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Abstract

In an emergent spacetime framework where relative distances between quantum sys-
tems are determined by the mutual information between the systems, an entangled pair
must be shown to have a non-zero distance even though its mutual information is maxi-
mal by virtue of being maximally entangled. This report shows that in fact an entangled
pair is only maximally entangled in some degrees of freedom such as spin, and when one
introduces other quantum degrees of freedom the mutual information is no longer max-
imal and so a non-zero distance can be recovered. In light of a conjectured relationship
between Einstein–Rosen Bridges (ER) and entangled Einstein–Podolsky–Rosen (EPR)
pairs called ER = EPR, what appeared as a wormhole forming between the two quantum
systems was an artefact of our ignorance of all quantum information associated with the
systems.

Sammanfattning

I ett ramverk för emergent rumstid där relativa avst̊and mellan kvantsystem bestäms
av ömsesidig information mellan systemen måste ett sammanflätat par p̊avisas ha ett noll-
skilt avst̊and även fast dess ömsesidiga information är maximal eftersom de är maximalt
sammanflätade. Detta examensarbete visar att ett sammanflätat par är endast maximalt
sammanflätade i vissa frihetsgrader som spinn, och när man introducerar andra frihets-
grader s̊a är ömsesidiga informationen inte längre maximal och s̊aledes kan man f̊a ett
nollskilt avst̊and. Med hänsyn till ett förmodat förh̊allande mellan Einstein–Rosen bryg-
gor (ER) och sammanflätade Einstein–Podolsky–Rosen par som benämns ER = EPR,
det som framst̊ar vara ett maskh̊al mellan tv̊a kvantsystem var s̊aledes ett artefakt av
v̊ar ignorans för all kvantinformation associerat med systemen.
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1 Introduction

Reconciling Gravity with QuantumMechanics (QM) is yet an open problem in physics.
Ultimately, we would like to have a theory which accurately produces the results of either
theory at the appropriate limits. Quantum theories have developed over the last century
to accurately describe and predict phenomena, in particular quantum field theory (QFT)
which underpins the Standard Model (SM) of particle physics. One such QFT is quantum
electrodynamics, where a classical theory of electromagnetism was quantised by use of
quantum fields with infinite degrees of freedom, allowing for predictions to test the SM, in
particular of the fine structure constant α, with relative uncertainties of the order 10−12

[1]. By identifying more symmetries in nature the Strong and Weak forces were also
quantised leading to the development of quantum chromodynamics and quantum flavour
dynamics, respectively, the last subsumed alongside quantum electrodynamics under the
electroweak unification.

In all the above cases, since we usually integrate over the entire momentum space in
our theories, the integrals for the perturbative corrections lead to divergencies. Naturally
one may then consider that there exist field theories that are only valid at certain scales
called effective field theories (EFT) which in general are non-renormalisable. The most
notable example is Fermi’s beta decay interaction which was later replaced by the Weak
interaction. To tame these divergencies, one may introduce cutoffs to the integrals, called
regularisation, where new field theories are required beyond the cutoffs. The renormalisa-
tion group was then introduced to probe this question and a plethora of renormalisation
techniques to tame the divergencies of field theories have been developed.

Three out of four fundamental forces have been successfully quantised and renor-
malised, so what about gravity? The best description of gravity so far, General Rela-
tivity (GR), is a non-renormalisable theory[2, 3] since the coupling has mass dimension
[GN ] = 2 − d, meaning a negative mass dimension for d > 2, and it is likely that GR is
an EFT of a more fundamental theory [4, 5].

The attempt to reconcile GR with QM is called Quantum Gravity (QG), and there are
numerous approaches, the primary two being String Theory and Loop Quantum Gravity.
A conjecture formed within the field of string theory called AdS/CFT correspondence [6]
provided a promising avenue for the development of a theory of QG. More specifically,
the maximally symmetric Lorentz manifold with negative curvature, Anti de Sitter space,
in 5 dimensions, AdS5, has the isometry group SO(2, 4) which is the conformal group for
flat Minkowski space R1,3 [7]. In other words, for a bulk region described by AdS5, the
the 4-dimensional boundary is described by a Conformal Field Theory (CFT) living in
flat Minkowski spacetime. The two descriptions are dual and completely specified by one
another. This correspondence has also been called Gauge/Gravity duality and has been
explored more generally since its first conception.

Another approach to reconciling gravity with QM is actually subsuming gravity into
QM by proposing that spacetime is an emergent phenomenon of quantum systems. A
conjectured relationship between Einstein–Rosen (ER) bridges and Einstein–Podolsky–
Rosen (EPR) pairs called ER=EPR [8] suggests the following: not only is there an
equivalence between a wormhole connecting two spacetime regions and a pair of max-
imally entangled black holes but between any entangled system. The overall approach
follows a long thread of work that started with the findings by Bekenstein [9], exploring
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the thermodynamic properties of black holes and relating the entropy of a black hole
to its surface area. This led to the suggestion of the holographic principle by ’t Hooft
[10], which states that the information in a bulk region of space can be encoded on the
boundary of this region. Maldacena [6] used this to develop the conjectured AdS/CFT
correspondence, a holographic relationship between anti-de Sitter space in the bulk and
a conformal field theory on the boundary. Ryu and Takyanagi [11] then showed that in
the case of an anti-de Sitter spacetime, there is a direct relationship between the entan-
glement entropy associated with bulk regions separated by a boundary surface where a
conformal field theory is defined and the area of this boundary. This was then furthered
by van Raamsdonk [12], suggesting that one could relate the boundary surface between
bulk regions and the distance between them in an AdS/CFT setting.

More recently, Cao et al. [13, 14] combine much of this approach into a new research
program with the goal of starting from a purely quantum mechanical framework and its
entanglement structure and deriving classical spacetime geometry satisfying Einstein’s
equations. In short, the program suggests that there is a mapping between the mutual
information of quantum subsystems and the classical geometry connecting them, giving
rise to an emergent spacetime purely defined in terms of the quantum information con-
tained in the system. In this approach, we can maintain Einstein’s own interpretation
of gravitational fields as intrinsically connected to spacetime geometry itself, where now
the spacetime geometry would be derived from the entanglement structure of quantum
systems.

One problem with this approach is that an entangled EPR pair, for instance, will
always be seen as having zero distance between its subcomponents, since it is maximally
entangled, despite the fact that its subcomponents can be spacelike separated forming
what so far has been called a wormhole between the pair. No wormhole has to date been
observed so this interpretation must be incomplete. In this report we show that once
one includes other quantum degrees of freedom for the systems and compare how they
decohere with respect to an environment, the mutual information is no longer maximal
and so a metric based on mutual information between an EPR pair will in fact be non-
maximal, corresponding to a non-zero distance between them. Therefore the appearance
of a wormhole between subsystems is only apparent due to the ignorance of all quantum
degrees of freedom.

We begin with a review of ER = EPR in Sec. 2.1, presenting the thread of research
from the original papers by Einstein, Rosen and Podolsky up to the paper published by
Susskind and Maldacena on the conjecture influenced by AdS/CFT. Then in Sec. 2.2
spacetime emergence is reviewed, in particular an overview of the framework proposed
by Cao et al. [13] within which the research of this report is focused. After that the
mutual information of entangled pairs of increasing complexity are treated. In Sec. 3.1
a simple EPR pair is presented and its mutual information computed. The result is
then generalised for the GHZ state in Sec. 3.2. Next the environment is introduced for a
simple EPR pair, first unentangled in Sec. 3.3 and then entangled in Sec. 3.4 including the
involvement of monogamy of entanglement. Decoherence is then introduced in Sec. 3.5
w.r.t how mutual information changes as an entangled pair interacts with its environment.
A more realistic case of EPR pairs is then considered in Sec. 3.6, introducing momentum
degrees of freedom. This is all brought together in Sec. 3.8 where the effects on the
environment itself is regarded i.e the environment’s entanglement structure changing as
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a result of the entangled pairs decohering. Some additional points of interests are then
discussed in Sec. 4. In Sec. 4.1, the preferred basis problem is introduced, since any
entanglement structure will depend on the choice of global basis for the Hilbert space. In
Sec. 4.2, an outline of the problem and resolution to finite representations of momentum
and position is presented and how the framework could be possibly extended to infinite-
dimensional cases. Sec. 4.3 introduces an important word of warning by Verlinde in
regards to ER=EPR. A summary of the work is finally presented in Sec. 5, concluding
that in an emergent spacetime framework based on mutual information, an EPR pair
would not necessarily yield a zero relative distance.

The report relies on the use of Bra-Ket notation for states and due to the size of some
states, a notation for contracting indices is introduced. In particular, for a state given by
some indices i1, ..., in such as |i1, ..., in⟩, the contracted capital index I is used to refer to
the set of indices i1, ...in. Therefore, a sum over indices i1, ..., in can instead be written as
a sum over I. This is explained in detail in Appendix A.2. Tensor products are also used,
where the symbol ⊗ refers to the Kroenecker product, meaning that for some matrices
A and B being m× n and p× q, respectively, A⊗ B is mp× nq.
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2 Basics

This section aims to review ER = EPR by reviewing relevant parts of the original
papers published by Einstein, Rosen and Podolsky. Susskind and Maldacena’s argument
for the conjectured relationship between the two is then presented from an AdS/CFT
point of view. The conjectured emergence of spacetime is then presented, along with an
introduction on the approach Cao et al. make to recover spacetime satisfying Einstein’s
equation from quantum mechanics.

