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Abstract

The broad variety of ways in which magnetic helicity affects astrophysical
systems, in particular dynamos, is discussed.

The so-called α effect is responsible for the growth of large-scale magnetic
fields. The conservation of magnetic helicity, however, quenches the α effect,
in particular for high magnetic Reynolds numbers. Predictions from mean-
field theories state particular power law behavior of the saturation strength of
the mean fields, which we confirm in direct numerical simulations. The loss
of magnetic helicity in the form of fluxes can alleviate the quenching effect,
which means that large-scale dynamo action is regained. Physically speaking,
galactic winds or coronal mass ejections can have fundamental effects on the
amplification of galactic and solar magnetic fields.

The gauge dependence of magnetic helicity is shown to play no effect in
the steady state where the fluxes are represented in form of gauge-independent
quantities. This we demonstrate in the Weyl-, resistive- and pseudo Lorentz-
gauge. Magnetic helicity transport, however, is strongly affected by the gauge
choice. For instance the advecto-resistive gauge is more efficient in transport-
ing magnetic helicity into small scales, which results in a distinct spectrum
compared to the resistive gauge.

The topological interpretation of helicity as linking of field lines is tested
with respect to the realizability condition, which imposes a lower bound for the
spectral magnetic energy in presence of magnetic helicity. It turns out that the
actual linking does not affect the relaxation process, unlike the magnetic helic-
ity content. Since magnetic helicity is not the only topological variable, I con-
duct a search for possible others, in particular for non-helical structures. From
this search I conclude that helicity is most of the time the dominant restriction
in field line relaxation. Nevertheless, not all numerical relaxation experiments
can be described by the conservation of magnetic helicity alone, which allows
for speculations about possible higher order topological invariants.
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1. Introduction

Je n’ai fait celle-ci plus longue
que parce que je n’ai pas eu le loisir

de la faire plus courte.

I would have written a shorter letter,
but I did not have the time.

Blaise Pascal

Asking astronomers about the relevant forces for the dynamics of astro-
physical objects the only answer is often “gravity”. Gravity is undoubtedly
responsible for the structures we see at scales of the Universe. But what is of-
ten forgotten is the effect of electromagnetic forces, which often goes beyond
radiation pressure. For accretion discs magnetic fields lead to angular momen-
tum transport and ensure quick spin-downs. The presence of magnetic fields in
planets and stars provides shielding from charged and energetic particles and
suppresses convection. Starspots and sunspots, which are highly magnetized
regions, are ares of reduced radiation.

Observations of magnetic fields in the universe date as far back as 364
BCE, when Chinese astronomers observed sunspots for the first time. Of
course back then little was known about their magnetic nature. It was thanks
to Galileo Galilei that sunspots were recorded more systematically, which has
been continued ever since and created an almost complete record spanning four
centuries. Their occurrence was explained in 1908 by George Ellery Hale who
first obtained Zeeman measurements from the Sun’s surface, which revealed
strong magnetic fields of ca. 2 kG on sunspots. This strong field suppresses
convective motions that would otherwise replenish the surface with hot mate-
rial. The temperature in those regions drops due to thermal radiation which
makes them appear dark. Typical life times are between days and up to 3
months during which proper motion can be observed.

The occurrence of sunspots is not random in time, nor are they randomly
distributed on the Sun’s surface. Within 11 years the total number observed
varies between maximum and minimum during which almost no spots are ob-
served (Fig. 1.1, lower panel). We can trace this behavior back to the first
systematic observations in 1610. The only period during which this striking
rule does not apply is the so-called Maunder minimum from ca. 1650 to 1700,
during which almost no sunspots were observed. At the beginning of each cy-
cle the first sunspots appear at latitudes of around 30 degrees. As time evolves
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Figure 1.1: Longitudinally averaged area covered by sunspots (upper panel).
Percentage of the visible hemisphere covered with sunspots (lower panel).
(NASA 2012)

they emerge closer to the equator. Plotting the longitudinal average of the area
covered with sunspots gives a butterfly-like diagram (Fig. 1.1, upper panel).
Today we can measure all three spatial components of the Sun’s magnetic field.
One of the most striking revelations from these magnetograms is the reversal
of the sign of the magnetic field after every 11 years. This 22 years periodic
cycle is the magnetic cycle (Fig. 1.2).

Explaining the occurrence of the Sun’s magnetic field first led to the pri-
mordial theory, which claims that the creation of the field happened during the
Sun’s formation from an interstellar gas cloud. Since the hot gas is highly con-
ducting it is plausible that via an induction mechanism potential energy can be
partially transformed into magnetic energy. Of course one would need to take
into account the full energy balance, which further includes kinetic and ther-
mal energy. Both the large scale and the strength of the field can be explained
by this theory. But it falls short in clarifying the cyclic behavior and how it
could have outlived 4.5 billions of years of resistive decay.

To address those drawbacks, a mechanism is necessary that constantly re-
generates magnetic fields on scales which we observe on the Sun. At the same
time it has to explain how the cyclic behavior comes about. The most success-
ful and generally accepted theory is the dynamo theory, which explains how
turbulent motions in a conducting medium give rise to magnetic fields of ener-
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Figure 1.2: Polar magnetic field strength at various latitudes for the Sun. The
magnetic active regions coincide with the sunspots. This diagram is often re-
ferred to as the magnetic butterfly diagram. (NASA 2012)

gies comparable to the energies of the motions and scales similar to the system
size. Turbulent dynamos provide a convincing mechanism for the Sun’s mag-
netic field. Other than the Sun also galactic fields and fields of accretion discs
can be explained by this mechanism (Brandenburg et al., 1995).

An important ingredient of turbulent dynamos is kinetic helicity of the tur-
bulent motions, i.e. the scalar product of the velocity with the vorticity. As
a result the magnetic field will be helical as well, with helicities of opposite
signs in the small and large scales. The presence of small-scale magnetic he-
licity, however, reduces the production of large-scale magnetic energy, which
is produced by small-scale helical motions. For a closed system this means that
the field reaches saturation only on time scales determined by the resistivity,
which are much longer than the relevant dynamical time scales for astrophysi-
cal systems. A quantitative study of the dynamo’s behavior for a closed system
is presented in Paper I, where we investigate conditions under which dynamo
action occurs and how the saturation state depends on relevant parameters.
This work was motivated by recent findings about the onset of large-scale dy-
namo action of Pietarila Graham et al. (2012) that did not agree with standard
models of Blackman and Brandenburg (2002), confirmed in Käpylä and Bran-
denburg (2009).

Open systems can reduce the amount of magnetic helicity via fluxes. This
reduces the dynamo quenching coming from the presence of small-scale mag-
netic helicity significantly (Paper II). In practical terms it means that astro-
physical dynamos must have some mechanism by which helicity is shed. For
the Sun one candidate is coronal mass ejections, which frequently occur where
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Figure 1.3: Mutually linked magnetic fluxed tube make up one of the simplest
helical field configurations.

the field is strongly twisted, i.e. helical.

Magnetic helicity density is the scalar product of the magnetic vector po-
tential AAA and the magnetic field BBB. Potentials are always defined up to a gauge,
which can be chosen freely. That means that magnetic helicity density and
its fluxes are dependent on the gauge choice. The conditions under which a
dynamo is excited must, however, not depend on the gauge. In Paper III and
Paper IV both magnetic helicity fluxes and transport are investigated. Luck-
ily for the dynamo, the physically relevant quantities, like the time averaged
fluxes in the statistically steady state, turn out to be gauge-independent.

To illustrate magnetic helicity, one can think of magnetic flux tubes, which
are twisted like a helix, with both ends connected. Helices are not the only
helical fields one can think of. Two flux tubes, which are mutually linked,
constitute a helical configuration as well (Fig. 1.3). Letting such fields evolve
leads to a reduction of magnetic energy through various channels. Resistivity
slowly destroys magnetic energy, while reconnection, i.e. braking and connect-
ing magnetic field lines, has a faster effect. Reconnection is, however, a violent
process and hence not favored in field relaxation. If we cannot rely on recon-
nection being effective enough, a helical system of the kind of interlocked flux
rings cannot freely evolve due to the conservation of mutual linkage. This re-
striction is captured in the realizability condition, which gives a lower bound
for the magnetic energy in presence of magnetic helicity. Unfortunately the
overly simple picture of linked field lines can be broken by an idealized non-
helical configuration composed of linked field lines. What happens then is part
of Paper V, where the relaxation of linked, helical and non-helical fields is
investigated.

Magnetic helicity is not the only quantity, which quantifies the field’s topo-
logical structure. There exists an infinite number of topological invariants.
Whether or not such invariants could give restrictions on the relaxation is stud-
ied in Paper VI, in which helical and non-helical knots and links are investi-
gated.
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The approach taken in this work is purely theoretical. No observations
have been consulted to make quantitative comparisons with the results. Yet,
observations provided the impulse for all the investigations. All the setups are
investigated within the framework of magnetohydrodynamics, which provides
a reasonable description of the physical systems. Solving these non-linear
partial differential equations is done numerically using the PENCIL CODE1, a
high-order finite difference PDE solver.

1http://pencil-code.googlecode.com
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2. Framework

O studianti, studiate le matematiche,
e non edificate sanza fondamenti.

Therefore O students study mathematics
and do not build without foundations.

Leonardo da Vinci

2.1 Magnetohydrodynamics

Through observations of turbulent motions we know that astrophysical plasma
are viscous media. The dynamics of viscous flows is described via the Navier-
Stokes equations, which couple the velocity field with the density, the pressure
and the viscous forces. Charge separation makes the media highly conduct-
ing, which brings the Maxwell equations into play which couple the charges
and currents with the electromagnetic field. Combining the Navier-Stokes and
Maxwell equations gives the equations of magnetohydrodynamics (MHD) for
conducting fluids. The coupling between the velocity and electromagnetic field
comes from the Lorentz force.

Differing inertia of electrons and positive ions make plasma sophisticated
media to study, in particular in relativistic environments. For those systems
studied here the inertia of the charge carrying particles can be neglected. As
a consequence any charge separation will be balanced within fractions of the
here relevant time scales, which leaves the medium charge neutral. In addition
the conductivity of the medium is high enough such that the electric field can
be neglected. Further, the maximum velocities of such media are often much
less than the speed of light. Hence, the displacement current can be neglected
in favor of the electric current density JJJ from Ohm’s law.

Under these realistic simplifications the MHD equations for an isothermal
medium read:

∂AAA
∂ t

= UUU×BBB−ηµ0JJJ, (2.1)

DUUU
Dt

= −c2
s ∇∇∇ lnρ + JJJ×BBB/ρ +FFFvisc + fff , (2.2)

Dlnρ

Dt
= −∇∇∇ ·UUU , (2.3)
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with the magnetic vector potential AAA, the velocity UUU , the magnetic field1 BBB =
∇∇∇×AAA, the magnetic diffusivity η , the isothermal speed of sound cs, the fluid
density ρ , the electric current density JJJ = ∇∇∇×BBB/µ0, the external forcing fff
and the advective time derivative D

Dt =
∂

∂ t +UUU ·∇∇∇. In the following discussions
I will use units for which µ0 = 1. The viscous force is given by

FFFvisc = ρ
−1

∇∇∇ ·2νρSSS, (2.4)

with the traceless rate of strain tensor

Si j =
1
2
(Ui, j +U j,i)−

1
3

δi j∇∇∇ ·UUU (2.5)

for a viscous monatomic gas with the viscosity ν . For all the systems in this
work isothermality is assumed where the pressure is given as p = ρc2

s . Any-
thing else would change the equation of state and lead to an additional equation
which involves internal energies in the form of temperature.

