
Origin of solar surface activity and
sunspots

Sarah Jabbari
Nordita, Stockholm, Sweden

Department of Astronomy, Stockholm University, Sweden



Title page picture: Magnetic flux concentration by NEMPI for different values of the
stratification parameter r? in a spherical coordinate system. NEMPI was excited by
a dynamo-generated magnetic field. The flux concentration occurs at a high latitude,
indicated by a radial dashed line, near the surface. (Taken from Paper I, Figure 3.)



Origin of solar surface activity and
sunspots

Licentiate Thesis

Sarah Jabbari

First Supervisor: Prof. Axel Brandenburg

Second Supervisor: Prof. Göran Scharmer
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Abstract

In the last few years, there has been significant progress in the development of a new model
for explaining magnetic flux concentrations, by invoking the negative effective magnetic
pressure instability (NEMPI) in a highly stratified turbulent plasma. According to this
model, the suppression of the turbulent pressure by a large-scale magnetic field leads
to a negative contribution of turbulence to the effective magnetic pressure (the sum of
non-turbulent and turbulent contributions). For large magnetic Reynolds numbers the
negative turbulence contribution is large enough, so that the effective magnetic pressure is
negative, which causes a large-scale instability (NEMPI). One of the potential applications
of NEMPI is to explain the formation of active regions on the solar surface. On the other
hand, the solar dynamo is known to be responsible for generating large-scale magnetic
field in the Sun. Therefore, one step toward developing a more realistic model is to
study a system where NEMPI is excited from a dynamo-generated magnetic field. In this
context, the excitation of NEMPI in spherical geometry was studied here from a mean-
field dynamo that generates the background magnetic field. Previous studies have shown
that for NEMPI to work, the background field can neither be too weak nor too strong.
To satisfy this condition for the dynamo-generated magnetic field, we adopt an “alpha
squared dynamo” with an α effect proportional to the cosine of latitude and taking into
account alpha quenching. We performed these mean-field simulations (MFS) using the
Pencil Code. The results show that dynamo and NEMPI can work at the same time
such that they become a coupled system. This coupled system has then been studied
separately in more detail in plane geometry where we used both mean-field simulations
and direct numerical simulations (DNS).

Losada et al. (2013) showed that rotation suppresses NEMPI. However, we now find
that for higher Coriolis numbers, the growth rate increase again. This implies that there
is another source that provides the excitation of an instability. This mechanism acts at
the same time as NEMPI or even after NEMPI was suppressed. One possibility is that for
higher Coriolis numbers, an α2 dynamo is activated and causes the observed growth rate.
In other words, for large values of the Coriolis numbers we again deal with the coupled
system of NEMPI and mean-field dynamo. Both, MFS and DNS confirm this assumption.
Using the test-field method, we also calculated the dynamo coefficients for such a system
which again gave results consistent with previous studies. There was a small difference
though, which is interpreted as being due to the larger scale separation that we have used
in our simulations.

Another important finding related to NEMPI was the result of Brandenburg et al.
(2013), that in the presence of a vertical magnetic field NEMPI results in magnetic flux
concentrations of equipartition field strength. This leads to the formation of a magnetic
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Abstract

spot. This finding stimulated us to investigate properties of NEMPI for imposed vertical
fields in more detail. We used MFS and DNS together with implicit large eddy simulations
(ILES) to confirm that an initially uniform weak vertical magnetic field will lead to a
circular magnetic spot of equipartition field strength if the plasma is highly stratified and
scale separation is large enough. We determined the parameter ranges for NEMPI for a
vertical imposed field. Our results show that, as we change the magnitude of the vertical
imposed field, the growth rate and geometry of the flux concentrations is unchanged,
but their position changes. In particular, by increasing the imposed field strength, the
magnetic concentration forms deeper down in the domain.
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Chapter 1

Introduction

1.1 The magnetic Sun

Most phenomena on the solar surface have a direct relation with solar activity. One of
the known ones are sunspots. Concentrations of magnetic field are seen as dark areas
on the solar surface which have radii between 2 to 20 Mm and life times between one
day to a few months. Their temperature is about 3000 to 4000 K, which is cooler than
the surrounding temperature of about 6000 K (Stix, 2002). So they look darker; see
Figure 1.1. According to Ruzmaikin (2001), Sir Robert Hooke regarded sunspots as soot
in the solar fire. About 200 years later, Zeeman discovered the interaction of the magnetic
field with the electron angular moment (see Mestel, 1999). This discovery was used by
Hale (1908b) to measure the magnitude of the solar magnetic field. In a previous paper,
Hale (1908a) reported vortex-like flows in sunspots and thought therefore that this causes
their magnetism. Since then, the magnetic nature of sunspots gradually unfolded. The
Zeeman effect states that, if a gas is placed in the magnetic field, most of its spectral
lines split into three. The separation between lines is directly proportional to strength

Figure 1.1: Full disk image of the Sun taken by SDO/HMI on 9/01/2013. (a) Continuum image;
the dark spots are sunspots. (b) Magnetogram, the black and white colors show
opposite polarities of magnetic field in active regions and sunspots.
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Chapter 1 Introduction

Figure 1.2: The figure shows different component (violet and red) of doublets for both northern
and southern spot using a polarizer with different orientations; see panels (1)–(4)
and details in the text. Without polarizer, both components are visible; see panel
(5). Such a doublet in the spectrum is explained by a very strong magnetic field,
which he associates with the sunspot (Hale, 1908b).

of the magnetic field, so one can measure the magnetic field at the solar surface using
its spectrum of electromagnetic radiation. Hale considered the spectrum of sunspots and
compared it with that from a portion of the Sun without sunspot (not very far from the
spot). He showed that the Zeeman effect exists in the spectrum of the sunspot; see Figure
1.2. In the presence of a line-of-sight magnetic field, some of the spectral lines are split
into two circularly polarized components with opposite polarization. Using a polarizer,
he was able to see which of the two disappeared when changing the polarization plane by
90 degrees. Earlier, Hale (1908a) noticed that spots in the two hemispheres have opposite
vorticity1 (clockwise in the south, and anti-clockwise in the north—just like cyclones on
the Earth). Indeed, using the same orientation of the polarizer, he noticed that for a spot
in the south only the red component of the λ5940.87Å vanadium line is visible, see panel
(1) of Figure 1.2, while for a spot in the north only the violet one is visible; see panel (2).
This was for the western part of the umbra, but he found that the same result also for
the eastern part of the umbra; see panel (3). Turning the polarizer by 90 degrees, only
the red line is visible; see panel (4). Finally, without polarizer, both components of the

1Although Evershed (1909) proved this particular observation wrong, it was significant in that it led
him to discover what is now called the Evershed flow.
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1.2 Origin of flux concentrations

Figure 1.3: This figure presents the polarity laws of sunspots, which were attained by Hale
(1919).

vanadium line are visible; see panel (5). Eleven years later, Hale (1919) investigated the
polarity of sunspot magnetic fields and showed that it changes with the solar cycle; see
Figure 1.3.

When trying to confirm the vortex-like flows found by Hale (1908a), Evershed (1909)
found instead a radial outflow, which is now known as the Evershed flow. It extends
from the umbra across the penumbra to the outskirts of the spot. This flow was long
interpreted as a siphon flow along flux tubes anchored between footpoints of different
energy potential leading to a Bernoulli effect (Meyer & Schmidt, 1968; Thomas, 1988;
Schlichenmaier et al., 1998; Schlichenmaier, 2002). More recent work by Scharmer et al.
(2008) shows that the Evershed flow corresponds to the horizontal flow component of
overturning convection in gaps with strongly reduced field strength (Figure 1.4); see also
Scharmer (2009), Schlichenmaier (2009) and Scharmer et al. (2011).

1.2 Origin of flux concentrations

In the following we review different approaches proposed to explain magnetic field concen-
trations on the solar surface. One of them is the rising flux tube model (Parker, 1955a).
In particular, there are monolithic (Parker, 1977; Zwaan, 1978) and clustered models
(Parker, 1979). In this context, also the convective collapse of the flux tube, which was
proposed by Spruit (1979), will be reviewed. The other approach is the negative effective
magnetic pressure instability (NEMPI), or a similar instability based on effects from the
mean magnetic field. In Section 1.7 a brief summary of the history of the second approach,
NEMPI and the role of a mean magnetic field on the formation of flux concentrations is
presented. Mean field theory of the dynamo and its formulation is explained in a separate
chapter (see Chapter 2). In the same chapter, the α2 dynamo also is discussed. As NEMPI
plays an important role in PhD project, I will explain in Chapter 3 its basics and review
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Chapter 1 Introduction

Figure 1.4: Continuum image (A) and Doppler map (B) of a sunspot. The white contour shows
the interior penumbra. In the Doppler map, blue represents motions toward the
observer and red shows movement away from it (Scharmer et al., 2011).

the work done so far in more detail. Later, the interaction between dynamo-generated
magnetic field and NEMPI in spherical coordinates (Paper I) and also in plane geometry
with rotation (Paper II) will be discussed in Chapter 4. In Chapter 5, the investigation
of the behavior of the system in the presence of NEMPI driven by an imposed vertical
magnetic field (Paper III) is presented (see Chapter 5). In the last chapter, more realistic
model with solar parameters and the presence of ionization and radiative transfer will be
discussed. I also will present some primarily results of this ongoing study (see Chapter 6).

1.3 Omega loop theory

Most sunspots form in specific areas on the solar surface, which are known as active
regions. In such active regions most solar surface phenomena like sunspots, solar flares
and coronal mass ejections (CMEs) frequently form. Active regions appear bright in
X-ray and ultraviolet images. They correspond to regions of relatively strong magnetic
field. There are different theories about the formation and evolution of these regions.
In 1955, Parker presented an idea about sunspot formation which could explain most
properties of sunspots such as their east-west orientation, bipolarity, their position in low
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1.3 Omega loop theory

Figure 1.5: Illustration of a rising tree of magnetic flux tubes which reaches the surface and
forms a bipolar region (Zwaan, 1987).

latitudes (Spörer’s law) and the polarity inversion with time and latitude. He suggested
that a large enough buoyant magnetic flux tube tends to rise and can carry flux lines of
the Sun’s toroidal field to the upper layers. As a flux tube pierces the photosphere, it
forms a pair of sunspots (Parker, 1955a). In his original paper, he assumed that the flux
tubes originated from a depth of around 104 km. In a review, Parker (1977) discussed
various ideas regarding the magnetic origin of solar activity. The early ideas of magnetic
flux appearance in the solar photosphere have also been described by Zwaan (1978).
Figure 1.5 shows in summary how a rising flux tube can lead to the formation of a bipolar
region. Zwaan reviewed these ideas in subsequent papers (Zwaan, 1985, 1987).

In 1978, Parker suggested that the interaction between a weak magnetic field and con-
vective processes in small flux tubes leads to an amplification of the magnetic field. In the
quiet sun, small magnetic flux tubes exist in conjunction with supergranular boundaries,
where there is a strong downdraft. He presented a new effect in small flux tubes, which
leads to strong cooling and thus to magnetic field concentration. This effect is different
from that of other theories, which suggest radiation as the main mechanism for cooling
the photosphere. Those theories assume that this mechanism is related to the suppres-
sion of convective heat transfer by the magnetic field. In fact, the plasma compresses the
magnetic field in the downdraft such that the enhanced buoyancy force compensates the
downward flow in the flux tube. This phenomenon leads to cooling inside the flux tube.
Parker showed theoretically that a small decrease in temperature over many scale heights
may lead to a reduced magnetic pressure in the solar surface, which results in magnetic
field concentration (Parker, 1978).

7



Chapter 1 Introduction

Figure 1.6: Schematic representation of a flux tube before (dashed line) and after (solid line)
convective collapse (Spruit, 1979).

1.4 Convective collapse

Spruit (1979) followed Parker’s idea regarding magnetic flux tubes to explain convective
collapse of small flux tubes. He found a critical value for the magnetic field strength
needed to get such field concentrations. For a field stronger than a certain critical value,
the magnetic field will suppress convection. He computed this critical value for the solar
convection zone to be about 1270 G at the solar surface (see also Spruit & Zweibel, 1979).
In this case flux tubes are divided into two types, stable flux tubes (with magnetic field
bigger than the critical value) and unstable ones (with magnetic field less than the critical
value). For the second group of tubes, when the field strength is low enough, the instability
sets in and, according to Parker, leads to downward flow, the temperature decreases, which
results in magnetic field concentration in the upper layers. But there is a limitation for
this downward flow too. If the resulting magnetic field is bigger than the critical value,
the tube settles in a new equilibrium with the same properties as the initial one, but with
a lower energy. This is what is called convective collapse of flux tubes. Figure 1.6 shows
a sketch of convective collapse of a magnetic flux tube. On the other hand, since the
value of the resulting magnetic field is small enough, downward displacement in the tube
continues and the tube vanishes at the surface and sinks down to a deeper layer.

There is also a recent work by Spruit (2012), who confronted some ideas about the solar
cycle with observations. He suggested that the interaction between magnetic field and
turbulent convection is not responsible for the solar cycle and that the buoyancy instability
of the magnetic field itself results in the solar cycle. He argues that the magnetic field
is generated in the radiative interior and that the source of energy comes from the small
radial shear that develops as the Sun spins down. Simulations have not yet shown that
such a dynamo mechanism can really work (Zahn et al., 2007).
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1.5 Clustered versus monolithic sunspot models

Figure 1.7: A sketch of a group of flux tubes with in the first 1000 km under the surface that
pressed together to form an active region or a sunspot (Parker, 1979).

1.5 Clustered versus monolithic sunspot models

Later in 1979, Parker suggested that magnetic field concentrations at the surface, which
lead to the formation of sunspots, are due to many small flux tubes. This is referred to
as the cluster model of sunspots, as opposed to the more traditional monolithic models
where the sunspot would have uniformly distributed magnetic flux. With this model he
explained how a group of separate magnetic flux tubes in the convection zone reaches the
surface through magnetic buoyancy, where they produce a single big flux concentration
with a correspondingly larger magnetic field; see Figure 1.7. In this paper he investigated
the instability and structure of sunspots using this new model. He emphasizes that
flux tubes of different size have the same Wilson depression. Wilson depression occurs
because of the fact that in a spot the surface where the optical depth is equal to unity is
geometrically deeper. The reason is that, because the spot is cooler, the hotter radiating
surface lies at a deeper level. Although, the visible surface inside sunspots of different size
is lowered relative to the quiescent photosphere due to Wilson depression, it is found to
be independent of the size of the spot. This is only possible for the clustered model where
the individual elements lead to a certain Wilson depression, which can then not change as
more tubes are being attached to each other. Even today the question of clustered versus
monolithic sunspot remains open; see the recent discussion by Rempel & Schlichenmaier
(2011).

In the second part of the paper, he discusses aerodynamic properties of such flux tubes
(Parker, 1979). He shows in his later work that, under some assumptions, it is possible to
obtain the depth where the hypothetical anchor points lie. These anchor points are the
positions where the flux starts rising. By using this theory, one can estimate the depth
of origin of solar active regions and sunspots. Parker (1984) suggested that this depth is
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Chapter 1 Introduction

roughly equal to the horizontal size of an active region. For a normal active region, this
depth is about 105 km (100 Mm). In his paper, he used the behavior of active regions at
the solar surface to explain the dynamical behavior beneath the convection zone (Parker,
1984).

1.6 Flux concentrations in deep convection simulations

In the last ten years, there have been numerous studies of rising flux tubes in simulations;
see Cheung et al. (2008); Rempel et al. (2009); Cheung et al. (2010); Rempel & Che-
ung (2014). There are also simulations with adiabatic stratification (Hood et al., 2012;
Archontis, 2012; Archontis et al., 2013). They investigated the rising process from the
convection zone into the solar atmosphere.

In their recent paper, they have studied the effects of flux tube-like initial conditions on
the dynamics, rise and evolution of tubes. They have shown that strong twisting is not
necessary for a tube to reach to the corona, as was previously thought (Fan, 2001, 2009).
In their simulations the rising flux tube pierces the photosphere and forms loops in the
corona (Archontis et al., 2013). Figure 1.8 shows one of their simulation results. One can
see the formation of two loops due to the weakly twisted initial flux at z = 0 (upper row)
and also the appearance of the raising flux at z = 540 km (middle row).

Although coherent flux tubes, which are assumed to form deep in the convection zone,
are believed to have the potential to develop active regions, it has also been shown that the
convective motions are important in the formation of active regions by promoting the uplift
of magnetic structures between supergranular downdrafts. Recently, Stein & Nordlund
(2012) introduced magnetoconvection as a possible origin of magnetic flux emergence from
a depth of about 20 Mm. They demonstrated using a numerical simulation that it is not
necessary to have an initially coherent flux tube to form an active region; see Figure 1.9.
In fact, magnetoconvection with a horizontal 1 kG magnetic field injected at the bottom
of their computational domain gives rise to bi-polar structures at the surface and thus
leads to the formation of an active region.

1.7 Flux concentrations from mean-field effects

A different idea, which is able to explain large-scale magnetic field concentrations, was
proposed by Kleeorin et al. (1989) and Kleeorin et al. (1990). They suggested that the
effective (mean-field) magnetic pressure (turbulent and non-turbulent contributions) in a
turbulent plasma can be negative, which leads to a large-scale magnetic instability. The
turbulent pressure is of course positive, but it is being suppressed by the mean magnetic
field. If this field causes a suppression of the turbulent pressure that is stronger than the
intrinsic (non-turbulent) pressure, the net effect is negative.

This instability occurs in the presence of strong density stratification; and thus pref-
erentially near the solar surface on scales encompassing those of many turbulent eddies.
This instability is invoked as an explanation for magnetic field concentrations in the upper
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1.7 Flux concentrations from mean-field effects

The Astrophysical Journal, 778:42 (15pp), 2013 November 20 Archontis, Hood, & Tsinganos

Figure 2. Top: Bz distribution at the base of the photosphere at two different times. Middle: the same as above, at z = 0.54Mm. Bottom: side view of the fieldlines at
the same times. The dashed vertical line is located at the center of the right lobe.
(A color version of this figure is available in the online journal.)

4Figure 1.8: Visualization of the vertical magnetic field together with field lines for two different
times (left and right columns) at the surface (top), at 540 km height (middle) and
the side view of field lines (bottom) (Archontis et al., 2013).

layer of the convection zone (Kleeorin et al., 1989, 1990). As NEMPI is the basic theory
behind our research, it will be described in more detail in Chapter 3.
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Figure 1.9: Separation of opposite polarity of magnetic field (magnetic field concentration) on
the upper layer due to magnetoconvection resulted by Stein & Nordlund (2012).
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Chapter 2

Mean-field approach in Dynamo theory

2.1 Two-scale assumption

Dynamo theory of the Sun’s magnetic field starts from the idea that, in a rotating body,
toroidal and poloidal magnetic fields can act as power sources of each other. This early
idea of Parker (1955b) suggests that stretching of the poloidal field due to differential
rotation in the body leads to the creation of toroidal field and, on the other hand, the
effect of helical turbulence on the toroidal field produces a poloidal field. One approach
to formulate this idea is through mean-field theory, where one assumes that all dependent
variables are written in the form of a mean and a fluctuating part, i.e.,

F = F + f . (2.1)

The important point here is that we do not impose any restriction on the strength of
the fluctuating part, so this is different from perturbation theory. The two important
equations here are the momentum and induction equations:

ρ
DU

Dt
= −∇p+ J ×B + ρg + ρν

(
∇2U +

1

3
∇(∇ · u) + 2S ·∇ ln ρ

)
, (2.2)

∂B

∂t
= ∇×U ×B + η∇2B, (2.3)

where ν and η are kinematic viscosity and magnetic diffusivity, respectively, and both
are assumed to be constant. S is the traceless rate-of-strain tensor of the flow. By
applying mean-field theory to the induction equation we are able to consider the effect of
turbulence on the magnetic field fluctuation by introducing the mean electromotive force.
We introduce

B = B + b, (2.4)

U = U + u, (2.5)

where B and U are the mean values and b and u are the fluctuations. Again, I emphasize
that there is no restriction on the strength of b and u. In the next section I will explain
how this theory leads to a complete description of an α2 dynamo.

13



Chapter 2 Mean-field approach in Dynamo theory

2.2 Mean-field equations and α2 dynamo

By substituting relations (2.4) and (2.5) into (2.3), taking averages of these equations,
and using the Reynolds averaging rules, we get:

∂B

∂t
= ∇× (U ×B) + η∇2B + ∇× E , (2.6)

where E = u× b. In the case of isotropic turbulence and under the assumption of perfect
scale separation, the mean electromotive force (EMF) is given by (Moffatt, 1978)

E = αB − ηt∇×B. (2.7)

This expression implies that for a non-vanishing α effect, a mean magnetic field can be
generated by the α2 dynamo. Whether or not this happens depends on boundary condi-
tions, the size of the domain, and the value of turbulent magnetic diffusivity. Substituting
(2.7) into (2.6), we get

∂B

∂t
= ∇× (U ×B) + η∇2B + ∇× (αB)−∇× (ηt∇×B). (2.8)

Let us consider the case when there is no mean flow (U = 0) and the turbulence is
homogeneous. This implies that α and ηt are constants. It is therefore straightforward to
write the mean induction equation in the form

∂B

∂t
= ηT∇2B + α∇×B, (2.9)

where

ηT = η + ηt (2.10)

is total magnetic diffusivity. We seek for a solution of (2.9) as the real part of an expression
of the form

B(x) = B̂(k)eik·x+λt. (2.11)

Substituting this expression into the mean induction equation, we obtain

λB̂ = αik × B̂ − ηTk2B̂. (2.12)

The dispersion relation is then

(λ+ ηTk
2)
(
(λ+ ηTk

2)2 − α2k2
)

= 0, (2.13)

which yields the growth rate of the α2 dynamo as

λ = −ηTk2 + |αk|. (2.14)

14



2.2 Mean-field equations and α2 dynamo

The α2 dynamo is characterized by a parameter called the dynamo number, which is
defined as

Cα = α/ηTk1, (2.15)

where α is the typical value of the α effect, and k1 is the lowest wavenumber of the
magnetic field that can be fitted into the domain. Using the concept of kinetic helicity
for isotropic turbulence, these coefficients are given by

α ≈ α0 ≡ −1
3
τω · u, ηt ≈ ηt0 ≡ 1

3
τu2, (2.16)

where τ = (urmskf)
−1 is an estimate of the correlation time, kf is the wavenumber of the

energy-carrying eddies (or forcing wavenumber in forced turbulence), and

εf ≡ ω · u/kfu
2
rms (2.17)

is the normalized kinetic helicity. We know that in a stratified rotating system, kinetic
helicity will be produced self-consistently by the interaction between rotation and stratifi-
cation. In this case it was suggested that the relation between kinetic helicity and Coriolis
numbers, Co = 2Ω/urmskf , has the form of

εf ≡ εf0 Gr Co (for Gr Co <∼ 0.1). (2.18)

Here, Gr is the gravitational parameter, which is defined by

Gr = g/c2
skf , (2.19)

where g is the gravitational acceleration and cs is the sound speed. Combining (2.15)–
(2.19), the dynamo number takes the form

Cα = εf0 Gr Co kf/k1. (2.20)

This expression indicates that the combination of stratification and rotation leads to an
α effect. This result was confirmed through DNS of Losada et al. (2013) and in Paper II.
In the MFS of Paper I, we assumed an additional ad hoc nonlinearity called α quenching.
This means that α is then replaced by

α =
α0

1 +QαB2/B2
eq

. (2.21)

The larger the quenching parameter Qα, the smaller is the magnetic field resulting from
the α effect.

Like for the induction equation (2.6), there are also mean-field parameterizations for
the the mean momentum equation (2.2). It has the form

ρ
DU

Dt
= −∇p+ ρg + FM + FK, (2.22)
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where p is the gas pressure, FK = ρνt(∇2U + 1
3
∇∇ ·U + 2S∇ ln ρ) is the viscous force

from the mean flow (used in all mean-field and large eddy simulations), while FM is the
mean Lorentz force which, and can be expressed as

FM = J ×B +
1

2µ0

∇(qp0B
2) + ..., (2.23)

where dots refer to extra terms that have been neglected, because they turned out not
to be important (Brandenburg et al., 2012; Käpylä et al., 2012). Here, the second term
represents one of the most important turbulent contributions to the mean Lorentz force.
This will be discussed in Chapter 3. In nonlinear mean-field simulations, one solves (2.9)
together with (2.22), and the continuity equation for different boundary conditions.