2.1 ER = EPR

The first example of entanglement was considered in the seminal paper by Einstein,
Podolsky and Rosen (EPR) in 1935 [15]. They attempted to argue that Quantum Me-
chanics as a theory of reality was incomplete as it led to apparent contradictions according
to their definitions of reality. In particular, they demanded the following criterion of a
theory of reality, the first being completeness [15]

every element of the physical reality must have a counterpart in the physical
theory

and the second, later called the criterion of local realism [15]

If, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to this physical quantity.

With this in mind, they consider two initially interacting systems, I and II, with a cor-
responding wave function Ψ that stops interacting after some time T. They then con-
sider two non-commuting observables A and B representing momentum and position,
respectively, and consider the measurement on system I w.r.t. to each observable. In
the Copenhagen interpretation employed in the paper, the act of measuring system I
collapses the state Ψ, allowing us to assign a particular state to system II, from which
we can identify the states being eigenfunctions of operators P and Q corresponding to
the momentum and position of the second state. By performing successive measurements
of two non-commuting observables on system I, we can assign values of momentum and
position to the second system. Since the second system has never been measured, by
the criterion of locality, both quantities must correspond to the same physical reality
i.e. the successive measurement of two non-commuting observables of system II has been
performed without perturbing the system, hence a contradiction has been reached. The
authors admit [15]

[one] could object to this conclusion on the grounds that our criterion of
reality is not sufficiently restrictive. Indeed, one would not arrive at our con-
clusion if one insisted that two or more physical quantities can be regarded as
simultaneous elements of reality only when they can be simultaneously mea-
sured or predicted. On this point of view, since either one or the other, but
not simultaneously, of the quantities P and Q can be predicted, they are not
simultaneously real. This makes the reality of P and Q depend upon the pro-
cess of measurement carried out on the first system which does not disturb
the second system in any way. No reasonable definition of reality could be
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expected to permit this.

It was Schrödinger later in the same year who coined the term “entanglement” to de-
scribe this correlated phenomenon [16]. Although this behaviour appears non-local w.r.t.
information travelling superluminally, the No Communication Theorem prohibits the
transmission of superluminal signals or in fact, the communication of any information at
all by means of measuring entangled systems [17].

Only a month later during the same year, Einstein and Rosen (ER) wrote a pa-
per initially intending to conceive of a universe described only by GR and EM, with
space represented as two identical sheets connected by particles forming what they called
“bridges”[18]. Starting from the spherically symmetric Schwarzschild metric representing
a body of mass m

ds2 = − 1

1− 2m
r

dr2 − r2(dθ2 + sin2 θdϕ2) +

(
1− 2m

r

)
dt2 , (2.1.1)

written in natural units1 they performed a parametrisation w.r.t. the radial coordinate r
and mass m as u2 = r− 2m to remove the singularity at r = 2m, rewriting the metric as

ds2 = −4(u2 + 2m)du2 − (u2 + 2m)2(dθ2 + sin2 θdϕ2) +
u2

u2 + 2m
dt2 . (2.1.2)

By considering the cases u > 0 and u < 0 one gets two infinite “sheets” and a hyperplane
joining the sheets at u = 0 and it is this joining hyperplane called the “bridge” that was
later coined as a wormhole. If the two sheets of spacetime, representing asymptotically
flat regions of spacetime, were separated by a large (or even infinite) distance, such a
bridge would provide a path shorter than a lightlike path between two spacetime points
as can be seen in Fig. 1, allowing for superluminal signals. Such a bridge would then
be non-local, but Topological Censorship prohibits the traversability of wormholes in
asymptotically flat spacetime [19].

A

B

Figure 1: Spacetime coordinates A and B on two asymptotically flat sheets connected by
a lightlike path with a bridge between the two sheets.

It is only much later that Susskind and Maldacena proposed a conjectured corre-
spondence between the two ideas, which they called ER = EPR [8]. In the AdS/CFT

1The Schwarzschild radius, the radius an object of mass m would have if it were a black hole, is given
by rs =

2Gm
c2 . If one chooses natural units so that c = G = 1, the Schwarzschild radius is simply rs = 2m.

5



framework, an eternal AdS-Schwarzschild black hole can be represented as a Thermofield
Double (TFD) state

|TFD⟩ =
∑
n

e−
βEn
2 |n, n⟩ , (2.1.3)

where β is the inverse temperature of the black hole and the states are tensor products
of eigenstates of two disconnected CFT’s, often referred to by Left (L) and Right (R).
An interpretation of this can be found by considering Wick rotating the state as two
maximally entangled black holes in disconnected spaces with a common time. Being a
pure state with an entropy of 0, computing the reduced entropy and noting that SL = SR

we find that the mutual information between them is nonclassical i.e. 2SBH , where SBH

is the Bekenstein–Hawking entropy of black holes given by SBH = A
4GN

.

At the same time, we can in GR consider two black holes on separate sheets that can
be non-locally connected by an ER bridge. Susskind and Maldacena then argue for the
similarities between entangled black holes and black holes connected by an ER bridge,
forming the conjecture that entanglement and ER bridges are two sides of the same coin,
hence calling it ER = EPR. This can be seen by thinking of a very large set of EPR pairs
given to Alice and Bob who compress them to a pair of black holes and comparing this
to a case where a large number of pairs of black holes with ER bridges are given to Alice
and Bob who collapse them into a large black hole pair with a single bridge.

2.2 Spacetime emergence

In an essay by Van Raamsdonk [12], a similar consideration is made as Susskind
and Maldacena from the Holographic principles of AdS/CFT. An entangled pair of non-
interacting CFT’s written as a TFD state can be interpreted as classically disconnected
w.r.t. spacetime. By then saying that this state corresponds exactly to an AdS eternal
black hole connecting two asymptotic spacetime regions, one can infer that there is a rela-
tionship between disconnected CFT’s and connected spacetimes, which he then rephrases
as [12]

classical connectivity arises by entangling the degrees of freedom in the two
components.

As a simple example he considers a CFT on an Sd sphere with a corresponding
asymptotically AdS spacetime in the bulk, partitioned into two hemispheres called A and
B. With this partitioning, we partition the Hilbert space as H = HA⊗HB, allowing us to
compute the mutual information between subsystems belonging to the two hemispheres.
As shown by Ryu and Takayanagi [11], the entanglement entropy between two subsystems
of a CFT in d+1 is related to the minimal surface in AdSd+2, in other words, as the degrees
of freedom in A and B disentangle in the boundary, the minimal surface connecting the
hemispheres in the bulk decreases. This follows similar suggestions of an “area law”,
that entropy grows in proportion to the area and not the volume of the system [20, 21].
Introducing operators OC and OD for some boundary points C ⊂ A and D ⊂ B, we can
bound the correlations between C and D with the mutual information as [22]

I(C : D) ≥ (⟨OCOD⟩ − ⟨OC⟩ ⟨OD⟩)2

2||OC ||2||OD||2
. (2.2.1)
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We can in AdS/CFT express the correlation length in terms of the 2-point correlator
for some coefficient m with mass dimension 1 and shortest proper length L in the bulk
between the boundary points C and D

⟨OCOD⟩ ∼ e−mL , (2.2.2)

and knowing that the one-point correlators of a CFT vanish [23], we see that as I(C :
D) → 0 then the proper distance L → ∞. In short, as the the degrees of freedom in A
and B disentangle, the mutual information corresponding to the minimal surface between
A and B decreases and the minimal proper length between boundary points in A and
B increases, which he refers to as the spacetime regions of A and B “pinching off” from
one another. The suggestion laid forth is that classically connected spacetimes could be
a result of entanglement structures.

Cao, Carroll and Michalakis then formulated a tentative approach to recovering clas-
sical spacetime from entanglement structures [13]. By arguing from the holographic prin-
ciple that any finite region of spacetime has finite dimensional degrees of freedom since
dimH ∼ eS where the entropy is given by the holographic bound, the general strategy
goes as follows:

• decompose Hilbert space into factors H =
⊗

i Hi.

• consider only states that are “Redundancy Constrained” (RC) i.e. satisfying an
area law S = ηA + .... If the states satisfy the area law, one can approximate the
entropy of some larger region (a collection of subregions Ap in Hilbert space) B
using a cut function based on mutual information

S(B) =
1

2

∑
p∈B,q∈B̄

I(Ap :Aq) . (2.2.3)

• construct a weighted graph G with vertices represented by the subregions and edges
represented by mutual information I(Ap :Aq) between subregions.

• reconstruct a metric graph G̃ with smooth, flat geometries from some mapping
G 7→ G̃.

• relate local curvature to local change in entropy by means of perturbations |ψ0⟩ 7→
|ψ0⟩+ |δψ⟩.

• relate the change in entropy to the change of entropy of an effective field theory
and recover the linearised Einstein field equations by means of the entanglement
first law δS = δ ⟨K⟩ relating the change in entropy to the modular Hamiltonian.

The metric graph G̃ is assumed to be a re-weighting of the edges of the graph by

w(A,B) =

{
lRCΦ(I(Ap : Aq)/I0), p ̸= q

0 p = q ,
(2.2.4)

for some function of mutual information Φ(I(Ap : Aq)/I0) where I0 = max{I(Ap :Aq)}
and lRC is the scale of RC states. The function Φ is defined to be a monotonically
decreasing function such that limx→1 Φ(x) → 0, the mutual information between the
vertex and itself, and limx→0 Φ(x) → ∞, minimal mutual information between vertices.
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A suitable candidate would be Φ(x) = − log(x), bearing in mind that it’s true form may
be more complicated to accommodate arbitrary spatial geometries.