2.2 Amplification of Magnetic Fields

Typical strengths of magnetic fields observed in stars and galaxies are of the
order of the equipartition value, i.e. their energies are comparable with the ki-
netic energy of the turbulent motions and scales comparable with the system
size. A mechanism is needed to explain the efficient conversion between ki-
netic and magnetic energies such that the resulting magnetic field has sizes
similar to the dimensions of the system. The large scales should be contrasted
to the scales of the turbulent eddies. Similar to the electromagnetic dynamo,
where mechanical work is transformed into electromagnetic energy, in astro-
physical objects there exists a similar mechanism for transforming energies.
The relevant induction equation for this case is equation (2.1).

The energy input for the turbulent motions can be easily explained to come
from convection where heat provides a source for kinetic energy on large scales
through the buoyant rise of material. In a nearly inviscid fluid large-scale mo-
tions of sufficient velocities are quickly transformed into small-scale motions
via the turbulent cascade, where kinetic energy is dissipated into heat again.
Given a weak magnetic seed field, the induction mechanism provides a way of
converting motions into magnetic energy by inducing currents. The properties
of these motions are crucial in the dynamo mechanism, as well as the environ-
ment of the system. The induced currents will lead to a loss of magnetic en-
ergy via Joule dissipation. The characteristics of this energy budget (Fig. 2.1)

1Common usage is to call BBB the magnetic field. In this work I will do so as well,
although strictly speaking the magnetic field is HHH and BBB is the magnetic flux density.
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Figure 2.1: Energy budget for e.g. the solar dynamo (Brandenburg and Sub-
ramanian, 2005). The thermal energy ET is supplied from the solar interior in
form of radiation (Lbot), which heats the convection zone. Thermal radiation
Ltop at the Sun’s surface provides a sink of energy, which balances Lbot in global
thermal equilibrium. Buoyancy WC cools the system down by creating motions
EK, which are resistively dissipated (QV). The Lorentz force WL is responsible
for transforming kinetic into magnetic energy EM, which decays resistively via
Joule heating QJ. In the case of accretion discs also the potential energy EP plays
an important role.

strongly depend on various parameters and boundary conditions. Some of the
magnetic energy can be in the form of large-scale magnetic fields, and their
dynamics is probably best understood in the framework of mean-field theory.

2.2.1 Mean-Field Theory

As there is a clear separation of scales between the observed magnetic fields
and the turbulent motions they can be treated as own entities, while any interac-
tion between them might be determining for the dynamo process. In mean-field
theory (Steenbeck et al., 1966; Krause and Rädler, 1971; Krause and Rädler,
1980) only the evolution of the mean quantities is considered, where every
field BBB is split into its mean BBB and fluctuating part bbb like

BBB = BBB+bbb. (2.6)
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How the mean BBB is computed is not relevant, as long as it satisfies the Reynolds
rules:

BBB1 +BBB2 = BBB1 +BBB2, BBB = BBB, bbb = 0 (2.7)

BBB1BBB2 = BBB1BBB2, BBBbbb = 0, ∂µBBB = ∂µBBB, µ = 0,1,2,3. (2.8)

Commonly, averages over one or two spatial coordinates are taken for the mean
fields, e.g.

BBB(z, t) =
∫

BBB(xxx, t) dx dy. (2.9)

What happens on scales of the turbulent motions which are not resolved, has
to be modeled in a way which strongly depends on the problem. Transport
coefficients then incorporate any effects coming from the small-scale fields and
affect the mean fields. They directly appear in the evolution equations for the
large-scale fields. Any back reaction from the large to the small scales does
not need to be excluded. In modern mean-field models such back reactions
are modeled by providing evolution equations for the transport coefficients
together with the mean-fields.

The mean-field form of the induction equation (2.1) is easily obtained by
applying the Reynolds rules:

∂tBBB = η∇
2BBB+∇∇∇× (UUU×BBB+E), ∇∇∇ ·BBB = 0, (2.10)

with the electromotive force (EMF) E = uuu×bbb.
In order to dispose of fluctuating quantities in the EMF, it has to be mod-

eled via the mean-fields. Which mean-field quantities are used depends on the
relevant physics of the system, e.g. whether it is a rotating system. The from
of E also depends on whether or not the system is isotropic. Probably the
simplest form is by making E dependent only on the mean magnetic field BBB
(Steenbeck et al., 1966):

Ei(xxx, t) = E
(0)
i (xxx, t)+

∫ ∫
Ki j(xxx,xxx′, t, t ′)B j(xxx− xxx′, t− t ′) d3x′ dt ′, (2.11)

with the Einstein summation convention for double indices and the integration
kernel Ki j(xxx,xxx′, t, t ′). A Taylor expansion for BBB simplifies its form to

Ei = αi jB j +bi jk
∂B j

∂xk
+ . . . , (2.12)

where it is also assumed that BBB affects the EMF only instantaneously and lo-
cally. The coefficients are then integrals of the kernel:

αi j =
∫ ∫

Ki j(xxx,xxx′, t, t ′) d3x′ dt ′, (2.13)

bi jk =
∫ ∫

Ki j(xxx,xxx′, t, t ′)(x′k− xk) d3x′ dt ′. (2.14)
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For homogeneous and isotropic systems the EMF attains the often used form

E = αBBB−ηt∇∇∇×BBB, (2.15)

αi j = αδi j, (2.16)

bi jk = ηtεi jk, (2.17)

with the turbulent magnetic diffusivity ηt ≈ urms/(3kf), where urms is the root
mean square of the velocity and kf the inverse length scale of the turbulence.
Combining equation (2.15) with the mean-field induction equation (2.10) leads
to the induction equation for the mean magnetic field

∂BBB
∂ t

= ∇∇∇× (αBBB)+ηT∇
2BBB, (2.18)

where ηT = η +ηt is the total magnetic diffusivity, which has been assumed
to be constant. It is readily clear that, given an initial seed magnetic field of
any strength, the presence of α will enhance BBB, which leads to its exponential
growth. A back reaction of BBB on α is needed in order to stop the growth and
make the field saturate. The form of α and its characteristics during saturation
is discussed in section 2.2.2.

2.2.2 The α Effect

Modeling the form of α varies depending on the physical system. One of the
simplest forms reads (Moffatt, 1978; Krause and Rädler, 1980)

α = αK =−τωωω ·uuu/3, (2.19)

with the small-scale vorticity ωωω = ∇∇∇× uuu and the correlation time of the tur-
bulence τ ≈ 1/(urmskf). This implies that small-scale helical motions uuu are
responsible for the exponential growth of the large-scale magnetic field BBB.

Without any quenching mechanism BBB would grow indefinitely. A back
reaction of BBB on α when the system is close to equipartition is necessary. The
algebraic quenching forms

α = αK(1−BBB
2
/B2

eq), (BBB
2� B2

eq), (2.20)

with the equipartition field strength Beq and

α =
αK

1+BBB
2
/B2

eq

(2.21)

were introduced heuristically by Roberts and Soward (1975) and Ivanova and
Ruzmaikin (1977), respectively. The dynamics of magnetized media strongly
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depends on the magnetic Reynolds number

ReM =
urms

ηkf
. (2.22)

Based on simulations, Vaĭnshteĭn and Cattaneo (1992) discovered the impor-
tance of the magnetic Reynolds number for the quenching. The resulting
quenching is similar to equation (2.21)

α =
αK

1+ReMBBB
2
/B2

eq

(2.23)

and is called catastrophic α quenching, because for the Sun ReM ≈ 109 and
galaxies ReM≈ 1015, so α would be too small to be meaningful for even |BBB|�
Beq.

The construction of α provided by equation (2.19) did not take into account
the conservation of magnetic helicity, which is true for astrophysical systems
and dynamically relevant times. Under this constraint the total α (Pouquet
et al., 1976) is

α = αK +αM =−τωωω ·uuu/3+ τ jjj ·bbb/(3ρ). (2.24)

So it is composed of the kinetic αK and magnetic αM. The presence of cur-
rent helicity αM will reduce α and provide an efficient quenching mechanism,
which proves to be also dependent on the magnetic Reynolds number ReM (see
section 2.2.4). As αM grows it will balance αK and the dynamo saturates. For
a system in a steady state equation (2.23) can be regained if the mean current
density vanishes (Brandenburg and Subramanian, 2005).

2.2.3 α2 Dynamo

In absence of any mean velocity field UUU the growth of the dynamo is purely
powered by the α effect. The induction equation for the mean magnetic field
has the simple form of equation (2.18). As long as the mean magnetic field is
so small that the Lorentz force does not provide any significant back reaction
on the fluid, equation (2.18) can be linearized. One can search for solutions of
the form

BBB(t) = ℜ
(
B̂BB(k)exp(ikkk · xxx+λ t)

)
, (2.25)

which results in the eigenvalue problem

λ B̂BB(k) =

 −ηTk2 −iαkz iαky

iαkz −ηTk2 −iαkx

−iαky iαkx −ηTk2

 B̂BB(k), (2.26)
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Figure 2.2: Dispersion relation for the mean-field α2 dynamo, with the growth
rate λ in dependence of the wave number. The critical wave number for dynamo
action is kcrit = α/ηT (Brandenburg and Subramanian, 2005).

with the eigenvectors B̂BB(k) and growth rates (roots) λ (Moffatt, 1978)

λ0 =−ηTk2, λ± =−ηTk2±|αk|. (2.27)

Depending on the value of α different modes get more or less strongly excited.
The strongest excited mode is for kmax =±α/(2ηT) (Fig. 2.2).

Injection of small-scale kinetic helicity leads to the creation of helical
small-scale magnetic fields. Since the total magnetic helicity has to be con-
served, a helical large-scale field arises with opposite helicity. As time evolves,
the scale of the mean field becomes larger (Frisch et al., 1975; Léorat et al.,
1975) until it reaches the size of the system. At the end of the saturation the
magnetic energy spectrum shows two characteristic humps, one at the forc-
ing scale, i.e. the scale of the turbulent motion, and another at the scale of the
system (Brandenburg, 2001).

2.2.4 Magnetic Helicity Conservation

Magnetic helicity conservation is a crucial aspect for the saturation behavior of
the large-scale magnetic field in dynamos. Astrophysically relevant cases for
which helicity is conserved are closed systems and systems in which fluxes of
helicity are so small that they are irrelevant on the time scales of interest. The
presence of magnetic helicity not only slows down the saturation of the mean
magnetic field, but also determines its saturation amplitude.