2.3 A comment on various instabilities

There are various hydrodynamic and hydromagnetic instabilities. NEMPI is closely re-
lated to the Parker instability, except that it requires that the scale of variation of the
density is short compared with the scale of variation of the magnetic field. For the Parker
instability, this is exactly the other way around; see Brandenburg et al. (2012). Fur-
thermore, the NEMPI draws energy from the kinetic energy of the turbulence while the
Parker instability draws potential energy. There is another conceptual difference between
NEMPI and many other instabilities. Normally, one analyzes the stability of a system at
rest. For example, the outer layers of the Sun are unstable to convection and this leads to
turbulence. Asking therefore about instabilities such as NEMPI is questionable, because
the system is already unstable. On the other hand, asking the same question at the level
of the mean-field equations is straightforward and uncontroversial. A familiar example is
the mean-field dynamo. However, identifying the dynamo in a turbulence simulation is
already not straightforward and it is difficult to determine unambiguously a growth rate
associated with this instability. It is the same with NEMPI. To determine its growth rate,
one has to isolate large-scale features that are not expected to be generated otherwise and
then determine their growth. Examples of this have been shown by Brandenburg et al.
(2011) and Kemel et al. (2012b). The problem becomes even more complicated when we
deal with two mean-field instabilities at the same time, namely NEMPI and the dynamo
instability. In this connection, one may compare the scale of NEMPI and dynamo insta-
bilities. In general, we have small-scale and large-scale dynamo instabilities, which occur
in the absence of an imposed magnetic field if the plasma has large enough magnetic
Reynolds number ReM . The scale of NEMPI lies between these two. In the following we
describe how we can use simulations to determine the relevant mean-field parameters of
the large-scale dynamo.
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2.4 Test-field method for computing the dynamo
coefficients

An important numerical method for calculating dynamo coefficients, αij and ηij is the
test field method (TFM). Starting from (2.6) and employing various independent vector
magnetic fields called test fields, Bpq, instead of B while keeping the velocity fixed, one
is able to calculate E . From that and using (2.7) one gets a system of equations, which
can be solved to obtain the coefficients αij and ηij. Knowing that Jpq = ∇ ×Bpq, this
system of equations will have a form of

Epqi = αijB
pq

j − ηijJ
pq

j . (2.24)

Finally the transport coefficients are defined by

α = 1
2
(α11 + α22), ηt = 1

2
(η11 + η22), (2.25)

γ = 1
2
(α21 − α12), δ = 1

2
(η21 − η12), (2.26)

where α11, ..., α22, η11... and η22 are the different elements of the α and η tensors. For
further details about TFM see Schrinner et al. (2005, 2007); Brandenburg (2005); Bran-
denburg et al. (2010). We have used this method to calculate the dynamo coefficients for
a system with large-scale separation in the presence of the rotation (Paper II).
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Chapter 3

Negative effective magnetic pressure
instability

In addition to the dynamo instability, which has a particular type and scale (see Sec-
tion 2.3), there is also another intermediate-scale instability which makes it possible to
concentrate magnetic field from a weak initial magnetic field in a stratified and turbu-
lent plasma. In comparison with the dynamo-generated magnetic field in the Sun, the
magnetic structures resulting from NEMPI have smaller scales than the dynamo field.
This instability might occur in the upper layers of the Sun and can cause the formation
of active regions on the solar surface. In order to be able to explain the origin of active
regions by NEMPI, it is necessary to study NEMPI in more detail. In this chapter the
theory of negative effective magnetic pressure instability is explained.

3.1 Negative effective magnetic pressure

The idea of NEMPI started from the fact that the effective magnetic pressure can be
negative in the case of a turbulent plasma. The total effective (or mean-field) pressure in
the turbulent plasma is

ptot = pg + pmag + pt, (3.1)

where pg and pmag are the gas and magnetic (B2/8π) pressures, respectively.1 Further-
more, pt is the turbulent pressure, which is given by the isotropic part of the total (kinetic
plus magnetic) stress tensor,

ρ uiuj −
bibj
4π

+
b2

8π
δij =

(
ρu2 − b2

4π
+

3b2

8π

)
δij
3

+ ... =


ρu2 +

b2

4π︸ ︷︷ ︸
≈const

− b2

8π


 δij

3
+ ..., (3.2)

where dots refer to additional anisotropic parts. This shows that, if the total energy
density of the turbulence is approximately conserved, the turbulent pressure decreases

1 In this thesis, I use gaussian units, while in Papers I and III we use SI units. In practice, it means
that the permeability µ0 in those papers is to be replaced by 4π. In Paper II we use nondimensional
quantities which are obtained by replacing µ0 by unity. This is also done in the next section and
most of the simulations, except in Chapter 6, where I present new simulations using physical units
applicable to the Sun.
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with increasing b2. In their early work, Kleeorin et al. (1989, 1990) formulated this in the
form

pt = Em/3 + 2Ek/3, (3.3)

where Em = b
2
/8π is the magnetic fluctuation energy density and Ek = ρ u2/2 is kinetic

energy density. Again, making use of the assumption that the total energy density of the
turbulence is approximately conserved (Etot = Em + Ek ≈ const), the turbulent pressure
can be written in the form

pt = 2Etot/3− Em/3. (3.4)

On the other hand, we expect Em to be an increasing function of pmag, so we can expand
it in a series of pmag

Em = Em(0) + aTpmag + ..., (3.5)

inserting this into (3.4) and using qp = aT/3 we get

pt = pt(0)− qp
B

2

8π
, (3.6)

where the first term is the turbulent pressure in the case that the large-scale magnetic
field is absent (the net effect of turbulence on the plasma pressure) and the second term
determines the turbulent contribution to the mean magnetic pressure. Here, qp is a
function of the large-scale magnetic field that is expected to be positive. The expression
for total pressure thus attains the form

ptot = pg + pt(0) + (1− qp)
B

2

8π
. (3.7)

We introduce the effective magnetic pressure as

Peff = (1− qp)
B

2

8π
, (3.8)

which can also be written in dimensionless form

Peff = 1
2
(1− qp)β2. (3.9)

Here, β = B/Beq, Beq =
√

4πρu2
rms is the equipartition value of a magnetic field, where

ρu2
rms/2 is the turbulent kinetic energy. This relation indicates that for qp > 1, the effective

magnetic pressure is negative, so it decreases the total pressure of the plasma. This gives
rise to a large-scale instability which is driven at the expense of the total turbulence
energy.

Kemel et al. (2012a) presented a useful parameterization of qp as

qp =
qp0

1 + β2/β2
p

≡ β2
?

β2
p + β2

, (3.10)

where β? =
√
qp0βp. These two parameters, β? and βp, are calculated by using direct

numerical simulations (DNS).
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3.2 DNS of the negative effective magnetic pressure
instability

In this section I present a summary of the study of NEMPI using DNS. Here, we solve
the equations of magnetohydrodynamics in the form of

DU

Dt
= −c2

s∇ ln ρ+
1

ρ
J ×B + f + g + F ν , (3.11)

∂A

∂t
= U ×B + η∇2A, (3.12)

∂ρ

∂t
= −∇ · ρU . (3.13)

Here B = B0 + ∇ ×A, where B0 is the imposed uniform magnetic field (which can be
horizontal or vertical) and A is the magnetic vector potential (nonuniform). Viscous force
is defined as F ν = ∇ ·(2νρS) and J is the current density, ν and η are kinematic viscosity
and magnetic diffusivity due to Spitzer conductivity of the plasma, respectively. To drive
turbulence one has two options, convection or forcing function. The forcing function f ,
which is added to the momentum equation, is a random plane wave changing at every
time step with average wavenumber kf/k1. The averaged momentum equation can be
expressed in the form

∂

∂t
ρU i = − ∂

∂xj
Πij + ρ gi, (3.14)

where Πij is the averaged momentum stress tensor, which has the form

Πij = Π
m

ij + Π
f

ij. (3.15)

Here

Π
m

ij = ρU iU j + δij
(
p+ 1

2
B2
)
− BiBj − 2νρ Sij, (3.16)

and

Π
f

ij = ρ uiuj + 1
2
δijb2 − bibj. (3.17)

Π
m

ij is the contribution from the mean field and Π
f

ij is the contribution from the fluctuating
field. As we are interested in the contribution from the fluctuating part that results form

the mean field, we should calculate Π
f

ij also for zero mean field (let us call it Π
f0

ij), and

then subtract it from Π
f

ij. We can parameterize the dependence of the resulting tensor,

∆Π
f

ij ≡ Π
f

ij − Π
f0

ij = −qpδijB
2/2 + qsBiBj − qggigj, by introducing coefficients like qp, qs

and qg. So, one challenge related to NEMPI is to calculate these coefficients for different
setups.

In the following subsection a summary of the DNS and MFS for the study of NEMPI
is presented.
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3.3 Results from DNS and MFS

Kleeorin et al. (1989, 1990) derived an expression for the effective magnetic force, which
has the form of

Fm = −∇
[

(1− qp)
B

2

8π

]
+ B ·∇

[
(1− qs)

B

4π

]
, (3.18)

where qs and qp are nonlinear functions of the large-scale magnetic field, B. In particular,
the functions qs(B) and qp(B) relate the sum of the Reynolds and Maxwell stresses to the
mean magnetic field. Another important point is that the growth rate of the instability is
directly related to the large-scale magnetic field. The functions qp(B) and qs(B) have been
derived by the spectral τ approach (Kleeorin et al., 1996; Rogachevskii & Kleeorin, 2007)
and the renormalization approach (Kleeorin & Rogachevskii, 1994). In both approaches,
one tries to approximate the nonlinear terms. In the τ approach one expresses nonlinear
terms by a suitable damping term, where τ is a damping time. In particular, the deviation
of the third moments caused by nonlinear terms from the background turbulence are
expressed in terms of the the deviation of the corresponding second moments in the
form of the relaxation term. The renormalization approach comprises a replacement
of real turbulence with that characterized by effective turbulent transport coefficients.
This procedure enables one to derive equations for the transport coefficients: turbulent
viscosity, turbulent magnetic diffusivity, and turbulent magnetic coefficients as a function
of scale inside the inertial range. The small parameter in the renormalization approach is
the ratio of the energy of the mean magnetic field to the turbulent kinetic energy of the
background turbulence (with zero-mean fields). The spectrum and statistical properties of
the background turbulence are assumed to be given here. Figure 3.1 shows plots of these
functions for different values of the magnetic Reynolds numbers. It also shows the effective

mean magnetic pressure, Peff(β) and effective mean magnetic tension, σB = (1−qs)B
2
/B2

eq,
where Beq is the equipartition field strength.

In subsequent papers, Kleeorin and collaborators investigate the energy transfer from
small-scale to large-scale magnetic field due to the negative effective magnetic pressure
instability (NEMPI) and they tried to explain solar oscillation and sunspot formation
by this new mechanism (Kleeorin et al., 1993, 1996). In this theory, active regions are
regarded as a shallow phenomenon. In 2011, NEMPI was detected in DNS by Brandenburg
et al. (2011). Since then it is of great interest to investigate different aspects of NEMPI
and its interaction with the turbulent plasma. It was also studied in MFS in a highly
stratified isothermal gas with large plasma β (Brandenburg et al., 2010, 2011; Kemel et
al., 2012a). Figure 3.2 shows how a magnetic structure develops and then sinks. This
is believed to be a consequence of the negative effective magnetic pressure. To achieve
pressure equilibrium, the gas pressure must increase, so the density also increases and the
structure becomes heavier and sinks. This result from DNS is in striking similarity to
earlier MFS of Brandenburg et al. (2010). Another interesting result is of Kemel et al.
(2012a) who showed in MFS that three-dimensional structures with variation along the
direction of the mean field (here the y direction) form if one includes the effect of negative
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Figure 3.1: (a) The function qp(B) for different values of the magnetic Reynolds number;
ReM = 103 (thin solid line), ReM = 106 (dashed-dotted line); ReM = 1010 (thick
solid line) for homogeneous turbulence and at ReM = 106 (dashed line) for convec-
tive turbulence. (b) The effective mean magnetic pressure pm at ReM = 106 for
homogeneous turbulence (thick solid line), and for convective turbulence for the hor-
izontal field (dashed) and for vertical field (thin solid line. (c) The function qs(B)
for different values of the magnetic Reynolds numbers; ReM = 103 (thin solid line),
ReM = 106 (thin dashed-dotted line), ReM = 1010 (thick solid) for a homogeneous
turbulence, and at ReM = 106 (dashed line) for a convective turbulence. (d) The
effective mean magnetic tension σB at ReM = 106 for homogeneous turbulence (thick
solid line), and for a convective turbulence (Rogachevskii & Kleeorin, 2007).

effective magnetic tension; see Figure 3.3.

Kemel et al. (2013b), Kemel et al. (2013a), and Kemel et al. (2012b) considered NEMPI
as a possible mechanism for the formation of active regions. They also investigated the
effect of non-uniformity of the magnetic field on NEMPI. In their last paper they increased
the number of eddies to 30 to get large enough scale separation to excite NEMPI (Kemel
et al., 2013b,a, 2012b).

Käpylä et al. (2012) studied the effects of turbulent convection on NEMPI. They demon-
strated that NEMPI still works if the entropy equation is included, provided the back-
ground stratification is adiabatic, i.e., there is no stabilizing force associated with Brunt-
Väisälä oscillations.

Losada et al. (2012, 2013) used both MFS and DNS to investigate the effect of rotation
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Chapter 3 Negative effective magnetic pressure instability

Figure 3.2: First numerical demonstration of NEMPI in DNS that shows a large-scale magnetic
flux concentration resulting from NEMPI (Brandenburg et al., 2011).

Figure 3.3: Another demonstration of NEMPI with mean field modeling. Here it has been shown
how tension forces affect the magnetic field pattern (Kemel et al., 2012a).

on NEMPI. They considered the development of NEMPI in the case of large-scale sepa-
ration in the presence of rotation. In MFS, they found that even relatively slow rotation,
with Coriolis numbers, Co = 2Ω/urmskf , around 0.1 suppresses NEMPI. Their results of
MFS for small Co are compatible with DNS, which show that there is good agreement
between DNS and MFS in the case of NEMPI. In the case of high Coriolis numbers (Co),
however, the growth rate of NEMPI increases, which was not consistent with the fact
that the rotation suppresses NEMPI (see also Figure 6 of Paper II). This implies that
there is another source which provides growth of magnetic field. This mechanism acts
at the same time as NEMPI or even after NEMPI was suppressed. One explanation was
that for higher values of Co, an α2 dynamo is activated and causes this observed growth
rate. In other words, for large values of Co we deal with some kind of coupled system of
NEMPI and dynamo. In Chapter 4, I will present the results of a more detailed study of
this system, which led to two publications, Papers I and II.

The functions, qp(β) and qs(β) were determined in DNS by Brandenburg et al. (2010,
2012) and Käpylä et al. (2012). They showed by DNS of forced turbulence with an
imposed field that these functions are positive and exceed unity for weak fields. Here,
β = B/Beq is the mean magnetic field normalized by the equipartition field strength.
They used this result to explain how the reduction happens on the effective Lorentz force,
which leads to negative effective magnetic pressure. Their simulation demonstrates that
qp should be larger than 2qs. They investigated both the solution of the forced turbulence
and mean-field MHD on the large-scale Lorentz force in a density-stratified layer. They
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Figure 3.4: Left: time evolution of the meridional magnetic field and velocity vectors, which
have resulted from 2D simulations. Right: 3D simulation of magnetic field showing
three different times. The field concentration due to NEMPI forms near the surface
(Brandenburg et al., 2010).

showed in their simulations that the growth rate of the instability increases with increasing
qp, strength of stratification, and imposed field: enhancing any one of these quantities
increases the growth rate. They also have found that increasing the magnetic diffusivity
decreases the growth rate. Figure 3.4 shows their MFS results. In this figure, the time
evolution of magnetic field after saturation of the instability is shown for two cases; 2D
(left) and 3D (right) simulations. It can be seen from both plots how NEMPI leads to the
formation of magnetic structures near the surface. The interesting thing about this figure
is the bipolar magnetic field structures, which are formed on the surface in the case of
3D simulations (Brandenburg et al., 2010). The suppression of turbulent hydrodynamic
pressure by the mean magnetic field also was studied in DNS. Brandenburg et al. (2012)
simulated strongly stratified, isothermal turbulent plasma (large Reynolds number) with
an imposed uniform magnetic field (smaller than the equipartition value) and proper scale
separation. Their results showed that the ratio B0/Beq0 should be in a suitable range for
NEMPI to work. This is consistent with theory and mean-field calculations.

Recently, the formation of bipolar regions also was observed in DNS by Warnecke et
al. (2013). In their simulation, they added an outer coronal layer to the upper boundary.
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Figure 3.5: Magnetic spot formation due to NEMPI near the surface in the case of vertical
imposed magnetic field (Brandenburg et al., 2013).

They showed that the presence of this new upper ’boundary condition’ helps the formation
of a bipolar magnetic region, which later decays.

One of the important recent works on NEMPI was done by Brandenburg et al. (2013),
where, for the first time, they excited NEMPI by imposing a vertical magnetic field with
a vertical field boundary condition in forced turbulence for a stratified plasma. Their
DNS result showed that in the case of a vertical imposed field, because of the absence of
saturation by what they call a potato sack effect, the resulting magnetic field is stronger,
even larger than the equipartition value, and after 1.5 turbulent-diffusive times, a magnetic
spot forms on the surface; see Figure 3.5. This achievement led us to investigate NEMPI
with a vertical imposed field in more detail. The result of this study was presented in a
follow-up paper on this subject (Paper III). Because of the importance of this result, I
will discuss it in more detail in Chapter 5. In the next subsection, I present a comparison
between NEMPI and the flux tube model.

3.4 NEMPI versus flux tubes

The reason that NEMPI leads to field structures only near the surface is that NEMPI
works only in highly stratified turbulent plasma. As the magnetic field concentration
formed by NEMPI happens very close to the surface, where stratification is strong, it
can directly lead to the formation of active regions or even sunspots. Here, the buoyancy
force also accompanies NEMPI in the formation of magnetic structures near the surface.
Magnetic buoyancy acts both with flux tubes and in a stratified continuous magnetic field
without any flux tubes. In the case of NEMPI, the second situation applies. The flux tube
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picture was used in early theories to explain the rising of magnetic structures from deep
inside the convection zone to reach the surface and create active regions (Parker, 1955a;
Zwaan, 1978). In this mechanism, as the flux tube has a magnetic field stronger than its
surroundings, the magnetic pressure inside the tube is bigger than the magnetic pressure
outside. So, to have equal total (gas and magnetic) pressure inside and outside the tube,
the density inside the flux tube has to decrease. The resulting buoyancy force due to the
density difference between inside and outside the tube makes the tube rise. One of the
arguments against this model arises from the large magnitude of the magnetic field at the
bottom of the convection zone. For a rising flux tube to preserve the same orientation
during its ascent, a magnetic field of 105 G is needed (Choudhuri & D’Silva, 1990; D’Silva
& Choudhuri, 1993). This magnetic field is more than a hundred times stronger than the
equipartition value. Such large field strengths have not yet been found in simulations of
turbulent dynamos and make this assumption questionable. One must therefore look for
alternatives.

The field concentrations generated by NEMPI were expected not to be strong enough
to form active regions or sunspots. It has therefore been suggested that NEMPI may
be accompanied by some other mechanism. One possible mechanism was proposed by
Kitchatinov & Mazur (2000). In their model, the suppression of convection motions (heat
flux) by a mean magnetic field is assumed to lead to a decrease in temperature and
formation of magnetic field concentration. They took into account the fluid motion on
flux emergence by using mean-field model. The instability they described is due to the
fact that eddy diffusivity is quenched by strong magnetic fields. They suggested that this
new instability, is physically compatible with convective collapse phenomena presented
by Spruit (1979) and Spruit & Zweibel (1979). In the near-surface layer, cooling from the
surface due to radiation and heating from bellow due to convective motions are balanced.
The instability sets in when this balance is disturbed by reduced heat transfer due to
the fact that the magnetic field quenches the turbulent thermal diffusivity. This leads
to further cooling at the surface; the structure sinks to compensate the heat loss, which
helps to concentrate the mean magnetic field even further (Kitchatinov & Mazur, 2000).
It is of interest to study this instability further using both MFS and DNS.

There is still a long way to go before a more realistic and convincing model can be
achieved. For instance the effect of ionization or the presence of radiation have not yet
been studied in the case NEMPI. As these two processes play important roles in the solar
surface dynamics, we expect that with new models including ionization and radiation,
it will be possible to investigate new aspects of NEMPI. I will return to this aspect in
Chapter 6.
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Chapter 4

Combined effects of stratification and
rotation on NEMPI

As all previous simulations of NEMPI were done with an imposed magnetic field and in
plane geometry, it was of interest to see how using a dynamo-generated magnetic field
will affect NEMPI and how it develops in spherical geometry. The results of this project
showed that it is possible to have a situation where NEMPI is excited even when the
initial field is dynamo-generated. The dynamo and negative effective magnetic pressure
instabilities are then coupled. Losada et al. (2013) showed that in the case of sufficiently
rapid rotation, dynamo action sets in, which leads to the complicated coupled system
of dynamo and NEMPI. In fact, there is a close competition between stratification, one
of the main factors to excite NEMPI, and rapid rotation, which suppresses NEMPI, but
together with stratification it also produces kinetic helicity and thereby an α effect, which
allows the large-scale dynamo to work. In this chapter, our understanding of this coupled
system is presented.

4.1 NEMPI and α2 dynamos, study of a coupled system
in spherical geometry

As mentioned before, there are many aspects related to NEMPI which are poorly un-
derstood and should be investigated in more detail. In this regard, we have proposed a
new model that combines NEMPI with a dynamo in spherical coordinates (Paper I). The
model is described in the following subsection and the results of this work are presented
and discussed in the subsection after that.

4.1.1 Outline of the model

In Paper I, we used MFS of NEMPI with an α2 dynamo to investigate NEMPI under
more realistic conditions like global geometry and dynamo-generated magnetic fields. In
the case of spherical geometry it is not obvious how a magnetic field should be imposed,
and it is therefore more straightforward to use a dynamo-generated one. In this paper, the
combined effects of a dynamo and NEMPI in a highly stratified turbulent plasma with an
adiabatic equation of state are investigated. The simulations showed that these two work
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Figure 4.1: Dependence of Brms (dashed lines) and Urms (solid lines) on time for qp0 = 0 (black),
5 (blue), 10 (red), 20 (orange), 40 (yellow), and 100 (upper black line for Brms),
showing dynamo growth together with NEMPI versus dimensionless time. (Taken
from Figure 2 of Paper I.)

together in a constructive manner. Similar to what was found in previous simulations, in a
highly stratified plasma when the value of the magnetic field is about a few percent of the
equipartition value, NEMPI starts growing. We used α quenching to achieve to a suitable
saturation magnitude of the mean magnetic field such that NEMPI works. We assume
axisymmetry, adopt a perfect conductor boundary condition on the outer radius, assume
the field to be antisymmetric about the equator (dipolar parity) and applied regularity
conditions on the axis. The major results of the simulations are shown in the following
subsection.

4.1.2 Major results of Paper I

Figure 4.1 shows the comparison between the NEMPI growth and the dynamo growth rate
of this coupled system. At early times, the rms value of the magnetic field, Brms, grows
exponentially, giving a growth rate of about 170ηT/R

2, where ηT is the total magnetic
diffusivity defined in Equation (2.10). The rms velocity, Urms, shows a weak residual value,
but after ηTt/R

2 > 0.035 it grows sharply at a larger rate, 270ηT/R
2; see Figure 4.1. It

has been shown in this plot that this results for Urms depends only slightly on qp0, and
this only when the dynamo is saturated, which is when ηtt/R

2 > 0.05; see Figure 4.1.

Figure 4.2 shows meridional cross-sections of B/Beq (color coded) together with mag-
netic field lines of poloidal magnetic field for different values of qp0 and stratification
parameter, r? for the α quenching parameter Qα = 1000. Here the stratification is poly-
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Figure 4.2: In the left plot, the effect of the qp function on formation of magnetic field concen-
trations is illustrated (The prefactor qp0 takes the values 0, 20,40 and 100). On the
right side, the effect of stratification on the development of NEMPI is shown (r?
takes the values 1.100, 1.050, 1.010 and 1.001). (Taken from Paper I.)

tropic and r? is a radius outside the star where the temperature would be zero. The
closer r? is to R, the stronger is the stratification. For r?/R = 1.001, the density con-
trast is almost 104; see Table 1 of Paper I. The dashed lines indicate latitudes 49◦, 61.5◦,
75.6◦, and 76.4◦. It can be seen from the plot that just for qp0 > 60, field concentrations
occur. Because the growth rate of the instability is inversely proportional to the pres-
sure scale height for strong stratification (Kemel et al., 2012b), one should expect intense
field concentration; in other words, for weaker stratification, field concentrations vanishes
completely.

Figure 4.3 shows another result, namely the effect of the quenching parameter on the
location of the field concentration. For smaller quenching or, in other words, for a stronger
mean magnetic field, NEMPI occurs at lower latitudes. Also, for larger quenching, the
magnetic field is smaller and NEMPI is more pronounced. Interesting results are obtained
when the initial mean magnetic field is very weak (Qα = 10000). In this case an oscillatory
poleward migration occurs, which is due to the effect of NEMPI on the dynamo. The
frequency of this oscillatory behavior is about ω = 11.3 ηt/R

2. Such poleward migration
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Figure 4.3: The plot in the left is meridional cross-sections of magnetic field for different values
of quenching parameter, Qα, for r = 1.001 (highest stratification) and qp = 100. The
illustration of poleward migration in the case of very strong quenching, Qα = 10000,
has been presented in the plot on the right-hand side. (Taken from Paper I.)

also was observed in the case of NEMPI in the presence of rotation (Losada et al., 2012,
2013). So, it is possible that they may be based on a similar mechanism. In the plot,
the toroidal field is normalized by the local equipartition value, and the colors indicate
B/Beq(r).

4.1.3 Future works

In this study of NEMPI, we have used MFS. The investigation of NEMPI driven by
a dynamo-generated magnetic field in spherical coordinates is also possible using DNS.
Recent DNS have already demonstrated the possibility of bipolar regions in simulations
either with an imposed horizontal magnetic field (Warnecke et al., 2013) or a dynamo-
generated one (Mitra et al., 2014). We would expect bipolar regions also in spherical
simulations and it would be interesting to see their tilt angle and other aspects of these
dynamos. At the same time, after increasing our knowledge about NEMPI in wedge-like
two-dimensional spherical geometry, it would also be possible to develop our model to a
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three-dimensional case. In the next section, I present the study of NEMPI and dynamo
instability for plane geometry in the presence of rotation.