The vertices p and q are connected by a large set of vertices with many possible paths,
such as P = {p0 = p, p1, ..., pk−1, pk = q}, so the minimal path P giving the distance
function d(A,B) is chosen to be the path which minimises the sum of weights

d(A,B) = min
P

{
k−1∑
n=0

w(pn, pn+1)

}
, (2.2.5)

which by construction satisfies the properties of a metric, since mutual information is
symmetric and positive and the minimisation of weights along a path satisfies the triangle
inequality. In this construction, if one näıvely took a simple EPR pair and computed the
mutual information between them, which would be maximal, one would find the shortest
path between them to be zero, which we know to not be true in the lab because we can
create entangled particles and separate them spatially. Another interpretation could be
in the vein of ER = EPR that our metric giving d(A,B) = 0 implies we have formed a
wormhole between A and B, also implying that the true metric is not minimal in terms
of mutual information. This report aims to clarify this situation, since when we talk
about entangled systems we may often only include the quantum degrees of freedom that
are entangled and ignore the remaining quantum degrees of freedom. Not including all
quantum degrees of freedom affects the mutual information between the subsystems and
with their inclusion the mutual information is no longer maximal. The null distance or
formation of wormholes between subsystems becomes an artefact of our ignorance of the
full system.
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3 Closing the wormholes

The main object of interest in this report is EPR pairs which are maximally entangled
particles, most often described as a pair of entangled qubits. We will begin by looking
at such 2-qubit EPR pairs, often called Bell states, and compute the mutual information
between them. We will then generalise EPR pairs with GHZ states and then introduce
the environment into the picture and how mutual information changes in all these cases.
Decoherence is then introduced w.r.t. how it changes mutual information and how not
only does it change the state we find the EPR pair in but also the local environment that
decoheres each particle of the EPR pair.

3.1 Maximally entangled EPR pair

We start with a maximally entangled EPR pair, considering the TPS (see Appendix
A.1) T : H 7→ HAB = HA ⊗HB, which we will as tradition dictates call Alice and Bob

|ψ⟩AB =
1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

=
1√
2

(
|00⟩AB + |11⟩AB

)
.

(3.1.1)

Being a pure state, we can write its density matrix as

ρAB = |ψ⟩⟨ψ|AB

=
1

2

(
|00⟩⟨00|AB + |00⟩⟨11|AB + |11⟩⟨00|AB + |11⟩⟨11|AB

)
.

(3.1.2)

Since it is a pure state, the von Neumann entropy is 0. This is because a diagnonalisation
yields a single unity eigenvalue and remaining null eigenvalues, so the joint von Neumann
entropy (see Appendix A.4) SAB is

SAB = S(ρAB) = −
∑
i

λi lnλi = − ln 1 = 0 . (3.1.3)

To find the mutual information, we need to first find the reduced density matrices by
tracing out A and B

ρA = trBρAB =
∑
i=0,1

⟨i|B ρAB |i⟩B =
1

2

(
|0⟩⟨0|A + |1⟩⟨1|A

)
(3.1.4)

ρB = trAρAB =
∑
i=0,1

⟨i|A ρAB |i⟩A =
1

2

(
|0⟩⟨0|B + |1⟩⟨1|B

)
. (3.1.5)

We can see from Eq. (A.3.3) that the reduced density matrices are maximally mixed since
both can be written in the form

ρ =
1

k
1
k , (3.1.6)

and the entropy of a maximally mixed states is given by ln k where in this case k = 2.
Shown explicitly

SA = S(ρA) = −
2∑

i=1

1

2
ln

1

2
= − ln

1

2
= ln 2 . (3.1.7)
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The mutual information, how much we could for example learn from B by knowing A, is
therefore computed to be

I(A : B) = SA + SB − SAB = 2 ln 2 , (3.1.8)

which is maximal, as proven in Eq. (A.5.5).

Since the mutual information is maximal, if one näıvely plugged this mutual informa-
tion into our metric

d(A,B) = lRCΦ

(
I(A :B)

I0

)
= lRCΦ

(
2 ln 2

2 ln 2

)
= lRCΦ(1) = 0 , (3.1.9)

which we know cannot be true as we can create entangled pairs in a lab and separate
them with a non-zero distance. Clearly, either the entire approach is misconstrued or we
need to be more careful about what exactly we are computing the mutual information
between.

3.2 Generalising EPR pairs with the GHZ state

We generalise the previous case of an entangled 2-qubit system by considering K en-
tangled qudits2 with the TPS T : H 7→

⊗K
k Hk, also known as the Greenberger–Horne–Zeilinger

or GHZ state

|ψ⟩ = 1√
N

N−1∑
i=0

|i1, . . . , iK⟩ =
1√
N

N−1∑
i=0

K⊗
n=1

|in⟩ . (3.2.1)

This state can be simply written as

|ψ⟩ = 1√
N

(|0 . . . 0⟩+ . . .+ |N − 1− 1⟩) , (3.2.2)

where if N = 2

|ψ⟩ = 1√
2
(|0 . . . 0⟩+ |1 . . . 1⟩) , (3.2.3)

and if K = 2 we simply get our EPR state. The pure density matrix representing this
state is

ρ = |ψ⟩⟨ψ| = 1

N

N−1∑
i,j=0

K⊗
n=1

|in⟩⟨jn| . (3.2.4)

Recovering the reduced density matrix ρ1 belonging to subspace H1

ρ1 =
1

N

N−1∑
i,j,k=0

|i1⟩⟨j1|
K⊗

n=2

⟨kn|in⟩ ⟨jn|kn⟩

=
1

N

N−1∑
i,j=0

|i1⟩⟨j1| δij

=
1

N

N−1∑
i=0

|i1⟩⟨i1| ,

(3.2.5)

2Where a qubit has two states {|0⟩ , |1⟩}, a qudit has d states, {|0⟩ , . . . , |d⟩}
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and noting the symmetry of the subsequent cases ρ2, . . . , ρK , we can identify that in
general we will get maximally mixed density matrices ρi in the individual subspaces
Hi when we have a maximally entangled pure state |ψ⟩ in the composite space H⊗K

.
Explicitly

ρi =
1

N

N−1∑
j=0

|ji⟩⟨ji| =
1

N
1N , (3.2.6)

and so

Si = S(ρi) = −
N∑
i=1

1

N
ln

1

N
= N

1

N
lnN = lnN . (3.2.7)

For the cases K > 2, to find the reduced joint density matrix belonging to two subspaces
Hi,Hj, we trace out the remaining degrees of freedom

ρ12 =
1

N

N∑
i,j,k=1

( |i1⟩⟨j1| ⊗ |i2⟩⟨j2| )
K⊗

n=3

⟨kn|in⟩ ⟨jn|kn⟩

=
1

N

∑
i,j=1

( |i1⟩⟨j1| ⊗ |i2⟩⟨j2| )δij

=
1

N

N∑
i=1

|i1i2⟩⟨i1i2| .

(3.2.8)

Once again from symmetry we can write that

ρij =
1

N

N∑
k=1

|kikj⟩⟨kikj| , (3.2.9)

which is a N2×N2 diagonal matrix representing a mixed state (but not maximally mixed)
with N eigenvalues, each being 1

N
. We therefore compute the joint entropy as

Sij = S(ρij) = −
N∑

n=1

1

N
ln

1

N
= N

lnN

N
= lnN . (3.2.10)

We can therefore state that the mutual information between any two N -dimensional
subsystems in Hi,Hj, given that the total system is maximally entangled in H⊗K

, is

I(i : j) = Si + Sj − Sij = 2 lnN − lnN = lnN . (3.2.11)

The mutual information between two subsystems of a larger, maximally entangled system
of K > 2 subsystems is independent of the number of subsystems K and depends only
on the number of states N in each subsystem.

Suppose now that we consider composite subsystems with the goal of computing
I(1, . . . , J : J + 1, . . . , K) for some 1 ≤ J ≤ K < L where the TPS for our Hilbert
space is T : H 7→

⊗L
l Hl. Here we choose to label the subsystems so that they can be

ordered into two composite systems given by the index J , so the composite subsystem A
will consist of subsystems 1 while the composite subsystem B will consist of subsystems

11



J + 1. We can generalise our result of the joint density matrix from Eq. (3.2.9) for some
composite subsystem A as

ρA =
1

N

N∑
k=1

J⊗
i=1

|ki⟩⟨ki| , (3.2.12)

and for B as

ρB =
1

N

N∑
k=1

K⊗
i=J+1

|ki⟩⟨ki| , (3.2.13)

and we find equally for the joint matrix of the composites

ρAB =
1

N

N∑
k=1

K⊗
i=1

|ki⟩⟨ki| . (3.2.14)

These are NJ ×NJ , NK−J ×NK−J and NK ×NK diagonal matrices, respectively, with
each eigenvalue being 1

N
and there areN such eigenvalues in each. Computing the reduced

entropies we find

SA = S(ρA) = −
N∑
i=1

1

N
ln

1

N
= lnN

SB = S(ρB) = −
N∑
i=1

1

N
ln

1

N
= lnN ,

(3.2.15)

while the joint entropy is

SAB = S(ρAB) = −
N∑
i=1

1

N
ln

1

N
= lnN , (3.2.16)

meaning that the mutual information is

I(A :B) = lnN . (3.2.17)

Once again we find that for any arbitrary composite of subsystems of a maximally en-
tangled system, the mutual information between any two composites where K < L
is independent of how many subsystems there are and is given by lnN . If and only if
K = L, that is to say we have effectively bipartitioned the entire system, then the mutual
information is 2 lnN i.e with respect to bipartitioning there is no continuous mapping.
The reason for this is that the entropy of each composite is lnN , independent of the size
of the partition, as long as the size of the partition is less than the size of the total system
L. The joint entropy on the other hand can be either lnN if its size is less than the size
of the system L or 0 if it is the size of the whole system L. As soon as all subsystems are
included i.e. K = L, the joint entropy is 0 and the mutual information is lnN instead of
2 ln 2.