For a closed system the evolution equation of the mean magnetic helicity
is

d
dt

H ′M =
d
dt
〈AAA ·BBB〉=−2η〈JJJ ·BBB〉, (2.28)
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where 〈.〉 denote volume averages. In the steady state H ′M does not change in
time. Splitting the field in mean and fluctuating parts results in the steady state
condition

〈JJJ ·BBB〉=−〈 jjj ·bbb〉. (2.29)

For a helically driven system the magnetic field and current density are par-
tially helical:

∇∇∇×BBB =±εmkmBBB, ∇∇∇×bbb =∓εfkfbbb, (2.30)

with the wave numbers of the small and large scales, km and kf, and the frac-
tional helicities εm and εf. The different signs in BBB and bbb come from total
current helicity conservation Eq. (2.29), which causes the helically driven dy-
namo to create helicities of opposite sign in the large and small scales. From
equation (2.30) we obtain

〈JJJ ·BBB〉=±εmkm〈BBB
2〉, 〈 jjj ·bbb〉=∓εfkf〈bbb2〉. (2.31)

Hence in the steady state we have

〈BBB2〉= εmkf

εfkm
〈bbb2〉. (2.32)

Or for the fully helical case, i.e. εm = εf = 1:

〈BBB2〉= kf

km
〈bbb2〉. (2.33)

As the separation of scales kf/km increases, the saturation strength of the
mean magnetic field increases with respect to the small-scale field. The con-
servation of magnetic helicity slows down the saturation of the mean magnetic
field. The time which is needed to reach this state is dictated by the magnetic
resistivity. Close to saturation the small- and large-scale current helicities can-
cel (see equation (2.28)). The current helicities can be expressed in terms of
the magnetic helicity

〈JJJ ·BBB〉 = k2
m〈AAA ·BBB〉, (2.34)

〈 jjj ·bbb〉 = k2
f 〈aaa ·bbb〉. (2.35)

The small-scale magnetic field saturates with the end of the kinematic phase.
This means that 〈 jjj · bbb〉 is approximately constant, but 〈AAA ·BBB〉 is not, so one
neglects the time derivative of the small-scale magnetic helicity in equation
(2.28), which for the steady state means

d
dt

H ′M ≈
d
dt
〈AAA ·BBB〉=−2ηk2

m〈AAA ·BBB〉−2ηk2
f 〈aaa ·bbb〉, (2.36)
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Figure 2.3: Time evolution of the mean magnetic energy 〈BBB2〉 and the energy
in the small-scale fields 〈bbb2〉 for an α2 dynamo. The small-scale field grows
exponentially and saturates within dynamical times. The large-scale field grows
exponentially as well, after which its growth is dominated by the magnetic resis-
tivity, which means a long resistive saturation phase (Brandenburg and Dobler,
2002).

which has the solution

〈AAA ·BBB〉(t) = 〈aaa ·bbb〉(t)
k2

f
k2

m

(
1− e−2ηk2

m(t−tsat)
)
. (2.37)

As long as the dynamical time scale is much shorter than the resistive time
scale, which for physically relevant problems is mostly the case, the small-
scale magnetic helicity 〈aaa · bbb〉 can be considered time independent close to
saturation. For the mean magnetic field this means

〈BBB2〉(t) = 〈bbb2〉 εfkf

εmkm

(
1− e−2ηk2

m(t−tsat)
)
. (2.38)

The saturation time of the mean magnetic field, therefore, depends on the mag-
netic resistivity η (Fig. 2.3) as

τ = (2ηk2
m)
−1. (2.39)

Astrophysical systems have such low values for η that τ exceeds the age of
the object or even the age of the Universe. The most promising way to reduce
the saturation time is by allowing for magnetic helicity fluxes (Blackman and
Field, 2000; Kleeorin et al., 2000) as they are discussed in Paper II.
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2.3 Gauge Freedom for Magnetic Helicity

Magnetic helicity is defined with the magnetic vector potential AAA. For any
potential there exists the freedom of choosing a gauge. The magnetic field BBB
in terms of its vector potential AAA is BBB = ∇∇∇×AAA. Adding the gradient of a scalar
field φ to AAA does not change BBB:

BBB′ = ∇∇∇× (AAA+∇∇∇φ) = ∇∇∇×AAA = BBB, (2.40)

since ∇∇∇×∇∇∇φ = 0. Commonly used gauges include the Coulomb gauge, where
∇∇∇ ·AAA = 0, and the resistive gauge where the induction equation for AAA reads

∂AAA
∂ t

=UUU×BBB+η∇∇∇
2AAA. (2.41)

With the gauge freedom magnetic helicity density can change as well:

AAA ·BBB→ AAA ·BBB+∇∇∇φ ·BBB. (2.42)

Total magnetic helicity is in general gauge dependent too:∫
AAA ·BBB dV →

∫
AAA′ ·BBB dV +

∫
∇∇∇φ ·BBB dV (2.43)

=
∫

AAA′ ·BBB dV +
∫

F
φBBB · d fff , (2.44)

where at the last step Gauss’ theorem was used to transform the volume inte-
gral into a surface integral with surface normal fff . As long as the component
of BBB normal to the bounding surface vanishes the magnetic helicity is gauge
independent. Alternatively, periodic boundary conditions have the same result.
Fluxes of magnetic helicity are gauge dependent too. From equation (2.1) the
magnetic helicity flux can be derived as

FFFh = AAA× (UUU×BBB)+η∇∇∇φ × JJJ. (2.45)

A gauge-invariant definition of the magnetic helicity is the relative mag-
netic helicity (Berger and Field, 1984). It is relative to a reference field BBBref =
∇∇∇×AAAref:

Hrel =
∫
(AAA+AAAref) · (BBB−BBBref) dV, (2.46)

with BBBref = ∇∇∇φ and the boundary condition n̂ · BBBref = n̂ · BBB, where n̂ is the
normal vector at the surface.

Physically the gauge choice has no effect on the dynamics. On the other
hand it will be shown that the presence of magnetic helicity fluxes does af-
fect the evolution of the dynamo. In Paper III and Paper IV this apparent
contradiction will be addressed.
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2.4 Magnetic Field Relaxation and Stability

2.4.1 Relaxed States

Freely decaying magnetic fields try to develop a state of minimal magnetic
energy. The evolution is, however, restricted. The presence of conserved
quantities, most notably the magnetic helicity, constitute severe constraints.
Finding the minimum of the magnetic energy under the constraint of constant
magnetic helicity is a simple variational problem first investigated by Woltjer
(1958). The resulting magnetic field obeys

∇∇∇×BBB = αBBB, (2.47)

with constant α , thus constitutes a linear force-free field.
A more restrictive constraint was used by Taylor (1974), where the mag-

netic helicity along each field line has to be conserved. For an ergodic field,
where one field line fills the whole space, the two restrictions are equivalent.
For laboratory fields confined in tori, however, ergodic field lines may not nec-
essarily exist. Instead one can think of a finite or infinite set of distinct field
lines. In that case the minimal energy state is a non-linear force-free state

∇∇∇×BBB = λ (a,b)BBB, (2.48)

with λ (a,b) varying between field lines, which are parameterized by a and b.

2.4.2 Frozen-in Magnetic Fields

For astrophysical objects magnetic resistivity is small enough, such that on
dynamically relevant time scales the magnetic field can be considered frozen
into the fluid (Batchelor, 1950; Priest and Forbes, 2000). Any magnetic field
is transported with the fluid. This implies that the magnetic flux through any
surface C does not change, since both fluid and magnetic field move jointly
(Fig. 2.4). Flux freezing is a concept used in both, the flux transport dynamos
(Choudhuri et al., 1995; Charbonneau et al., 1999) and the enhancements of
magnetic energy via the stretch, twist and fold mechanism (Vaĭnshteĭn and
Zel’dovich, 1972; Priest and Forbes, 2000).

2.4.3 Realizability Condition

The presence of magnetic helicity has important implications for the stability
of the field. For a non-zero helicity spectrum HM(k), the lowest value of the
spectral magnetic energy EM(k) that can be attained is given by the realizability
condition (Arnold, 1974; Moffatt, 1978)

EM(k)≥ k|HM(k)|/2. (2.49)
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Figure 2.4: As the fluid evolves the surface C1 gets distorted into the shape C2.
Because the magnetic field is frozen in for low magnetic resistivity the magnetic
flux through surface C2 is unchanged (Priest and Forbes, 2000, p. 24).

Together with the spectral magnetic energy EM(k) also the total magnetic en-
ergy is bound by

EM ≥
∫

k|HM(k)|/2 dk. (2.50)

In that context the minimum value for the correlation length can be defined as
(Tevzadze et al., 2012)

lmin
corr = |HM|/(2EM). (2.51)

2.4.4 Topological Interpretation

A colorful interpretation of magnetic helicity is the mutual linkage of magnetic
field lines. For instance two magnetic field lines can be linked into each other
once (Fig. 1.3) or several times. The number of mutual linkage, i.e. the number
the tubes wind around each other, is directly proportional to the total magnetic
helicity (Moffatt, 1969; Moffatt and Ricca, 1992)

HM =
∫

V
AAA ·BBB dV = 2nφ1φ2, (2.52)

with the magnetic fluxes φ1 and φ2 through the magnetic field lines and the
number of mutual linkage n. The picture also works for flux tubes with finite
width but without internal twist or self-linking.

With this picture of magnetic helicity the realizability condition can be in-
terpreted as the reluctance of the field to brake its field lines and change its
topology. Hence the magnetic field provides a topological invariant, which not
only qualifies the configuration (helical/non-helical), but even gives a quanti-
tative measure for the linking of the field.
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Figure 2.5: Magnetic field lines for the configuration used by Yeates et al. (2010)
corresponding to the color mapping in Fig. 2.7.

2.4.5 Topology Beyond Magnetic Helicity

Magnetic helicity is not the only topological quantity which is conserved for
low magnetic resistivity. Invariants of order three and four in the magnetic field
were suggested by Ruzmaikin and Akhmetiev (1994), which are non-zero for
field configurations without magnetic helicity, which makes them intriguing
quantities to test decay properties with. The practical usage is, however, lim-
ited since they are defined for separate flux tubes and have not been expressed
for arbitrary fields, like the linking number for magnetic helicity.

A more practical topological invariant, which is conserved for low mag-
netic diffusivity, is the fixed points index (see, e.g., Yeates et al. (2010)). It is
defined for fields with a preferential direction, like toroidal tokamak fields or
fields with a positive component in the z-direction (Fig. 2.5).

For such fields a mapping (x,y)→ FFF(x,y) can be defined between two
surfaces, where the field lines start and end. Fixed points are those values for
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Figure 2.6: Neighborhood of fixed points with different color mappings. The
left fixed point has positive sign, while the right has negative sign.

(x,y) for which the mapping is onto itself, i.e. FFF(x,y) = (x,y). They are signed
and can be either +1 or−1. For a continuous mapping there is a neighborhood
for each fixed point in which it is the only fixed point. Further, there exist
points in this neighborhood for which the following inequalities hold:

Fx > x, Fy > y, (2.53)

Fx < x, Fy > y, (2.54)

Fx < x, Fy < y, (2.55)

Fx > x, Fy < y. (2.56)

Assigning a different color for each case gives the field line mapping of
the field. The sign results from the sequence of the colors (Fig. 2.6). The sum
over all fixed points gives the fixed point index, which is a conserved quantity
in low resistivity MHD (Brown, 1971):

T = ∑
i

ti, (2.57)

with the sign of the ith fixed point ti.
Even for simple magnetic fields (Fig. 2.5, right panel) the color mapping

can be complex (Fig. 2.7, left panel). The complexity comes about in a simi-
lar fashion as in the two-dimensional stirring in fluids (Boyland et al., 2000),
where stirring corresponds to braiding of field lines. The number of initial fixed
points for the configuration in Fig. 2.5 (right panel) is 26. The fixed points in-
dex, however, is 2. After resistive time evolution fixed points of opposite signs
merge, while the fixed point index is conserved (Fig. 2.7, right panel).

The conservation of the fixed point index imposes an additional constraint
in magnetic field relaxation. In practice it turns out that the field does not reach
the Taylor state and retains higher energies.
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Figure 2.7: Color mapping for the configuration illustrated in Fig. 2.5 at initial
time (left) and after some time evolution (right) (Yeates et al., 2010).

2.5 Observing Helical Magnetic Fields

The gauge dependence of magnetic helicity density makes it difficult to mea-
sure it directly. As a proxy the current helicity JJJ ·BBB is often used (Yeates et al.,
2008). Its measurement is still not easy, since only recently all three compo-
nents of BBB could be measured at the solar surface. Prior to that, force-free
assumptions were used for field line extrapolation (Gibson et al., 2002).