4.2 Combined effects of stratification and rotation on
NEMPI

4.2.1 Outline of the model

As mentioned in the previous section, if a dynamo-generated magnetic field is used to
excite NEMPI, we encounter a complicated system of dynamo and NEMPI. The main
aim of this study is to understand this coupled system in more detail. For this reason
we adopt plane geometry and add rotation to a corresponding setup. The first step was
to reproduce the results of Losada et al. (2013) for fast rotation by using both MFS and
DNS. In their DNS, as they increased the rotation, NEMPI was suppressed by rotation
but when the Coriolis number, Co, was increased even further, the growth rate of the
instability starts to increase. They suggest that this effect might be due to the activation
of an α2 dynamo by the high rotation rate (high Coriolis number, Co) and the presence of
stratification. To prove this, we used both DNS and MFS of turbulent plasmas in plane
geometry in the presence of rotation. NEMPI works with high stratification, while rapid
rotation together with stratification is the key to activate a large-scale dynamo. This is
when the competition between rotation and stratification starts. Using Ω to calculate the
dynamo number, Cα, by DNS calculations of kinetic helicity and comparing the result
with data from the test-field method (TFM) gives us the opportunity of providing all the
proper conditions for the system to change to a coupled system of NEMPI and dynamo
(for computational details see Chapter 2 on the α2 dynamo and Paper II for more detail).

It was also of interest to investigate the effects of changing the gravity parameter,
Gr = g/c2

skf on the growth rate of the instability with and without rotation. By using
kf = urms/3ηt , one can write Gr in the form

Gr = 3ηtg/c
2
surms, (4.1)

where ηt is the turbulent diffusivity. We emphasize that in this work the stratification is
taken to be isothermal, so the parameter r?/R used in Section 4.1 has no significance and
would be infinite. The main results of this study are presented in the next subsection.

4.2.2 Major results of Paper II

Our DNS and MFS confirmed that, although rotation tends to suppress NEMPI, with in-
creasing Coriolis number up to the values where the system reaches the dynamo threshold,
the dynamo instability activates and causes an increase in the growth rate. This dynamo
instability is an α2 mean-field dynamo with a known Beltrami-like large-scale magnetic
field, with an x component that has a 90◦ phase shift relative to the y component of the
magnetic field (see Figure 4.4). To calculate the related dynamo number of this system,
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Figure 4.4: Visualization of Bx/Beq0 and By/B0 together with effective magnetic pressure for
different times. Here Ω = 0.15, Co = 0.09, Gr = 0.033, and kf/k1 = 30.

two different approaches were used: the formulation presented in Chapter 2 and TFM,
which was already explained in section 2.4.

The estimated value for alpha is close to the value computed by TFM, but if one
compares our coefficients with earlier works, there is a small difference. In fact, our
results are somewhat larger than what was found previously. The only reason can be
the fact that we have used larger scale separation (in the present simulations, kf = 30
was used, while the largest value used before was 5). To study the effects of changing
the gravity parameter, Gr, there are two options. The first one is to keep the turbulent
diffusivity constant and change Gr by changing gravity. The other option is to change
turbulent diffusivity to change Gr while keep g constant. However, it turned out that our
results are independent of whether Gr is changed by changing g or ηt (see Figure 4.5).

Figure 4.6 shows a comparison between the growth rate for the coupled system of
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4.2 Combined effects of stratification and rotation on NEMPI

Figure 4.5: Normalized growth rate of NEMPI versus stratification parameter Gr that varies
with changing gravity, g, for Co = 0, constant η̃t (η̃t = 10−3 black, filled symbols
and η̃t = 10−2 blue, open symbols), or it changes with different ηt = νt for constant
g̃ = 2 (red, open symbols). The dash-dotted line shows the approximate fit given
by λ/λ∗0 ≈ 0.3/

[
1 + 2Gr + (4Gr)2

]
. The inset shows the growth rate normalized by

the turnover time as a function of g̃.

dynamo and NEMPI together with those of a pure dynamo for the same values of the
gravitational parameter. The behavior of the growth rate for both instabilities is same,
but the position of the minimum in the growth rate moves toward larger values of Co.
The minimum indicates the values of Co where α2 mean-field dynamo action sets in.

4.2.3 New developments

This work has increased our understanding of the action of NEMPI together with a
dynamo in the presence of rotation. What we have learned here can be used for further
studies. For instance, there is now a project by Mitra et al. (2014) concerning a dynamo-
generated magnetic field which is used to excite NEMPI in plane geometry. One difference
is the absence of rotation and another difference is that their dynamo acts just in a limited
part of the simulation box (at the bottom of the box) and not in the whole domain like
in our study. Preliminary results show that in the location where the dynamo acts there
are large-scale structures and in the upper part of the domain there is a bipolar region,
which may be due to NEMPI. This work is still under study.
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Figure 4.6: Normalized growth rate of the combined NEMPI and dynamo instability (solid lines)
together with cases with pure dynamo instability (no imposed field, dashed lines)
versus Co for three different value of Gr, Gr = 0.12 (blue) and Gr = 0.21 (red) and
Gr = 1.0 (black). In these simulations g̃ = 4 and η̃t = 10−3 (blue line), g̃ = 3.5,
η̃t = 2× 10−3 (red line) and g̃ = 3.5, η̃t = 9.5× 10−3 (black line).
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Chapter 5

Flux tube structure, NEMPI and
vertical magnetic field

As mentioned before, one of the important achievements in studying NEMPI was the
formation of a magnetic spot in DNS (Brandenburg et al., 2013). The main difference
between this work and previous investigations of NEMPI is the presence of a weak vertical
magnetic field as an imposed field. For the case with a horizontal imposed field, the
resulting magnetic field is of the order of 10% of the equipartition value, but in the
simulations with vertical imposed field they have found magnetic fields even larger than
the equipartition value. They explained this phenomenon by using the concept of the
potato sack effect. In the case of NEMPI with horizontal initial field, the magnetic
flux has larger density with respect to its surrounding, so it sinks down and takes the
structure with it. This leads to the saturation of the instability. For a vertical imposed
field, however, this effect does not exist, because the heavier flow sinks in the direction of
field lines, so it does not affect the magnetic field concentration. This makes the structure
remain longer in the area where NEMPI is working, so it gets larger magnetic field. They
also have shown that, even in the case of a vertical magnetic field, the depth where
NEMPI occurs varies when the strength of the imposed field changes. In fact, it increases
by increasing the strength of the initial field. In the other hand, the magnitude of the
resulting magnetic field, which is calculated in units of the equipartition field, decreases
with depth. Another finding related to the vertical imposed field was that the size of the
spot depends on the value of the imposed field. These important findings for a vertical
imposed field together with the interest in explaining the formation of active regions and
sunspots using NEMPI, led us to investigate more about NEMPI, which is driven by a
vertical imposed field.

5.1 Magnetic flux concentrations from vertical field

5.1.1 Outline of the model

In this study we simulate highly stratified forced turbulence in an isothermal layer without
radiation. The aim of this work is to investigate the properties of NEMPI for a vertical
imposed field. For this reason we used both MFS and DNS. In MFS, we used cylindrical
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Chapter 5 Flux tube structure, NEMPI and vertical magnetic field

coordinates, which allows us to transform our problem into an axisymmetric one.

Figure 5.1: Bz/Beq together with
field lines and flow vectors
from MFS. (Taken from
Figure 5 of Paper III.)

We used two different codes; Pencil Code,
which previously was shown to be successful in
studying NEMPI and another code called NIR-
VANA, which was used for implicit large eddy sim-
ulations (ILES). The main difference between these
two codes is the fact that ILES does not include
any explicit physical dissipation coefficients. This is
useful because one can do simulations with higher
Mach numbers without being constrained by heavy
and expensive simulations at high resolution that
would otherwise be required. In this setup, like in
many others used for DNS of NEMPI, the strati-
fication is uniform, which means that the density
scale height is independent of height. Using such a
system, we want to investigate the effects of chang-
ing the aspect ratio, gravity, Mach number, scale
separation, and other properties regarding the on-
set and nonlinear development of NEMPI. We also
study the parameter sensitivity of NEMPI. In the
next section, I will present the main results of this
study.

5.1.2 Major results of Paper III

Let us start with the MFS results. In the case of
vertical imposed field, we find a cellular pattern for
magnetic field. When we change the aspect ratio,
we find that the number of cells per unit area is
independent of the size of the domain (see Figure 1
of Paper III).

By considering the magnetic field profile during
saturation, we obtain a slender tube with an as-
pect ratio of about 1:8. By changing the magnitude
of the imposed field, the position of the structure
moves along the vertical direction while the shape of the flux tube does not vary (see Fig-
ure 4 of Paper III). In fact when we increase the strength of imposed field, the structure
moves downward. This is in agreement with Brandenburg et al. (2013). As one sees in
Figure 5.1, there is an inflow into the tube along magnetic field lines at the lower depth
while there is an outflow at higher depth. It is because of this inflow that the flux tube
remains concentrated.

For the case with smaller scale separation, again the position of the structure changes,
but this time it moves upward. The reason is the fact that scale separation is proportional
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to the inverse turbulence diffusion coefficient. This means that, by decreasing the scale
separation, we increase the diffusivity, which leads to a weaker field concentration. A
weaker field concentration has a smaller magnetic pressure and, following the pressure
conservation rule, we will have a smaller gas pressure, too. Smaller gas pressure results
in smaller density, which means the structure will sink less (see Figure 7 of Paper III).

As discussed in Chapter 3, we know that there are two parameters β? and βp that
determine the dependency of the coefficient qp on the magnetic field; see Equation (3.10).
Here we also study the sensitivity of NEMPI on these two parameters. Figures 9–11 of
Paper III show the result of this study. For small β? we obtain a fatter structure while
for a big value the structure becomes thinner. On the other hand, when βp is small the
structure is shorter and for larger βp, the structure is taller.

As was studied before, for a horizontal imposed field, we also investigated the effect of
rotation on NEMPI for this new setup with a vertical imposed field. Similar to previous
work employing a horizontal magnetic field (Losada et al., 2012, 2013), we find that
NEMPI is being suppressed by rotation and, at the same time, the structure moves
upward and becomes fatter for a vertical imposed field (see Figure 12 of Paper III).
Finally, our DNS results show that an increase of the imposed field leads to an increase of
the resulting magnetic field strength and also an increase in the radius of the structure.
Previous studies of the effects of changing magnetic Prandtl and Reynolds numbers, PrM
and ReM , respectively, showed that for PrM ≥ 8 and ReM � 1, there is no NEMPI. Our
DNS confirm that for PrM ≥ 5 there is no NEMPI, which is consistent with those previous
findings. As mentioned before, to study the effect of Mach number it is more convenient
to use ILES. It turns out that for the larger Mach number, the structure becomes smaller.
In other words, for larger Mach number the structure forms in the upper layer, so it
cannot be fully contained in our domain. That is why we see smaller magnetic structures.
Figures 5.2 and 5.3 illustrate the formation of structure at the upper surface by performing
DNS and ILES, respectively. Note that there is good agreement between the results of
DNS and ILES. This is important because in ILES we ignore explicit dissipative terms,
which means that the Reynolds number is not known, but perhaps much larger than
before. Our results indicate that NEMPI is independent of the details of the Reynolds
number.

5.1.3 Outlook

This study is significant in the sense that it results in the formation of a magnetic flux
tubes due to NEMPI. Our detailed analysis shows that NEMPI operates only in the deeper
parts of the tube, but it has an effect much higher up because the negative magnetic
pressure leads to downward suction which concentrates the field also higher up. The
results of this research are useful for future studies of NEMPI with an imposed vertical
field. One of the works related to this study is discussed in the next section where we use
DNS to calculate the coefficients, qp, qs, and qg for the case of a vertical field. We expect
to find the better relation between qp and initial field.
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Figure 5.2: Magnetic field configuration at the upper surface for various DNS Runs a30/1 etc
denoting the forcing forcing wavenumber (e.g., 10, 30, or 40), and the value of gravity
(e.g., 1, 3, or 4); see Table 5 of Paper III for further details.

Figure 5.3: Surface appearance of the vertical magnetic field, Bmax
z , in ILES with different Mach

numbers (from left to right). The color coding shows Bmax
z /Beq in the range of −0.1

(white) to +1.0 (black). Root-mean-square Mach numbers are given by the labels.
For the upper two rows with lower Mach number, the left column is for fixed initial
mean field, whereas in the right column the initial field is adjusted between the runs,
such that the field strength remains constant relative to the kinetic energy in the
background turbulence.

5.2 Parameterization of NEMPI for vertical field

5.2.1 Outline of the model

As I already discussed in Section 3.2, there are coefficients, which determine how the
averaged momentum stress tensor will change by mean field, B. Brandenburg et al.
(2012) calculated these coefficients for a horizontal imposed field in highly stratified forced
turbulence. They found that qp is always positive function of B, which is consistent with
previous studies. It is also a function of z because β is a function of z. This comes
from the fact that the equipartition field changes with depth. They used this property to
calculate the β dependence of the effective magnetic pressure and also of β? and βp for
horizontal imposed field; see Equation (3.10).
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Figure 5.4: Effective magnetic pressure Peff and transport coefficients qp and qs versus β for
different vertical fields (B0/Beq0 = 0.025 yellow, 0.05 orange, 0.08 red, 0.14 black,
and 0.2 blue).

5.2.2 Major results of this work

The goal is to find out how the parameters qp and qs are affected by imposing a vertical
magnetic field. This is the purpose of our ongoing project, which I will present in this
section. We adopted the same setup as Brandenburg et al. (2012), except that we used
a vertical imposed field and larger scale separation (kf/k1 = 30). Figure 5.4 shows the
results of the simulations with vertical field. Different colors illustrate different magnitude
of initial field. It can be seen that, similar to the case of horizontal field, qp is always
positive and larger than unity, so the effective magnetic pressure is negative. Similar to
the horizontal case, qs is very small for large β and for β larger than 0.1, it is zero. For
β < 0.05, however, qs is not small (it is more than 1) but for very small β (< 0.05),
the error-bars are large enough so we are not able to determine qs for such small β. As
expected, the minimum of the effective magnetic pressure is larger if the imposed field is
stronger.

Somewhat surprisingly, the curves for different values of B0/Beq0 do not collapse onto
a single one. This is different from the case of a horizontal magnetic field (Brandenburg
et al., 2012). The reason for this is not yet clear, but it suggests that there is still an
additional explicit z dependence in the model. This work is still in progress and will be
the subject of a future paper.
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Chapter 6

The next steps

The main goal of studying NEMPI is to use it as a part of a comprehensive research,
which explains not just the observed properties of solar active regions and sunspots but
also the origin of their formation and evolution. The findings of Papers I and II were our
first steps toward a more realistic model by using a dynamo-generated magnetic field to
feed the instability. As the results were encouraging, we are now in the process of taking
one step further by including ionization and radiative transfer in our model. In this new
model we are looking for the formation of structures with sunspot properties. As the
results of Paper III already showed that it is possible to reach higher field strengths (even
more than the equipartition value), we seek a model which, at the same time, reproduces
other important properties of a real sunspot. The purpose of this chapter is to show some
of the primary results of this ongoing research.

6.1 Realistic solar simulations

Realistic simulations of the solar atmosphere are done by a number of different groups. I
mentioned already the work of Stein & Nordlund (2012), which has a long history starting
with a seminal paper by Nordlund (1982) explaining numerical aspects of a realistic
model for solving radiation hydrodynamics of the solar atmosphere. One of the early
insights resulting from such work include the realization that in the strongly stratified
solar convection zone downdrafts merge gradually into larger networks of downdrafts as
one goes deeper down (Stein & Nordlund, 1989, 1998). The code used by Stein & Nordlund
(2012) works with sixth-order staggered derivatives, which is also the basis of the Bifrost
code used by the Oslo group (see, e.g., Leenaarts et al., 2009). Wedemeyer-Böhm et al.
(2012) use the CO5BOLD1 code, which is based on an approximate Riemann solver of Roe
type and also incorporates realistic physics. Another code is the MURaM code2 which
goes back to work by Vögler et al. (2005) and is also used in sunspot models of Rempel
(2011) and in models of active region formation (Cheung et al., 2010; Rempel & Cheung,
2014). Yet another code is the one used by Kitiashvili et al. (2010), who simulated
the spontaneous formation of stable magnetic structures on the Sun from an imposed
vertical magnetic field similar to the approach used here. A potential shortcoming of

1COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions
2MURaM Code stands for MPAe/UofC Radiation MHD Code
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all those models may be an under-representation of turbulence at small scales, especially
in the deeper layers which tend to show just a few major downdrafts. Although high
resolution simulations of Stein & Nordlund (1998, 2006) suggest that the shear at the
edges of downdrafts drives significant amounts of small-scale turbulence, we decided to
add explicit small-scale forcing as was also used in Papers II and III.

6.2 Outline of the model

We use a setup similar to that Heinemann et al. (2006, 2007), where gray radiation
transport along 6 fixed directions is taken into account, using an opacity that is given by
the number of H− ions times their frequency-averaged cross-section. The source function
is given by σSBT

4, where σSB is the Stefan-Boltzmann constant and T is temperature. The
equation of state is calculated under the assumption that hydrogen is partially ionized, as
given by the Saha equation. Unlike the other aforementioned codes, no table lookups are
necessary in this still idealized approach. Even though the ionization of other elements
such as helium is ignored, and the radiation transport is gray with only a single contributor
to the opacity, it is much more realistic than convection simulations that ignore radiation
and ionization altogether.

Simulations with realistic value of the opacity are hard because the resulting Rayleigh
and Reynolds numbers become huge. For this reason, Barekat & Brandenburg (2014) used
strongly reduced opacities in their DNS with the Pencil Code. Another alternative is
to add shock viscosities that increase locally in places of strong flow convergence, as it
was done by Heinemann et al. (2007), who also used the Pencil Code. In addition, they
adopted damping in the top layers to keep the code stable. In those layers, the density
becomes very small, so the Alfvén speed becomes huge and begins to limit the length
of the time step severely. To avoid this, Heinemann et al. (2007) assumed an artificial
“quenching” of the Lorentz force when the Alfvén speed exceeds a certain limit, which
is here set to 2500 km s−1. The number of rays used in the radiation transport could be
increased to 22, but the resulting changes are minor (cf. Barekat & Brandenburg, 2014).

6.3 Results so far

In our simulations, the typical rms velocity is around 3 km s−1, ranging from 2 km s−1

in the lower part of the domain to about 4 km s−1 at the surface; see the upper panel
of Figure 6.1. Furthermore, it can be seen from the lower panel of Figure 6.1 that the
equipartition field strength is not constant and increases with depth. This is what we
expect from the fact that density increases with depth faster than u2

rms decreases.

In Figure 6.2 we plot the vertical dependence of the optical depth τ(x, y, z) = τtop +∫ z
ztop

κρ dz′. At the surface, τ is clearly below unity, so the gas is optically thin. Near the

surface, z = 0, there is a sharp increase of τ with depth and, as expected, the optical depth
becomes very large toward the bottom of our domain. Dotted black lines in this figure
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Figure 6.1: The dependency of urms separately for the horizontal components x (solid line) and
y (dotted line) as well as the vertical component (dashed) in the upper panel and the
equipartition magnetic field strength Beq as a function of depth in the lower panel.

Figure 6.2: Optical depth as a function of z. Dotted black lines are the τ curves in different xy
locations and the red line represents the horizontal average.

represent the optical depth function in different xy locations. The mean stratification is
convectively unstable and remains highly dynamic.
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Figure 6.3: Vertical magnetic field component and velocity vectors in the xy plane for two depths
(z = −0.5 Mm left panel and z = −1.5 Mm right panel).

A uniform vertical magnetic field is imposed. It gets advected into intergranular lanes
where it becomes strongly amplified to field strengths of the order of up to five times
the local equipartition field strength. In Figure 6.3 we show the formation of a spot
like structure near the surface. The two different panels are for two different depths.
Figure 6.4 shows the z component of the magnetic field in xz plane. Here one can see the
large-scale circulation of velocity The thick blue line presents the position of the τ = 0
surface. It can be seen that in the area with the magnetic field concentration this surface
lies in lower layer. This is due to the Wilson depression (see Chapter 1.5).

Figure 6.5 is a zoomed demonstration of magnetic and velocity fields in the area where
the structure forms. Here, the left panel shows large values of |Bz| as dark shades together
with vectors of the horizontal components of the magnetic field.

We need to find the best parameter regime in this model for which extended structures
can form that consist of many turbulent eddies and are not just small concentrations of flux
into individual downdrafts, which is similar to what was found by Kitiashvili et al. (2010).
These were only the first steps toward investigating NEMPI with more realistic models
and there are many more that one still can follow. Using a solar parameter regime, more
realistic boundary conditions and combining NEMPI with other possible mechanisms is
the main purpose of future work. For instance to achieve a more realistic model, we need
to have higher Reynolds numbers and larger scale separations, i.e., a larger domain. On
the other hand, high Reynolds numbers require higher resolution. The Reynolds number
of the Sun (about 1011) is impossible to reach, but by using more computing power to
reach larger Reynolds numbers, we hope to be able to draw meaningful conclusions about
solar surface activity and sunspots.
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Figure 6.4: Vertical magnetic field component and velocity vectors in xz plane. There is a
NEMPI-like structure near the surface (at z = 0.5 Mm).

Figure 6.5: Vertical magnetic field component (large values are shown as dark shades) together
with vectors of the horizontal components of the field in xy plane at the surface (left
panel) and vertical velocity component together with the parallel components of the
vectors in the same xy plane (right panel). The single yellow contour in the right
panel presents the magnetic field at the 1000 G level.
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My contribution to the papers

In Paper I, nearly all of the MFS simulations were performed and analyzed by me. The
evaluation of the simulation results was done together with the other authors. I played an
active role in the discussion of the content of the text and in the adaptations following the
referee reports. Paper II is a follow up of Paper I and was completely conducted by me.
I performed all the simulations both DNS and MFS and produced all plots of the paper.
I wrote some sections in the paper, although they were largely rewritten and extended by
the senior coauthors.

My contribution to Paper III was mostly through running both mean-field and direct
numerical simulations. Findings from these simulations were then more rigorously ana-
lyzed by Axel, who also wrote most of the text in the paper. I also participated in the
analysis of the result and produced some plots and tables of the paper.
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ABSTRACT

Context. In the presence of strong density stratification, turbulence can lead to the large-scale instability of a horizontal magnetic
field if its strength is in a suitable range (around a few percent of the turbulent equipartition value). This instability is related to a
suppression of the turbulent pressure so that the turbulent contribution to the mean magnetic pressure becomes negative. This results
in the excitation of a negative effective magnetic pressure instability (NEMPI). This instability has so far only been studied for an
imposed magnetic field.
Aims. We want to know how NEMPI works when the mean magnetic field is generated self-consistently by an α2 dynamo, whether
it is affected by global spherical geometry, and whether it can influence the properties of the dynamo itself.
Methods. We adopt the mean-field approach, which has previously been shown to provide a realistic description of NEMPI in direct
numerical simulations. We assume axisymmetry and solve the mean-field equations with the Pencil Code for an adiabatic stratification
at a total density contrast in the radial direction of ≈4 orders of magnitude.
Results. NEMPI is found to work when the dynamo-generated field is about 4% of the equipartition value, which is achieved through
strong α quenching. This instability is excited in the top 5% of the outer radius, provided the density contrast across this top layer is
at least 10. NEMPI is found to occur at lower latitudes when the mean magnetic field is stronger. For weaker fields, NEMPI can make
the dynamo oscillatory with poleward migration.
Conclusions. NEMPI is a viable mechanism for producing magnetic flux concentrations in a strongly stratified spherical shell in
which a magnetic field is generated by a strongly quenched α effect dynamo.

Key words. sunspots – Sun: dynamo – turbulence – magnetohydrodynamics (MHD) – hydrodynamics

1. Introduction

The magnetic field of stars with outer convection zones, in-
cluding that of the Sun, is believed to be generated by dif-
ferential rotation and cyclonic convection (see, e.g., Moffatt
1978; Parker 1979; Zeldovich et al. 1983; Brandenburg &
Subramanian 2005). The latter leads to an α effect, which refers
to an important new term in the averaged (mean-field) induc-
tion equation, quantifying the component of the mean electro-
motive force that is aligned with the mean magnetic field (see,
e.g., Steenbeck et al. 1966; Krause & Rädler 1980; Brandenburg
et al. 2013). However, what is actually observed are sunspots
and active regions, and the description of these phenomena is not
part of conventional mean-field dynamo theory (see, e.g., Priest
1982; Stix 1989; Ossendrijver 2003; Cally et al. 2003; Stenflo &
Kosovichev 2012).

Flux tube models (Parker 1955, 1982, 1984; Spiegel &
Weiss 1980; Spruit 1981; Schüssler et al. 1994; Dikpati &
Charbonneau 1999) have been used to explain the formation
of active regions and sunspots in an ad hoc manner. It is then
simply assumed that a sunspot emerges when the magnetic field
of the dynamo exceeds a certain threshold just above the bot-
tom of the convection zone for the duration of about a month
(Chatterjee et al. 2004). Such models assume the existence of
strong magnetic flux tubes at the base of the convection zone.