It is important to stress the following: if a system is maximally entangled in a GHZ-
state, we must have access to all subsystems for the system to look entangled, otherwise

12



it appears to be in a mixture. If our system is very large, even removing a single sub-
system removes any information of entanglement in the system. The system appears
to be maximally entangled with the relative entropy of 2 lnN only once we include all
degrees of freedom. This is a rather extreme example of how important it is for an emer-
gent spacetime approach based on mutual information to include all quantum degrees of
freedom.

3.3 EPR pair with environment

Let us now consider our EPR pair AB together with a rudimentary environment C
which we model as a single qubit with a coefficient parametrisation w.r.t. α to ensure the
state is normalised

|e⟩ = cosα |0⟩+ sinα |1⟩ . (3.3.1)

Defining the product state

|Ψ⟩ = |ψ⟩AB ⊗ |e⟩C

=
1√
2
( |00⟩+ |11⟩ )( cosα |0⟩+ sinα |1⟩ )

=
1√
2

(
cosα( |000⟩+ |110⟩ ) + sinα( |111⟩+ |001⟩ )

)
,

(3.3.2)

we compute the density matrix for the product state ABC

ρABC =
1

2

(
cos2 α( |000⟩⟨000| + |000⟩⟨110| + |110⟩⟨000| + |110⟩⟨110| )

+ cosα sinα( |000⟩⟨111| + |000⟩⟨001| + |110⟩⟨111| + |110⟩⟨001| )
+ cosα sinα( |111⟩⟨000| + |111⟩⟨110| + |001⟩⟨000| + |001⟩⟨110| )

+ sin2 α( |111⟩⟨111| + |111⟩⟨001| + |001⟩⟨111| + |001⟩⟨001| )
)
.

(3.3.3)

We can then recover our density matrix ρAB by tracing out the environment

ρAB = trCρABC

=
∑
i=0,1

(1AB ⊗ ⟨i|C)ρABC(1AB ⊗ |i⟩C)

=
1

2

(
|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|

)
.

(3.3.4)

Tracing out A and B instead

ρC = trABρABC

=
∑

i,j=0,1

⟨iAjB|ρABC |iAjB⟩

=
(
cos2 α |0⟩⟨0|+ cosα sinα( |0⟩⟨1|+ |1⟩⟨0| ) + sin2 α |1⟩⟨1|

)
,

(3.3.5)

which we see represents the pure state

ρC = |e⟩⟨e| . (3.3.6)
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Now we trace out only B

ρAC = trBρABC

=
1

2

(
cos2 α( |00⟩⟨00|+ |10⟩⟨10| )

+ cosα sinα( |00⟩⟨01|+ |10⟩⟨11|+ |11⟩⟨10|+ |01⟩⟨00| )

+ sin2 α( |11⟩⟨11|+ |01⟩⟨01| )
)
,

(3.3.7)

and then only A

ρBC = trAρABC = ρAC . (3.3.8)

Diagonalising these matrices yields the characteristic polynomial

λ2
(
λ2 − λ+

1

4

)
= 0 , (3.3.9)

which has the solutions λ = 0, 0, 1
2
, 1
2
. In other words, ρAC and ρBC represent mixed states

with the entropy

SAC = SBC = −
(
1

2
ln

1

2
+

1

2
ln

1

2

)
= ln 2 . (3.3.10)

We can then conclude that for the pure states we have found, SABC = SAB = SC = 0
and as in our previous example, SA = SB = ln 2. Finally, we compute the joint entropy

S(AC,BC) = −tr[ρAC ] . (3.3.11)

The combinations of mutual information we can form are then

I(A :B) = SA + SB − SAB = 2 ln 2

I(A :C) = SA + SC − SAC = 0

I(B :C) = SB + SC − SBC = 0

I(AB :C) = SAB + SC − SABC = 0

I(AC :B) = SAC + SB − SABC = 2 ln 2

I(A :BC) = SA + SBC − SABC = 2 ln 2 .

(3.3.12)

To interpret these results, I(A : C) = I(B : C) = I(AB : C) = 0 tells us that the
environment C is entirely disentangled or independent from our EPR pair and so no
amount of information we acquire from the environment C will inform us about either
A,B or AB. Conversely, I(A :B) = I(AC :B) = I(A :BC) = 2 ln 2 tells us that whatever
information we acquire about B will inform us maximally about the information of A
and vice versa, independent of whatever additional information we acquire from the
environment C together with either A or B. Therefore, no additional information is
gained about A by knowing BC compared to only knowing B and the same for B by
knowing AC compared to only knowing A.
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3.4 EPR pair entangled with an environment

Let us now suppose there is a unitary transformation U such that we entangle our
EPR pair AB with the environment C

|ψ⟩ ⊗ |e⟩ U7−→ |ψ′⟩ = 1√
2
( |000⟩+ |111⟩ ) = 1√

N

N−1∑
i=0

K⊗
n=1

|in⟩ , N = 2, K = 3 . (3.4.1)

We define the density matrix

ρABC =
1

N

N−1∑
i,j=0

K⊗
n=1

|in⟩⟨jn| , (3.4.2)

which is a pure state so SABC = 0. Now finding the reduced density matrices by perform-
ing the respective traces and noting the symmetry ρA = ρB = ρC and ρAB = ρBC = ρAC

ρA = trBCρABC =
∑

i,j=0,1

⟨iBjC |ρABC |iBjC⟩ =
1

2
( |0⟩⟨0|+ |1⟩⟨1| )

ρAB = trCρABC =
∑
i=0,1

⟨iC |ρABC |iC⟩ =
1

2
( |00⟩⟨00|+ |11⟩⟨11| ) .

(3.4.3)

The reduced density matrices ρA,ρB,ρC are all maximally mixed, while ρAC ,ρBC ,ρAB are
mixed with eigenvalues λ = 0, 0, 1

2
, 1
2
, so the corresponding entropies and joint entropies

are

SA = SB = SC = ln 2

SAC = SBC = SAB = ln 2 .
(3.4.4)

The combinations of mutual information we can now form are

I(A : B) = SA + SB − SAB = ln 2

I(A : C) = SA + SC − SAC = ln 2

I(B : C) = SB + SC − SBC = ln 2

I(AB : C) = SAB + SC − SABC = 2 ln 2

I(AC : B) = SAC + SB − SABC = 2 ln 2

I(A : BC) = SA + SBC − SABC = 2 ln 2 .

(3.4.5)

To interpret our findings, if we entangle AB with the environment C, then Bob cannot
gain maximal information about Alice by only having access to his own information.
Likewise, Alice or Bob cannot gain maximal information about the environment C by
only having access to their own respective information. If on the other hand Alice and Bob
share their information, they may now gain maximal information about the environment,
and likewise if Alice or Bob also have information about the environment C, they can
gain maximal information about each other. Once they have gained this additional
information, no more information can be gained about further joining of states.

Comparing this to the case when the environment C was not entangled with AB, the
mutual information between A and B is now smaller. In other words, once AB entangles
with an environment C, the mutual information between Alice and Bob decreases. This
can be understood in terms of the Monogamy of Entanglement (See Appendix A.7):
if A is entangled with B, then entangling A with C corresponds to a disentangling of A
with B, and conversely, entangling B with C corresponds to a disentangling of B with
A.
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3.5 Decoherence of an entangled pair and the loss of informa-
tion

So far we have modelled the environment in the most rudimentary of ways. We have
also seen how tracing out degrees of freedom of our state can have a drastic impact on
mutual information. We will now generalise the idea in Sec. 3.4 and see what happens to
the mutual information as we trace the environment out.

We consider our pair AB in an initially pure state, written as a Schmidt decomposition

|ψ⟩ =
∑
I

αI |uI⟩A ⊗ |vI⟩B , (3.5.1)

and our environment is also in some much larger pure state |ε⟩. Together they initially
form the tensor product state

|Ψ⟩ = |ψ⟩ ⊗ |ε⟩

=
∑
IJ

αIεJ |uI⟩A ⊗ |vI⟩B ⊗ |εJ⟩

=
∑
IJ

αIεJ |uIvIεJ⟩ .