For helical large-scale structures no direct measurements of BBB are neces-
sary to infer the helical nature of magnetic fields on, e.g., the Sun’s surface.
Emerging coronal loops often carry hot plasma with them, which is trapped
in the magnetic flux tubes. The plasma can only move along the field lines
due to strong Lorentz forces (Fig. 2.8). Often those loops show a pig tail like
shape, which suggests large-scale magnetic helicity. Force-free extrapolations
support the observation of twisted magnetic loops (Fig. 2.9). The force free
assumption is, however, only valid at heights of 400 km and above the photo-
sphere (Metcalf et al., 1995), which casts some doubt on such extrapolations,
although they reproduce the loops observed in X-ray observations.

Helical structures have implications for the dynamics of the Sun’s plasma.
It has been shown that N- and S-shaped helical regions are more likely to result
in coronal mass ejections (Canfield et al., 1999). The Sun, therefore, possibly
sheds magnetic helicity, which has far reaching implications for the dynamo
mechanism.
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Figure 2.8: SOHO observations of coronal mass ejections. The image to the
right was taken in May 7 2010.

Figure 2.9: Force-free extrapolation of the Sun’s surface magnetic field from
data taken August 21 1999 (Gibson et al., 2002).
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3. Magnetic Helicity Conser-
vation and Fluxes in Turbulent
Dynamos

Do you include turbulence?

popular saying

3.1 Magnetic Helicity Conservation in α2 Dynamos

For the helically driven α2 dynamo the growth rate of the different modes de-
pends on the forcing α and the wave number k as (Blackman and Brandenburg,
2002)

λ = αk−ηTk2 = (Cα −1)ηTk2, (3.1)

where Cα = αK/(ηTk) is the dynamo number for the α2 dynamo. The onset
value for dynamo action is obviously at Cα = 1. In the limit of high conductiv-
ity (Moffatt, 1978; Krause and Rädler, 1980) we have αK =−(τ/3)〈ωωω ·uuu〉 and
ηt = (τ/3)〈uuu2〉. This allows us to reformulate the expression for the dynamo
coefficient Cα such that it reads

Cα =−〈ω
ωω ·uuu〉

k〈uuu2〉ι
, (3.2)

with the correction factor ι = ηT/ηt. With the normalized helicity for the
small-scale field εf = 〈ωωω ·uuu〉/(kf〈uuu2〉) we can write

Cα =−εfkf

kmι
. (3.3)

The normalized kinetic helicity has to be contrasted with the relative helicity,
also called fractional helicity, which is defined in a similar fashion as

ε̃f =
〈ωωω ·uuu〉

ωrmsurms
, (3.4)

with the root mean square values of the vorticity ωrms =
√
〈ωωω2〉 and velocity

urms =
√
〈uuu2〉. From equation (3.3) one sees that the critical value of the nor-

malized helicity for dynamo action scales like εf ∝ (kf/km)
−1 with the scale

separation ratio kf/km:

ε
crit
f = ιεm

(
kf

km

)−1

, (3.5)
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Figure 3.1: Critical values for the fractional helicity fh in dependence of the scale
separation value together with a power law fit (dashed line) and the analytical
prediction from mean-field theory given by equation (3.5) (dotted line) (Pietarila
Graham et al., 2012).

with the normalized kinetic helicity of the large-scale field

εm =
〈JJJ ·BBB〉
km〈BBB

2〉
. (3.6)

Conservation of magnetic helicity still allows for an increase of magnetic
helicity at small and large scale if they have opposite signs (Seehafer, 1996; Ji,
1999). In its continuous creation the large scales become even larger (Frisch
et al., 1975) until the dynamo saturates with strong magnetic fields in scales of
the system size (Blackman and Brandenburg, 2002; Brandenburg et al., 2002).
The saturation mean magnetic energy Bsat in dependence of the dynamo num-
ber Cα for a closed or periodic system is easily obtained from mean-field theory
(Blackman and Brandenburg, 2002):

B2
sat/B2

eq = (|Cα |−1) ι . (3.7)

Contrary to this established theory a different scaling was recently found
by Pietarila Graham et al. (2012), who predicted a dependence of the form

ε
crit
f ∝ (kf/km)

−3 (3.8)

for the critical normalized helicity (Fig. 3.1). The injection of kinetic helicity
causes the magnetic field to be helical with magnetic helicity in the small and
large scales of opposite sign. As long as the system is closed or periodic, as it is
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the case in (Pietarila Graham et al., 2012), the build-up of small-scale magnetic
helicity reduces the α effect and the growth of the large-scale magnetic field.
In practice this means that after a short exponential growth the mean magnetic
field continues growing slowly and saturates on a resistive time scale, which
can be large compared to the dynamical time scales for astrophysical systems.

The discrepancy in Pietarila Graham et al. (2012) with the semi analytical
predictions from equation (3.3) comes from the method used in determining
Ccrit

α . As they only looked at the growth rate of the largest mode at k = 1
shortly after the exponential phase at a small fraction of the resistive times, the
field will be contaminated by small-scale contributions. The large-scale field
becomes dominant at later times when nonlinear effects suppress the small-
scale field.

To shed light on this issue, we investigate in Paper I the saturation charac-
teristics of a large-scale dynamo in the non-linear regime for a helically driven
dynamo in a periodic cube shaped domain, similar to Pietarila Graham et al.
(2012). The equations to be solved for this problem are the usual resistive,
viscous MHD equations for an isothermal medium:

∂

∂ t
AAA = UUU×BBB−ηJJJ, (3.9)

D
Dt

UUU = −c2
s ∇∇∇ lnρ +

1
ρ

JJJ×BBB+FFFvisc + fff , (3.10)

D
Dt

lnρ = −∇∇∇ ·UUU , (3.11)

where the forcing function fff is delta correlated in time and provides the energy
input. The applied magnetic Reynolds numbers are around 6 in a first set of
cases with scale separation values of up to 80. In the latter part we use ReM
values between 80 and 320 at a scale separation value of kf/km = 5. The
magnetic Prandtl number PrM = η/ν is unity if nothing else is stated.

As kinetic energy is injected the magnetic field in both, small- and large-
scales grows exponentially during the kinematic phase. Since the system is
isotropic, either the xy, xz or yz averaged magnetic field will be dominant
(Fig. 3.2), while the other modes die out. Helicity conservation causes the
field to saturate slowly on resistive times, which means the magnetic energy M
behaves like (Brandenburg, 2001)

M(t) = M0−M1e−t/τ (3.12)

in the resistive phase, where M0 is the saturation energy and M1 the initial
energy of the simulation run. The resistive time for saturation is given as

τ = (2ηk2
m)
−1. (3.13)
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Figure 3.2: Normalized mean magnetic energies in resistive times. The strongest
growing mode is the xz average 〈BBB〉xz (dashed line). The xy (solid) and yz (dash-
dotted) averages die out. The dotted line represents 〈BBB2〉+τd〈BBB2〉/dt, which was
used to compute the saturation magnetic field strength without letting the system
saturate.

To speed up the calculation of the saturated magnetic field strength a short cut
is taken, where the saturation magnetic energy is computed as the time average
of

M̃0(t) = 〈BBB
2〉+ τd〈BBB2〉/dt, (3.14)

which comes from taking the time derivative of equation (3.12).
For different scale separation ratios and normalized magnetic helicities the

mean saturation magnetic energy is determined (Fig. 3.3). As predicted by
equation (3.7) the saturation magnetic energy behaves linearly with the dy-
namo number Cα . Further, the critical value for large-scale dynamo action to
start (Ccrit

α = 1) is approximately reproduced. For the critical value we find
Ccrit

α ≈ 1.2, which results in a critical value for the normalized helicity

ε
crit
f ≈ 1.2ι(kf/km)

−1 = 1.7(kf/km)
−1, (3.15)

where we use an averaged magnetic Reynolds number that leads to an averaged
ι ≈ 1.41.

For fixed scale separation ratio, equation (3.7) together with equation (3.3)
predict a linear dependence of the saturation energy on the normalized helicity.
We plot the normalized magnetic energy for various scale separation ratios in
dependence of εf and make linear fits (Fig. 3.4), from which we can extrapolate
the critical values εcrit

f ≈ 1.7(kf/km)
−1. The extrapolated values for εcrit

f agree
well with the theory (Fig. 3.5) and the values extracted from Fig. 3.3.

The theoretical predictions for the closed α2 dynamo are verified in direct
numerical simulations. In order to refute the findings by Pietarila Graham
et al. (2012), their parameters have to be accommodated in our investigations.
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Figure 3.3: Normalized saturation energy of the mean magnetic field in depen-
dence of Cα for various scale separation values. The dashed line is the theoretical
prediction given by equation (3.7).

Therefore, high magnetic Reynolds numbers between 80 and 320 are used
with magnetic Prandtl numbers 1 and 100. In this case the scale separation
ratio is fixed to kf/km = 5. The dependence of the normalized magnetic energy
(Fig. 3.6, for PrM = 1) is shown to behave similarly to the case with ReM =
6. For higher magnetic Prandtl numbers, however, the slope is higher. This
behavior can be explained by different values for the equipartition strength Beq,
which is supposed to become smaller for increasing PrM, due to the shifted
dissipation range. Any different behavior at magnetic Reynolds numbers of
1500, as used by Pietarila Graham et al. (2012), is not to be expected. As a
consequence we can refute their findings.

In summary, the theoretical predictions coming from mean-field consider-
ation (equations (3.5) and (3.7)) are well confirmed for the closed α2 dynamo,
which constitutes one of the simplest possible dynamo setups and is often used
as reference. The findings by Pietarila Graham et al. (2012) are at variance,
most likely because their large-scale dynamo was contaminated by the small-
scale dynamo. The present investigation about the non-linear behavior of the
large-scale dynamo provides an important confirmation of the general theory.

3.2 Magnetic Helicity Fluxes

The injection of small-scale magnetic helicity causes the small- and large-scale
magnetic helicity to grow with opposite sign. The presence of small-scale
magnetic helicity hf = aaa ·bbb causes the total α effect to diminish (Gruzinov and
Diamond, 1994), such that the growth of the large-scale magnetic field gets
quenched (see Paper I). Fluxes of this quantity could alleviate this quenching
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Figure 3.4: Normalized saturation energy of the mean magnetic field in depen-
dence of εf for various scale separation values. Equation (3.5) predicts a linear
dependence of 〈BBB2〉/B2

eq on εf, which is shown in the linear fits (lines).

by reducing its value. There are various ways of creating such fluxes (Kleeorin
and Rogachevskii, 1999; Vishniac and Cho, 2001; Subramanian and Branden-
burg, 2004). Not all of them help in alleviating catastrophic α quenching. In
Paper II we discuss the most promising type of flux (Blackman and Field,
2000).

Quenching of the α effect becomes more pronounced as the magnetic
Reynolds number increases such that for physically relevant values of ReM any
large-scale dynamo becomes impossible to drive. That is why it is called catas-
trophic α quenching. To address the question whether magnetic helicity fluxes
have any significant effect on the alleviation of the α quenching mechanism
high magnetic Reynolds numbers are required of e.g. 105. Such simulations
require computational resources, which are currently not available. To circum-
vent this shortcoming we employ the mean-field theory in one dimension and
employ magnetic Reynolds numbers in the range of ReM = 2 to ReM = 105.
The mean quantities are spatial averages in x- and y-direction. Any change of
variables only occurs in the z-direction, which can be physically interpreted as
the vertical distance from the galactic mid-plane or the vertical distance from
the equator of the Sun. The domain is limited to the range 0 < z < H. Because
we expect the magnetic field to develop either a symmetric or antisymmetric
mode (Krause and Rädler, 1980) the boundaries at z = 0 are chosen accord-
ingly such that the field is symmetric or antisymmetric about the mid-plane
depending on the type of flux. In physical terms, the x- and y-components can
be regarded as poloidal and toroidal components of the fields.