They require magnetic fields with a strength of about 105 Gauss
(D’Silva & Choudhuri 1993). However, such strong magnetic
fields are highly unstable (Arlt et al. 2005) and are also difficult
to produce by dynamo action in turbulent convection (Guerrero
& Käpylä 2011).

Another possible mechanism for producing magnetic flux
concentrations is the negative effective magnetic pressure insta-
bility (NEMPI), which can occur in the presence of strong den-
sity stratification, i.e., usually near the stellar surface, on scales
encompassing those of many turbulent eddies. NEMPI is caused
by the suppression of turbulent magnetohydrodynamic pressure
(the isotropic part of combined Reynolds and Maxwell stresses)
by the mean magnetic field. At large Reynolds numbers, the neg-
ative turbulent contribution can become so large that the effec-
tive mean magnetic pressure (the sum of turbulent and nontur-
bulent contributions) is negative. This results in the excitation
of NEMPI that causes formation of large-scale inhomogeneous
magnetic structures. The instability mechanism is as follows. A
rising magnetic flux tube expands, the field becomes weaker, but
because of negative magnetic pressure, its magnetic pressure in-
creases, so the density decreases, and it becomes lighter still and
rises further. Conversely, a sinking tube contracts, the magnetic
field increases, but the magnetic pressure decreases, so the den-
sity increases, and it becomes heavier and sinks further. The en-
ergy for this instability is supplied by the small-scale turbulence.
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By contrast, the free energy in Parker’s magnetic buoyancy insta-
bility or in the interchange instability in plasma, is drawn from
the gravitational field (Newcomb 1961; Parker 1966).

Direct numerical simulations (DNS; see Brandenburg et al.
2011; Kemel et al. 2012a), mean-field simulations (MFS; see
Brandenburg et al. 2010, 2012; Kemel et al. 2012b; Käpylä et al.
2012), and earlier analytic studies (Kleeorin et al. 1989, 1990,
1996; Kleeorin & Rogachevskii 1994; Rogachevskii & Kleeorin
2007) now provide conclusive evidence for the physical reality
of NEMPI. However, open questions still need to be answered
before it can be applied to detailed models of active regions and
sunspot formation.

In the present paper we take a first step toward combining
NEMPI, which is described well using mean-field theory, with
the α effect in mean-field dynamos. To study the dependence
of NEMPI on the magnetic field strength, we assume that α is
quenched. This allows us to change the magnetic field strength
by changing the quenching parameter. We employ spherical co-
ordinates (r, θ, φ), with radius r, colatitude θ, and azimuthal an-
gle φ. We assume axisymmetry, i.e., ∂/∂φ = 0. Furthermore,
α is a pseudo-scalar that changes sign at the equator, so we as-
sume that α is proportional to cos θ, where θ is the colatitude
(Roberts 1972). We arrange the quenching of α such that the
resulting mean magnetic field is in the appropriate interval to al-
low NEMPI to work. This means that the effective (mean-field)
magnetic pressure locally has a negative derivative with respect
to increasing normalized field strength (Kemel et al. 2012b), so
the mean toroidal magnetic field must be less than about 20% of
the equipartition field strength.

The choice of using spherical geometry is taken because the
dynamo-generated magnetic field depends critically on the ge-
ometry. Therefore, to have a more realistic field structure, we felt
it profitable to carry out our investigations in spherical geome-
try. Guided by the insights obtained from such studies, it will in
future be easier to design simpler Cartesian models to address
specific questions regarding the interaction between NEMPI and
the dynamo instability.

In the calculations presented below we use the Pencil Code1,
which has been used in DNS of magneto-hydrodynamics in
spherical coordinates (Mitra et al. 2009) and also in earlier DNS
and MFS of NEMPI. Unlike most of the earlier calculations, we
adopt an adiabatic equation of state. This results in a stratifica-
tion such that the temperature declines approximately linearly
toward the surface, so the scale height becomes shorter and the
stratification stronger toward the top layers. This is done to have
a clear segregation between the dynamo in the bulk and NEMPI
near the surface, where the stratification is strong enough for
NEMPI to operate. The gravitational potential is that of a point
mass. This is justified because the mass in the convection zone
is negligible compared to the one below. The goal of the present
work is to produce reference cases in spherical geometry and to
look for new effects of spherical geometry. We begin by describ-
ing the basic model.

2. The model

The evolution equations for mean vector potential A, mean ve-
locity U, and mean density ρ, are

∂A
∂t

= U × B + αB − ηTJ , (1)

1 http://pencil-code.googlecode.com

DU
Dt

=
1
ρ

[
J × B + ∇(qpB2/2μ0)

]
− νTQ − ∇H, (2)

Dρ
Dt

= −ρ∇ · U, (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, ρ is the
mean density, H = h + Φ is the mean reduced enthalpy with
h = cpT the mean enthalpy, T ∝ ργ−1 the mean temperature,
γ = cp/cv is the ratio of specific heats at constant pressure and
constant density, respectively, Φ is the gravitational potential,
ηT = ηt + η and νT = νt + ν are the sums of turbulent and micro-
physical values of magnetic diffusivity and kinematic viscosities,
respectively, α is the aforementioned coefficient in the α effect,
J = ∇ × B/μ0 is the mean current density, μ0 is the vacuum
permeability,

−Q = ∇2U + 1
3∇∇ · U + 2S∇ ln ρ (4)

is a term appearing in the viscous force, where S is the trace-
less rate of strain tensor of the mean flow with components
Si j = 1

2 (Ui, j + U j,i) − 1
3δi j∇ · U, and finally ∇(qpB2/2μ0) de-

termines the turbulent contribution to the mean Lorentz force.
Here, qp depends on the local field strength (see below). This
term enters with a plus sign, so positive values of qp correspond
to a suppression of the total turbulent pressure. The net effect
of the mean field leads to an effective mean magnetic pressure
peff = (1 − qp)B2/2μ0, which becomes negative for qp > 1,
which can indeed be the case for magnetic Reynolds numbers
well above unity (Brandenburg et al. 2012).

Following Kemel et al. (2012c), the function qp(β) is approx-
imated by

qp(β) =
qp0

1 + β2/β2p
=

β2�
β2p + β2

, (5)

where qp0, βp, and β� = βpq1/2p0 are constants, β = |B|/Beq is
the modulus of the normalized mean magnetic field, and Beq =√
μ0ρ urms is the equipartition field strength.
NEMPI can occur at a depth where the derivative, dpeff/dβ2,

is negative. Since the spatial variation of β is caused mainly by
the increase in density with depth, the value of the mean hori-
zontal magnetic field essentially determines the location where
NEMPI can occur. Therefore, the field strength has to be in a
suitable range such that NEMPI occurs within the computational
domain. Unlike the Cartesian cases investigated in earlier work
(Brandenburg et al. 2010, 2012; Kemel et al. 2012c), where it
is straightforward to impose a magnetic field, in a sphere it is
easier to generate a magnetic field by a mean-field dynamo. This
is why we include a term of the form αB in the expression for
the mean electromotive force (second term on the righthand side
of Eq. (1)). When the mean magnetic field is generated by a
dynamo, the resulting magnetic field strength depends on the
nonlinear suppression of the dynamo. We assume here a simple
quenching function for the α effect, i.e.,

α(θ, β) =
α0 cos θ
1 + Qαβ2

, (6)

where Qα is a quenching parameter that determines the typical
field strength, which is expected to be on the order of Q−1/2

α Beq.
The value of Qα must be chosen large enough so that the non-
linear equilibration of the dynamo process results in a situation
such that dpeff/dB is indeed negative within the computational
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Table 1. Dependence of the density contrast on the value of r�.

r�/R Hp(top)/R Hp0/R ρmax/ρmin

1.100 3.6 × 10−2 0.052 1.4 × 101
1.010 4.0 × 10−3 0.023 2.9 × 102
1.001 4.0 × 10−4 0.019 8.9 × 103

domain. In analogy with the βp parameter in Eq. (5), we can de-
fine a parameter βα = Q−1/2

α , which will be quoted occasionally.
The strength of the dynamo is also determined by the dy-

namo number,

Cα = α0R/ηT. (7)

For our geometry with 0.7 ≤ r/R ≤ 1, the critical value of Cα

for the onset of dynamo action is around 18. The excitation con-
ditions for dipolar and quadrupolar parities are fairly close to-
gether. This is because the magnetic field is strongest at high
latitudes, so the hemispheric coupling is weak. In the following
we restrict ourselves to solutions with dipolar parity. We adopt
the value Cα = 30, so the dynamo is nearly twice supercritical.

As mentioned before, our gravitational potential Φ is that of
a point mass. We define Φ such that it vanishes at a radius r�,
i.e.

Φ(r) = −GM
(
1
r
− 1
r�

)
, (8)

where G is Newton’s constant and M is the mass of the sphere.
The radial component of the gravitational acceleration is then
g = −GM/r2. We adopt an initially adiabatic stratification with
cpT = −Φ(r), so T vanishes at r = r�. To avoid singularities,
the value of r� has to be chosen some distance above r = R.
The radius r� is used to set the density contrast. Table 1 gives
the density contrast for different values of r�. We vary r� be-
tween 1.001R, which corresponds to our reference model with
a density contrast of 8900, and 1.1R, where the density contrast
is 14. The pressure scale height is given by

Hp(r) =
r(1 − r/r�)
n + 1

, (9)

where n = 1/(γ−1) = 3/2 is the polytropic index for an adiabatic
stratification with γ = 5/3. The density scale height is Hρ =
r(1 − r/r�)/n. The initial density profile is given by
ρ/ρ0 = (−Φ/nc2s0)n. (10)

Radial profiles of ρ/ρ0 and the inverse pressure scale height
Hp0/Hp(r), are shown in Fig. 1 for r�/R varying between 1.1
and 1.001. Here, Hp0 = Hp(rref) is the pressure scale height
at the reference radius rref = 0.95R, corresponding to a depth
of 35Mm in the Sun.

The analytic estimate of the growth rate of NEMPI, λ, based
on an isothermal layer with Hp = Hρ = const. is given by (Kemel
et al. 2012b)

λ ≈ β�
urms
Hp

− ηtk2. (11)

Assume that this equation also applies to the current case where
Hp depends on r, and setting k = H−1

p0 , the normalized growth
rate is
λHp0

β�urms
=
Hp0

Hp
− ηt
β�urmsHp0

· (12)

Fig. 1. Initial stratification of density and inverse scale height for
r�/R = 1.001 (strongest stratification), 1.01, 1.05, and 1.1. The dashed
lines mark the position of the reference radius rref = 0.95R, where
ρ/ρ0 ≈ 0.0068 for r�/R = 1.001 and Hp(r) = Hp0 by definition. The
dotted line marks the value of ηt/β�urmsHp0.

In Fig. 1 we compare therefore Hp0/Hp with ηt/β�urmsHp0 and
see that the former exceeds the latter in our reference model with
r�/R = 1.001. This suggests that NEMPI should be excited in
the outer layers.

As nondimensional measures of ηt and urms, we define

η̃t = ηt/
√
GMR, ũrms = urms/

√
GM/R, (13)

for which we take the values η̃t = 2 × 10−4 and ũrms = 0.07,
respectively. Using the estimate ηt = urms/3kf (Sur et al. 2008),
our choice of ηt implies that the normalized wavenumber of the
energy-carrying eddies is kfR = ũrms/3η̃t ≈ 120 and that kfHp0
varies between 6.2 (for r�/R = 1.1) and 2.3 (for r�/R = 1.001).

For the magnetic field, we adopt perfect conductor bound-
ary conditions on the inner and outer radii, r0 = 0.7R and R,
respectively, i.e.,

∂Ar
∂r

= Aθ = Aφ = 0, on r = r0,R. (14)

On the pole and the equator, we assume

∂Ar
∂θ

= Aθ =
∂Aφ

∂θ
= 0, on θ = 0◦ and 90◦. (15)

Since our simulations are axisymmetric, the magnetic field is
conveniently represented via Bφ and Aφ. In particular, contours
of r sin θAφ give the magnetic field lines of the poloidal magnetic
field, Bpol = ∇ × (Aφφ̂).

In all cases presented in this paper, we adopt a numerical
resolution of 256 × 1024 mesh points in the r and θ directions.
This is significantly higher than what has been used previously,
even in mean field calculations with stratification and hydrody-
namical feedback included; see Brandenburg et al. (1992), where
a resolution of just 41 × 81 meshpoints was used routinely. In
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Fig. 2. Dependence of Brms (dashed lines) and U rms (solid lines) on time
in units of ηT/R2 for qp0 = 0 (black); 5 (blue); 10 (red); 20 (orange);
40 (yellow); and 100 (upper black line for Brms). The results for U rms
depend only slightly on qp0, and this only when the dynamo is saturated.

principle, lower resolutions are possible, but in some cases we
found certain properties of the solutions to be sensitive to the
resolution.

3. Results
In our model, the dynamo growth rate is about 170 ηT/R2.
Although both dynamo and NEMPI are linear instabilities, this
is no longer the case in our coupled system, because NEMPI de-
pends on the magnetic field strength, and only in the nonlinear
regime of the dynamo does the field reach values high enough for
NEMPI to overcome turbulent magnetic diffusion. This is shown
in Fig. 2 where we plot the growth of the magnetic field and com-
pare with runs with different values of qp0. For qp0 = 100 we
find a growth rate of about 270 ηT/R2. This value is significantly
more than the dynamo growth rate, and the growth occurs at the
time when structures form, so we associate this higher growth
rate with that of NEMPI.

We now discuss the resulting magnetic field structure. We
begin by discussing the effects of varying the stratification. To
see the effect of NEMPI more clearly, we consider a some-
what optimistic set of parameters describing NEMPI, namely
qp0 = 100 and βp = 0.05, which yields β� = 0.5; see Eq. (5).
This is higher than the values 0.23 and 0.33 found from numer-
ical simulations with and without small-scale dynamo action,
respectively (Brandenburg et al. 2012). The effect of lowering
the value of qp0 can be seen in Fig. 2 and is also discussed be-
low. We choose Qα = 1000 for the α quenching parameter so
that the local value of Bφ/Beq near the surface is between 10
and 20 percent, which is suitable for exciting NEMPI (Kemel
et al. 2012b).Meridional cross-sections of Bφ/Beq0 together with
magnetic field lines of Bpol are shown in Fig. 3. Note that a mag-
netic flux concentration develops near the surface at latitudes
between 70◦ and 76◦ for weak and strong stratification, respec-
tively. Structure formation from NEMPI occurs in the top 5%
by radius, and the flux concentration is most pronounced when
r� ≤ 1.01.

Next, if we increase the magnetic field strength by mak-
ing Qα smaller, we see that the magnetic flux concentrations
move toward lower latitudes down to about 49◦ for Qα = 100;
see Fig. 4. However, while this is potentially interesting for the

Fig. 3.Meridional cross-sections of Bφ/Beq (color coded) together with
magnetic field lines of Bpol for different stratification parameters r� and
Qα = 103. The dashed lines indicate the latitudes 70.3◦, 73.4◦, 75.6◦,
and 76.4◦.

Sun, where sunspots are known to occur primarily at low lati-
tudes, the magnetic flux concentrations also become weaker at
the same time, making this feature less interesting from an as-
trophysical point of view. For comparison with the parameter
βp = 0.05 in Eq. (5) we note that βα = Q−1/2

α takes the values 0.1,
0.07, 0.04, and 0.03 for Qα = 100, 200, 500, and 1000, respec-
tively. Thus, for these models the quenchings of the nondiffusive
turbulence effects in the momentum and induction equations are
similar.

Also, if we decrease qp0 to more realistic values, we expect
the magnetic flux concentrations to become weaker. This is in-
deed borne out by the simulations; see Fig. 5, where we show
meridional cross-sections for qp0 in the range 40 ≤ qp0 ≤ 100
for Qα = 103. This corresponds to the range 0.32 ≤ β� ≤ 0.5.
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Fig. 4. Meridional cross-sections for different values of Qα, for r� =
1.001. The dashed lines indicate the latitudes 49◦, 61.5◦, 75.6◦,
and 76.4◦.

For weaker magnetic fields, i.e., for higher values of the
quenching parameter Qα, we find that NEMPI has a modifying
effect on the dynamo in that it can now become oscillatory. A
butterfly diagram of Br and Bφ is shown in Fig. 6. Meridional
cross-sections of the magnetic field at different times covering
half a magnetic cycle are shown in Fig. 7. It turns out that, at
sufficiently weak magnetic field strengths, NEMPI produces os-
cillatory solutions with poleward-migrating flux belts. The rea-
son for this is not understood very well, but it is reminiscent of
the poleward migration observed in the presence of weak rota-
tion (Losada et al. 2012). Had this migration been equatorward,
it might have been tempting to associate it with the equatorward
migration of the sunspot belts in the Sun.

Finally, we discuss the change of kinetic, magnetic, and cur-
rent helicities due to NEMPI. We do this by using a model that is

Fig. 5. Meridional cross-sections for different values of the parameter
qp0 in the range 40 ≤ qp0 ≤ 100 for Qα = 103. The dashed lines indicate
the latitudes 68◦, 72.5◦, 75.7◦, and 76.3◦.

close to our reference model with r�/R = 1.001 and Qα = 1000,
except that qp0 = 0 in the beginning, and then at time t0 we
change it to qp0 = 100. The two inverse length scales based on
magnetic and current helicities,

kM =

⎛⎜⎜⎜⎜⎜⎜⎝

∫
V A · B dV
∫
V B2 dV

⎞⎟⎟⎟⎟⎟⎟⎠

−1

and kC = μ0

∫
V J · B dV
∫
V B2 dV

, (16)

increase by 25%, while the inverse length scale based on the
kinetic helicity,

kK =

∫
V W · U dV
∫
V U

2 dV
, (17)

drops to very low values after introducing NEMPI, see e.g.
Fig. 8. Here, W = ∇ × U is the mean vorticity. This behavior
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Fig. 6. Butterfly diagram of Br (upper panel) and Bφ (lower panel) for
Qα = 104, r� = 1.001, ω = 11.3 ηt/R2.

of kK is surprising, but it seems to be associated with an increase
in kinetic energy. The reason for the increase in the two inverse
magnetic length scales, on the other hand, might be understand-
able as the consequence of increasing gradients associated with
the resulting flux concentrations.

4. Conclusions
The present investigations have shown that NEMPI can occur
in conjunction with the dynamo; that is, both instabilities can
work at the same time and can even modify each other. It was
already clear from earlier work that NEMPI can only work in a
limited range of magnetic field strengths. We therefore adopted
a simple α quenching prescription to arrange the field strength to
be in the desired range. Furthermore, unlike much of the earlier
work on NEMPI, we used an adiabatic stratification here instead
of an isothermal one; see Brandenburg et al. (2010) and Käpylä
et al. (2012) for earlier examples with adiabatic stratification in
Cartesian geometry. An adiabatic stratification implies that the
pressure scale height is no longer constant and nowmuch shorter
in the upper layers than in the bulk of the domain. This favors the
appearance of NEMPI in the upper layers, because the growth
rate is inversely proportional to the pressure scale height.

There are two lines of future extensions of the present model.
On the one hand, it is important to study the interplay between
NEMPI and the dynamo instability in more detail. This is best
done in the framework of a local Cartesian model, which is more
easily amenable to analytic treatment. Another important exten-
sion would be to include differential rotation. At the level of a
dynamically self-consistent model, where the flow speed is a so-
lution of the momentum equation, differential rotation is best im-
plemented by including the Λ effect (Rüdiger 1980, 1989). This
is a parameterization of the Reynolds stress that is in some ways
analogous to the parameterization of the electromotive force via
the α effect.

Mean-field models with both α and Λ effects have been
considered before (Brandenburg et al. 1992; Rempel 2006), so
the main difference would be the additional parameterization of
magnetic effects in the Reynolds stress that gives rise to NEMPI.
In both cases, our models would be amenable to verification us-
ing DNS by driving turbulence through a helical forcing func-
tion. In the case of a spherical shell, this can easily be done in

Fig. 7. Meridional cross-sections of B/Beq0 at different times, for
Qα = 104, r� = 1.001. The cycle frequency here is ω = 11.3ηt/R2.
Furthermore, the toroidal field is normalized by the local equipartition
value, i.e., the colors indicate Bφ/Beq(r).

wedge geometry where the polar regions are excluded. In that
case the mean-field dynamo solutions are oscillatory with equa-
torward migration (Mitra et al. 2010). At an earlier phase of
the present investigations we studied NEMPI in the correspond-
ing mean-field models and found that NEMPI can reverse the
propagation of the dynamo wave from equatorward to poleward.
However, owing to time dependence, the effects of NEMPI are
then harder to study, which is why we have refrained from study-
ing such models in further detail.

In the case of a Cartesian domain, helically forced DNS
with an open upper layer have been considered by Warnecke
& Brandenburg (2010). In this model, plasmoid ejections can
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Fig. 8. The three inverse length scales kC, kM, and kK as a function of
time. At time t0, the value of qp0 has been changed from 0 to 100.

occur and provide a more natural boundary. A more physical
alternative is to use only nonhelical forcing, but to include ro-
tation to produce helicity in conjunction with the stratification.
Such models have recently been considered by Losada et al.
(2013), who found that NEMPI begins to be suppressed by ro-
tation at Coriolis numbers somewhat below those where α2-type
dynamo action sets in. Furthermore, there is now evidence that
the combined action of NEMPI and the dynamo instability has
a lower threshold than the dynamo alone. Those models provide
an ideal setup for future studies of the interaction between both
instabilities.
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ABSTRACT

Context. The mean-field theory of magnetized stellar convection gives rise to the two possibility of distinct instabilities: the large-
scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI)
operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However,
the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS)
have shown a subsequent increase in the growth rate.
Aims. We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an α2 mean-field dynamo,
and whether both NEMPI and the dynamo instability can operate at the same time.
Methods. We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without
an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients.
Results. DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect
produces mean magnetic fields. The resulting DNS growth rates are quantitatively well reproduced with MFS. As expected, for weak
or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and
large turbulent magnetic diffusivity.
Conclusions. Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar
rotation rate, the corresponding turbulent turnover time is about 5 hours, with dynamo action commencing in the layers beneath.

Key words. Sun: sunspots – Sun: dynamo – turbulence – magnetohydrodynamics (MHD) – hydrodynamics

1. Introduction

The appearance of surface magnetic field in the Sun presents
some peculiar characteristics, such as being strongly concen-
trated into discrete spots. The origin and depth of such magnetic
flux concentrations has long been subject to considerable spec-
ulation. A leading theory by Parker (1955) interprets the emer-
gence of such spots as the result of magnetically buoyant flux
tubes at a depth of some 20Mm. This magnetic field must be
the result of a dynamo, but magnetic buoyancy also leads to the
buoyant rise and subsequent loss of those magnetic structures.
It was therefore thought that the dynamo should operate mainly
at or even below the bottom of the convection zone where mag-
netic buoyancy could be stabilized by a subadiabatic tempera-
ture gradient (Parker, 1975). This led eventually to the idea that
sunspots might be a direct consequence of dynamo-generated
flux tubes that rise all the way from the bottom of the convec-
tion zone to the surface (e.g. Caligari et al., 1995). However,
Schüssler (1980, 1983) emphasized already early on that such
fields would easily be “brain-washed” and would lose their sys-
tematic east–west orientation while ascending through the tur-
bulent convection zone. D’Silva & Choudhuri (1993) estimated
that a magnetic field strength of about 100 kG would be needed
to preserve not only the overall east–west orientation (Hale et
al., 1919), but also to produce the observed tilt angle of active
regions known as Joy’s law.

A great deal of effort has gone into determining the con-
ditions under which magnetic flux ropes may or may not be
able to rise buoyantly across the convection zone. Emonet et al.

(1998) determined for the first time the basic minimum twist
thresholds for the survival of twisted magnetic flux ropes dur-
ing the rise. Subsequent studies were based on different types
of numerical simulations, which tested the underlying hypothe-
ses and looked for other effects, such as the robustness against
background convective motions (Jouve et al., 2013) and mag-
netic flux erosion by reconnection with the background dynamo
field (Pinto et al., 2013). These studies, as well as many others
(see, e.g., Fan, 2008, 2009, and references therein) specifically
looked at what flux-rope configurations are able to reproduce the
observed emergent polarity tilt angles (Joy’s law).

The observed variation in the number of sunspots in time
and latitude is expected to be linked to some kind of large-
scale dynamo, as it has been modeled by Leighton et al. (1969)
and Steenbeck & Krause (1969) long ago. This led Schüssler
(1980) to propose a so-called flux-tube dynamo approach that
would couple the buoyant rise of thin flux tubes to their regen-
eration. However, even today the connection between dynamos
and flux tubes is done “by hand” (see, e.g., Choudhuri et al.,
2007; Miesch & Dikpati, 2014), which means that some ad hoc
procedure is invoked to link flux tube emergence to a mean-field
dynamo. Of course, such tubes, or at least bipolar regions, should
eventually emerge from a sufficiently well-resolved and realistic
simulation of solar convection. While global convective dynamo
simulations of Nelson et al. (2011, 2013, 2014) show magnet-
ically buoyant magnetic flux tubes of ≈ 40 kG field strength,
they do not yet address bipolar region formation. Indeed, so-
lar surface simulations of Cheung et al. (2010) and Rempel &
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Cheung (2014) demonstrate that bipolar spots do form once a
magnetic flux tube of 10 kG field strength is injected at the bot-
tom of their domain. On the other hand, the deep solar simula-
tions of Stein & Nordlund (2012) develop a bipolar active region
with just 1 kG magnetic field injected at the bottom of their do-
main. While these simulations taken together outline what might
occur in the Sun, they do not necessarily support the description
of spots as a direct result of thin flux tubes piercing the surface
(e.g. Caligari et al., 1995).