(3.5.2)

The initial density operator can then be written as

ρABE = |ψ⟩⟨ψ| ⊗ |ε⟩⟨ε| . (3.5.3)

Tracing out the environment yields the expected density operator

ρAB = trEρABE

= |ψ⟩⟨ψ|

=
∑
IJ

αIα
∗
J |uIvI⟩⟨uJvJ | ,

(3.5.4)

whose entropy by virtue of being a pure state is S(ρAB) = 0. Tracing out B

ρA = trBρAB

=
∑
IJK

αIα
∗
J ⟨vK |uIvI⟩ ⟨uJvJ |vK⟩

=
∑
I

|αI |2|uI⟩⟨uI | ,

(3.5.5)

meaning that the entropy of the reduced states are

S(ρA) = −
∑
I

|αI |2ln|αI |2= S(ρB) , (3.5.6)

and so the mutual information is

I(A :B) = −2
∑
I

|αI |2ln |αI |2 . (3.5.7)
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We then consider a unitary transformation U given by some Hamiltonian such that

U : |Ψ⟩ 7→ |Ψ′⟩ =
∑
I

βI |uI⟩A ⊗ |vI⟩B ⊗ |εI⟩

=
∑
I

βI |uIvIεI⟩ ,
(3.5.8)

i.e. entangling the environment E with the the pair AB for some coefficients βI . Tracing
out the environment in the basis of the environment and invoking the einselection criterion
that ⟨εi|εj⟩ = δij [24] yields

ρ′AB = trEρ
′
ABE

=
∑
IJK

βIβ
∗
J |uIvI⟩⟨uJvJ | ⊗ ⟨εK |εI⟩ ⟨εJ |εK⟩

=
∑
IJ

βIβ
∗
JδIJ |uIvI⟩⟨uJvJ |

=
∑
I

|βI |2|uIvI⟩⟨uIvI | ,

(3.5.9)

which is a mixed, separable state with non-zero joint entropy equal to the reduced en-
tropies

S(ρ′AB) = S(ρ′A) = S(ρ′B) = −
∑
I

|βI |2ln|βI |2 , (3.5.10)

meaning that the mutual information is

I ′(A :B) = −
∑
I

|βI |2ln |βI |2 . (3.5.11)

i.e. at most classically correlated since for classical variables X, Y the mutual information
is bounded by the individual entropy I(X, Y ) ≤ H(X). This can be seen by defining
mutual information in terms of conditional entropy, I(X :Y ) = H(X) −H(X|Y ) where
classically H(X|Y ) ≥ 0.

The change in entropy of the system, or the change in information available to AB,
is

∆S = S(ρ′AB)− S(ρAB) = −
∑
I

|βI |2ln|βI |2 , (3.5.12)

i.e. entropy has increased in the system corresponding to a loss of information to the
environment so

S(ρ′E) = ∆S . (3.5.13)

The change in mutual information is

∆I(A :B) = I ′(A :B)− I(A :B)

= −
∑
I

(
|βI |2ln|βI |2−2|αI |2ln|αI |2

)
, (3.5.14)
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where ∆I(A : B) ≤ 0 since mutual information can only decrease under a quantum
channel [25]. Writing it in terms of entropy

∆I(A :B) = (S(ρ′A) + S(ρ′B)− S(ρ′AB))− (S(ρA) + S(ρB)− S(ρAB))

= S(ρ′A)− 2S(ρA) ,
(3.5.15)

and letting the initial state be a GHZ-state, the change in mutual information is equal
to the negative change in entropy

∆I(A :B)GHZ = −∆SGHZ = − lnN . (3.5.16)

The process of decoherence w.r.t. the pair AB involves entangling the pair AB with an
environment E such that when the environment is traced out, all off-diagonal terms of the
density matrix for the pair AB vanish i.e information has been lost to the environment.
For a GHZ state, the change in mutual information of the system corresponds exactly to
the change of entropy in the environment, which is lnN .

3.6 Mutual information of an EPR pair in the momentum sec-
tor

In the original paper by Einstein, Podolsky and Rosen [26], they consider a pair of
particles entangled in momentum and position. Later, Bohm and Aharonov [27] then
considered a pair of particles initially entangled in spin then separated, the type of EPR
pair later considered by Bell [28]. We will combine the two and consider a spin-0 particle
decay into an EPR pair, conserving spin and momentum, as a pure state. To conserve spin
and momentum a state must then have opposite spins for each subsystem and momenta of
opposite but equal magnitude. There is no reason to prefer any particular configuration
though, in an Everettian sense each branch is equally possible, so we consider a linear
combination of all possible combinations of spins and momenta

|ψ⟩ = a |0, pA, 1,−pB⟩+ b |0,−pA, 1, pB⟩+ c |1, pA, 0,−pB⟩+ d |1,−pA, 0, pB⟩ , (3.6.1)

where a, b, c, d are commuting coefficients. In other words, we consider two particles
with opposite momenta and opposite spins with the total spin and momentum of system,
respectively, being 0 i.e. conserved. We assume that the spin degrees of freedom and
momentum degrees of freedom are separable as

ρAB = ρsAB ⊗ ρpAB , (3.6.2)

which is equivalent to saying that the total state is a tensor product of a spin state and
a momentum state. When we compute the mutual information of an EPR pair, we
generally compute this for only the spin degrees of freedom

I(As :Bs) = S(ρsA) + S(ρsB)− S(ρsAB) , (3.6.3)

but suppose we include the momentum degrees of freedom

I(A : B) = S(ρA) + S(ρB)− S(ρAB)

= S(ρsA ⊗ ρpA) + S(ρsB ⊗ ρpB)− S(ρsAB ⊗ ρpAB)

= S(ρsA) + S(ρpA) + S(ρsB) + S(ρpB)− S(ρsAB)− S(ρpAB)

= I(As : Bs) + I(Ap : Bp) ,

(3.6.4)
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which trivially implies I(A : B) ≥ I(As : Bs).

It is then immediately clear that one may have an entangled EPR pair whose total
mutual information exceeds the spin mutual information i.e. it is not always maximal.
Qualitatively, we then consider that initially an entangled EPR pair has maximal mutual
information both in spin and momentum and as we separate them, the mutual information
in the momentum sector decreases. It also then becomes clear that when the size of the
Hilbert space for the momentum sector far exceeds the size of the Hilbert space for the
spin sector, the mutual information of the spin sector is negligible in comparison and so

I(A :B) ≈ I(Ap : Bp) , (3.6.5)

and correspondingly the metric of an EPR pair would be largely independent of spin
correlation

d(A : B) ∼ − log
I(Ap : Bp)

Ip0
. (3.6.6)

3.7 EPR pairs decohering in the momentum sector

We will now consider a more realistic example of an EPR pair with both a spin and
momentum state. There is reason to believe the Hilbert space of a quantum gravity
theory is finite dimensional [29]. If so, one would need discrete momentum and position
operators, which can be achieved by Generalised Pauli Operators [30]. This topic is
explored further in Sec. 4.2.

We imagine the decay of a particle M → m +m and suppose the momentum of the
initial particle is p + ∆p. Since we expect that we can localise our particles in a lab of
scale llab, we suppose the momentum uncertainty is upper bounded by ℏ/llab. We further
assume that it must be lower bounded by some IR scale, lIR, which we infer is on the
scale of the cosmological constant Λ such that lIR ∼ Λ− 1

2 ∼ 1026 m. We suppose therefore
that the lower bound is given by pIR = ℏΛ 1

2 which is on the order 10−60 kg·m/s. In other
words, we bound the momentum uncertainty by

pIR ≤ ∆p ≤ plab =
ℏ
llab

. (3.7.1)

Conserving momentum we get

p+∆p = p1 +∆p1 + p2 +∆p2 . (3.7.2)

In the rest frame ofM so that p = 0, conserving momentum for the two daughter particles,
p1 = −p2 we get

∆p1 +∆p2 = ∆p , (3.7.3)

meaning we express the second momentum in terms of the first as ∆p2 = ∆p −∆p1. If
we are in the rest frame on the other hand, we are minimizing our uncertainty in position
for M and so the uncertainty ∆p associated with M must be maximal, so ∆p = plab.

The bounds on ∆p1 must just like ∆p satisfy the lower bound given by pIR and the
upper bound given by plab so

pIR ≤ ∆p1 ≤ plab . (3.7.4)
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Given expectation values p1, p2 for the momenta of the particles, we suppose we can
express the momentum state as linear combinations of all possible momentum states
w.r.t. all possible uncertainties, summing from pIR to mc in steps of of pIR

3

|π⟩ =
plab−pIR∑
∆p1=pIR

α∆p1 |p1 +∆p1, plab − (p1 +∆p1)⟩ , (3.7.5)

where α∆p1 determines the distribution of the states.

Since the momentum state here only really depends on the uncertainty, we will omit
p1, writing now with the bounds changed

|π⟩ =
plab/pIR−1∑

n=1

αn |npIR, plab − npIR⟩ , (3.7.6)

and redefining the bounds so that N = plab/pIR

|π⟩ =
N−1∑
n=1

αn |n,N − n⟩ , (3.7.7)

Taking the density operator

ρp =
N−1∑
i,j=1

αiα
∗
j |i, N − i⟩⟨j,N − j| . (3.7.8)

we compute the reduced density operator

ρp =
N−1∑

i,j,k=1

αiα
∗
j |i⟩⟨j| ⊗ ⟨k,N − i⟩ ⟨N − j, k⟩

=
N−1∑

i,j,k=1

αiα
∗
jδk,N−i, δk,N−j |i⟩⟨j|

=
N−1∑
i=1

|αi|2|i⟩⟨i| ,

(3.7.9)

and so the mutual information in the momentum sector is given by

I(Ap :Bp) = −2
N−1∑
i=1

|αi|2ln|αi|2 . (3.7.10)

Assuming an even distribution |αi|2= 1
N−1

, explicitly we compute it in base 10, given
that N = lIR/llab

I(Ap :Bp) = 2 log(N − 1) ≈ 2 logN = 2(log lIR − log llab) ≈ 2(26− log llab) . (3.7.11)

We interpret here llab as the scale of decoherence i.e. a longer llab implies a smaller en-
vironment with which the system decoheres and correspondigly the mutual information

3The difference in pIR and mc is so large that even though c is not an integer multiple of qIR, an
integer multiple of qIR would bring us close enough to effectively be true.
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between the pair remains high. A longer llab implies a larger environment and corre-
spondingly mutual information between the pair is smaller.