The driving, or energy input, comes from an imposed kinetic α effect,
which has a linearly increasing profile switching sign across the equator (Fig. 3.7,
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Figure 3.5: Minimal values for the normalized kinetic helicity for which large-
scale dynamo action occurs in dependence of the scale separation value.

upper panel):
αK = α0z/L, (3.16)

with the size of the domain L. The total α effect is the sum of the kinetic and
magnetic α effects. The latter is proportional to the current helicity and can
be well approximated by the magnetic helicity, since the developing field is
expected to be helical:

αM =
τ

3
jjj ·bbb/ρ ≈ τ

3
k2

f aaa ·bbb/ρ, (3.17)

with the turbulence correlation time τ , the small-scale current density jjj, mag-
netic field bbb and magnetic vector potential aaa and the average fluid density ρ .

The evolution equations for the magnetic helicity in the small and large
scales are

∂hm

∂ t
= 2E ·BBB−2ηJJJ ·BBB−∇∇∇ ·FFFm, (3.18)

∂hf

∂ t
= −2E ·BBB−2η jjj ·bbb−∇∇∇ ·FFF f, (3.19)

with the magnetic helicity fluxes for the small and large scales FFF f and FFFm given
as

FFFm = EEE×AAA, FFF f = eee×aaa, (3.20)

where EEE is the electric field. A term of the form E ·BBB in equations (3.18) and
(3.19) does not occur in the equation for the total magnetic helicity, because
this term is only a property of the mean-fields. It makes sure that magnetic
helicity is exchanged between the two scales. Equations (3.17) and (3.19)
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Figure 3.6: Normalized magnetic energy in the steady state in dependence of Cα

for various magnetic Reynolds numbers and magnetic Prandtl numbers together
with fits (dashed and solid line) and the theoretical prediction from equation (3.7)
(dotted line).

give rise to the evolution equation of αM, the dynamical quenching formula
(Kleeorin and Ruzmaikin, 1982), expressed as

∂αM

∂ t
=−2ηtk2

f

(
E ·BBB
B2

eq
+

αM

ReM

)
− ∂

∂ z
Fα , (3.21)

where Fα is the z-component of the flux for αM given as

Fα =
µ0ρηtk2

f
B2

eq
FFF

z
f . (3.22)

Apart from equation (3.21) we also solve the induction equation for the mean
magnetic field

∂tBBB = η∇∇∇
2BBB+∇∇∇× (UUU×BBB+E) (3.23)

and the EMF
E = αBBB−ηtJJJ. (3.24)

It should be pointed out that no momentum or continuity equation are solved,
which is chosen for simplicity and to screen off any other non-linear effects.

The form of the fluxes in equation (3.21) is chosen to be either of advective
or diffusive nature. For the advective fluxes we impose a mean velocity field,
which increases linearly with z (Fig. 3.7, lower panel) of the form UUU z =U0z/H,
with the scale height H, which is taken from the model used by Shukurov
et al. (2006). The motivation comes from observations of galactic outflows
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Figure 3.7: Profile of the kinetic α effect (upper panel) and the velocity profile
for the case of fluxes through wind (lower panel).

where the outflow speed increases approximately linearly with distance from
the galactic center (Shapiro and Field, 1976; Bregman, 1980). The wind drags
the magnetic field along with magnetic helicity, which is being shed at the open
boundaries. The form of open boundaries condition is Ax,z = Ay,z = Az = 0.
This is frequently called vertical field condition, which becomes clear when
writing it in terms of the magnetic field:

BBB = ∇∇∇×AAA =

 −Ay,z

Ax,z

0

 . (3.25)

For the diffusive fluxes there is no need for open boundaries, which is why
they are taken to be closed (perfect conductor), i.e. Ax = Ay = 0. Any fluxes
are supposed to occur through the equator and are of the form

Fα =−κα

∂αM

∂ z
, (3.26)

with a diffusion coefficient κα . Since the outer boundaries are closed, the only
place where diffusive fluxes can occur is at the equator.

The given setup is one of the most simple ones for which dynamo action
can be expected. Under the given conditions a mean magnetic field should
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Figure 3.8: x- and y-component of the mean magnetic field for the case of an
imposed wind (left panels) and no wind but diffusive fluxes through the equator
(right panel) in dependence of time and the distance from the equator.

Figure 3.9: Magnetic helicity fluxes of the small- (dashed line) and large-scale
fields (solid line) in dependence of the distance from the equator for the case
of open boundaries and advective fluxes (left panel) and closed boundaries and
diffusive fluxes (right panel).

develop after a time which is well below the resistive time. Indeed, a strong
large-scale magnetic field develops and in both cases it shows an oscillatory
behavior (Fig. 3.8).

Since the dynamo is working, it is now of interest to know what the effect
of the fluxes is, in particular with respect to the dynamical α quenching. The
advective fluxes efficiently transport small-scale magnetic helicity out of the
domain (Fig. 3.9, left panel). The rate of field transport is chosen low enough
not to transport too much magnetic energy out of the dynamo region, which
would destroy any amplification effect. It is strong enough to alleviate the
catastrophic α quenching and allow the dynamo to work even at high magnetic
Reynolds numbers (Fig. 3.10, left panel). Diffusive fluxes through the equator
(Fig. 3.9, right panel) allow to alleviate the catastrophic α quenching as well
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Figure 3.10: Mean magnetic field strength at saturation in dependence of the
magnetic Reynolds number ReM for the case with wind (left panel, solid line)
and with diffusive fluxes (right panel, solid line). The cases without any fluxes
are represented by dashed lines. Advective an diffusive fluxes efficiently alleviate
the catastrophic quenching. Without fluxes catastrophic quenching makes the
saturation field drop like Re−1/2

M .

(Fig. 3.10, right panel). For physical systems like the Sun this implies that as
long as it shuffles around magnetic helicity between both hemispheres, such
that the small-scale magnetic helicity diminishes, catastrophic α quenching
can be alleviated.

Contrary to the algebraic quenching formalisms, where a heuristic formula
is proposed for the decrease of α as the mean-field saturates, the dynamical
quenching formalism provides a more self-consistent approach. The allevia-
tion of the quenching comes not unexpectedly. As long as the advective wind
does not remove too much magnetic energy it merely sheds the magnetic helic-
ity and the α effect does not get quenched. This case is of physical relevance
for the galactic dynamo for which small-scale magnetic helicity can be shed
through the observed galactic winds. The diffusive fluxes are relevant for sys-
tems like our Sun where there exists a sign reversal for the kinetic helicity
across the equator. As consequence also the magnetic helicity switches signs
(Blackman and Brandenburg, 2003). Fluxes out of the Sun can be mediated
by coronal mass ejections, which occur at regions where the magnetic field is
helical. For example, Warnecke et al. (2011) found that in a spherical shell
dynamo, the flux through the surface from ejections is almost twice as large as
the flux through the equator.
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4. Gauge Dependencies

Take advantage of the ambiguity in the world.
Look at something and think what else it might be.

Roger von Oech

4.1 Magnetic Helicity Fluxes

The gauge dependence of magnetic helicity fluxes makes the findings in sec-
tion 3.2 worth revisiting. Since the alleviation of catastrophic α quenching
is a physical effect it should not depend on the gauge. By choosing different
gauges we investigate which the physically relevant quantities for the large-
scale dynamo are. Further, we now consider direct numerical simulations
where we can actually measure the diffusive helicity fluxes, which previously
were merely imposed, and determine their strength compared to resistive terms
and in dependence of the magnetic Reynolds number. The aim of Paper III is
to first reproduce such diffusive fluxes through the equator (mid-plane) of the
domain in direct numerical simulations. By varying the gauge it is observed
how that flux changes and how it can retain its physical significance.

Uncurling the induction equation for the magnetic field leaves the freedom
to choose a scalar field Ψ, which leaves the physics untouched. The induction
equation has then the form

∂AAA
∂ t

=UUU×BBB−ηJJJ−∇∇∇Ψ. (4.1)

Choosing the form of Ψ fixes the gauge. In the time evolution equation Ψ

appears only in the flux term like

FFF = EEE×AAA+ΨBBB. (4.2)

Here we consider three different gauges. For the Weyl gauge Ψ = 0. In the
resistive gauge the gauge field Ψ is expressed in terms of the magnetic vector
potential as Ψ = η∇∇∇ ·AAA, which adds a diffusion component to equation (4.1).
The pseudo-Lorentz gauge is equivalent to the Lorentz gauge, except that the
speed of light c is replaced by the isothermal speed of sound cs:

∂Ψ

∂ t
=−c2

s ∇∇∇ ·AAA. (4.3)
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Figure 4.1: Snapshots of the y component of the magnetic field at the domain’s
periphery for different times. The field reversal occurs at about two resistive
times. The time unit is τres = (urmsk2

m/(3kf))
−1.

The equations, which we solve are the same as for the periodic α2 dynamo
in section 3.1, given by equations (3.9)–(3.11), except that the induction equa-
tion is enhanced by the gradient of the gauge field Ψ. Similar to the setup
used in section 3.2 we impose a forcing function fff in the momentum equation,
which drives the dynamo. Here, fff is again a helical function, which gives rise
to turbulent helical motions. The equator, or mid-plane, of the system is de-
fined by the profile of the amplitude of fff , which is linearly increasing in z and
zero at the mid-plane (z = 0). This setup resembles somewhat the Sun where
kinetic helicity switches sign across the equator. All the boundaries are chosen
to be periodic. The domain is a cuboid with sizes Lx = Ly = Lz/2, such that
both halves are cubes of the same size.

Our setup is motivated by previous work by Mitra et al. (2010) in wedge-
shaped domains with helical forcing, which switched sign across the equator.
The resulting large-scale magnetic field showed oscillations and equatorward
migration. This kind of dynamo produces oscillating magnetic fields of oppo-
site sign in both hemispheres (Fig. 4.1), which is what is seen in Fig. 3.8 in the
prefect conductor case.

Unlike in the one-dimensional case, there is no other constraint at the equa-
tor, but the vanishing of fff . The previously imposed diffusive small-scale mag-
netic helicity fluxes should arise naturally in the three dimensional case. To
measure them we need to decompose the field into a small-scale and large-
scale part, as it is used in mean-field theory (§ 2.2.1). By fully expanding the
terms occurring in the evolution equation for the magnetic helicity for the small
and large scales

∂thm = 2E ·BBB−2ηJJJ ·BBB−∇∇∇ ·FFFH
m, (4.4)

∂thf = −2E ·BBB−2η jjj ·bbb−∇∇∇ ·FFFH
f , (4.5)

we can monitor each term of equation (4.5). We are interested in the Fickian
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diffusion term of the form
FFFH

f =−κf∇∇∇hf, (4.6)

with the diffusion coefficient κf. It should be noted that for the fluxes in equa-
tion (4.5) not only Fickian diffusion is possible, though the other options need
a large-scale velocity field (advective fluxes) or large-scale shear (Vishniac and
Cho, 2001). The gradient of the magnetic helicity density ∇∇∇hf/m, can be mea-
sured from the simulations.

Measuring the small-scale magnetic helicity fluxes FFFH
f through the equator

for the three different gauges at a specific time reveals some significant devia-
tion from each other (Fig. 4.2, upper panel). Instead of fluxes at a given time
instance, the physically relevant quantity is the flux at the statistically steady
state. For that we need to average over fluctuations which is denote as 〈.〉t .
Doing so leads to

〈∂thf〉t = 0, (4.7)

〈∇∇∇ ·FFFH
f 〉t =−2〈E ·BBB〉t −2〈ηJJJ ·BBB〉t . (4.8)

Since the RHS of equation (4.8) is gauge-invariant the LHS has to be so as
well. Hence FFFH

f is gauge-invariant for the statistically steady state. This is
reproduced in the lower panel of figure 4.2.