A completely different suggestion is that sunspots develop
locally at the solar surface, and that their east–west orienta-
tion would reflect the local orientation of the mean magnetic
field close to the surface. The tilt angle would then be deter-
mined by latitudinal shear producing the observed orientation of
the meridional component of the magnetic field (Brandenburg,
2005a). One of the possible mechanisms of local spot formation
is the negative effective magnetic pressure instability (NEMPI;
see Kleeorin et al., 1989, 1990; Kleeorin & Rogachevskii, 1994;
Kleeorin et al., 1996; Rogachevskii & Kleeorin, 2007). Another
potential mechanism of flux concentration is related to a tur-
bulent thermo-magnetic instability in turbulence with radiative
boundaries caused by the suppression of turbulent heat flux
through the large-scale magnetic field (Kitchatinov & Mazur,
2000). The latter instability has so far only been found in mean-
field simulations (MFS), but not in direct numerical simulations
(DNS) nor in large-eddy simulations (LES). By contrast, NEMPI
has recently been found in DNS (Brandenburg et al., 2011) and
LES (Brandenburg et al., 2014) of strongly stratified fully devel-
oped turbulence.

NEMPI can lead to the formation of equipartition-strength
magnetic spots (Brandenburg et al., 2013, 2014), which are rem-
iniscent of sunspots. Even bipolar spots can form in the presence
of a horizontal magnetic field near the surface; see (Warnecke et
al., 2013). For this idea to be viable, NEMPI and the dynamo in-
stability would need to operate in reasonable proximity of each
other, so that the dynamo can supply the magnetic field that
would be concentrated into spots, as was recently demonstrated
by Mitra et al. (2014). In studying this process in detail, we
have a chance of detecting new joint effects resulting from the
two instabilities, which is one of the goals of the present paper.
However, these two instabilities may also compete against each
other, as was already noted by Losada et al. (2013). The large-
scale dynamo effect relies on the combined presence of rotation
and stratification, while NEMPI requires stratification and large
enough scale separation. NEMPI is being suppressed by even a
moderate amount of rotation. This was shown by Losada et al.
(2012), who found significant suppression of NEMPI when the
Coriolis number Co = 2Ωτ is larger than about 0.03. Here, Ω
is the angular velocity and τ the turnover time of the turbulence,
which is related to the rms velocity urms and the wavenumber kf
of the energy-carrying eddies via τ = (urmskf)

−1. For the solar
convection zone, the Coriolis number,

Co = 2Ω/urmskf , (1)

varies from 2 × 10−3 (at the surface using τ = 5min) to 5 (at
the bottom of the convection zone using τ = 10days). The value
Co = 0.03 corresponds to a turnover time as short as two hours,
which is the case at a depth of ≈ 10Mm.

The strength of stratification, on the other hand, is quantified
by the nondimensional parameter

Gr = g/c2skf ≡ (kfHρ)
−1, (2)

where Hρ = c2s/g is the density scale height, cs is the sound
speed, and g is the gravitational acceleration. In the cases consid-

ered by Losada et al. (2012, 2013), the stratification parameter
was Gr = 0.03, which is rather small compared with the esti-
mated solar value of Gr = 0.16; see the conclusions of Losada
et al. (2013). One may expect that larger values of Gr would
result in correspondingly larger values of the maximum permis-
sible value of Co, for which NEMPI is still excited, but this has
not yet been investigated in detail.

The goal of the present paper is to study rotating stratified
hydromagnetic turbulence in a parameter regime that we expect
to be at the verge between NEMPI and dynamo instabilities. We
do this by performing DNS and MFS. In MFS, the study of com-
bined NEMPI and dynamo instability requires suitable param-
eterizations of the negative effective magnetic pressure and α
effects using suitable turbulent transport coefficients.

2. DNS study
We begin by reproducing first some of the DNS results of Losada
et al. (2013), who found the suppression of the growth rate of
NEMPI with increasing values of Co and a subsequent enhance-
ment at larger values, which they interpreted as being the re-
sult of dynamo action in the presence of an externally applied
magnetic field. We also use DNS to determine independently
the expected efficiency of the dynamo by estimating the α effect
from kinetic helicity measurements and by computing both α ef-
fect and turbulent diffusivity directly using the test-field method
(TFM).

2.1. Basic equations

In DNS of an isothermally stratified layer (Losada et al., 2013)
we solve the equations for the velocity U , the magnetic vector
potentialA, and the density ρ in the presence of rotation Ω,

DU

Dt
=

1

ρ
J ×B − 2Ω×U − νQ+ F + f , (3)

∂A

∂t
= U ×B − ηJ , (4)

∂ρ

∂t
= −∇ · ρU , (5)

whereD/Dt = ∂/∂t+U ·∇ is the advective derivative,Ω = Ωẑ
is the angular velocity,

F = g − c2s∇ ln ρ (6)

determines the hydrostatic force balance, ν is the kinematic vis-
cosity, η is the magnetic diffusivity due to Spitzer conductivity
of the plasma,

−Q = ∇2U +∇∇ ·U/3 + 2S∇ ln ρ, (7)
−J = ∇2A−∇∇ ·A, (8)

are the modified vorticity and the current density, respectively,
where the vacuum permeability µ0 has been set to unity,

B = B0 +∇×A (9)

is the total magnetic field, B0 = (0, B0, 0) is the imposed uni-
form field, and

Sij =
1
2 (∂jUi + ∂iUj)− 1

3δij∇ ·U (10)

is the traceless rate-of-strain tensor. The forcing function f con-
sists of random, white-in-time, plane, nonpolarized waves with
a certain average wavenumber kf . The turbulent rms velocity is
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approximately independent of z with urms = 〈u2〉1/2 ≈ 0.1 cs.
The gravitational acceleration g = (0, 0,−g) is chosen such
that k1Hρ = 1, so the density contrast between bottom and
top is exp(2π) ≈ 535 in a domain −π ≤ k1z ≤ π. Here,
Hρ = c2s/g is the density scale height and k1 = 2π/L is the
smallest wavenumber that fits into the cubic domain of size L3.
We adopt Cartesian coordinates (x, y, z), with periodic bound-
ary conditions in the x- and y-directions and stress-free, per-
fectly conducting boundaries at top and bottom (z = ±Lz/2).
In most of the calculations, we use a scale separation ratio kf/k1
of 30, so Gr = 0.03 is still the same as in earlier calculations.
We use a fluid Reynolds number Re ≡ urms/νkf of 36, and
a magnetic Prandtl number PrM = ν/η of 0.5. The magnetic
Reynolds number is therefore ReM = PrMRe = 18. These
values are a compromise between having both kf and Re large
enough for NEMPI to develop at an affordable numerical resolu-
tion. The value of B0 is specified in units of Beq0 =

√
ρ0 urms,

where ρ0 = 〈ρ〉 is the volume-averaged density, which is con-
stant in time. The local equipartition field strength is Beq(z) =√
ρ urms. In our units, k1 = cs = µ0 = ρ0 = 1. However,

time is specified as the turbulent-diffusive time t ηt0k
2
1 , where

ηt0 = urms/3kf is the estimated turbulent diffusivity. We also
use DNS to compute these values more accurately with the
TFM. The simulations are performed with the PENCIL CODE
(http://pencil-code.googlecode.com), which uses sixth-order ex-
plicit finite differences in space and a third-order accurate time-
stepping method. We use a numerical resolution of 2563 mesh
points, which was found to be sufficient for the parameter regime
specified above.

2.2. At the verge between NEMPI and dynamo

The work of Losada et al. (2013) suggested that for Gr = 0.03
and Co ≥ 0.03, NEMPI becomes strongly suppressed, and that
for still larger values, the growth rate increases again. This was
tentatively associated with dynamo action, but it was not in-
vestigated in further detail. We now consider such a case with
Co = 0.09. This is a value that resulted in a rather low growth
rate, while the estimated growth rate would be still subcritical for
dynamo action. Following the work of Losada et al. (2013), we
impose here a horizontal magnetic field in the y direction with
a strength of 0.05Beq0, which was previously found to be in the
optimal range for NEMPI to develop (Kemel et al., 2012a).

To bring out the structures more clearly, it was found to be
advantageous to present mean magnetic fields by averaging over
the y direction and over a certain time interval ∆t. We denote
such averages by an overbar, e.g., By . Once a dynamo develops,
we expect a Beltrami-type magnetic field with a Bx component
that is phase shifted relative to By by π/2. These are force-free
fields with ∇ × B = kB such as B ∝ (sin kz, cos kz, 0), for
example.

Figure 1 shows visualizations of Bx and By together with
the effective magnetic pressure, Peff (defined below), at differ-
ent times for a value of Co that is around the point where we ex-
pect onset of dynamo action. As in earlier work without rotation
(Kemel et al., 2013), By varies between 0 to 2B0. Furthermore,
Bx is found to vary in the range ±2B0. In Fig. 2, the x extent
of the domain is twice as big: −2π < k1x < 2π. In Fig. 3 we
show the result for Co = 0.22, where a Beltrami-type field with
a π/2 phase shift between Bx and By is well developed. For
smaller values of Co, there are structures (e.g., for t/τ = 1.8
at x/Hρ ≈ 1.5 and for t/τ = 2.4 at x/Hρ ≈ 1.5 and −2)
that are reminiscent of those associated with NEMPI; compare

Fig. 1 with Fig. 4 of Kemel et al. (2013) or Fig. 3 of Losada et al.
(2013). When the domain is twice as wide, the number of struc-
tures simply doubles. A similar phenomenon was also seen in
the simulations of Kemel et al. (2012b). For larger values of Co,
NEMPI is suppressed and the α2 dynamo, which generates the
mean magnetic field of Beltrami-type structure, becomes more
strongly excited.

The effective magnetic pressure shown in Figs. 1–3 is esti-
mated by computing the xx-component of the total stress from
the fluctuating velocity and magnetic fields as

∆Π
f

xx = ρ (u2
x − u2

0x) +
1
2 (b

2 − b20)− (b2x − b20x), (11)

where the subscript 0 refers to the case with B0 = 0. We then
calculate (Brandenburg et al., 2012a)

qp = −2∆Π
f

xx/B
2. (12)

Here, qp(β) is a function of β = B/Beq(z). We then calculate
Peff = 1

2 (1 − qp)β
2, which is the effective magnetic pressure

divided by B2
eq. Note that Peff shows a systematic z dependence

and is negative in the upper part. Variations in the x direction
are comparatively weak and do therefore not show a clear corre-
spondence with the horizontal variations of By .

As in earlier work (Brandenburg et al., 2011), we character-
ize the strength of resulting structures by an amplitude Bk of a
suitable low wavenumber Fourier mode (k/k1 = 1 or 2), which
is based on the magnetic field in the upper part of the domain,
2 ≤ z/Hρ ≤ π. In Fig. 4 we compare the evolution of Bk/Beq0

for runs with different values of Co. For comparison, we also re-
produce the first few runs for Co = 0.006–0.13, where we used
k/k1 = 1 in all cases. It turns out that for the new cases with
Co = 0.09 and 0.22, the growth of Bk/Beq0 is not as strong
as for the cases with smaller Co. Furthermore, as is also evi-
dent from Figs. 1 and 2, the structures are now characterized by
k/k1 = 2, while for Co = 0.22 they are still characterized by
k/k1 = 1. The growth for all three cases (Co = 0.09, both for
normal and wider domains, as well as Co = 0.22) is similar.
However, given that the typical NEMPI structures are not well
seen for Co = 0.22, it is possible that the growth of structures
is simply overwhelmed by the much stronger growth due to the
dynamo, which is not reflected in the growth ofBk/Beq0, whose
growth is still mainly indicative of NEMPI. In this sense, there
is some evidence for the occurrence of NEMPI in both cases.

2.3. Kinetic helicity

We begin by considering a fixed value of Gr equal to that used by
Losada et al. (2013) and vary Co. For small values of Co, their
data agreed with the MFS of Losada et al. (2012). For faster ro-
tation, one crosses eventually the dynamo threshold. This is also
the point at which the growth rate begins to increase again, al-
though it now belongs to a different instability than for small val-
ues of Co. The underlying mechanism is the α2-dynamo, which
is characterized by the dynamo number

Cα = α/ηTk1, (13)

where α is the typical value of the α effect (here assumed spa-
tially constant), ηT = ηt + η is the sum of turbulent and micro-
physical magnetic diffusivities, and k1 is the lowest wavenum-
ber of the magnetic field that can be fitted into the domain. For
isotropic turbulence,α and ηt are respectively proportional to the
negative kinetic helicity and the mean squared velocity (Moffatt,
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Fig. 1. Visualization of Bx/Beq0 and By/B0 together with effective magnetic pressure for different times. Here Ω = 0.15, Co = 0.09, Gr =
0.033, and kf/k1 = 30.

1978; Krause & Rädler, 1980; Rädler et al., 2003; Kleeorin &
Rogachevskii, 2003)

α ≈ α0 ≡ − 1
3τω · u, ηt ≈ ηt0 ≡ 1

3τu
2, (14)

where τ = (urmskf)
−1, so that (Blackman & Brandenburg,

2002; Candelaresi & Brandenburg, 2013)

Cα = −ǫk ǫfkf/k1. (15)

Here, ǫk is a free parameter characterizing possible dependen-
cies on the forcing wavenumber, and ǫf is a measure for the rel-

ative kinetic helicity. Simulations of Brandenburg et al. (2012b)
and Losada et al. (2013) showed that

ǫf ≡ ω · u/kfu2
rms ≈ ǫf0 GrCo (GrCo <∼ 0.1), (16)

where ǫf0 is yet another non-dimensional parameter of the order
of unity that may depend weakly on the scale separation ratio,
kf/k1, and is slightly different with and without imposed field.
In the absence of an imposed field, Brandenburg et al. (2012b)
found ǫf0 ≈ 2 using kf/k1 = 5. However, both an imposed
field and a larger value of kf/k1 lead to a slightly increased
value of ǫf0. Our results are summarized in Fig. 5 for cases with
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Fig. 2. Like Fig. 1, but for a wider domain.

and without imposed magnetic field. Error bars are estimated
as the largest departure of any one third of the full time series.
The relevant points of Losada et al. (2013) give ǫf0 ≈ 2.8. For
GrCo >∼ 0.5, the results of Brandenburg et al. (2012b) show a
maximum with a subsequent decline of ǫf with increasing values
of Co. However, although it is possible that the position of this
maximum may be different for other values of Gr, it is unlikely
to be relevant to our present study where we focus on smaller
values of Cα near dynamo onset. Thus, in conclusion, Eq. (16)
seems to be a useful approximation that has now been verified
over a range of different values of kf/k1.

2.4. Test-field results

Our estimate for Cα is based on the reference values α0 and
ηt0 that are defined in Eq. (14) and represent approximations
obtained from earlier simulations of helically forced turbu-
lence (Sur et al., 2008). In the present study, helicity is self-
consistently generated from the interaction between rotation and
stratification. As an independent way of computing α and ηt,
we now use the test-field method (TFM). It consists of solving
auxiliary equations describing the evolution of magnetic fluctua-
tions, bpq , resulting from a set of several prescribed mean or test

fields,Bpq . We solve for the corresponding vector potential apq

with bpq = ∇× apq ,
∂apq

∂t
= u×Bpq +U × bpq + (u× bpq)′ + η∇2apq, (17)

where (u× bpq)′ = u× bpq −u× bpq is the fluctuating part of
the electromotive force and

Bic = x̂i cos kz, Bis = x̂i sin kz, i = 1, 2, (18)

are the four test fields, which can show a cosine or sine variation
with z, while x̂1 = (1, 0, 0) and x̂2 = (0, 1, 0) are unit vectors
in the two horizontal coordinate directions. The resulting bpq are
used to compute the electromotive force, Epq = u× bpq , which
is then expressed in terms ofBpq and Jpq = ∇×Bpq as

Epq
i = αijB

pq

j − ηijJ
pq

j . (19)

By doing this for all four test field vectors, the x and y com-
ponents of each of them gives eight equations for the eight un-
knowns, α11, α12, ..., η22; see Brandenburg (2005b) for further
details.

With the TFM, we obtain the kernels αij and ηij , from which
we compute

α = 1
2 (α11 + α22), ηt =

1
2 (η11 + η22), (20)

γ = 1
2 (α21 − α12), δ = 1

2 (η21 − η12). (21)
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Fig. 3. Like Fig. 1, but for Ω = 0.35, so Co = 0.22.

We normalize α and ηt by their respective values obtained for
large magnetic Reynolds numbers defined in Eq. (14), and de-
note them by a tilde, i.e., α̃ = α/α0 and η̃t = ηt/ηt0. We use
the latter normalization also for δ, i.e., δ̃ = δ/ηt0, but expect its
value to vanish in the limit of zero angular velocity. No standard
turbulent pumping velocity is expected (Krause & Rädler, 1980;
Moffatt, 1978), because the rms turbulent velocity is indepen-
dent of height. However, this is not quite true. To show this, we
normalize γ by urms and present γ̃ = γ/urms. In this normaliza-
tion, the molecular value is given by η/η0 = 3/ReM .

We consider test fields that are constant in time and vary
sinusoidally in the z direction. We choose certain values of k
between 1 and 60 and also vary the value of Co between 0
and about 1.06 while keeping Gr = 0.033 fixed. In all cases
where the scale separation ratio is held fixed, we used kf/k1 ≈
30, which is larger than what has been used in earlier studies
(Brandenburg et al., 2008b), where kf/k1 was typically 5.

In Figure 6 we show the dependence of the coefficients on
the normalized wavenumber of the test field, k/kf . The three
coefficients α̃, η̃t, and δ̃ show the same behavior of the form of:

σ̃ = σ̃0/
(
1 + ℓ2σk

2
)
, (22)
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Fig. 4. Comparison of the evolution of Bk/Beq0 for runs with different
values of Co. In the first panel, k/k1 = 1, while in the second panel,
k/k1 = 2 for the two runs with Co = 0.09 (label W refers to the wider
box in the x direction), and k/k1 = 1 for the run with Co = 0.22.

Fig. 5. Dependence of ǫf on Gr Co obtained in DNS with imposed field
(open symbols, red) and without (closed symbols, blue), for kf/k1 =
30. The black symbols connected by a dotted line correspond to the
values of Brandenburg et al. (2012b) for kf/k1 = 5. The horizontal
lines correspond to the dynamo threshold for the two values of kf/k1.

for σ̃ = α̃, η̃t, or δ̃, while for γ̃ we use

γ̃ = γ̃0 + γ̃2ℓ
2
γk

2/
(
1 + ℓ2γk

2
)
, (23)

where γ̃0 = 0.01, γ̃2 = 0.06, and ℓγ = 2.5. These results have
been obtained for Co = 0.59 and B0y/Beq0 = 0.05. Again,
error bars are estimated as the largest departure of any one third
of the full time series.

Most of the coefficients are only weakly dependent on the
value of Co, except γ and δ. The former varies approximately
like

γ̃ = γ̃0 + γ̃2
ΩCo

2, (24)

Fig. 6. TFM coefficients versus scale separation ratio, k/kf , for Co =
0.59, ReM = 18, B0y/Beq0 = 0.05, g̃ = 1 and ηk1/cs = 2× 10−4.

Fig. 7. TFM coefficients versus Coriolis number, Co, for k/kf = 1,
ReM = 18, B0y/Beq0 = 0.05, g̃ = 1, and ηk1/cs = 2× 10−4.

where γ̃0 = 0.85 and γ̃2
Ω = 2.6. Here and in the following, we

keep k/kf = 1/30. For the same value of k/kf , the functional
form for δ shows a linear increase with Co, i.e., δ̃ = δ̃0Co where
δ̃0 = 0.036. Figure 7 shows that α̃ is nearly independent of the
Coriolis number. This result should be compared with Figs. 2a,
3a, and 4a of Kleeorin & Rogachevskii (2003), where a theory of
the α versus the Coriolis number was developed for large fluid
and magnetic Reynolds numbers. It turns out that the new val-
ues of α and ηt that have been obtained now with the TFM are
somewhat different from previous TFM studies that originally
estimated (α̃ ≈ 0.8 and η̃t ≈ 1.15). The TFM results now sug-
gest ǫk = 0.6 in Eq. (15). The reason for this discrepancy cannot
just be the fact that helicity is now self-consistently generated,
because this was also the case in the earlier work of Brandenburg
et al. (2012b). The only plausible reason is the large value of
kf/k1 that is now much larger than before (30 compared to 5 in
most previous studies), which explains the reason for our choice
of the subscript in ǫk .

The origin of weak pumping found in Figs. 6 and 7 is unclear.
For a weak mean magnetic field, pumping of the magnetic field
can cause not only inhomogeneous distributions of the velocity
fluctuations (Krause & Rädler, 1980; Moffatt, 1978) or magnetic
fluctuations (Rädler et al., 2003), but also non-uniform distribu-

7



S. Jabbari et al.: Magnetic flux concentrations from dynamo-generated fields

tion of the fluid density in the presence either of small-scale dy-
namo or turbulent convection (Rogachevskii & Kleeorin, 2006).
In our simulations there is no small-scale dynamo effect, because
ReM is too low. There is also no turbulent convection possible
in our setup. The pumping effect is also not connected with the
nonlinear effects; see Fig. 2 in Rogachevskii & Kleeorin (2004).

3. MFS study
We now want to see whether the suppression of NEMPI and the
subsequent increase in the resulting growth rate can be repro-
duced in MFS. In addition to a parameterization for the negative
effective magnetic pressure in the momentum equation, we add
one for the electromotive force. The important terms here are the
α effect and the turbulent magnetic diffusivity, whose combined
effect is captured by the quantityCα, which is defined in Eq. (13)
and related to DNS parameters in Eq. (15). In contrast to DNS,
the advantage of MFS is that they can more easily be extended
to astrophysically interesting conditions of large Reynolds num-
bers and more complex geometries.

3.1. The model

OurMFSmodel is in many ways the same as that of Jabbari et al.
(2013), where parameterizations for negative effective magnetic
pressure and electromotive force where, for the first time, con-
sidered in combination with each other. Their calculations where
performed in spherical shells without Coriolis force, while here
we apply instead Cartesian geometry and do include the Coriolis
force. The evolution equations for mean velocityU , mean vector
potentialA, and mean density ρ, are thus

DU

Dt
=

1

ρ

(
J ×B +∇qpB

2

2

)
− 2Ω×U − νTQ+ F , (25)

∂A

∂t
= U ×B + αB − ηTJ , (26)

Dρ

Dt
= −ρ∇ ·U ,

where D/Dt = ∂/∂t+U ·∇ is the advective derivative,

F = g − c2s∇ ln ρ (27)

is the mean-field hydrostatic force balance, ηT = ηt + η and
νT = νt + ν are the sums of turbulent and microphysical values
of magnetic diffusivity and kinematic viscosities, respectively, α
is the aforementioned coefficient in the α effect, J = ∇×B is
the mean current density,

−Q = ∇2U + 1
3∇∇ ·U + 2S∇ ln ρ (28)

is a term appearing in the viscous force, where S is the trace-
less rate of strain tensor of the mean flow with components
Sij = 1

2 (U i,j + U j,i) − 1
3δij∇ · U , and finally ∇(qpB

2/2)
determines the turbulent contribution to the mean Lorentz force.
Here, qp depends on the local field strength and is approximated
by (Kemel et al., 2012a)

qp(β) =
qp0

1 + β2/β2
p

=
β2
⋆

β2
p + β2

, (29)

where qp0, βp, and β⋆ = βpq
1/2
p0 are constants, β = |B|/Beq

is the normalized mean magnetic field, and Beq =
√
ρ urms is

the equipartition field strength. For ReM <∼ 60, Brandenburg et
al. (2012a) found β⋆ ≈ 0.33 and βp ≈ 1.05/ReM . We use as
our reference model the parameters for ReM = 18, used also by
Losada et al. (2013), which yields

βp = 0.058, β⋆ = 0.33 (reference model). (30)

In some cases we also compare with β⋆ = 0.44, which was
found to match more closely the measured dependence of the
effective magnetic pressure on β by Losada et al. (2013). For
vertical magnetic fields, MFS for a range of model parameters
have been given by Brandenburg et al. (2014). In the MFS, we
use (Sur et al., 2008)

ηt ≈ ηt0 ≡ urms/3kf , (31)

to replace kf = urms/3ηt, so

Gr = 3ηt/urmsHρ (32)

and (Losada et al., 2013)

Co = 2Ω/urmskf = 6Ωηt/u
2
rms. (33)

We now consider separately cases where we vary either Co or
Gr. In addition, we also vary the scale separation ratio kf/k1,
which is essentially a measure of the inverse turbulent diffusiv-
ity, i.e.,

kf/k1 = urms/3ηtk1; (34)

see Eq. (31).

3.2. Fixed value of Gr

The work of Losada et al. (2012) has shown that the growth rate
of NEMPI, λ, decreases with increasing values of the rotation
rate. They found it to be advantageous to express λ in terms of
the quantity

λ∗0 = β⋆urms/Hρ. (35)

As discussed above, the normalized growth rate λ/λ∗0 shows
first a decline with increasing values of Co, but then, for Co >
0.13 or so, an increase, that was argued to be a result of the dy-
namo effect (Losada et al., 2013). This curve has a minimum at
Co ≈ 0.13. As rotation is increased further, the combined action
of stratification and rotation leads to increased kinetic helicity
and thus eventually to the onset of mean-field α2 dynamo ac-
tion.