When the EPR pair separates, it is this initial mutual information in the momentum
sector that decreases as the momentum degrees of freedom decohere w.r.t. the environ-
ment. Taking the ratio of mutual information in spin to momentum

I(As :Bs)

I(Ap :Bp)
≈ log 2

26− log llab
. (3.7.12)

By taking the Planck scale as a lower bound for llab, the ratio of mutual information is
lower bounded by

10−3 ⪅
I(As :Bs)

I(Ap :Bp)
. (3.7.13)

For a metric based on − log(i) where i = I(A :B)/I0, by varying the mutual information
of spin between A and B so that i → i + ∆i and taking the ratio log(i + ∆i)/log(i), as
i→ 1, the function diverges infinitely for ∆i > 0 compared to ∆i < 0. Our construction
above gives an experimental opportunity for testing spacetime emergence.

3.8 Decoherence of an entangled pair with an entangled envi-
ronment

We imagine a thought experiment, where we start with an EPR pair and disentangle
it while entangling each part with the environment. Let there be a Hilbert space H with
a TPS T such that

T : H 7→ HAB = HA ⊗HB =
⊗
n

(Hn
A ⊗Hn

B) , (3.8.1)

where n represents sectors and A,B represent subsystems. Let there be a bipartite density
matrix ρAB : HAB 7→ HAB for the subsystems A and B, initially pure, that can be
separated into n different sectors

ρAB =
⊗
n

ρnAB . (3.8.2)

We assume for now that any interaction Hamiltonian which we unitarily transform states
with has no interaction between sectors, only between subsystems of sectors. We intro-
duce an environment E with the density matrix ρE . From here on we use greek symbols for
environmental partitions and latin symbols for the system partitions. The environment
takes on the same sector-wise partitioning

ρE =
⊗
n

ρnE , (3.8.3)

where initially

∃n : ρnAB ̸= ρnA ⊗ ρnB
∀n : ρnABE = ρnAB ⊗ ρnE ,

(3.8.4)

or in other words, A and B are initially entangled in at least one sector, while AB and
E are initially unentangled in each sector. For now, the environment E takes trivial

21



partitions with respect to subsystems i.e. there is no non-trivial TPS T with respect to
subsystems as of yet, so trivially we could write without loss of generality

T : HE 7→
⊗
n

⊗
σ

Hn
σ . (3.8.5)

We consider the decoherence of AB w.r.t. the environment E which we have seen in
Sec. 3.5 is the statement that given some time T, an entangled state ρAB when decohered
transforms to a mixed state which we write using Schmidt decomposition

ρAB 7→ ρ′AB =
∑
i

|βi|2P i
A ⊗ P i

B , (3.8.6)

which is a fully separable state where A and B can be at most classically correlated. For
the full system we correspondingly find we cannot write it as a simple tensor product
such that given sufficient time

ρ′ABE ̸= ρ′AB ⊗ ρ′E , (3.8.7)

which is to say that we disentangle AB and entangle A and B with E .

Let us now consider the case where we start with an entangled pair ρAB and allowing
for a very long time to pass we separate them to opposite ends of the universe. It would
seem reasonable to suppose that each particle now has its own separate environment
α and β which the particles have entangled with, and the environments are mutually
uncorrelated by virtue of being on opposite ends of the universe. In an ideal case we may
consider this as the unitary transformation such that

U : ρAB ⊗ ρE 7→ ρAα ⊗ ρBβ . (3.8.8)

Assuming first that AB and E are of the same size, we know from the monogamy of
entanglement that A cannot entangle with the same degrees of freedom of E as B, so in
the limit we introduce the bipartitioning of the environment into α and β to which A
and B, respectively, entangle with. In the limit we may consider entangling system AB
with the environment E through a unitary transformation U which induces a non-trivial
partitioning of the environment into α and β by means of the TPS given by

T : HA ⊗HB ⊗HE 7→ HA ⊗HB ⊗Hα ⊗Hβ , (3.8.9)

which we can alternatively write as

T : HAB ⊗HE 7→ HAα ⊗HBβ . (3.8.10)

Diagrammatically it can be represented as Fig. 2.

Suppose we now consider an environment E much larger than AB. As AB disen-
tangles, A and B will, respectively, only entangle with some of the degrees of freedom
of E , allowing us to describe the environment after the transformation in terms of α, β
and some new E ′. Borrowing the language from Van Raamsdonk, the partitions α and β
“pinch off” from E ′ [12]. Symbolically, the transformation U takes

U : ρAB ⊗ ρE 7→ ρAα ⊗ ρBβ ⊗ ρE ′ , (3.8.11)
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!THAB HBHA

HβHαHE

Figure 2: Disentangling of an entangled pair AB which in turn entangle with an envi-
ronment E leading to the non-trivial partitioning of the environment into α and β

HAB !T HBHA

HβHα

HE HE'

Figure 3: Disentangling of an entangled pair AB which in turn entangle with an envi-
ronment ϵ in the limit leading to the “pinching off” of α and β from E ′

which diagrammatically can be seen represented in Fig. 3 While the TPS is such that

T : HA ⊗HB ⊗HE 7→ HA ⊗HB ⊗Hα ⊗Hβ ⊗HE ′ . (3.8.12)

Let us now consider the case where we introduce the spin sector s such that our
entangled pair can be written as

ρAB = ρsAB

⊗
n

ρnAB , (3.8.13)

and let the interaction Hamiltonian producing the unitary transformation U leave the
spin sector relatively untouched. We can imagine this as preparing a spin entangled pair
which we separate by a distance, maintaining coherence in the spin degrees of freedom but
decohering the momentum degrees of freedom. As we decohere AB w.r.t. the environment
E , we again get the partitioning of the environment into α and β for the n sectors, but
the entanglement between A and B in the spin degree of freedom is left untouched. In
Fig. 4, we no longer consider the limit where complete disentanglement occurs, but rather
wish to represent the decoherence of the momentum sector such that we end up with a
mixture with non-zero mutual information between the subsystems. Diagrammatically
we would write this as

U : ρAB ⊗ ρE 7→ ρsAB ⊗
∑
ij

pijP
i
A ⊗ P i

B ,⊗P
j
E (3.8.14)

and once again we see that α and β are “pinching off” from E ′ while the spin entanglement
between A and B connects the systems with an apparent wormhole.
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HAB !T HBHA

HβHα

HE HE'

Figure 4: Decoherence of an entangled pair AB with an environment E with the spin-
sector untouched. In this example, the limit of complete entangling of the environmental
subsystems α and β with A and B has not yet occurred.
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4 Discussion

When including the environment, a Hamiltonian which decoheres the momentum de-
grees of freedom of an EPR pair induces a partitioning of the environment, disentangling
two environment regions local to each part of the pair from each other. The change in
mutual information between the EPR pair can be related to the change in entropy of the
environment and with the Hilbert space of the environment being much larger than that
of the particles, the mutual information between the two partitions of the environment
would not change appreciably as they decohere. Consequently one would not expect a
noticeable distortion of space as a “small” EPR pair is separated. Conversely, when one
considers systems whose size of Hilbert space approaches that of their environment, such
as black holes, the change in mutual information would lead to a non-negligible change
in distance between the two regions which can be interpreted as a distortion of space.

A problem that was glossed over in Sec. 3.8 is the problem of localisation. In par-
ticular, when considering an EPR pair AB separated to two distant environments α and
β, we associate A with α and B with β by means of looking how entangled the particles
are with their environment. A is not in β because A is entangled with α and not β. The
problem arises when we reconsider the initial setup with the same line of reasoning, when
AB was completely disentangled from the environment E : where is the particle located
at this point? In other words, in this framework, what does it mean to localise a particle
to a particular environment? This question is left open for future research.

In collaboration with Guilherme Franzmann and Matthew Lawson, a few experimen-
tal setups have been proposed to test spacetime emergence [31]. One proposal involves the
hyperpolarisation of large volumes of liquid, for example through ParaHydrogen-Induced
Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), or Xenon
hyperpolarization by spin exchange with optically pumped Rubidium atoms. By vary-
ing the entanglement between the spin ensembles with NMR pulse sequences, one can
with an interferometer look for variations in relative distance between the spin ensem-
bles. Another suggestion is using a very sensitive interferometer such as the MAGIS-100
interferometer and comparing the relative distance between two populations of atoms,
such as a Bose-Einstein condensate, in either entangled or unentangled states.

4.1 Factorisation of Hilbert space

In all the above computations, assumptions have been made about how to factorise
a Hilbert space. We say that one part of a Hilbert space is our system and another part
is our environment, but so far this seemingly innocuous assumption can only be justified
to the extent that it helps us intuit a problem. The choice of factorisation becomes
particularly important for an attempt at discovering any emergent geometry from mutual
information. The reason is that even though von Neumann entropy is invariant w.r.t.
local transformations, it is not invariant w.r.t. global transformations, i.e. the chosen TPS.
Put simply, if in one TPS we have two entangled subsystems with near maximal mutual
information i.e. some “short” distance, there exists another TPS in which we no longer
have any entanglement, and the mutual information is 0 i.e. a “long” distance between
them. More specifically, if we consider a simple Bell pair under the transformation of the
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global Hilbert space such that

1√
2
(|00⟩AB + |11⟩AB) 7→ |0̃0̃⟩ÃB̃ , (4.1.1)

then the mutual information between the respective subsystems are I(A : B) = 2 ln 2
which is maximal while I(Ã :B̃) = 0 is minimal.