Comparing the terms of the helicity evolution equation of the small-scale
field in equation (4.5) (Fig. 4.3, upper panel) reveals that away from the bound-
aries the time-averaged terms 2E ·BBB and 2η jjj ·bbb balance very well. This im-
plies that the fluxes are small and the major part of the magnetic helicity van-
ishes resistively. This is true for the magnetic Reynolds number ReM = 68.
The reminder of the change in helicity comes through the fluxes (Fig. 4.3,
middle panel). The fluxes themselves can be well approximated via Fickian
diffusion fluxes, see figure 4.3 lower panel, where we compare the inferred
Fickian diffusion with the actual fluxes.

In the present investigation magnetic Reynolds numbers between 2 and 68
are used. In that range the fluxes do not show any clear tendency and can be
considered to be independent of ReM, while the terms 2E ·BBB and 2η jjj ·bbb scale
with ReM. For the fluxes to play any significant role during the dynamo process
they need to be comparable to the term 2E ·BBB. Before that no significant allevi-
ation of catastrophic α quenching can be observed (Fig. 4.4, upper panel). For
higher magnetic Reynolds numbers it is expected that diffusive fluxes increase
such that they become determining and α quenching gets alleviated. This hap-
pens for ReM at which κf∇

2aaa ·bbb≈ 2η jjj ·bbb. The magnetic Reynolds number for
which the terms become comparable is ReM≈ 4600 (see Paper III for details).
This result is based on linear extrapolations. Recent findings (Del Sordo et al.,
2012) have shown that this breaks down and that the diffusive flux divergence
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Figure 4.2: Small-scale magnetic helicity fluxes at a random time (upper panel)
and their time average (lower panel) for the three gauges. The time averaged
quantities are clearly gauge independent.

becomes approximately independent of ReM for ReM ≈ 100 and above. For
even higher ReM the diffusive flux divergence approaches 2E ·BBB.

The gauge dependence of magnetic helicity fluxes is not physically rel-
evant in the statistically steady state, where fluxes are balanced by physical
quantities which do not depend on the gauge. Fickian diffusion gives a good
proxy for the total magnetic helicity flux. That shows that no other fluxes occur
in this particular setup. For low magnetic Reynolds numbers the segregation of
magnetic helicity in small- and large-scale parts, expressed in the 2E ·BBB term,
is not balanced by the fluxes. For high, and physically relevant ReM, we could
estimate that it will balance at ReM ≈ 4600. Simulations with such high ReM
have yet to be realized, but will shed more light on this topic (see Del Sordo
et al. (2012)).
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Figure 4.3: z profile of the terms of equation (4.5) (upper two panels) and a
comparison between the actual magnetic helicity fluxes and the Fickian diffusion
term from equation (4.6).

4.2 The Advecto-Resistive Gauge

In Paper IV properties of the magnetic helicity density and its fluxes are ex-
amined in a gauge belonging to the advective gauge-families. They are called
advective, because velocity shows up as a term which advects the magnetic
helicity (Hubbard and Brandenburg, 2011). This should be contrasted to e.g.
the resistive gauge, where no such term arises. Gauge-dependent magnetic he-
licity fluxes mean gauge dependent magnetic helicity transport. The way this
physically important quantity is transported in a turbulent environment is part
of the present discussion and contrasted with the transport of a passive scalar.
Numerical analysis for the advective gauge proves to lead to numerical insta-
bilities, which do not arise in other gauges. To still investigate this gauge a
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Figure 4.4: Dependence of the normalized magnetic energy in the small and
large scale with the magnetic Reynolds number (upper panel). Kinetic, cur-
rent and magnetic helicity, each appropriately normalized, in dependence of ReM
(lower panel).

universal approach is used for stabilizing the numerical experiment. For that
the numerically stable resistive gauge is used for the evolution, while simulta-
neously solving an evolution equation for the gauge field, which provides the
transformation.

In order to distinguish quantities in different gauges a superscript is used,
e.g. AAAr for the resistive gauge. The induction equation for the magnetic vector
potential in the popular resistive gauge reads

∂AAAr

∂ t
=UUU×BBB+η∇∇∇

2AAAr, (4.9)

where the magnetic resistivity η is here assumed to be constant in space. This
gauge is numerically stable and commonly used for simulations. Its stability
arises form the diffusion term, which reduces any artificial small-scale fluctu-
ations or discontinuities.
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In the advective gauge the induction equation reads
DAa

i
Dt

=−U j,iAa
j−ηJi. (4.10)

Its form is similar to the gauge, which will be mainly discussed here, which is
the advecto-resistive gauge with induction equation

DAar
i

Dt
=−U j,iAar

j +η∇∇∇
2Aar

i . (4.11)

Any transformation between two gauge-dependent fields can be achieved by
adding a gauge field. The transformation between the resistive and advecto-
resistive gauge reads

AAAar = AAAr +∇∇∇Λ
r:ar, (4.12)

with the gauge field Λr:ar. The superscript r:ar signifies the original and target
gauge. Looking at the induction equation (4.11) it becomes clear why this is
called advecto-resistive. It incorporates the advective nature of the advective
gauge, as well as the resistive term from the resistive gauge.

Solving the equations in the advecto-resistive gauge leads to numerical
instabilities. Therefore we have to make use of the stable resistive gauge and
apply the gauge transformation Eq. (4.12) for computing any gauge-dependent
quantities in the advecto-resistive gauge. The field Λr:ar will then have to obey
its own evolution equation (see appendix B in Paper IV for the derivation):

DΛr:ar

Dt
=−UUU ·AAAr +η∇∇∇

2
Λ

r:ar. (4.13)

Applying equation (4.11) together with equation (4.13) is referred to as the Λ

method. Although the advecto-resistive gauge is numerically unstable, we will
use it in some simulations and discuss where the instability comes from.

Magnetic helicity transport is crucial in dynamo theory (see Paper I, Pa-
per II, Paper III and references therein). In both, the resistive and advecto-
resistive gauge, the time evolution of the magnetic helicity density is deter-
mined by a resistive term and fluxes given as

∂ha

∂ t
= −2ηJJJ ·BBB−∇∇∇ ·FFFa, (4.14)

∂hr

∂ t
= −2ηJJJ ·BBB−∇∇∇ ·FFF r, (4.15)

∂har

∂ t
= −2ηJJJ ·BBB−∇∇∇ ·FFFar, (4.16)

with the magnetic helicity fluxes FFFa, FFF r and FFFar given by

FFFa = haUUU +ηJJJ×AAAa, (4.17)

FFF r = hrUUU− (UUU ·AAAr +η∇∇∇ ·AAAr)BBB+ηJJJ×AAAr, (4.18)

FFFar = harUUU−η(∇∇∇ ·AAAar)BBB+ηJJJ×AAAar. (4.19)
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Fluxes of magnetic helicity in all cases appear as advective fluxes (hUUU) and
resistive fluxes (ηJJJ×AAA). In the limit of ideal MHD and incompressible fluids,
i.e. η = 0 and ∇∇∇ ·UUU = 0, equation (4.14) is formally the same as the evolution
of a passive scalar:

Dha

Dt
= 0. (4.20)

The resistive gauge breaks this analogy, caused by fluxes in the direction of
the magnetic field of the form UUU ·AAArBBB, called turbulently diffusive fluxes. The
varying nature of the fluxes is one issue addressed in Paper IV.

The solved equations are the momentum equation (2.2) with the helical
forcing term fff , the continuity equation (2.3) and the induction equation whose
form depends on the method and gauge. The isotropic forcing fff provides the
energy input and ensures a dynamo is working. For the induction equation we
either choose the purely resistive gauge with equation (4.9), the pure advecto-
resistive gauge with equation (4.11) or the resistive gauge combined with the
evolution equation for the gauge field Λ (Eq. (4.13)), which is used to compute
magnetic helicity and its fluxes via the transformation

har = hr +∇∇∇Λ ·BBB. (4.21)

Additionally the evolution of a passive scalar C

DC
Dt

= κ∇
2C, (4.22)

is solved to compare its dynamics with the magnetic helicity, where κ is the
diffusivity of the passive scalar. The triply periodic boundary conditions im-
posed lead to a slow saturation of the mean magnetic field.

The helical forcing fff injects kinetic energy, which gets transformed into
magnetic energy via the α effect. Together with the magnetic field also the
magnetic helicity increases (Fig. 4.5). Choosing to directly solve the induction
equations in the advecto-resistive gauge causes the simulation to develop high
gradients of AAA, which should not affect BBB, but numerically they do. The values
grow to such high values that the simulation stops. Changing the simulation’s
resolution does not have any significant effect on the stability. It is an intrinsic
property of the gauge choice.

The instability arises from numerically taking the derivative of AAAar in equa-
tion (4.11). The expansion of the Laplacian operator shows that there is a
hidden curl operator applied on the gradient of the gauge field Λr:ar of the form

∇∇∇
2AAAar = ∇∇∇(∇∇∇ ·AAAar)−∇∇∇× (∇∇∇×AAAr +∇∇∇× (∇∇∇Λ

r:ar)) . (4.23)

The curl of the gradient should of course vanish. Numerically, however, it does
not, which leads to an artificial increase of magnetic field in the small scales.

44



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
�k 2

1 t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k
1
h
rm

s/
B

2 rm
s

� method
advecto-resistive gauge
fit

Figure 4.5: Normalized root mean square value of the magnetic helicity for the
direct advecto-resistive gauge (solid red line) and the Λ method (dashed line)
together with a fit (solid green line).

As consequence also the velocity increases due to the Lorentz force and the
simulation crashes. Using the Λ method, this issue is circumvented.

The total magnetic helicity in this setup with periodic boundaries is gauge-
invariant. Its density distribution, however, is not. Any difference between the
resistive and advecto-resistive gauges on density distribution, in the absence
of compressibility effects, can only be caused by the fluxes, which is reflected
in the root mean square of the magnetic helicity hrms. For the resistive gauge,
in contrast to the advecto-resistive gauge, additional flux terms appear in the
form of (UUU ·AAAr)BBB, which can diminish the transport. Consequently, magnetic
helicity will be transported less efficiently into scales of the turbulent eddies
for the resistive, than for the advecto-resistive gauge. This effect increases as
the fluid Reynolds number increases. Highly varying concentrations mean an
increase of the root mean square value hrms. Indeed, we can reproduce this
feature for the advecto-resistive gauge (Fig. 4.6, left panel) and provide an
approximate law for its quantitative behavior given by

k1har

B2
rms

= cRe−a
M (1+bRe2a

M ), (4.24)

with the fit parameters a and b. This effect is absent for the resistive gauge
(Fig. 4.6, right panel).

We compare the dynamics of the passive scalar with the magnetic helicity
density by evaluating their spectra (Fig. 4.7). In the kinematic regime, where
resistive terms are negligible, the magnetic helicity spectrum shows a drop at
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Figure 4.6: Time averaged values of the normalized magnetic helicity for the
kinematic phase in dependence of the magnetic Reynolds number for different
Prandtl numbers. The advecto-resistive case (left panel) clearly shows a different
behavior (model by equation (4.24)) from the resistive case (right panel), which
shows a power law dependence.

high wave numbers, which is different from the advecto-resistive gauge. This
drop comes from the more effective way of dissipating high spatial variations
of AAA, due to the resistive term in the induction equation. This term is of course
also present in the advecto-resistive gauge, but due to the efficient transport of
helicity into smaller scales, thanks to the advective term, high k components
get constantly supplied from low k. This comparison holds true even for the
non-linear regime. There it can be seen that hr develops a peak at the forcing
scale kf, which is to be expected from dynamo theory where the magnetic field
peaks there. Of similar reasons is the peak of the passive scalar. The turbulent
helical fluid motions trap it into this scale. Since there is no way of transporting
C other than advection it retains its peak at the forcing scale kf. Because for
the advecto-resistive case there is helicity transport into smaller scales the peak
vanishes and we see a flatter profile.