Owing to the effects of turbulent diffusion, the actual value
of the growth rate of NEMPI is always expected to be less than
λ∗0. Kemel et al. (2013) proposed an empirical formula replac-
ing λ by λ + ηtk

2, where k is the relevant wavenumber. This
would lead to

λ/λ∗0 ∝ 1− Gr∗/Gr, (36)

with a coefficient Gr∗ = η̃t/3β⋆Ma. However, as we will see
below, this expression is not found to be consistent with our nu-
merical data.

The onset of the dynamo instability is governed by the dy-
namo number

Cα = ǫf0GrCo kf/k1. (37)

For a cubic domain, large-scale dynamo action occurs for Cα >
1, which was confirmed by Losada et al. (2013), who found the
typical Beltrami fields for two supercritical cases. They used
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Fig. 8. Non-dimensional growth rate of NEMPI versus Co for MFS(i)
with β⋆ = 0.33 and MFS(ii) with β⋆ = 0.44, as well as DNS for
Gr = 0.033 and β0 = 0.05.

Fig. 9. Normalized growth rate of NEMPI versus stratification param-
eter Gr that varies with changing gravity, g, for Co = 0, constant η̃t
(η̃t = 10−3 black, filled symbols and η̃t = 10−2 blue, open symbols),
or it changes with different ηt = νt for constant g̃ = 2 (red, open sym-
bols). The dash-dotted line shows the approximate fit given by Eq. (40).
The inset shows the growth rate normalized by the turnover time as a
function of g̃.

the parameters Gr = 0.033 and values of Co up to 0.6. Here
we present MFS in two- and three-dimensional domains for the
same values of Gr and a similar range of Co values. In Fig. 8,
we compare the DNS of Losada et al. (2013) with our reference
model defined through Eq. (30) and referred to as MFS(i) as well
as with the case β⋆ = 0.44, referred to as MFS(ii).

3.3. Larger stratification, smaller scale separation

The theoretically expected maximum growth rate of NEMPI is
given by Eq. (35). At zero rotation, we thus expect λ/λ∗0 ≈ 1.
To check this, we have performed two-dimensional MFS in a
squared domain of size (2π)2. The result is shown in Fig. 9 for
the model parameters given in Eq. (30). When Gr is small, we
find that λ/λ∗0 ≈ 0.3, which is below the expected value. As
we increase Gr, λ/λ∗0 decreases until NEMPI can no longer be
detected for Gr >∼ 1.2.

It is conceivable that this decrease may have been caused
by the following two facts. Firstly, the growth rate is expected
to increase with Gr, but for fixed scale separation, the resulting
density contrast becomes huge. Finite resolution might there-
fore have caused inaccuracies. Secondly, although the growth
rate should not depend on B0 (Kemel et al., 2012a), we need to
make sure that the mode is fully contained within the domain. In
other words, we are interested in the largest growth rate as we
vary the value of B0. Again, to limit computational expense, we
have tried only a small number of runs, keeping the size of the
domain the same. This may have caused additional uncertainties.
However, it turns out that our results are independent of whether
Gr is changed by changing g or ηt (= νt). This suggests that
our results for large values of g shown in Fig. 9 may in fact be
accurate. To illustrate this more clearly, we rewrite

Gr =
3ηt

urmsHρ
=

3η̃t
k1

cs
urms

g

c2s
= 3η̃tg̃/Ma, (38)

where we have defined

η̃t = ηtk1/cs, g̃ = g/c2sk1 ≡ (k1Hρ)
−1. (39)

Fig. 9 shows that λ/λ∗0 is indeed independent of the individual
values of η̃t and g̃ as long as Gr is the same. For small values
of g̃ and large diffusivity (η̃t = 10−2), the velocity evolves in
an oscillatory fashion with a rapid growth and a gradual subse-
quent decline. In Fig. 9, the isolated data point at λ/λ∗0 ≈ 0.44
reflects the speed of growth during the periodic rise phase, but it
is unclear whether or not it is related to NEMPI.

In the inset, we plot λ/urmskf versus g̃ itself. This shows that
the growth rate (in units of the inverse turnover time) increases
with increasing g̃ when η̃t is small. However, the growth rate de-
creases with increasing η̃t. When η̃t is larger (corresponding to
smaller scale separation), the growth rate of NEMPI is reduced
for the same value of g̃ and it decreases with g̃ when g̃ >∼ 2.

The decrease of λ/λ∗0 with increasing values of Gr can be
approximated by the formula

λ/λ∗0 ≈ 0.3
/[
1 + 2Gr+ (4Gr)2

]
, (40)

which is shown in Fig. 9 as a dash-dotted lined. This expres-
sion is qualitatively different from the earlier, more heuristic ex-
pression proposed by Kemel et al. (2013) where the dimensional
growth rate was simply modified by an ad hoc diffusion term of
the form ηtk

2. In that case, contrary to our MFS, the normal-
ized growth rate would actually increase with increasing values
of Gr; see Eq. (36).

3.4. Co dependence at larger stratification

We consider the normalized growth rate of the combined NEMPI
and dynamo instabilities as a function of Co for different values
of Gr. As it is clear from Fig. 9, using a fixed value of g and vary-
ing ηt gives us the possibility to increase Gr to larger values of up
to 1. In the following we used this procedure to compare the be-
havior of the growth rate versus Co for three values of Gr, 0.12,
0.21, and 1; see Fig. 10. It can be seen that the behavior of the
curves is independent of the values of Gr, but the points where
the minima of the curves occur moves toward bigger values of
Co as Gr increases. This also happens in the case when there
is only dynamo action without imposed magnetic field (dashed
lines in Fig. 10). One also sees that the increase of the growth
rate with increasing Co is much stronger in the case of larger
Gr (compare the lines for Gr = 0.12 with those for 0.21 and
1). Finally, comparing runs with and without imposed magnetic
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Fig. 10. Normalized growth rate of the combined NEMPI and dynamo
instability (solid lines) together with cases with pure dynamo instability
(no imposed field, dashed lines) versus Co for three different value of
Gr, Gr = 0.12 (blue) and Gr = 0.21 (red) and Gr = 1.0 (black). In
these simulations g̃ = 4 and η̃t = 10−3 (blue line), g̃ = 3.5, η̃t =
2× 10−3 (red line) and g̃ = 3.5, η̃t = 9.5× 10−3 (black line).

field, but the same value of Gr, the growth rate of NEMPI is in
most cases below that of the coupled system with NEMPI and
dynamo instability.

In Fig. 10 we see that the dependence of λ/λ∗0 on Gr is
opposite for small and large values of Co. When Co <∼ 0.05, an
increase in Gr leads to a decrease in λ/λ∗0 (compare the Gr = 1
line with that for 0.21 along a cut through Co = 0.05 in Fig. 10),
while for Co >∼ 0.2, an increase in Gr leads to an increase in
λ/λ∗0 (compare all three lines in Fig. 10 along a cut through
Co = 0.3). The latter is caused by the increase of the dynamo
number Cα, which is directly proportional to Gr; see Eq. (37).
On the other hand, for small values of Co, only NEMPI operates,
but if Gr in Eq. (38) is increased by increasing η̃t rather than g̃,
the dynamo is suppressed by enhanced turbulent diffusion; see
also Fig. 9. This is related to the fact that the properties of the
system depend not just on Gr and Co, but also on kf/k1 or Cα,
which is proportional to all three parameters; see Eq. (37).

4. Discussion and conclusions
The present work has been a step further in trying to determine
whether the observable solar activity such as sunspots and ac-
tive regions could be the result of surface effects associated with
strong stratification. A particularly important aspect has been
the interaction with a dynamo process that must eventually be
responsible for generating the overall magnetic field. Recent
global convective dynamo simulations of Nelson et al. (2011,
2013, 2014) have demonstrated that flux tubes with ≈ 40 kG
field strength can be produced in the solar convection zone. This
is almost as strong as the ≈ 100 kG magnetic flux tubes antic-
ipated from earlier investigations of rising flux tubes requiring
them to not break up and to preserve their east–west orientation
D’Silva & Choudhuri (1993). Would we then still need surface
effects such as NEMPI to produce sunspots? The answer might
well be yes, because the flux ropes that have been isolated in the
visualizations of Nelson et al. (2011, 2013, 2014) appear to have
cross-sections that are much larger than sunspots at the solar sur-
face. Further concentration into thinner tubes would be required
if they were to explain sunspots by just letting them pierce the
surface.

Realistic hydromagnetic simulations of the solar surface are
now beginning to demonstrate that ≈ 10 kG fields at a depth
of ≈ 10Mm can produce sunspot-like appearances at the sur-
face (Rempel & Cheung, 2014). However, we have to ask about
the physical process contributing to this phenomenon. A purely
descriptive analysis of simulation data cannot replace the need
for a more prognostic approach that tries to reproduce the essen-
tial physics using simpler models. Although Rempel & Cheung
(2014) propose a mechanism involving mean-field terms in the
induction equation, they do not show that their model equations
can actually describe the process of magnetic flux concentration.
In fact, their description is somewhat reminiscent of flux expul-
sion, which was invoked earlier by Tao et al. (1998) to explain
the segregation of magneto-convection into magnetized and un-
magnetized regions. In this context, NEMPI provides such an
approach that can be used prognostically rather than diagnos-
tically. However, this approach has problems of its own, some
of which are now addressed in the present work. Does NEMPI
stop working when Co >∼ 0.03? How does it interact with the
underlying dynamo? Such a dynamo is believed to control the
overall sunspot number and the concentration of sunspots to low
latitudes.

Our new DNS suggest that, although rotation tends to sup-
press NEMPI, magnetic flux concentrations can still form at
Coriolis numbers of Co ≈ 0.1. This is slightly larger than what
was previously found from MFS both with horizontal and verti-
cal magnetic fields and the same value of Gr. For the solar rota-
tion rate of Ω ≈ 3× 10−6 s−1, a value of Co ≡ 2Ωτ = 0.1 cor-
responds to τ = 5h, which is longer than the earlier MFS values
of 2 h for a horizontal field (Losada et al., 2013) and 30min for
a vertical field (Brandenburg et al., 2014).

Using the TFM, we have confirmed earlier findings about
α and ηt, although for our new simulations both coefficients
are somewhat larger, which is presumably due to the larger
scale separation. The ratio between α and ηt determines the dy-
namo number and is now about 40% below previous estimates.
There is no evidence for other important mean-field effects that
could change our conclusion about a cross-over from suppressed
NEMPI to increased dynamo activity. We now confirm quanti-
tatively that the enhanced growth past the initial suppression of
NEMPI is indeed caused by mean-field dynamo action in the
presence of a weak magnetic field. The position of the minimum
in the growth rate coincides with the onset of mean-field dynamo
action that takes the α effect into account.

For weak or no rotation, we find that the normalized NEMPI
growth rate is well described by a single parameter Gr, which is
proportional to the product of gravity and turbulent diffusivity,
where the latter is a measure of the inverse scale separation ra-
tio. This normalization takes into account that the growth rate in-
creases with increasing gravity. The growth rate ‘compensated’
in that way shows a decrease with increasing gravity and tur-
bulent diffusivity that is different from an earlier, more heuris-
tic, expression proposed by Kemel et al. (2013). The reason for
this departure is not quite clear. One possibility is some kind of
‘gravitational quenching’, because the suppression is well de-
scribed by a quenching factor that becomes important when Gr
exceeds a value of around 0.5. This quenching is probably not
important for stellar convection where the estimated value of Gr
is 0.17 (Losada et al., 2013). It might, however, help explaining
mismatches in the theoretically expected growth rate that was
found to be proportional to Gr (Kemel et al., 2013) and that de-
termined from recent DNS (Brandenburg et al., 2014).

An important question is whether NEMPI will really be
strong enough to produce sunspots with super-equipartition
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strength. It was always clear that NEMPI can only work for a
magnetic fields strength is a small fraction of the local equipar-
tition field value. However, super-equipartition fields are being
produced if the magnetic field is vertical (Brandenburg et al.,
2013). Subsequent work showed quantitatively that NEMPI does
indeed work at sub-equipartition field strengths, but since mass
flows mainly along magnetic field lines, the reduced pressure
leads to suction with tends to evacuate the upper parts of the
tube (Brandenburg et al., 2014). This is similar to the “hydraulic
effect” envisaged by Parker (1976), who predicted such down-
flows along flux tubes. In a later paper Parker (1978), gives more
realistic estimates, but the source of downward flows remained
unclear. Meanwhile, the flux emergence simulations of Rempel
& Cheung (2014) show at first upflows in their magnetic spots
(see their Fig. 5), but as the spots mature, a downflow develops
(see their Fig. 7). In their case, because they have convection,
those downflows can also be ascribed to supergranular down-
flows, as was done by Stein & Nordlund (2012). Nevertheless,
in the isothermal simulations of Brandenburg et al. (2013, 2014),
this explanation would not apply. Thus, we now know that the re-
quired downflows can be caused by NEMPI, but he do not know
whether this is also what is happening in the Sun.

Coming back to our paper, where NEMPI is coupled to a
dynamo, the recent work of Mitra et al. (2014) is relevant be-
cause it shows that intense bipolar spots can be generated in
an isothermal simulation with strongly stratified non-helically
driven turbulence in the upper part and a helical dynamo in the
lower part. The resulting surface structure resembles so-called
δ spots that have previously only been found in the presence
of strongly twisted and kink-unstable flux tubes (Linton et al.,
1998). While the detailed mechanism of this work is not yet un-
derstood, it reminds us that it is too early to draw strong con-
clusions about NEMPI as long as not all its aspects have been
explored in sufficient detail.
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Krause, F., & Rädler, K.-H. 1980, Mean-field Magnetohydrodynamics and

Dynamo Theory (Oxford: Pergamon Press)
Leighton, R. B. 1969, ApJ, 156, 1
Linton, M. G., Dahlburg, R. B., Fisher, G. H., & Longcope, D. W. 1998, ApJ,

507, 404
Losada, I. R., Brandenburg, A., Kleeorin, N., Mitra, D., & Rogachevskii, I. 2012,

A&A, 548, A49
Losada, I. R., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2013, A&A,

556, A83
Miesch, M. S., & Dikpati, M. 2014, ApJ, 785, L8
Mitra, D., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2014, MNRAS,

submitted, arXiv:1404.3194
Moffatt, H.K. 1978, Magnetic Field Generation in Electrically Conducting

Fluids (Cambridge: Cambridge Univ. Press)
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2011, ApJ,

739, L38
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2013, ApJ,

762, 73
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2014, Solar

Phys., 289, 441
Parker, E. N. 1955, ApJ, 121, 491
Parker, E. N. 1975, ApJ, 198, 205
Parker, E. N. 1976, ApJ, 210, 816
Parker, E. N. 1978, ApJ, 221, 368
Pinto, R. F., & Brun, A. S. 2013, ApJ, 772, 55
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ABSTRACT

Context. Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the
domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the
Reynolds and Maxwell stresses show a large-scale negative effective magnetic pressure instability and have been able to reproduce
many aspects of direct numerical simulations (DNS) regarding growth rate, shape of the resulting magnetic structures, and their height
as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations
of equipartition strength with the turbulence can be reached, resulting in magnetic spots that are reminiscent of sunspots.
Aims. We determine under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is.
Methods. We use a combination of MFS, DNS, and implicit large-eddy simulations (ILES) to characterize the resulting magnetic
flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field.
Results. Using DNS, we confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength
of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar
to inverse spectral transfer in helically driven turbulence. Using ILES, we find that magnetic flux concentrations occur for Mach
numbers between 0.1 and 0.7. They occur also for weaker stratification and larger turbulent eddies if the domain is wide enough.
Using MFS, the size and aspect ratio of magnetic structures are determined as functions of two input parameters characterizing
the parameterization of the effective magnetic pressure. DNS, ILES, and MFS show magnetic flux tubes with mean-field energies
comparable to the turbulent kinetic energy. These tubes can reach a length of about eight density scale heights. Despite being ≤1%
equipartition strength, it is important that their lower part is included within the computational domain to achieve the full strength of
the instability.
Conclusions. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow
from the sides, which keep the field concentrated. Application to sunspots remains a viable possibility.

Key words. sunspots – Sun: magnetic fields – turbulence – magnetic fields – hydrodynamics

1. Introduction

Sunspots and active regions are generally thought to be the re-
sult of magnetic fields emerging from deep at the bottom of the
solar convection zone (Fan 2009). Alternatively, solar magnetic
activity may be a shallow phenomenon (Brandenburg 2005).
Several recent simulations with realistic physics of solar turbu-
lent convection with radiative transfer have demonstrated the ap-
pearance of magnetic flux concentrations either spontaneously
(Kitiashvili et al. 2010; Stein & Nordlund 2012) or as a re-
sult of suitable initial conditions (Cheung et al. 2010; Rempel
2011). There is also the phenomenon of magnetic flux expul-
sion, which has been invoked as an explanation of the segre-
gation of magneto-convection into magnetized, non-convecting
regions and non-magnetized, convecting ones (Tao et al. 1998).

The magneto-hydrothermal structure of sunspots has been
studied using the thin flux tube approximation (Spruit 1981), in
which the stability and buoyant rise of magnetic fields in the
solar convection zone has been investigated. This theory has
been also applied to vertical magnetic flux tubes, which open

up toward the surface. An important property of such tubes is the
possibility of thermal collapse, caused by an instability that leads
to a downward shift of gas and a more compressedmagnetic field
structure; see Spruit (1979), who adopted a realistic equation of
state including hydrogen ionization. On the other hand, sunspot
simulations of Rempel (2011) and others must make an ad hoc
assumption about converging flows outside the tube to prevent it
from disintegrating due to turbulent convection. This approach
also does not capture the generation process, that is now implic-
itly seen to operate in some of the simulations of Kitiashvili et al.
(2010) and Stein & Nordlund (2012).

To understand the universal physical mechanism of mag-
netic flux concentrations, which has been argued to be a min-
imal model of magnetic spot formation in the presence of a
vertical magnetic field (Brandenburg et al. 2013), we consider
here forced turbulence in a strongly stratified isothermal layer
without radiation. In the past few years, there has been signif-
icant progress in modelling the physics of the resulting mag-
netic flux concentrations in strongly stratified turbulence via the
negative effective magnetic pressure instability (NEMPI). The
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physics behind this mechanism is the suppression of total (hy-
drodynamic plus magnetic) turbulent pressure by a large-scale
magnetic field. At large enough magnetic Reynolds numbers,
well above unity, the suppression of the total turbulent pressure
can be large, leading to a negative net effect. In particular, the
effective magnetic pressure (the sum of non-turbulent and turbu-
lent contributions) becomes negative, so that the large-scale neg-
ative effective magnetic pressure instability is excited (Kleeorin
et al. 1989, 1990, 1993, 1996; Kleeorin & Rogachevskii 1994;
Rogachevskii & Kleeorin 2007).

Hydromagnetic turbulence has been studied for decades
(Biskamp 1993), but the effects of a large-scale magnetic field
on the total pressure are usually ignored, because in the incom-
pressible case the pressure can be eliminated from the problem.
This changes when there is gravitational density stratification,
even in the limit of small Mach number, because ∇ · ρU = 0
implies that ∇ · U = Uz/Hρ � 0. Here, U is the velocity,
Hρ = |d lnρ/dz|−1 is the density scale height, and gravity points
in the negative z direction. When domain size and gravitational
stratification are big enough, the system can become unstable
with respect to NEMPI, which leads to a spontaneous accumula-
tion of magnetic flux. Direct numerical simulations (DNS) with
large scale separation have been used to verify this mechanism
for horizontal magnetic fields (Brandenburg et al. 2011; Kemel
et al. 2012a, 2013). In that case significant progress has been
made in establishing the connection between DNS and related
mean-field simulations (MFS). Both approaches show that the
resulting magnetic flux concentrations are advected downward
in the nonlinear stage of NEMPI. This is because the effective
magnetic pressure is negative, so when the magnetic field in-
creases inside a horizontal flux structure, gas pressure and den-
sity are locally increased to achieve pressure equilibrium, thus
making the effective magnetic buoyancy force negative. This
results in a downward flow (“potato-sack” effect). Horizontal
mean magnetic fields are advected downward by this flow and
never reach much more than a few percent of the equipartition
field strength.

The situation is entirely different for vertical magnetic fields.
The downflow draws gas downward along magnetic field lines,
creating an underpressure in the upper parts, which concentrates
the magnetic field to equipartition field strength with respect to
the turbulent kinetic energy density (Brandenburg et al. 2013).
The resulting magnetic flux concentrations have superficially
the appearance of sunspots. For horizontal fields, spots can also
form and they have the appearance of bipolar regions, as has
been found in simulations with a coronal layer above a turbu-
lent region (Warnecke et al. 2013). However, to address the ex-
citing possibility of explaining the occurrence of sunspots by
this mechanism, we need to know more about the operation of
NEMPI with a vertical magnetic field. In particular, we need to
understand how it is possible to obtain magnetic field strengths
much larger than the optimal magnetic field strength at which
NEMPI is excited. We will do this through a detailed examina-
tion of magnetic flux concentrations in MFS, where the origin of
flows can be determined unambiguously owing to the absence of
the much stronger turbulent convective motions.

We complement our studies with DNS and so-called “im-
plicit large-eddy” simulations (ILES), which are comparable to
DNS in that they aim to resolve the inertial range of the forced
turbulence. ILES differ from DNS in that one does not attempt
to resolve the dissipation scale, which is numerically expensive
due to resolution requirements. In short, ILES are DNS without
explicit physical dissipation coefficients. However, unlike large-
eddy simulations, no turbulence parameterization model is used

at all to represent the unresolved scales. Lacking explicit dissi-
pation, ILES instead rely on suitable properties of the trunca-
tion error of the numerical scheme (Grinstein et al. 2005), which
guarantees that kinetic and magnetic energies are dissipated near
the grid scale. In the finite-volume codeN (Ziegler 2004)
that we use for ILES here, dissipation occurs in the averaging
step of the Godunov scheme. The advantage of the finite-volume
scheme is the ability to capture shocks without explicit or artifi-
cial viscosity. This allows us to probe the regime of higher Mach
numbers without the requirement to adjust the Reynolds number
or grid resolution.

Following earlier work of Brandenburg et al. (2011), we will
stick to the simple setup of an isothermal layer. This is not only
a computational convenience, but it is also conceptually signif-
icant, because it allows us to disentangle competing explana-
tions for sunspot and active region formation. One of them is the
idea that active regions are being formed and held in place by
the more deeply rooted supergranulation network at 20−40Mm
depth (Stein & Nordlund 2012). In a realistic simulation there
will be supergranulation and large-scale downdrafts, but NEMPI
also produces large-scale downdrafts in the nonlinear stage of
the evolution. However, by using forced turbulence simulations
in an isothermal layer, an explanation in terms of supergranula-
tion would not apply.

We emphasize that an isothermal layer can be infinitely
extended. Furthermore, the stratification is uniform in the
sense that the density scale height is independent of height.
Nevertheless, the density varies, so the equipartition magnetic
field strength also varies. Therefore, the ratio of the imposed
magnetic field strength to the equipartition value varies with
height. NEMPI is excited at the height where this ratio is
around 3% (Losada et al. 2013). This explains why NEMPI can
be arranged to work at any field strength if only the domain is
tall enough.

At large domain size, DNS and ILES become expensive and
corresponding MFS are an ideal tool to address questions con-
cerning the global shape of magnetic flux concentrations. In that
case, significant conceptual simplifications can be achieved by
making use of the axisymmetry of the resulting magnetic flux
concentrations. We also need to know more about the operation
of NEMPI under conditions closer to reality. For example, how
does it operate in the presence of larger gravity, larger Mach
numbers, and smaller scale separation? This aspect is best be-
ing addressed through ILES, where significant dissipation only
occurs in shocks.

We consider three-dimensional (3D) domains and compare
in some cases with MFS in two-dimensions (2D) using axisym-
metry or Cartesian geometry. Here, axisymmetry is adequate for
vertical tubes while Cartesian geometry is adequate for vertical
sheets of horizontal magnetic field. The MFS provide guidance
that is useful for understanding the results of DNS and ILES,
so in this paper we begin with MFS, discuss the mechanism of
NEMPI and then focus on the dependencies on gravity, scale
separation, and Mach numbers using DNS. Finally, we assess
the applicability of NEMPI to sunspot formation.

2. Mean-field study of NEMPI

For the analytical study of NEMPI with a vertical field we
consider the equations of mean-field MHD for mean magnetic
field B, mean velocity U, and mean density ρ in the anelastic
approximation for low Mach numbers, and for large fluid and
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magnetic Reynolds numbers,

∂B
∂t

= ∇ ×
(
U × B − ηtμ0J

)
, (1)

ρ
DU
Dt

= −∇ptot + μ−10 (B · ∇)B + ρg − νtρQ, (2)

0 = −∇ · ρU, (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, ptot =
p + peff is the mean total pressure, p is the mean gas pressure,

peff = (1 − qp)B2/2μ0 (4)

is the effective magnetic pressure (Kleeorin et al. 1990, 1993,
1996), ρ is the mean density, B = ∇× A+ ẑB0 is the mean mag-
netic field with an imposed constant field pointing in the z direc-
tion, J = ∇×B/μ0 is the mean current density, μ0 is the vacuum
permeability, g = (0, 0,−g) is the gravitational acceleration, ηt is
the turbulent magnetic diffusivity, νt is the turbulent viscosity,

−Q = ∇2U + 1
3∇∇ · U + 2S∇ ln ρ (5)

is a term appearing in the viscous force with

Si j = 1
2 (Ui, j + U j,i) − 1

3δi j∇ · U (6)

being the traceless rate-of-strain tensor of the mean flow.
We adopt an isothermal equation of state with p = ρc2s ,

where cs = const. is the sound speed. In the absence of a mag-
netic field, the hydrostatic equilibrium solution is then given by
ρ = ρ0 exp(−z/Hρ), where Hρ = c2s/g is the density scale height.

