy production just by a constant factor and the two optimizations are
fundamentally identical. These considerations suggest that it is entropy production in the
environment which is intrinsically connected with Burgers equation.
The application of the generalized method for entropy production optimization to thermo-
dynamic cycles with asymmetric temperature protocols shows the existence of isentropic
cycles for which the average work is zero but most of the trajectories produce work. More-
over, explicit use of Burgers equation is made to solve pin-pointed formalizations of thermo-
dynamic cycles. This represents a tool for the computation of work production associated
with minimum entropy producing for any temperature profile. With this expression at
hand one can look for which is the temperature protocol yielding the maximum amount of
work.
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Appendix A

Gaussianity of the distribution for
linear drifts

Let us consider a distribution and a quadratic potential at time t.

Ut(x) =
ct
2

(x− µt)2 (A.1)

mt(x) =

√
βrt
2π

e−βrt
(x−qt)

2

2 (A.2)

bt(x) = −ct(x− µt) (A.3)

The Fokker-Planck equation for the considered process reads:

∂tm = ∂x[
ct
γ

(x− µt)m] + ∂2
x(Dm) (A.4)

Considering that for the Gaussian distribution (A.1)

∂xm = −βrt(x− qt)m (A.5)

∂2
xm = (βrt)

2(x− qt)2m− βrtm (A.6)

∂tm = { ṙt
2
√
rt

√
β

2π
−

√
rtβ

2π
[
βṙt
2

(x− qt)2 + (x− qt)βrtq̇t]}e−βrt
(x−qt)

2

2 =

= [
ṙt
2rt
− βṙt

2
(x− qt)2 − (x− qt)βrtq̇t]m (A.7)

We get to

[
ṙt
2rt
− βṙt

2
(x− qt)2 + (x− qt)βrtq̇t −

ct
γ

+

ct
γ
βrt(x− qt)(x− µt)−D(βrt)

2(x− qt)2 +Dβrt]m = 0 (A.8)
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The equality must be satisfied by the terms in every order of x. To explicitly write the
requirement let us express (x− µt) = (x− qt) + (qt − µt) and factorize in (x− qt):

(x−qt)2(−βṙ
2
−Dβ2r2 +

ct
γ
βr)+βrt(x−qt)(−q̇t+

ct
γ

(qt−µt))+(
ṙ

2r
+Dβr− ct

γ
) = 0 (A.9)

The conditions on the second order term and on the constants are the same. The solution
therefore reduces to two first order ODEs.

q̇t =
ct
γ

(µt − qt) (A.10)

describing the evolution of the mean of the distribution which tracks the center of the
potential with a velocity proportional to the stiffness of the potential divided by the viscous
friction. And

ṙt = −2Dβr2
t + 2

ct
γ
rt (A.11)

Which makes more immediate sense if expressed in terms of the variance of the distribution
wt = 1

βrt

ẇt = 2(D − ct
γ
w) (A.12)

Which in the stationary case gives w = γD
c

and in the absence of the potential (i.e. c = 0)
reduces to ordinary diffusive case wt = 2Dt.
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