In summary we present an effective way to circumvent numerical instabil-
ities arising form the gauge choice, by solving for an evolution equation for
the gauge field Λ. In this context one may ask why not solve directly for the
physical quantities and applying an inverse curl operator when computing he-
licities. One reason is the divergence freeness of the magnetic field (∇∇∇ ·BBB = 0),
which is automatically assured when solving for the magnetic vector potential
AAA. It makes it also easier to compute the magnetic helicity for which no inverse
curling is needed. The differing fluxes result in some interesting consequences
for the helicity transport. In the advecto-resistive gauge the co-moving local
magnetic helicity density remains closer to its initial value, except at small
scales where it leads to a high k tail (Fig. 4.7). The resistive gauge makes the
helicity evolve akin a passive scalar. It should be remembered that the only
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Figure 4.7: Power spectra for the magnetic helicities hr, har and the passive scalar
C for kf/k1 = 5. The additional transport term causes har to have a flatter profile
and higher values at high k, in contrast to hr.

distinction in time evolution between AAAr and AAAar comes from the gauge trans-
formation Eq. (4.13). So the difference in the transport comes solely from the
gauge field Λ.
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5. Topology

The characters emerge from my rather twisted mind.
That’s another enjoyable part of the job making stuff up.

Jonathan Kellerman

Two field configurations are topologically different if they cannot be trans-
formed one into another with a homeomorphic transformation. In other words,
without the aid of magnetic reconnection they cannot be converted into each
other. This does not mean that reconnection necessarily changes the topology
of the field. Even with reconnection the topology can be conserved. Topology
is to be contrasted with geometry, which describes the shape of the field.

Field line topology particularly affects relaxation processes (Berger and
Field, 1984; Ricca, 2008). Since the field cannot be shaped in any arbitrary
way, relaxation does not occur totally freely. This aspect, with connection to
magnetic helicity, is discussed in Paper V. Magnetic helicity is, however, not
the only quantifier for field line topology (Yeates and Hornig, 2012). There
exists an infinite number of topological invariants. Whether those can play any
role in field line relaxation is discussed in Paper VI.

5.1 Flux Linking and Magnetic Helicity

The most common way of quantifying the topology of magnetic fields is the
magnetic helicity (Moffatt, 1969), which gives a measure for the mutual link-
age of magnetic fields lines. Two mutually liked magnetic flux rings, which
do not possess any internal twisting nor are self-interlinked, are an instructive
example for the analogy between linkage and magnetic helicity (see Fig. 1.3).
It could be shown by Moffatt (1969) that the number of mutual linkage n is
related to the total magnetic helicity HM as

HM =
∫

V
AAA ·BBB dV = 2nφ1φ2, (5.1)

where φi are the magnetic fluxes through the field lines

φi =
∫

Si

BBB ·dSSS. (5.2)

Conservation of magnetic helicity for low magnetic resistivity, as it is the case
for astrophysical applications, makes it an ideal invariant, even when magnetic
reconnection occurs (Taylor, 1974).
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Figure 5.1: Isosurfaces of the magnetic energy for the helical linked (left panel),
non-helical linked (central panel) and unlinked (right panel) magnetic field con-
figuration. The direction of the magnetic field is pictured by the arrows.

With this colorful picture of the magnetic helicity it is obvious that with its
presence any relaxation must be impeded, as long as the system is not breaking
up field lines. This characteristics is captured in the realizability condition
Eq. (2.49), which imposes a lower limit on the magnetic energy in presence of
magnetic helicity. Of course one can make up non-helical configurations with
linked flux tubes. If their topology was conserved that property would need
to be captured in a higher order invariant (Ruzmaikin and Akhmetiev, 1994;
Komendarczyk, 2010). The question then is what is more important: the actual
topology (linking) or the magnetic helicity. This is addressed in Paper V.

As a showcase, three field configurations are investigated (Fig. 5.1). Two
of them consist of three interlinked magnetic flux rings of finite width and no
internal twisting. The reversal of the direction of the field in one of the two
outer rings changes the magnetic helicity content from an appreciable value to
zero. As reference configuration to compare with, we use the same three rings
without any linkage (Fig. 5.1, right panel).

The three magnetic field configurations are used as initial conditions. The
cross section and magnetic flux in the tubes is the same for all three rings.
The radii of the outer rings are R0 and for the inner ring is R = 1.2R0. As
profile for the magnetic field strength a Gaussian is used, which has the advan-
tage of being a smooth function. The relaxation characteristics is investigated
within the framework of resistive MHD. For that we solve the usual MHD
equations (2.1)–(2.3) without any forcing fff . The initial values of velocity and
density are UUU0 = 0 and ρ0 = 1. The initial magnetic flux through the tubes
is Φ = 0.1csR2

0
√

µ0ρ0, which is small enough to ignore compression effects
and consider the density as constant. Magnetic resistivity η is set to a value as
small as is numerically admissible for the sake of magnetic helicity conserva-
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Figure 5.2: Magnetic stream lines after 4 Alfvénic times for the interlocked
triple-ring configurations. The non-helical case (left) loses most of its initial
structure, while the helical case (right) retains it and distinct tubes can still be
observed.

tion. To make sure magnetic helicity cannot escape, the domain boundaries are
assumed periodic. Time is measured in Alfvénic times, which in the present
cases is only a fraction of the resistive time:

TA =
√

µ0ρ0R3
0/Φ. (5.3)

As times evolves each outer ring shrinks due to magnetic tension and diffu-
sion. When the field lines touch local reconnection events occur which change
the shape of the field. For the non-helical interlocked field the initial struc-
ture vanishes after only a few Alfvénic times (Fig. 5.2, left panel), while for
the helical configuration the initial topology remains conserved (Fig. 5.2, right
panel).

During the relaxation magnetic energy gets lost into heat1 through recon-
nection events and resistive effects. The rate of loss depends on how fast the
system can attain its equilibrium energy. For the non-helical case it can be seen
that energy is dissipated quickly (Fig. 5.3) – in fact as quickly as for the non-
interlocked test configuration. The mere linking does apparently not hinder
the field to decay almost freely. For the helical case the realizability condition
imposes severe restrictions on the relaxation. In practice this means a slow
loss of magnetic energy on a resistive time scale on which also the magnetic
helicity decays.

In summary we can confirm the importance of the realizability condition
for relaxation processes. The naïve interpretation of linked flux tubes whose

1No energy equation is solved here. So the dissipated energy cannot be reused by
any means, like buoyancy.

51



Figure 5.3: Magnetic energy evolution for the three rings configurations normal-
ized by their initial value. The helical interlocked configuration retains its energy
content more successfully (solid line), while the linked non-helical one (dashed
lines) and the non-linked case (dotted line) lose energy quickly at approximately
the same rate.

dynamics is restricted by the linkage does not hold. The only essential quantity
is the magnetic helicity.

5.2 Beyond Magnetic Helicity

Since there exists an infinite number of topological invariants it should be in-
vestigated if magnetic helicity is always the sole determinant in magnetic field
dynamics. To address this question we perform in Paper VI similar relax-
ation experiments as in Paper V with field configurations in the shape of knots
and links. The investigated magnetic field configurations are the n-foil knots,
the Borromean rings and the IUCAA knot (Fig. 5.4). Similar numerical ex-
periments have been carried out for ideal MHD (Maggioni and Ricca, 2009)
where no reconnection events could take place.

The family of n-foil knots, of which the trefoil knot is the simplest exam-
ple, has only helical members. By increasing their complexity with parameter
n, their magnetic energy increases, as well as the magnetic helicity. The Bor-
romean rings and IUCAA knot are both non-helical configurations. Yet, they
are topologically non-trivial and cannot be undone without braking the field
lines. For the Borromean rings there exists a higher order topological invari-
ant, which is conserved in ideal MHD, but gets destroyed during magnetic
reconnection (Ruzmaikin and Akhmetiev, 1994).

As in the case of the triple ring configurations of Paper V the bound-
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Figure 5.4: Isosurfaces of the magnetic energy for the initial field configurations
trefoil knot (left panel), Borromean rings (middle panel) and the IUCAA knot
(right panel).

aries are chosen to be periodic in order to conserve magnetic helicity. For the
same reason the magnetic resistivity η is chosen as small as computationally
possible. The governing equations for this problem are the same as for the
triple rings case, which are equations (2.1)–(2.3) without forcing fff . We use
the magnetic field configurations shown in Fig. 5.4 as initial conditions and let
the systems relax.

The relaxation of the n-foil knots does not give any surprises. The mag-
netic helicity imposes restrictions on the field relaxation, which gets more pro-
nounced as the complexity of the configuration is increased. The power laws
of t−1/3 found in Paper V for the energy decay of the helical triple ring con-
figuration could only be found for the most complex member of this family
studied here, the 7-foil knot. The least complex, the trefoil knot, shows a
t−2/3 behavior. This characteristics comes from the increasing ratio of mag-
netic helicity to magnetic energy as the complexity grows with n. The energy
increases linearly with complexity, while the magnetic helicity grows quadrat-
ically. Consequently, the realizability condition slows down the energy decay
more effectively (see Paper VI for details).

The Borromean rings show an intriguing property, which distinguishes this
configuration form other non-helical configurations. As the field evolves and
tries to relax it undergoes reconnection events. Those events transform the
linked rings into two separate rings, which are twisted (Fig. 5.5). The twist is of
opposite sign, due to magnetic helicity conservation. The energy decay is not
of the form t−3/2, but of t−1 (Fig. 5.6). This we attribute to the occurrence of
separate helical structures, which evolve independently. Similar reconnection
steps for this configuration were shown in a theoretical work by Ruzmaikin
and Akhmetiev (1994) where it was proposed that the Borromean rings should
reconnect into a trefoil knot and three figure eight knots with opposite helicity.
After further reconnection the system should end up with two un-knots and six
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Figure 5.5: Magnetic stream lines for the Borromean field configuration after 70
Alfvénic times (left) and 78 (right). The initial configuration is totally lost and
replaced by two twisted fields.

figure eight knots of which three have opposite sign of the other three, in order
to conserve helicity. Making the interpretation that those figure eight knots
are the internal twist of the final un-knots we can conclude that their findings
match with our simulation results. The presence of magnetic helicity in the
separate twisted tubes imposes restrictions on the relaxation expressed in the
realizability condition Eq. (2.49).

The IUCAA knot also shows a relaxation behavior, which lies in between
the decay speed of the helical and non-helical triple-ring configurations (Fig. 5.6).
This illustrates that even non-helical fields reveal non-trivial behavior. Since
no such helical structures as for the Borromean rings appear, we are tempted
to speculate about higher order invariants, which inhibit the field decay.

Once again the importance of the realizability condition is confirmed. For
the n-foil knots we see that the higher the magnetic helicity content is com-
pared to the magnetic energy the stronger is the inhibition from the realizabil-
ity condition to let the field relax into a lower energy state. The surprisingly
slow decay of the Borromean rings can be attributed to the emergence of he-
lical structures, which evolve independently and where the realizability con-
dition imposes restrictions on the relaxation. For the IUCAA knot no such
explanation could be found and one may again speculate about higher order
topological invariants. One way of doing this is by applying the concept of
topological flux functions, which can be used to uniquely identify the topol-
ogy of the magnetic field configuration (Yeates and Hornig, 2012). Defining
such a flux function requires a field with a preferential direction as they occur
for instance in tokamaks. This, nevertheless, does not restrict one of applying

54



10-5 10-4 10-3 10-2 10-1 100

t/tres

10-3

10-2

10-1

100

�

B
2

�

/

�

B
2 0

�

t�3/2

t�1

t�1/2

IUCAA knot
Borromean rings
helical triple rings
non-helical triple rings

Figure 5.6: Normalized magnetic energy for the linked triple-ring configura-
tions, the Borromean rings and the IUCAA knot together with power laws to
guide the eye.

this concept on knots and links, since they can always be represented as braids
in a periodic domain.