The choice of TPS, how to factorise Hilbert space, is then clearly non-trivial when
considering emergent geometry and should be derived not from pedagogical intuition
but from things considered more fundamental: Hilbert space, the wave function, the
Schrödinger equation and some Hamiltonian. In Sec. 3.8 an argument from the Monogamy
of Entanglement was given of how a Hamiltonian could induce a preferred factorisation
of the environment into two separate environmental subsystems, but we still start by
assuming a separation of subsystems and environment a priori. Cotler et al. [32] show
that for a given Hamiltonian, if one defines a notion of a local Hamiltonian4, then there
exists a unique TPS associated with that Hamiltonian. This is extended even further to
the spectrum of the Hamiltonian sufficing to define a unique TPS. The approach relies
on the assumption of locality on the other hand which although intuitively reasonable
still requires proper justification.

Carroll and Singh [33] produced a Quantum Mereology Algorithm for finding the
bipartite factorisation that minimizes a quantity they call Schwinger entropy defined as

S̈Schwinger = max
(
S̈lin(0), S̈pointer(0)

)
. (4.1.2)

S̈lin is the linear entanglement entropy of either of the partitions5 and S̈pointer is the pointer
entropy, the second order Tsallis entropy of one of the subsystems defined in the basis
of an observable O which satisfies the Zurek commutativity criterion for pointer states,
[Hint,O] ≈ 0. Pointer states, as introduced by Zurek, are quantum states that are left
relatively invariant during decoherence i.e. unitary transformations of the system with the
environment leaves particular states invariant, for example the spin degrees of freedom
in Fig. 4 or in general the spin state of a Bell particle pair before measurement. The
approach, although providing a possible experimental approach, is not yet theoretically
satisfying as it begs the question of how such a procedure occurs in nature.

Zanardi et al. [34] show that a TPS is induced by the available interactions and oper-
ations corresponding to the set of observables “accessible” to the system w.r.t a Hamilto-
nian. By expressing the irreducible representations of the observables, it is then possible
to form a hierarchy of TPS’s where the “natural” one is one in which all observables are
irreducible. In other words they argue that a preferred TPS depends on the Hamiltonian
of the system and that it makes little physical sense to speak of a TPS without also
including the set of observables acting on the system. In light of this, Cotler et al. [32]
defined an equivalent definition of a TPS w.r.t. a collection of observables Ai ∈ L(H) as

1. The mutual commutativity of observables [Ai,Aj] = 0 ∀i ̸= j

4If one considers a hypergraph G, with vertices representing subsystems and edges representing in-
teraction terms between subsystems, a Hamiltonian and correspondingly a TPS is k-local if there are at
most k vertices joined by a single edge.

5In a Schmidt decomposition one can show that the entanglement entropy of either reduced density
operator of a bipartitioned pure state is equal, S(A) = S(B)
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2. The independence of observables Ai ∩ Aj = 1

3. The generation of the algebra
∨

i Ai = L(H)

4.2 Finite or infinite-dimensional Hilbert space?

The initial reason we chose to work in a finite-dimensional representation is from
holographic principles; the entropy of a region is upper bounded by its surface and si-
multaneously the Hilbert space of that region is related to its entropy. There is still
a problem of a finite dimensional representation that must be addressed. The classical
argument for why we must abandon finite dimensional Hilbert space and embrace the
infinite dimensional Hilbert space of QFT is due to the Canonical Commutation Relation
(CCR)

[x̂, p̂] = i1n . (4.2.1)

By then taking the trace of either side, and using the trace relation tr(AB) = tr(BA)

tr([x̂, p̂]) = tr(i1n)

tr(x̂p̂− p̂x̂) = itr(1n)

tr(x̂p̂)− tr(p̂x̂) = in

tr(x̂p̂)− tr(x̂p̂) = in

0 = in .

(4.2.2)

Clearly we have reached an impasse unless we allow x̂ and p̂ to take infinite dimensional
representations, such that tr(AB) ̸= tr(BA) i.e. unbounded operators. There is on the
other hand a way of defining finite dimensional operators that do satisfy a CCR, if one
defines the CCR in an exponential form. Herman Weyl proposed the CCR

eiηp̂eiζx̂ = eiηζeiζx̂eiηp̂ , (4.2.3)

which admits finite dimensional representations of x̂ and p̂. Our choice of discretising
momenta in Sec. 3.7 can then be justified, albeit with a less arbitrary construction, but
suppose we would be forced to abandon a finite dimensional representation and rethink
this entire framework in terms of an infinite dimensional representation? It turns out that
mutual information is a well behaved, regularised quantity even in infinite dimensional
representations, since for some non-overlapping sets A and B and a mutual information

I(A :B) = S(A) + S(B)− S(A ∪ B) , (4.2.4)

the divergencies in S(A) and S(B) can be made to be exactly cancelled by S(A∪B) [35].

4.3 Topological protection

The “strong claim” of ER = EPR was recently challenged by Verlinde [36], showing
that black holes connected by an ER bridge need not be maximally entangled with mutual
information exceeding classical limits. This is expressed by what is called Holographic
principle for Black holes, which says that given the Bekenstein–Hawking relation can be
interpreted as the amount of entanglement between two sides of an eternal black hole,
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the entropy associated with the spacetime region local to an ER bridge is that of a black
hole in a mixed state which is topologically protected[37, 38]. By considering the time
evolved TFD for a time tα such that

ei(αn−αm) = e−2i(En−Em)tα , (4.3.1)

a state referred to as the Thermal Mixture Double (TMD) is constructed as

|TMD⟩α =
∑
n

ei(αn−βEn
2

) |n, n⟩ , (4.3.2)

whose density matrix is the mixture

ρTMD =
∑
n

e−iβEn |n, n⟩⟨n, n| . (4.3.3)

The entropy of this mixed state is that of a black hole, SBH and so the mutual information
between L and R is now classical, SBH . In other words, the requirement of entanglement
for the formation of an ER bridge is not necessary and it is therefore not clear that
entangled states lead to the formations of ER bridges.
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5 Summary

Any framework of emergent spacetime must faithfully reproduce the relative distances
we can measure in the real world. When one first approaches emergent spacetime by
means of mutual information between quantum systems, it may seem tempting to con-
clude that a maximally entangled quantum system like an EPR pair should then have a
relative emergent distance of zero. Physics students around the world have for decades
now performed labs involving EPR pairs being separated and measured that contradict
this claim. We argue in the report that it is indeed the framing of the problem that is
wrong and that a framework of emergent spacetime based on mutual information need
not produce a zero distance between an EPR pair.

We do so by reviewing EPR pairs in their basic forms and computing their mutual
information. We generalise this result for GHZ states and repeat this process by introduc-
ing basic models of the environment. We then introduce additional degrees of freedom,
namely momentum, whose Hilbert space is much larger than the Hilbert space often con-
sidered for EPR pairs such as spin. Comparing the mutual information of entanglement
in momentum space to that of spin space shows that in an emergent picture, entangle-
ment in spin would have a much smaller effect on the total mutual information between
an EPR pair due to the difference in sizes of the Hilbert spaces. On the other hand, we
also show given a particular construction of the momentum states that even though the
Hilbert space for momentum is much larger, the variation of the metric by modulation of
spin entanglement is greater than the order of 10−3 making it feasible for experimental
verification. We therefore indicate that experimental validation of a mutual information
based emergent spacetime is theoretically feasible.

Introducing decoherence then shows how mutual information between two systems
is lost to the environment. By introducing a thought experiment disentangling an EPR
pair and entangling them with the environment, the Hamiltonian which determines the
coupling to the environment could therefore leave the spin degrees of freedom highly
entangled while decohere the momentum degrees of freedom, reducing the total mutual
information between the systems while leaving the spin mutual information maximal.
This in turn disentangles the environment from itself which in the emergent framework
implies an increase in relative distance between two environments. We therefore also
provide a qualitative mechanism for how in the macroscopic picture absolute distances
arise i.e the distance between regions of spacetime.

To summarise, in a framework of emergent spacetime based on mutual information,
a maximally entangled EPR pair would not yield a null distance in a metric because the
mutual information between the particles would no longer be maximal once we include
additional quantum degrees of freedom, in particular momentum. When we consider
EPR pairs, we usually focus on the property of interest such as the spin or polarisation
of particles and ignore the remaining degrees of freedom. Once included, the spin degrees
of freedom contribute negligibly to the mutual information as shown in Sec. 3.6 since the
Hilbert space of momentum is much larger than the Hilbert space of spin. As mutual
information is proportional to ln dimH and the metric would be related to the negative
logarithm of mutual information, the metric between the particles of a Bell pair would be
effectively independent of the property which entangles the Bell pair, unless the Hilbert
space of the entangled property is of the scale of the Hilbert space of momentum.
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Appendix A

A.1 Tensor product structures

Definition A Tensor Product Structure (TPS) is an equivalence class of isomorphism
which endows Hilbert space with a factorisation as

T : H 7→
⊗
i

Hi . (A.1.1)

such that T1 ∼ T2 if T1T −1
2 can be written as products of local unitaries

⊗
i Ui up to

permutation.