2.1. Analytical estimates of growth rate of NEMPI

We linearize the mean-field Eqs. (1)−(3) around the equilibrium:
U0 = 0, B = B0 = const. The equations for small perturbations
(denoted by a tilde) can be rewritten in the form

∂B̃
∂t

= ∇ ×
(
Ũ × B0

)
, (7)

∇ · Ũ =
Ũz
Hρ

, (8)

∂Ũ
∂t

=
1
ρ

[
μ−10 (B0 · ∇)B̃ − ∇p̃eff

]
, (9)

where

p̃tot = p̃eff =
2B0 B̃z
μ0

(
dPeff

dβ2

)

β=β0

(10)

with β = B/Beq and Beq =
√
μ0ρurms is the local equipartition

field strength, and urms is assumed to be a constant in the present
mean-field study. Here, the effective magnetic pressure is written
in normalized form as

Peff(β) ≡ μ0peff/B2eq = 1
2

[
1 − qp(β)

]
β2. (11)

In this section, we neglect dissipative terms such as the turbu-
lent viscosity term in the momentum equation and the turbulent
magnetic diffusion term in the induction equation. We consider
the axisymmetric problem, use cylindrical coordinates r, ϕ, z and
introduce the magnetic vector potential and stream function:

B̃ = ∇×
(
Aeϕ

)
, ρ Ũ = ∇×

(
Ψeϕ

)
. (12)

Using the radial component of Eqs. (7) and (9) we arrive at the
following equation for the function Φ(t, r, z) = ρ−1 ∇zΨ:
∂2Φ

∂t2
= v2A(z)

⎡⎢⎢⎢⎢⎣∇2
z + 2

(
dPeff

dβ2

)

β=β0

Δs

⎤⎥⎥⎥⎥⎦Φ, (13)

where vA(z) = B0/
√
μ0ρ(z) is the mean Alfvén speed, Δs is the

radial part of the Stokes operator,

Δs =
1
r
∂

∂r

(
r
∂

∂r

)
− 1
r2
,

and we have used an exponential profile for the density stratifi-
cation in an isothermal layer,

ρ = ρ0 exp(−z/Hρ). (14)

We seek solutions of Eq. (13) in the form

Φ(t, r, z) = exp(λt) J1(σr/R)Φ0(z), (15)

where J1(x) is the Bessel function of the first kind, which sat-
isfies the Bessel equation: ΔsJ1(ar) = −a2J1(ar). Substituting
Eq. (15) into Eq. (13), we obtain the equation for the func-
tion Φ0(z):

d2Φ0

dz2
−

⎡⎢⎢⎢⎢⎣
λ2

v2A(z)
+
2σ2

R2

(
dPeff

dβ2

)

β=β0

⎤⎥⎥⎥⎥⎦Φ0 = 0. (16)

For R2Φ′′
0 (z)/Φ0 � 1, the growth rate of NEMPI is given by

λ =
vAσ

R

⎡⎢⎢⎢⎢⎣−2
(
dPeff

dβ2

)

β=β0

⎤⎥⎥⎥⎥⎦
1/2

· (17)

This equation shows that, compared to the case of a horizon-
tal magnetic field, where there was a factor Hρ in the denomi-
nator, in the case of a vertical field the relevant length is R/σ.
Introducing as a new variable X = β20(z), we can rewrite Eq. (16)
in the form

X3 d2Φ0

dX2 + X2 dΦ0

dX
−

⎛⎜⎜⎜⎜⎜⎝
λ2H2

ρ

u2rms
+
2σ2H2

ρ

R2
X
dPeff

dX

⎞⎟⎟⎟⎟⎟⎠Φ0 = 0. (18)

We now need to make detailed assumptions about the functional
form of Peff(β2). A useful parameterization of qp in Eq. (4) is
(Kemel et al. 2012b)

qp =
qp0

1 + β2/β2p
≡ β2�

β2p + β2
, (19)

where β� =
√qp0βp. It is customary to obtain approximate ana-

lytic solutions to Eq. (18) as marginally bound states of the as-
sociated Schrödinger equation,Ψ′′

0 − Ũ(X)Ψ0 = 0, via the trans-
formation Φ0 = Ψ0/

√
X, where

Ũ(X) =
λ2H2

ρ

u2rmsX3
− 1
4X2 +

σ2H2
ρ

R2X2

⎛⎜⎜⎜⎜⎝1 −
qp0

(1 + X2/β2p)2

⎞⎟⎟⎟⎟⎠ , (20)

where primes denote a derivative with respect to X. The po-
tential Ũ(X) has the following asymptotic behavior: Ũ →
λ2H2

ρ/(u2rmsX3) for small X, and Ũ(X) → (σ2H2
ρ/R2 − 1/4)X−2

for large X. For the existence of an instability, the potential Ũ(R)
should have a negative minimum. However, the exact values of
the growth rate of NEMPI, the scale at which the growth rate
attains the maximum value, and how the resulting magnetic field
structure looks like in the nonlinear saturated regime of NEMPI
can only be obtained numerically using MFS.
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2.2. MFS models

For consistency with earlier studies, we keep the governingMFS
parameters equal to those used in a recent study by Losada et al.
(2013). Thus, unless stated otherwise, we use the values

qp0 = 32, βp = 0.058 (reference model), (21)

which are based on Eq. (22) of Brandenburg et al. (2012), ap-
plied to ReM = 18.

The mean-field equations are solved numerically without
making the anelastic approximation, i.e., we solve

∂ρ

∂t
= −∇ · ρU (22)

together with the equations for the mean vector potential A such
that B = B0 + ∇ × A is divergence-free, the mean velocity
U, and the mean density ρ, using the Pencil Code1, which has
a mean-field module built in and is used for calculations both
in Cartesian and cylindrical geometries. Here, B0 = (0, 0, B0)
is the imposed uniform vertical field. The respective coordi-
nate systems are (x, y, z) and (r, ϕ, z). In the former case we
use periodic boundary conditions in the horizontal directions,
−L⊥/2 < (x, y) < L⊥/2, while in the latter we adopt perfect con-
ductor, free-slip boundary conditions at the side walls at r = Lr
and regularity conditions on the axis. On the upper and lower
boundaries at z = ztop and z = zbot we use in both geometries
stress-free conditions, ẑ × ∂U/∂z = 0 and ẑ · U = 0, and assume
the magnetic field to be normal to the boundary, i.e., ẑ × B = 0.

Following earlier work, we display results for the mag-
netic field either by normalizing with B0, which is a constant,
or by normalizing with Beq, which decreases with height. The
strength of the imposed field is often specified in terms of
Beq0 = Beq(z = 0).

2.3. Nondimensionalization

Nondimensional parameters are indicated by tildes and hats, and
include B̃0 = B0/(μ0ρ0c2s )1/2 and η̃t = ηt/csHρ, in addition to pa-
rameters in Eq. (21) characterizing the functional form of qp(β).
Additional quantities include k̃f = kfHρ and k̂f = kf/k1, where
a hat is used to indicate nondimensionalization that uses quan-
tities other than cs and Hρ, such as k1 = 2π/L⊥, which is the
lowest horizontal wavenumber in a domain with horizontal ex-
tent L⊥. For example, ĝ = g/c2sk1, is nondimensional gravity and
λ̂ = λH2

ρ/ηt is the nondimensional growth rate. It is convenient
to quote also B0/Beq0 with Beq0 = Beq(z = 0). Note that B0/Beq0
is larger than B̃0 by the inverse of the turbulent Mach number,
Ma = urms/cs. It is convenient to normalize the mean flow by
urms and denote it by a hat, i.e., Û = U/urms. Likewise, we de-
fine B̂ = B/Beq.

In MFS, the value of ηt is assumed to be given by ηt0 =
urms/3kf. Using the test-field method, Sur et al. (2008) found
this to be an accurate approximation of ηt. Thus, we have to
specify both Ma and k̃f . In most of our runs we use Ma = 0.1
and k̃f = 33, corresponding to η̃t = 10−3. Furthermore, kf and
Hρ are in principle not independent of each other either. In fact,
mixing length theory suggests kfHρ ≈ 6.5 (Losada et al. 2013),
but it would certainly be worthwhile to compute this quantity
from high-resolution convection simulations spanning multiple
scale heights. However, in this paper, different values of kfHρ

1 http://pencil-code.googlecode.com

Fig. 1. Horizontal patterns of Bz at z = 0 from a 3D MFS during the
kinematic growth phase with B0/Beq0 = 0.1 and horizontal extents with
a) L⊥/Hρ = 4π; b) 8π; and c) 16π.

are considered. With these preparations in place, we can now
address questions concerning the horizontal wavelength of the
instability and the vertical structure of the magnetic flux tubes.

2.4. Aspect ratio of NEMPI

The only natural length scale in an isothermal layer in MFS
is Hρ. It determines the scale of NEMPI. At onset, the horizon-
tal scale of the magnetic field pattern will be a certain multiple
of Hρ. In the following we denote the corresponding horizontal
wavenumber of this pattern by k⊥. Earlier work by Kemel et al.
(2013) showed that for an imposed horizontal magnetic field we
have k⊥Hρ ≈ 0.8...1. This pattern was 2D in the plane perpendic-
ular to the direction of the imposed magnetic field, correspond-
ing to horizontal rolls oriented along the mean magnetic field.
In the present case of a vertical field, the magnetic perturbations
have a cellular pattern with horizontal wavenumber k⊥. To de-
termine the value of k⊥Hρ for the case of an imposed vertical
magnetic field, we have to ensure that the number of cells per
unit area is independent of the size of the domain. In Fig. 1, we
compare MFS with horizontal aspect ratios ranging from 2 to 8.
We see that the magnetic pattern is fully captured in a domain
with normalized horizontal extent L⊥/Hρ = 4π, i.e., the horizon-
tal scale of the magnetic field pattern is twice the value of Hρ,
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Fig. 2. Power spectra of Bz for different horizontal domain sizes at z = 0
from a 3D MFS during the kinematic growth phase with B0/Beq0 = 0.1.

Fig. 3. Time evolution of normalized spectra of Bz from 3DMFS during
the late nonlinear phase at the top of the domain, k1z = π, at normalized
times tηt0/H2

ρ ≈ 5 (blue), 6, 7, 10, 20, 30, 40, and 50 (red), with g =

c2sk1, B0/Beq0 = 0.1, and L⊥/Hρ = 16π.

i.e., kx = ky = H−1
ρ /2, so that k⊥ ≡ (k2x + k2y)1/2 = H−1

ρ /
√
2, or

k⊥Hρ ≈ 0.7. The value k⊥Hρ ≈ 0.7 is also confirmed by taking a
power spectrum of Bz(x, y); see Fig. 2, which shows a peak at a
similar value.

Comparing the three simulations shown in Fig. 1, we see that
a regular checkerboard pattern is only obtained for the smallest
domain size; see Fig. 1a. For larger domain sizes the patterns are
always irregular such that a cell of one sign can be surrounded
by 3–5 cells of the opposite sign. Nevertheless, in all three cases
we have approximately the same number of cells per unit area.

In the nonlinear regime, structures continue to merge and
more power is transferred to lower horizontal wavenumbers; see
Fig. 3. Later in Sect. 3.5 we present similar results also for
our DNS.

2.5. Vertical magnetic field profile during saturation

In an isothermal atmosphere, the scale height is constant and
there is no physical upper boundary, so we can extend the com-
putation in the z direction at will, although the magnetic pres-
sure will strongly exceed the turbulent pressure at large heights,
which can pose computational difficulties. To study the full ex-
tent of magnetic flux concentrations, we need a big enough do-
main. In the following we consider the range −3π ≤ z/Hρ ≤ 3π,
which results in a density contrast of more than 108. To simplify
matters, we restrict ourselves in the present study to axisymmet-
ric calculations which are faster than 3D Cartesian ones.

Fig. 4. Comparison of magnetic field profiles from axisymmetric MFS
for Runs Bv002/33–Bv05/33 with three values of B0/Beq0 and η̃t =
10−3, corresponding to kfHρ = 33.

In Fig. 4 we compare the results for the mean magnetic field
profiles for three values of B0/Beq0 ranging from 0.002 to 0.05.
These values are smaller than those studied in Sect. 2.4, because
in the nonlinear regime and in a deeper domain the structures are
allowed to sink by a substantial amount. By choosing B0/Beq0 to
be smaller, the tubes are fully contained in our domain. As B0
increases, we expect the position of the magnetic flux tube, zB,
to move downward like

zB = zB0 − 2Hρ ln(B0/Beq0), (23)

where zB0 = 2Hρ ln βopt0 is a reference height and

β
opt
0 ≡ B0/Beq(zB) ≈ 0.03...0.06 (24)

is the optimal normalized field strength for NEMPI to be excited
(Losada et al. 2013). The validity of Eq. (23) can be verified
through Fig. 4, where B0/Beq0 increases by a factor of 25, corre-
sponding to ΔzB = −6.4.

In all cases, we obtain a slender tube with approximate as-
pect ratio of 1:8. In other words, the shape of the magnetic field
lines is the same for all three values of B0/Beq0, and just the
position of the magnetic flux concentration shifts in the verti-
cal direction. Note in particular that the thickness of structures
is always the same. This is different from the nonlinear MFS in
Cartesian geometry discussed above, where structures are able
to merge. Merging is not really possible in the same way in an
axisymmetric container, because any additional structure would
correspond to a ring.

The mean flow structure associated with the magnetic flux
tube is shown in Fig. 5 for Run Bv05/33 with B0/Beq0 = 0.05.
We find inflow into the tube along field lines at large heights and
outflow at larger depth. The vertical component of the flow in
the tube points always downward, i.e., there is no obvious ef-
fect from positive magnetic buoyancy. The maximum downflow
speed is about 0.27urms, so it is subdominant compared with the
turbulent velocity, but this could be enough to cause a noticeable
temperature change in situations where the energy equation is
solved.

The resulting magnetic field lines look roughly similar to
those of the DNS with an imposed vertical magnetic field
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Fig. 5. Bz/Beq together with field lines and flow vectors from MFS,
for Run Bv05/33 with B0/Beq0 = 0.05. The flow speed varies
from −0.27urms (downward) to 0.08urms (upward).

(Brandenburg et al. 2013). In DNS, however, the thickness of
the magnetic flux tube is larger than in the MFS by about a fac-
tor of three. This discrepancy could be explained if the actual
value of ηt was in fact larger than the estimate given by ηt0. We
return to this possibility in Sect. 3.5. Alternatively, it might be
related to the possibility that the coefficients in Eq. (21) could
actually be different.

Fig. 6. Time evolution of normalized vertical magnetic field pro-
files, a) B

max
z /B0 together with Beq(z)/B0 (shown by blue line),

b) B
max
z /Beq(z); as well as c) Peff(z) and d) (−dPeff/d ln β2)1/2, from a

MFS for Run Bv05/33 with B0/Beq0 = 0.05 at t/τtd = 2.9 (dashed), 3
(dotted), 3.1 (dash-dotted), 3.3, 3.7, 4.2., 5, and 50 (thick solid line).
The blue solid lines indicate Beq(z), normalized by a) B0 and b) by it-
self (corresponding thus to unity). The red lines indicate the locations
zB and zNLB , as well as relevant intersections with normalized values of
B
max
z and Beq.

The time evolution of the vertical magnetic field profiles,
B
max
z /B0 and B

max
z /Beq(z), is shown in Fig. 6 at different times

for the case B0/Beq0 = 0.05, corresponding to Fig. 4c. Here,
we also show the time evolution of the corresponding profiles
of Peff(z) and (−dPeff/d lnβ2)1/2. In the kinematic regime, the
peak of the latter quantity is a good indicator of the peak of the
eigenfunction (Kemel et al. 2013). In the present case, the mag-
netic field in the kinematic phase peaks at a height zB that is
given by the condition (24). According to the MFS of Losada
et al. (2013), this condition is approximately the same for verti-
cal and horizontal fields. Looking at Fig. 6 for B0/Beq0 = 0.05,
we see that at z/Hρ ≈ −0.5 we have Beq/B0 ≈ 33, which agrees
with Eq. (24). However, unlike the case of a horizontal magnetic
field, where in the kinematic phase the mean field was found to
peak at a height below that where (−dPeff/d lnβ2)1/2 peaks, we
now see that the field peaks above that position.
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Fig. 7. Comparison of magnetic field profiles from an axisymmetric
MFS for Runs Bv01/33–Bv01/7 with B0/Beq0 = 0.01 and three values
of kfHρ.

As NEMPI begins to saturate, the peak of B
max
z moves fur-

ther down to z = zNLB ≈ −5Hρ during the next one or two tur-
bulent diffusive times. By that time, B

max
z has reached values up

to B
max
z /B0 ≈ 50. At that depth, B

max
z /Beq(z) is about 0.25, but

this quantity continues to increase with height and reaches super-
equipartition values at z/Hρ ≈ 3 (second panel of Fig. 6).

2.6. Smaller scale separation

In MFS, as noted above, the wavenumber of turbulent ed-
dies, kf , enters the expression for the turbulent diffusivity via
ηt ≈ urms/3kf, and thus η̃t ≈ Ma/3k̃f, so we have

k̃f ≡ kfHρ = H2
ρ/3τηt = Ma/3η̃t, (25)

where τ = Hρ/urms is the turnover time per scale height. When
urms is kept unchanged, smaller scale separation implies a de-
crease of k̃f , i.e., the size of turbulent eddies in the domain is
increased. Earlier work has indicated that the growth rate of
the instability for horizontal magnetic field decreases with de-
creasing k̃f (Brandenburg et al. 2012). However, we do not know
whether this also causes a change in the spot diameter, which
would be plausible, or a change in the depth at which NEMPI
occurs. In our MFS we have chosen Ma = 0.1 and η̃t corre-
sponds to k̃f ≈ 33. For η̃t = 5 × 10−3 we have k̃f ≈ 7, which
is about the smallest scale separation for which NEMPI is still
possible in this geometry; see Fig. 7. Interestingly, as k̃f is de-
creased, the location of the flux tube structure moves upward.
This can be understood as a consequence of enhanced turbulent
diffusion, which makes the flux tubes less concentrated, so the
magnetic field is weaker, but weaker magnetic field sinks less
than stronger fields.

Even for kfHρ ≈ 3 it is still possible to find NEMPI in MFS,
but, as we have seen, the flux tube moves upward and becomes
thicker. To accommodate for this change, we need to increase the
diameter of the domain and, in addition, we would either need to
extend it in the upward direction or increase the magnetic field
strength to move the tube back down again; cf. Fig. 4. We choose
here the latter. In Fig. 8, we show three cases for a wider box.
In the first two runs (referred to as “0.01/33” and “0.05/33”) we

Fig. 8. Comparison of magnetic field structure in axisymmetric MFS.
a) Run 0.01/33 with B0/Beq0 = 0.01 and b) Run 0.05/33 with B0/Beq0 =
0.05, both with kfHρ = 33. The flow speeds vary from −0.27urms
to 0.08urms in both cases. c) Run 0.05/3 with B0/Beq0 = 0.05 and
kfHρ = 3. The flow speed varies from −0.23urms to 0.07urms.

Fig. 9. Comparison of magnetic field structure in axisymmetric MFS
for Runs Bu01/33–Bw01/33 with three values of βp.

keep the scale separation ratio the same as before, i.e. k̃f = 33,
and increase B0/Beq0 from 0.01 to 0.05, while in the third case
we keep B0/Beq0 = 0.05 and decrease k̃f to 3. We increase the
magnetic field by a factor of 5 so as to keep the structure within
the computational domain. In the first case, the natural separa-
tion between tubes would be too small for this large cylindrically
symmetric container. By contrast, in a 3D Cartesian domain, a
second downdraft would form, which is not possible in an ax-
isymmetric geometry. Instead, a downdraft develops on the outer
rim of the container. On the other hand, if k̃f is decreased and
thus η̃t increased, a single downdraft is again possible, as shown
in Fig. 8b, suggesting that the horizontal scale of structures is
also increased as η̃t is increased. We see that the tube can now
attain significant diameters. Its height remains unchanged, so the
aspect ratio of the structure is decreased as the scale separation
ratio is decreased.

2.7. Parameter sensitivity

It is important to know the dependence of the solutions on
changes of the parameters βp and β� that determine the func-
tion qp. In Figs. 9 and 10, we present results where we change
either βp or β�, respectively. Characteristic properties of these
solutions are summarized in Table 1. Runs Ov002/33–Ov05/33
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Table 1. Survey of axisymmetric MFS giving normalized growth rates, mean field strengths, mean flow speeds, and other properties for different
values of β0, β�, βp, and k̃f .

Run β0 qp0 β� βp βmin Pmin
eff k̃f λ̂ B̂

max

z Û
min

z Û
max

z z̃B z̃NLB Z̃b Z̃t R̃ A
Ov002/33 0.002 32 0.33 0.058 0.125 −0.036 33 5.0 52 −0.27 0.03 8.3 4.8 3.5 4.6 0.27 17
Ov01/33 0.01 32 0.33 0.058 0.125 −0.036 33 5.6 52 −0.27 0.08 5.0 1.6 3.6 4.3 0.27 16
Ov05/33 0.05 32 0.33 0.058 0.125 −0.036 33 2.2 51 −0.27 0.08 1.7 −1.7 3.7 4.3 0.27 16
Bv002/33 0.002 32 0.33 0.058 0.125 −0.036 33 7.6 52 −0.27 0.03 7.9 2.0 3.1 4.1 0.35 12
Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 3.9 −1.2 3.1 4.1 0.35 12
Bv05/33 0.05 32 0.33 0.058 0.125 −0.036 33 12.3 51 −0.27 0.08 1.8 −4.4 3.0 4.1 0.35 12
Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 4.8 −1.2 3.1 4.1 0.35 12
Bv01/17 0.01 32 0.33 0.058 0.125 −0.036 17 2.1 25 −0.27 0.08 4.9 0.3 2.8 4.1 0.50 8
Bv01/7 0.01 32 0.33 0.058 0.125 −0.036 7 0.4 8 −0.23 0.07 4.7 2.7 2.4 3.8 0.95 4
Bu01/33 0.01 270 0.33 0.02 0.079 −0.048 33 5.1 69 −0.35 0.10 4.5 −2.1 4.0 4.5 0.30 15
Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 4.8 −1.2 3.1 4.1 0.35 12
Bw01/33 0.01 4.8 0.33 0.15 0.164 −0.016 33 3.2 25 −0.15 0.05 5.4 0.3 2.2 3.8 0.50 8
Av01/33 0.01 12 0.2 0.058 0.091 −0.010 33 2.6 22 −0.13 0.04 4.3 −0.3 2.3 3.8 0.55 7
Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 4.8 −1.2 3.1 4.1 0.35 12
Cv01/33 0.01 74 0.5 0.058 0.160 −0.097 33 10.6 91 −0.47 0.09 5.4 −1.7 3.5 4.3 0.25 17
Av01/33* 0.01 12 0.2 0.058 0.091 −0.010 33 2.4 11 −0.07 0.04 4.2 1.6 1.4 3.4 0.85 4
Bv01/33* 0.01 32 0.33 0.058 0.125 −0.036 33 4.8 21 −0.15 0.08 4.7 1.5 1.3 3.3 0.60 5
Cv01/33* 0.01 74 0.5 0.058 0.160 −0.097 33 8.7 33 −0.26 0.10 5.3 1.4 1.2 3.2 0.50 6

Notes. In all cases we have k1Hρ = 1, so k̃f = k̂f . Asterisks indicate that the domain was clipped at zbot = 0.

Fig. 10. Comparison of magnetic field structure in axisymmetric MFS
for Runs Av01/33–Cv01/33 three values of β�.

are 2D Cartesian while all other ones are 2D axisymmetric. In
addition to βp and β�, we also list the values of qp0 = β2�/β

2
p, as

well as the minimum position of the Peff(β) curve, namely (cf.
Kemel et al. 2012b)

Pmin
eff = − 1

2 (β
2
� − β2p)

2, βmin =
(
βp

√
−2Pmin

eff

)1/2
. (26)

The main output parameters include the normalized growth rate
in the linear regime, λ̂ = λH2

ρ/ηt, the maximum normalized ver-
tical field in the tube

B̂
max
z = B

max
z

/
B0, (27)

the minimum and maximum normalized velocities,

Û
min
z = U

min
z

/
urms, Û

max
z = U

max
z

/
urms, (28)

Fig. 11. Comparison of magnetic field structure in axisymmetric MFS
for Runs Av–Cv01/33* with three values of β� in a domain that is trun-
cated from below.

the normalized maximum magnetic field positions in the linear
and nonlinear regimes, z̃B = zB/Hρ and z̃NLB = zNLB /Hρ, respec-
tively, the similarly normalized positions where Bz has dropped
by 1/e of its maximum at the bottom end Z̃b, at the top end Z̃t,
and to the side R̃ of the tube, as well as the aspect ratio A = Zt/R.