A potential physical applications of the topologies discussed here is the ex-
planation of magnetic cavities observed in the intergalactic medium (Ruszkowski
et al., 2007; Pfrommer and Jonathan Dursi, 2010) which show high resistance
against Kelvin-Helmholtz instability. It has been shown by Braithwaite (2010)
that tangled fields enhance the stability of bubbles during relaxation. It is yet
to be demonstrated that they can reduce the Kelvin-Helmholtz instability.
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6. Conclusions

Denn die Menschen glauben an die Wahrheit dessen,
was ersichtlich stark geglaubt wird.

All things are subject to interpretation.
Whichever interpretation prevails at a given time

is a function of power and not truth.

Friedrich Nietzsche

Magnetic helicity is a fundamental quantity in the dynamics of magnetic
fields in the Universe. Its importance has been appreciated in several previous
works ranging from the implication of its conservation in dynamos (Pouquet
et al., 1976) to the constraint it imposes in field relaxation (Moffatt, 1978).

Its conservation causes the turbulent large-scale dynamo to grow on re-
sistive time scales, which, for astrophysical objects like the Sun and galaxies,
are much longer than the dynamical time scales we observe. The saturation
strength of the large-scale magnetic field is fundamentally affected by mag-
netic helicity as well and is drastically reduced to values much lower than
those observed. In Paper I it is discussed how the saturation characteristics
change with the relevant parameters, which are the scale separation ratio be-
tween the size of the turbulent motion and the system and the relative amount
of injected kinetic helicity. As predicted by mean-field estimates (Blackman
and Brandenburg, 2002), the saturation magnetic energy of the large-scale field
scales proportionally to the scale separation ratio and the injected relative he-
licity. Further, for the large-scale dynamo to operate, the critical value for the
normalized helicity of the small-scale turbulent motions scales inversely pro-
portional to the scale separation ratio. This leads to an excellent confirmation
of the mean-field predictions. Previous findings (Pietarila Graham et al., 2012),
which suggest different scaling behaviors, arguably lack proper analysis of the
magnetic field of the large-scale dynamo.

The form of the forcing function, which drives the dynamo, is usually taken
to be of helical nature, which leads to helical magnetic fields. Amongst these
different behaviors for the large-scale field is that of Paper I, where for most
parts a helical forcing random in time is used. There are three different mag-
netic field averages competing during the resistive saturation, the xy-, xz- and
yz-averaged magnetic fields. Only one survives at the end of the saturation
phase. For the ABC-flow forcing an intriguing behavior is seen, where the
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three modes oscillate in time with a phase shift of 2π/3. The nature of this
oscillation is not understood yet and has to be investigated further.

A reduction of magnetic helicity in the small scales can be obtained via
various kinds of fluxes (Rogachevskii and Kleeorin, 2000; Vishniac and Cho,
2001; Subramanian and Brandenburg, 2004, 2006) of which not all can effi-
ciently reduce its amount such that catastrophic α quenching gets alleviated.
Two kinds of fluxes are considered in Paper II. Advective fluxes, mediated by
a wind, efficiently transport the magnetic field together with small-scale mag-
netic helicity out of the system. Physically speaking this can be interpreted
as coronal mass ejections with helical magnetic fields or as a galactic wind.
Diffusive fluxes within closed domains between parts of opposite helicity are
also efficient enough to alleviate catastrophic α quenching and allow for high
mean magnetic saturation field strengths for high magnetic Reynolds numbers.
In practice this means that the mere reshuffling of magnetic helicity within a
closed system, through e.g. the equator, reduces sufficiently the amount of
“hostile” helicity of small-scale fields.

The gauge dependence of magnetic helicity does not constitute a prob-
lem for the physical effect of magnetic helicity fluxes. Choosing different
gauges, namely the Weyl, resistive and pseudo Lorentz gauges does not change
the time-averaged helicity fluxes through the mid-plane of the domain (Paper
III). This is shown for equations in the steady state, where fluxes of magnetic
helicity appear together with quantities which are gauge-independent, which
implies that also the fluxes must be gauge-independent.

Choosing different gauges can be useful to test magnetic helicity transport.
It can, however, lead to numerical instabilities arising from large gradient con-
tributions in the magnetic vector potential when computed numerically. This
pitfall can be circumvented by solving the evolution equations in a numeri-
cally stable gauge and applying a gauge transformation for computing gauge-
dependent quantities like the magnetic helicity density or its fluxes (Paper IV).
Transport and distribution of magnetic helicity in the advecto-resistive gauge
is found to differ significantly from the advective gauge. It can transport mag-
netic helicity more efficiently to smaller length scales, especially in the case of
low magnetic resistivity.

Topological constraints coming from field line linkage or knotting is con-
trasted against the realizability condition, which only holds as long as the con-
figuration is helical. Of course the realizability condition can already be re-
garded as describing constraints coming from the field’s topology. There are,
however, non-helical setups, which are topologically non-trivial. For those we
find in Paper V that their linkage has little effect on the field relaxation. This
is compared with non-linked setups, which show the same energy decay char-
acteristics. In Paper V the restrictions on the field’s dynamics solely arises
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from the magnetic helicity content, rather than the actual linkage.
The content of magnetic helicity in knotted flux tubes is shown to scale

like the number of crossings obtained from an appropriate 2d projection of the
configuration (Paper VI). The relaxation characteristics of those helical knots
is, however, not directly comparable with the previous helical triple-ring con-
figuration. The reason is simply the increasing helicity content with increasing
complexity of the knots. Non-helical setups exhibit relaxation speeds, which
are found to lie somewhere in between those for helical and non-helical fields.
For one configuration, namely the Borromean rings, this departure is attributed
to the occurrence of separated helical flux rings for which the realizability con-
dition holds. In the case of the non-helical IUCAA knot no such explanation
is possible, which is why one can speculate about higher order topological in-
variants. Fortunately magnetic helicity is not the only quantifier for the field’s
topology. There exists an infinite number of such quantities. One of them is
the fixed point index, which has been shown to impose another restriction on
the field’s relaxation (Yeates et al., 2010).
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7. Outlook

Dazu gibt er dem Menschen die Hoffnung:
sie ist in Wahrheit das übelste der Übel,

weil sie die Qual der Menschen verlängert.

Hope in reality is the worst of all evils
because it prolongs the torments of man.

Friedrich Nietzsche

Gradually we are extending our grasps on how magnetic helicity is formed
and in which ways it affects astrophysical systems. The work presented here
is rather abstract, yet fundamental. To make predictions for physical systems
more realistic simulations have to be performed.

The helical forcing used in turbulent dynamos leads to a separation of mag-
netic helicity in the small and large scales. As main consequence the large-
scale magnetic field grows to considerable values. In Paper I we also use
the ABC-flow forcing, which leads to rotating averages for the mean magnetic
field. The nature of this rotation and exact characteristics are not known. Fur-
ther investigations on that would show if the rotation keeps on in time or if the
equilibrium solution is stationary or not.

Apart form magnetic helicity, also cross helicity, the correlation of the
turbulent velocity with the turbulent magnetic field, takes part in the gener-
ation of the magnetic field (Yoshizawa, 1990). Most of the work done so far
(Yoshizawa and Yokoi, 1993; Yokoi, 1996, 1999) has been done analytically.
Numerical simulations have yet to show the importance of cross helicity for
the mean-field dynamo. A setup would consist of a rotating stratified medium
where a weak mean magnetic field is imposed. That should lead to the growth
of magnetic energy. The mean-field calculations would then be compared to
the direct numerical simulations using the test-field method (Schrinner et al.,
2005).

In the intergalactic medium X-ray cavities have been observed (Ruszkowski
et al., 2007; Pfrommer and Jonathan Dursi, 2010) which are hot under-dense
regions. They rise due to buoyancy and are expected to be shred into small
pieces due to the Kelvin-Helmholtz instability (von Helmholtz, 1868, Thom-
son, 1871, Chandrasekhar, 1961). They seem, however, to survive for millions
of years, which is a considerably longer time than predicted by simulations.
The Kelvin-Helmholtz instability has been shown to be suppressed by helical
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magnetic fields, which makes the fluid more stable against shredding. Nu-
merical simulations of helical magnetic cavities have to be conducted in order
to quantitatively understand their stability in the intergalactic medium. Such
configurations could be under-dense regions in a cooler stratified medium with
gravity. Inserting a helical magnetic field in those cavities should then show
stabilizing effects.

Magnetic helicity is not the only topological invariant. There exists an in-
finite number of invariants, which can be used to characterize the topology of
magnetic field lines. Just a few of them are useful for diffusive fields, which
fill the whole volume. Two of them are the magnetic helicity (Moffatt, 1969)
and the fixed point index (Yeates et al., 2010). The latter was shown to restrict
the relaxation of the magnetic field for particularly braided magnetic fields.
As a next step I will use this method for configurations which are topologi-
cally equivalent to knots and links. In this context a topological flux function
is defined whose change in the fixed points gives a proxy for the magnetic
reconnection rate. This will enable us to determine whether magnetic resistiv-
ity changes the reconnection rate and if magnetic helicity is conserved during
reconnection.
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Sammanfattning

Skillnaden mellan geniet och dumheten är
att geniet har sin begränsning.

Torvald Gahlin

Magnetfält spelar en betydande roll inom astrofysiken. De underlättar
transporten av rörelsemängdsmoment och kan därför förklara varför solen roterar
relativt långsamt. Magnetfälts uppkomst förklaras genom dynamoeffekten där
turbulent rörelse ger upphov till magnetisk energi. Sådana magnetfält är he-
likala, dvs. deras fältlinjer är länkade. Att de är helikala har vidsträckta kon-
sekvenser för deras dynamik.

Att förklara hur sådana fält kommer till stånd är en del av det här avhan-
dlingen. Det visas att det magnetiska heliciteten hindrar det storskaliga fältet
att utvecklas. Tiden som fältet behöver att formas blir längre än solens ålder
och intensiteten minskas till ett löjligt litet värde. Hur magnetfältet påverkas av
turbulensens egenskaper är avhandlingens första del. Det visas hur strömmen
av magnetisk helicitet lindrar den dämpade effekten för magnetfältets tillväxt.
Fysikaliskt betyder det att koronamassutkastningar stödjer fältets utveckling.

Den magnetiska helicitetens beroende på gaugen leder till frågan om hur
den kan vara fysikaliskt relevant. I den andra delen av avhandlingen under-
söker jag hur gaugen påverkar transporten av helicitet och hur dess fysikaliska
relevans räddas. Det visas att i det stationära tillståndet tidsmedelvärdet av
strömmen inte är gaugeberoende. Å andra sidan är spektrumet beroende på
gaugen. I den advecto-resistiva gaugen, till exempel, transporteras magnetisk
helicitet mer effektivt till små skalor, vilket ger upphov till en flatare profil.

Magnetisk helicitet kan tolkas som länkar av magnetfältlinjer. Därmed
blir det tydligt att fältet inte kan relaxera fritt. I den tredje och sista delen
undersöker jag hur länkning och heliciteten påverkar fältets dynamik. Det
visas att enbart länkning inte är tillräckligt för att inskränka dynamiken; det
behövs helicitet. Från ytterligare numeriska experiment visas det att andra
topologiska kvantiteter också kan spela en roll i fältets relaxation. Hittills är
det inte känt vilka.
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