In this regard, operators acting only on their respective factors of Hilbert space intro-
duces the notion of locality.

A.2 Pure states

Definition Given a Hilbert space H the pure state |ψ⟩ is any state that can be written
as a linear combination of basis vectors that span H. Given a TPS T satisfying T : H 7→
H1 ⊗ ...⊗HK, also known as a K-partite Hilbert space, a pure state can be written as

|ψ⟩ =
∑
i1...iK

ai1...iK |i1⟩(1) ⊗ ...⊗ |iK⟩(K) =
∑
i1...iK

ai1...iK |i1, ..., iK⟩ (A.2.1)

As a shorthand, we define the tensor product state such that

|i1⟩ ⊗ ...⊗ |iK⟩ ≡ |I⟩ (A.2.2)

meaning that a pure state can be written as

|ψ⟩ =
∑
I

aI |I⟩ (A.2.3)

If each state ik is a qubit, we can use the binary mapping

|00...00⟩ ≡ |0⟩ , |00...01⟩ ≡ |1⟩ , |00...10⟩ ≡ |2⟩ , ... (A.2.4)

A.3 Density operators

Definition Given a Hilbert space H the density operator ρ is an endomorphism ρ :
H 7→ H mapping states in Hilbert space with a matrix representation acting on the Hilbert
space with the following properties :

(i) ρ is Hermitian

(ii) ρ is positive semi-definite

(iii) ρ has unity trace tr(ρ) = 1

A corollary of property (i) is that ρ can by a unitary transformation be decomposed to a
real valued diagonal matrix, D = U †ρU . A density operator can represent either a pure
state or a mixed state.

Definition A density operator representing a pure state |ψ⟩ has the following properties:
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(i) ρ = |ψ⟩⟨ψ|

(ii) ρ2 = ρ

Notice that for the normalisation condition ⟨ψ|ψ⟩ = 1, (ii) immediately follows from (i).

Definition A density operator representing a mixed state cannot be written as the outer
product of a single state vector, or projector, but rather refers to an ensemble of states
|ψi⟩. Instead of writing out this mixed state, we refer to a mixed state by the density
opertor it is associated by

ρ =
∑
i

pi |ψi⟩⟨ψi| . (A.3.1)

We can immediately see that we can construct mixed state density matrices as the su-
perposition of projectors Pi = |ψi⟩⟨ψi|

ρ =
∑
i

piPi . (A.3.2)

A maximally mixed state in a Hilbert space with K partitions is one that can be cast
in the diagonal form

ρ =
1

K
1
K . (A.3.3)

A pure state density operator can then be expressed as

ρ = |ψ⟩⟨ψ| =
∑
I,J

aIa
∗
J |I⟩⟨J | =

∑
I,J

aIJ |I⟩⟨J | . (A.3.4)

Using Eq. (A.2.3) to form eigenstates

|ψn⟩ =
∑
I

aI,n |I⟩ , (A.3.5)

we can from the Spectral theorem show that the mixed state density operators can be
written as

ρ =
∑
n

λn |ψn⟩⟨ψn| =
∑
n,I

λnaI,n |I⟩⟨I| =
∑
I

bI |I⟩⟨I| . (A.3.6)

Definition A reduced density operator for some subset IA ∈ I, where we partition the
system as a multipartite system I = IA ∪ ... ∪ IZ such that ρ = ρA...Z, is

ρA = trB...Z(ρA...Z) =
∑

LB ...LZ

(1A ⊗ ⟨L|B ⊗ ...⊗ ⟨L|Z)ρA...Z(1A ⊗ |L⟩B ⊗ ...⊗ |L⟩Z) .

(A.3.7)
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A.4 Entropy

Definition Given a density matrix ρ, the entropy associated to this density matrix
is given by the von Neumann entropy

S = −tr(ρ ln ρ) . (A.4.1)

Since we can always diagonalise ρ, we can rewrite it in terms of the eigenvalues as

S = −
∑
i

λi lnλi . (A.4.2)

We can then immediately see that if ρ represents the density matrix of a pure state

S = −1 ln 1 = 0 , (A.4.3)

and if ρ represents the density matrix of a maximally mixed state of dimension k, the
entropy is maximal

S = −
k∑
i

1

k
ln

1

k
=

1

k

k∑
i

ln k = ln k . (A.4.4)

The joint entropy SAB for some bipartite density matrix ρAB is correspondingly

SAB = −tr[ρAB ln (ρAB)] , (A.4.5)

where if there is a decomposition such that ρAB = ρA ⊗ ρB then

SAB = −tr[(ρA ⊗ ρB) ln (ρA ⊗ ρB)]

= −tr[(ρA ⊗ ρB)(ln ρA ⊗ 1+ 1⊗ ln ρB)]

= −tr[ρA ln ρA ⊗ ρB + ρA ⊗ ρB ln ρB]

= −tr[ρA ln ρA ⊗ ρB]− tr[ρA ⊗ ρB ln ρB]

= −tr[ρA ln ρA]tr[ρB]− tr[ρA]tr[ρB ln ρB]

= −tr[ρA ln ρA]− tr[ρB ln ρB]

= SA + SB ,

(A.4.6)

and in general for

ρ =
⊗
i

ρi (A.4.7)

S(ρ) =
∑
i

S(ρi) . (A.4.8)

Theorem The subaddativity of entropy states that

SAB ≤ SA + SB (A.4.9)

while the strong subadditivity of entropy states that

SABC + SB ≤ SAB + SBC (A.4.10)
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A.5 Mutual information

Definition The mutual information between two subsystems A and B, or how much
information about B one could ascertain by knowing A or vice versa, is given by

I(A : B) = SA + SB − SAB (A.5.1)

with the following properties

(i) I(A : B) ≥ 0, which can be shown through the subadditivity of entropy.

(ii) I(A : B) ≤ ln(dim(A)) + ln(dim(B)), proof below

(iii) I(X : Y Z) ≥ I(X : Y ), which can be shown through the strong subadditivity of
entropy.

(iv) I(A : B) = I(B : A)

(v) Is equivelant to the relative entropy S(ρAB||σAB) between the density matrix ρAB

and the product of reduced density matrices σAB = ρA ⊗ ρB.

The classical analog to (iv) is that it is a relative entropy between the joint probability
distribution function p(x, y) and an assumption of statistically independent product of
distribution functions p(x)p(y). In other words, it is the amount of uncertainty one has
if one were to assume that the subsystems are completely independent.

Proof for (ii)
The from the subadditivity of entropy, joint entropy SAB has the bounds

0 ≤ SAB ≤ SA + SB , (A.5.2)

so

0 ≤ I(A : B) ≤ S(A) + S(B) . (A.5.3)

Since the individual entropies have the bounds

0 ≤ S(A) ≤ ln(dim(A))

0 ≤ S(B) ≤ ln(dim(B)) ,
(A.5.4)

the upper bound on mutual information is therefore

I(A : B) ≤ ln(dim(A)) + ln(dim(B)) . (A.5.5)

A.6 Entanglement

Definition If for a K-partite density operator

ρ1..K =
∑
i1...iK

pi1...iKρ
i1
1 ⊗ ...⊗ ρiKK ̸=

∑
i1...iK

πi1ρ
i1
1 ⊗ ...⊗ πiKρ

iK
K ⇐⇒ ∀in pi1...iK ̸= πi1 ...πiK ,

(A.6.1)

i.e. the coefficients are not separable, then ρ1...K represents an entangled state. Equiva-
lently for a pure state, if a K-partite pure state |ψ⟩1...K has the condition

|ψ⟩1...K =
∑
i1...iK

ai1...iK |i1⟩ ⊗ ...⊗ |iK⟩ ̸=
∑
i1...iK

bi1 |i1⟩ ⊗ ...⊗ biK |iK⟩ ⇐⇒ ∀in ai1...iK ̸= bi1 ...biK ,

(A.6.2)

then |ψ⟩1...K is entangled.
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A.7 Monogamy of entanglement

Definition If A is entangled with B, then entangling C with A disentangles A and B.
Another way of wording this is that the mutual information between A and B decreases
as C entangles with either A or B. In general, the definition can be expressed as [39]

τ(ρA1(A2....AN )) ≥
N∑

n=2

τ(ρA1An) , (A.7.1)

where τ is the square of the concurrence C for some bipartition ρAB [40]

C ≡
√

2(1− trρ2A) . (A.7.2)

A.8 Unitary transformations

Definition Given two Hilbert spaces H1 and H2, the operator U is an isometryd that
maps U : H1 7→ H2 such that the inner product is preserved

⟨ψ|ψ⟩ = ⟨Uψ|Uψ⟩ . (A.8.1)

Some properties, including its matrix representation, are

(i) U−1 = U †.

(ii) det(U) = ±1.

(iii) U = eiH where H is Hermitian.

Definition Given some TPS T : H 7→ H1⊗ ...⊗HK , a local unitary operator is one that
can be cast in the form

U1..K = U1 ⊗ ...⊗ UK , (A.8.2)

i.e. the operator acts individually on each subsystems. A consequence of this is that such
an operator cannot couple or decouple any two subsystems i.e. local operators preserve
entanglement. Conversely, any operator that does not preserve entanglement, i.e. en-
tangles or disentangles any subsystems must be either a non-local unitary operator or a
non-unitary operator (which could be local).
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