The changes of λ̂ are often as expected: a decrease with de-
creasing values of k̃f , and a increase with increasing values of β�.
There are also some unexpected changes that could be associ-
ated with the tube not being fully contained within our fixed do-
main: for Run Ov05/33 the domain may not be deep enough
and for Run Bw01/33 it may not be wide enough. Furthermore,
we find that structures become taller when βp is small and β�
large, and they become shorter and fatter when βp is large and β�
small. Thus, thicker structures, as indicated by the DNS of
Brandenburg et al. (2013), could also be caused by larger val-
ues of βp or smaller values of β�. When the domain is clipped
at z = 0, flux concentrations cannot fully develop. The structures
are fatter and less strong; see Fig. 11.
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Fig. 12. Comparison of magnetic field structure in axisymmetric MFS
for a run similar to Run Bv01/33, but for three values of Co and
r/Hρ ≤ π/2.

2.8. Effect of rotation

The effect of rotation through the Coriolis force is determined
by the Coriolis number,

Co = 2Ω/urmskf = 6Ωηt/u2rms, (29)

whereΩ is the angular velocity. Losada et al. (2012, 2013) found
that NEMPI begins to be suppressed when Co >∼ 0.03, which is a
surprisingly small value. They only considered the case of a hor-
izontal magnetic field. In the present case of a vertical magnetic
field, we can use the axisymmetric model to include a vertical
rotation vector Ω = (0, 0,Ω). We add the Coriolis force to the
right-hand side of Eq. (2), i.e.,

ρ
DU
Dt

= ... − 2Ω × ρU. (30)

When addingweak rotation (Co = 0.01) in Run Bv01/33, it turns
out that magnetic flux concentrations develop on the periphery
of the domain, similar to the case considered in Fig. 8. We have
therefore reduced the radial extent of the domain to r/Hρ ≤ π/2.
The results are shown in Fig. 12.

In agreement with earlier studies, we find that rather weak
rotation suppresses NEMPI. The magnetic structures become
fatter and occur slightly higher up in the domain. For Co = 0.01,
the magnetic flux concentrations have become rather weak. If
we write Co in terms of correlation of turnover time τ as 2Ωτ,
we find that the solar values of Ω = 3 × 10−6 s−1 corresponds
to 30min. According to stellar mixing length theory, this, in turn,
corresponds to a depth of less than 2Mm.

3. DNS and ILES studies
In the MFS discussed above, we have ignored the possibility of
other terms in the parameterization of the mean-field Lorentz
force. While this seems to capture the essence of earlier DNS
(Brandenburg et al. 2013), this parameterization might not be
accurate or sufficient in all respects. It is therefore useful to per-
form DNS to see how the results depend on scale separation,
gravitational stratification, and Mach number.

3.1. DNS and ILES models

We have performed direct numerical simulations using both the
Pencil Code2 and N 3. Both codes are fully compress-
ible and are here used with an isothermal equation of state with
p = ρc2s , where cs = const is the sound speed. The background
stratification is then also isothermal. Turbulence is driven us-
ing volume forcing given by a function f that is δ-correlated
in time and monochromatic in space. It consists of random non-
polarized waves whose direction and phase change randomly at
each time step.

In DNS we solve the equations for the velocity U, the mag-
netic vector potential A, and the density ρ,

DU
Dt

= −c2s∇ ln ρ +
1
ρ
J × B + f + g + Fν, (31)

∂A
∂t

= U × B + η∇2A, (32)

∂ρ

∂t
= −∇ · ρU, (33)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, η is the
magnetic diffusivity due to Spitzer conductivity of the plasma,
B = B0 + ∇ × A is the magnetic field, B0 = (0, 0, B0) is the
imposed uniform vertical field, J = ∇× B/μ0 is the current den-
sity, μ0 is the vacuum permeability, Fν = ∇·(2νρS) is the viscous
force. The turbulent rms velocity is approximately independent
of z. Boundary conditions are periodic in the horizontal direc-
tions (so vertical magnetic flux is conserved), and stress free on
the upper and lower boundaries, where the magnetic field is as-
sumed to be vertical, i.e., Bx = By = 0. In the ILES we solve
the induction equation directly for B, ignore the effects of ex-
plicit viscosity and magnetic diffusivity and use an approximate
Riemann solver to keep the code stable and to dissipate kinetic
and magnetic energies at small scales.

The simulations are characterized by specifying a forcing
amplitude, which results in a certain rms velocity, urms, and
hence in a certain Mach number. Furthermore, the values of ν
and η are quantified through the fluid and magnetic Reynolds
numbers, Re = urms/νkf and ReM = urms/ηkf , respectively. Their
ratio is the magnetic Prandtl number, PrM = ν/η. Occasionally,
we also quote ν̃ = ν/csHρ and η̃ = η/csHρ.

An important diagnostics is the vertical magnetic field, Bz,
at some horizontal layer. In particular, we use here the Fourier-
filtered field, Bz, which is obtained by removing all components
with wavenumbers larger than 1/6 of the forcing wavenumber kf .
This corresponds to a position in the magnetic energy spectrum
where there is a local minimum, so we have some degree of scale
separation between the forcing scale and the scale of the spot.
We return to this in Sect. 3.5. To identify the magnetic field in
the flux tube, we take the maximum of Bz, either at each height

2 http://pencil-code.googlecode.com
3 http://nirvana-code.aip.de/
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Table 2. Summary of DNS at varying B̃0, and fixed values of η̃ =
2× 10−4, PrM = 0.5, Re ≈ 38, Ma ≈ 0.1, ĝ = 1, k̂f = 30, τtd/τto ≈ 2700,
using 2563 mesh points.

Run B̂0 Re ReM Ma B̂z B̂z R̃ z̃NLB
(a) 0.0005 39 19 0.12 1.81 0.36 0.13 3.1
(b) 0.0010 39 19 0.12 2.68 1.00 0.11 1.8
(c) 0.0020 38 19 0.11 2.45 0.87 0.17 1.4
(d) 0.0050 37 18 0.11 3.47 1.25 0.22 −0.5
(e) 0.0100 35 18 0.11 3.95 1.49 0.29 −1.2
(f) 0.0200 31 16 0.09 4.21 1.26 0.45 −π

Notes. In all cases the number of resulting spots is unity. The posi-
tions z̃NLB agree with those marked in Fig. 13.

Fig. 13. Normalized vertical magnetic field profiles from DNS, B
max
z /B0

(top) and B
max
z /Beq(z) (bottom) for the six values of B0/Beq0 listed in

Table 2. In both panels, the red dots mark the maxima of B
max
z /B0 at

positions z̃NLB . The labels (a)–(f) correspond to those in Table 2.

at one time, which is referred to as B
max
z (z), or in the top layer at

different times. The latter is used to determine the growth rate of
the instability.

When comparing results for different values of g, it is con-
venient to keep the typical density at the surface the same. Since
our hydrostatic stratification is given by Eq. (14), this is best
done by letting the domain terminate at z = 0 and to consider the
range −Lz ≤ z ≤ 0. In most of the cases we consider Lz = π/k1,
although this might in hindsight be a bit short in some cases. For
comparison with earlier work of Brandenburg et al. (2013), we
also present models in a domain −π ≤ k1z ≤ π.

3.2. Magnetic field dependence

In Table 2 and Fig. 13 we compare results for six values of B̃0 =
B0/(μ0ρ0c2s0)

1/2. These models are the same as those discussed
in Brandenburg et al. (2013), where visualizations are shown
for all six cases. Increasing B̃0 leads to a decrease in the Mach
number Ma and hence to a mild decline of Re and ReM for
B̃0 > 0.01, corresponding to B0/Beq0 > 0.1. There is a slight
increase of B̃maxz , while B̃

max
z remains on the order of unity. This

Table 3. Summary of DNS at varying PrM , and fixed values of η̃ =
2 × 10−4, B̃0 = 0.002, ReM ≈ 20–40, Ma ≈ 0.1, ĝ = 1, k̂f = 30,
τtd/τto ≈ 2700, using 2563 mesh points.

ν̃ PrM ReM Ma λ̂ B̂z B̂z R̃
4 × 10−5 0.2 20 0.12 5.18 1.87 0.19 0.36
1 × 10−4 0.5 19 0.11 1.33 2.45 0.87 0.17
2 × 10−4 1 17 0.10 1.66 2.76 0.84 0.17
4 × 10−4 2 14 0.08 1.46 2.78 0.64 0.20
5 × 10−4 5 25 0.07 0.10 2.66 0.22 0.34
1 × 10−3 10 19 0.06 0.04 2.87 0.28 0.30
5 × 10−4 10 45 0.07 0.04 2.96 0.22 0.34

Notes. In all cases the number of spots is unity.

Table 4. Summary of DNS at varying Re and ReM , and fixed values of
ν̃ = 10−4, B̃0 = 0.002, PrM = 0.5, k1Hρ = 1, and kfHρ = 30.

Run Re ReM Ma B̂z B̂z R̃ Resol.
A30/1 38 19 0.11 2.45 0.87 0.17 2563
B30/1 80 40 0.12 3.30 1.02 0.16 5123
b30/1 200 40 0.12 3.45 1.10 0.15 5123
C30/1 190 95 0.11 3.47 0.71 0.19 10243
D30/1 190 95 0.11 3.54 0.69 0.19 10242×1536
E30/1 190 190 0.11 3.23 0.39 0.25 10242×1536

is the case even for the largest value, B̃0 = 0.02, when NEMPI
is completely suppressed and there is no distinct maximum of
B
max
z /B0 in the upper panel of Fig. 13. This is why the visualiza-

tion in Brandenburg et al. (2013) was featureless for B̃0 = 0.02,
even though B̃z/Beq(z) ≈ 1 at z = ztop. Moreover, while B̃maxz
shows only a slight increase, the non-dimensional radius of the
spot increases from 0.1 to about 0.4 as B̃0 is increased.

3.3. Magnetic Prandtl number dependence

The results for different values of PrM are summarized in
Table 3. It turns out that for PrM ≥ 5, no magnetic flux con-
centrations are produced. We recall that analysis based on the
quasi-linear approach (which is valid for small fluid and mag-
netic Reynolds numbers) has shown that for PrM ≥ 8 and
ReM � 1, no negative effective magnetic pressure is possible
(Rüdiger et al. 2012; Brandenburg et al. 2012). Because of this,
most of the earlier work used PrM = 0.5 so as to stay below unity
in the hope that this would be a good compromise between PrM
being small and ReM still being reasonably large. In fact, it now
turns out that the difference in B

max
z for PrM = 1 and 1/2 be neg-

ligible, and even for PrM = 2 the decline in B
max
z is still small.

For PrM = 0.2, on the other hand, we find a large value of λ̂, but
a low saturation level. Again, this might be explained by the fact
that the domain is not deep enough in the z direction, which can
suppress NEMPI. Alternatively, the resolution of 2563 might not
be sufficient to resolve the longer inertial range for smaller mag-
netic Prandtl numbers. In Sect. 3.4 we present another case with
PrM = 0.2 where both the resolution and the Reynolds numbers
are doubled, and B

max
z is again large.

3.4. Reynolds number dependence

Increasing ReM from 19 to 95, we see some changes; see Table 4.
There is first a small increase of B

max
z /Beq(z) from 0.87 to 1.02

as ReM is increased from 19 to 40 (Run B30/1). Increasing Re
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Fig. 14. Similar to Fig. 13, but for DNS Runs A30/1–C30/1 listed in
Table 4, i.e., ν̃ = 10−4, B̃0 = 0.002, PrM = 0.5, k1Hρ = 1, and kfHρ = 30.
In the upper panel, the blue lines denote Beq(z)/B0 and in both panels,
the red dots mark the maxima of B

max
z /B0 at positions z̃NLB .

to 200, but keeping ReM = 40, results in a further increase
of B

max
z /Beq(z) to 1.10 (Run b30/1). This is also an example

of a strong flux concentration with PrM = 0.2; cf. Sect. 3.3.
However, when ReM is increased further to 95, B

max
z /Beq(z) de-

creases to about 0.71; see Table 4. Again, the weakening of
the spot might be a consequence of the domain not being deep
enough. Alternatively, it could be related to the occurrence of
small-scale dynamo action, which is indicated by the fact that in
deeper layers the small-scale magnetic field is enhanced in the
run with the largest value of ReM; see Fig. 14. In Run C30/1 with
the largest value of ReM , the spot is larger and more fragmented,
but it still remains in place and statistically steady; see Fig. 15
and online material4 for corresponding animations.

To eliminate the possibility of the domain not being deep
enough, we have performed additional simulations where we
have extended the domain in the negative z direction down to
zbot/Hρ = −1.5π. In Fig. 16 we show a computation of the result-
ing profiles of B

max
z /B0 and B

max
z /Beq(z). We also include here a

run with PrM = 1 instead of 0.5 (Run E30/1). It turns out that
the strength of the spot is unaffected by the position of zbot and
that there is a deep layer below z/Hρ ≈ −2 in which there is
significant magnetic field generation owing to small-scale dy-
namo action, preventing thereby also the value of B

max
z /Beq(z)

to drop below the desired value of 0.01. This might explain the
weakening of the spot. This is consistent with earlier analytical
(Rogachevskii & Kleeorin 2007) and numerical (Brandenburg
et al. 2012) work showing a finite drop of the important NEMPI
parameter β� around ReM = 60.

3.5. Dependence on scale separation and stratification

We have performed various sets of additional simulations where
we change ĝ and/or k̂f ; see Table 5 and Fig. 17. In those cases,
the vertical extent of the domain is from −π to 0. As discussed in
4 http://www.nordita.org/~brandenb/movies/NEMPI/

Table 5. Summary of DNS at varying k̂f = kf/k1, k̃f = kfHρ, ĝ = g/c2sk1,
and fixed values of B̃0 = 0.02, η̃0 = 2 × 10−4, using resolutions of 2563
mesh points (for Run a30/1), 5123 mesh points (for Run a30/4, a10/3,
and a30/3), as well as 10242 × 384 mesh points (for Runs a40/1 and
A40/1).

Run PrM ReM Ma k̂f k̃f ĝ λ̂ B̂z B̂z
a30/1 1.0 16 0.09 30 30 1 0.94 3.09 0.78
a30/4 1.0 21 0.13 30 7.5 4 0.18 4.42 0.88
a10/3 1.0 63 0.13 10 3.4 3 – 4.83 0.40
a40/1 1.0 33 0.07 40 10 1 0.83 3.83 0.87
A40/1 1.0 33 0.07 40 10 1 1.05 5.81 1.41
a30/3 0.5 23 0.14 30 10 3 0.46 4.47 1.31

Sect. 3.1 this might be too small in some cases for NEMPI to de-
velop fully. Nevertheless, in all cases there are clear indications
for the occurrence of flux concentrations. The results regarding
the growth rate of NEMPI are not fully conclusive, because the
changes in kf and Hρ also affect turbulent-diffusive and turnover
time scales. As shown in the appendix of Kemel et al. (2013) the
normalized growth rate of NEMPI is given by:

λ̂ + 1 = 3β� (kfHρ)/(k⊥Hρ)2, (34)

which is not changed significantly for a vertical magnetic field;
see Sect. 2.1. If k⊥Hρ = const. ≈ 0.7, as suggested by the MFS
of Sect. 2.4, we would expect λ̂ + 1 to be proportional to kfHρ,
which is not in good agreement with the simulation results.

To shed some light on this, we now discuss horizontal power
spectra of Bz(x, y) taken at the top of the domain. These spec-
tra are referred to as EzM(k) and are normalized by B2eq/kf . In
Run a30/4 with ĝ = 4 and k̂f = 30, we have access to wavenum-
bers down to k1Hρ = 0.25. The results in Fig. 18 show that
there is significant power below k⊥Hρ = 0.7. This is in agree-
ment with the MFS in the nonlinear regime; see Fig. 3. The time
evolution of EzM(k) suggest a behavior similar to that of an in-
verse magnetic helicity cascade that was originally predicted by
(Frisch et al. 1975) and later verified both in closure calculations
(Pouquet et al. 1976) and DNS (Brandenburg 2001). Similar re-
sults with inverse spectral transfer are shown in Fig. 19 for DNS
Run A40/1. The only difference between Runs A40/1 and a40/1
is the vertical extent of the domain, which is twice as tall in the
former case (3πHρ instead of 1.5πHρ). We note in this connec-
tion that the spectra tend to show a local minimum near kf/6.
This justifies our earlier assumption of separating mean and fluc-
tuating fields at the wavenumber kf/6; see Sect. 3.1. The spec-
tra also show something like an inertial subrange proportional
to k−5/3 (Fig. 19) or k−2.5 (Fig. 18). The latter is close to the
k−3 subrange in the MFS of Fig. 3. Those steeper spectra could
be a symptom of a low Reynolds number or, alternatively, a con-
sequence of most of the energy inversely “cascading” to larger
scales in the latter two cases.

We have also checked how different kinds of helicities vary
during NEMPI. In the present case, magnetic and kinetic helic-
ities are fluctuating around zero, but cross helicity is not. The
latter is an ideal invariant of the magnetohydrodynamic (MHD)
equations, but in the present case of a stratified layer with a ver-
tical net magnetic field, 〈u · b〉 can actually be produced; see
Rüdiger et al. (2011), who showed that

〈u · b〉 ≈ ηtg · B0/c2s = −ηtB0/Hρ. (35)

In a particular case of Run 30/1, we find a time-averaged value
of 〈u · b〉 that would suggest that ηt/ηt0 is around 6, which is sig-
nificantly larger than unity. This would agree with independent
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Fig. 15. Magnetic field configuration at the upper surface for DNS Runs A30/1–C30/1 at three values of the magnetic Reynolds number. The
white contours represent the Fourier-filtered with k⊥ ≤ kf/6; their levels correspond to Bmaxz /Beq(ztop) = 0.05, 0.2, and 0.4.

Fig. 16. Similar to Fig. 14, but for DNS Runs C30/1 (zbot/Hρ = −π;
thicker lines) and D30/1 (zbot/Hρ = −1.5π; thinner lines) listed in
Table 4, i.e., ν̃ = 10−4, B̃0 = 0.002, PrM = 0.5, k1Hρ = 1, and kfHρ = 30.
In the upper panel, the blue lines denote Beq(z)/B0.

arguments in favor of having underestimated ηt; see the discus-
sion in Sect. 2.5. In other words, if ηt were really larger than
what is estimated based on the actual rms velocity, it would also
explain why the diameter of tubes is bigger in the DNS than in
the MFS.

3.6. Mach number dependence

To study the dependence on Mach number, it is useful to con-
sider ILES without any explicit viscosity or magnetic diffu-
sivity. In Figs. 20−22 we show the results for three values of
Ma at ĝ = gk1/c2s = 3 and k̂f = kf/k1 using a resolution of
2562 × 128 nodes on the mesh. In Table 6 we give a summary
of various output parameters and compare with corresponding
DNS. Note first of all that the results from ILES are generally in
good agreement with the DNS. This demonstrates that the mech-
anism causing magnetic flux concentrations by NEMPI is robust

Table 6. Summary of DNS and ILES at varying values of Ma, all for
ĝ = 3, k̂f = 30.

Run B̃0 ReM Ma λ̂ B̂z B̂z
D01 0.01 24 0.15 0.28 3.06 0.78
D02 0.02 24 0.14 0.46 4.47 1.31
D10 0.10 8 0.50 0.25 4.91 1.61
I03 0.10 – 0.16 >1 2.86 1.14
I10 0.10 – 0.34 >1 2.70 1.00
I30 0.10 – 0.68 >1 2.41 1.02

Notes. For ILES, no accurate values of λ̂ are available. In the DNS, the
resolution is 2562 for Runs D01 and D02, and 5122 for Run D10, while
for Runs I03–I30 it is 2562 × 128.

and not sensitive to details of the magnetic Reynolds number,
provided that ReM >∼ 10. The normalized growth rate is in all
three cases above unity.

As the Mach number is increased, the magnetic structures
become smaller; seen in the left-hand panels of Fig. 22. Since
the properties of NEMPI depend critically on the ratio Bz/Beq,
and since Beq(z) and hence Beq0 increase with increasing Mach
number, the decrease in the size of magnetic structures might
just reflect the fact that for smaller values of Bz/Beq0, NEMPI
would operate at higher layers which are no longer included in
our computational domain. Looking at Fig. 20, it is clear that
the maximum of Bz/B0 moves to higher layers, but it is still
well confined within the computational domain. Nevertheless,
if one compensates for the decrease of Beq by applying succes-
sively weaker mean fields when going to lower Mach number
(right-hand panels of Fig. 22), the size of the emerging struc-
tures remains approximately similar and the curves of Bz/Beq lie
now nearly on top of each other. This shows clearly that in our
simulations with Ma ≈ 0.7, flux concentrations are well possi-
ble. This is important, because it allows for the possibility that
the energy density of magnetic flux concentrations can become
comparable with the thermal energy.

4. Possible application to sunspot formation
Compared with earlier studies of NEMPI using a horizontal im-
posed magnetic field, the prospects of applying it to the Sun
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Fig. 17. Magnetic field configuration at the upper surface for DNS Runs a30/1–a30/3 of Table 5.

Fig. 18. Normalized spectra of Bz from DNS Run a30/4 at normalized
times tηt0/H2

ρ ≈ 0.2, 0.5, 1, 2, 5, 10, and 20, for ĝ ≡ g/c2s kf = 4.

Fig. 19. Normalized spectra of Bz from DNS Run A40/1 at normalized
times tηt0/H2

ρ ≈ 0.2, 0.5, 1, and 2.7 with kfHρ = 10 and k1Hρ = 0.25.

have improved in the sense that the flux concentrations are
now stronger when there is a vertical magnetic field. In particu-
lar, the resulting magnetic structures survive in the presence of
larger Mach numbers up to 0.7, which is relevant to the photo-
spheric layers of the Sun (Stein & Nordlund 1998). However,
those structures do become somewhat weaker as the magnetic
Reynolds number is increased sufficiently to allow for the pres-
ence of small-scale dynamo action. This was expected based on
a certain drop of β� for ReM >∼ 60 found in earlier simulations
(Brandenburg et al. 2012), but the possibility of spot formation
still persists. More specifically, we have seen that the largest field
strength, Bz/B0, occurs at a height where B

max
z /Beq is at least 0.4;

see Fig. 16.

Fig. 20. Same as Fig. 13, but for the ILES runs with varying forcing am-
plitude. Note the different vertical extent of this set of models. The dif-
ferent lines indicate Ma = 0.16 (solid), 0.34 (dotted), and 0.68 (dashed).

To speculate further regarding the applicability to sunspot
formation, we must look at the mean-field models presented in
Sect. 2. In particular, we have seen that spot formation occurs
at a depth zNLB where B

max
z /Beq is between 0.6 (for ReM = 40)

and 0.4 (for ReM = 95); see Fig. 14 and Table 4. Larger ratios
of B

max
z /Beq occur in the upper layers, but then the absolute field

strength is lower. In the MFS of Sect. 2, the value of B
max
z /Beq

at z = zNLB is somewhat smaller (around 0.3), suggesting that the
adopted set of mean-field parameters in Eq. (21) was slightly
suboptimal. Nevertheless, those models show that the depth
where NEMPI occurs and where the effective magnetic pres-
sure is most negative is even further down, e.g., at z/Hρ ≈ −7;
see Fig. 5. Furthermore, at the depth where (−dPeff/d lnβ2)1/2
is maximum, i.e., where NEMPI is strongest according to the-
ory, we find B

max
z /Beq ≈ 0.05. Thus, there is an almost tenfold

increase of the absolute field strength between the depth were
NEMPI occurs and where the field is strongest.

As we have seen from Fig. 5, this increase is caused solely
by hydraulic effects, similar to what Parker (1976, 1978) an-
ticipated over 35 years ago. Our isothermal models clearly do
demonstrate the hydraulic effect due to downward suction, but
we cannot expect realistic estimates for the resulting field am-
plification. Parker (1978) gives more realistic estimates, but in
his work the source of downward flows remained unclear. Our
present work suggests that NEMPI might drive such motion,
but in realistic simulations it would be harder to identify this
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Fig. 21. Same as Fig. 20, but for the ILES runs which vary both the
forcing amplitude and the imposed magnetic field at the same time,
keeping the relative field strength comparable. The different lines again
indicate Ma = 0.16 (solid), 0.35 (dotted), and 0.68 (dashed), and agree
markedly well in the lower panel where we plot relative to Beq(z).

as the sole mechanism. Another mechanism might simply be
large-scale hydrodynamic convection flows that would continue
deeper down to the lower part of the supergranulation layer at
depths between 20 and 40 Mm. Some indications of this have
now been seen in simulations of Stein & Nordlund (2012).
Whether the reason for flux concentrations is then NEMPI or
convection can only be determined through careful numerical
experiments comparing full MHDwith the case of a passive vec-
tor field. Such a field would still be advected by convective flows
but would not contribute to the dynamical effects that would be
required if NEMPI were to be responsible.

In addition to the magnetic field strength of flux concentra-
tions, there might also be issues concerning their size. Usually
they are not much larger than about 5 density scale heights; see,
e.g., Fig. 15. This might be too small to explain sunspots. On
the other hand, in the supergranulation layer, the density scale
height increases, and larger scale structures might be produced
at those depths.

To make this more concrete, let us discuss a possible sce-
nario. At a depth of 3Mm, the equipartition field strength
is about 2 kG, and this might be where the sunspot field is
strongest. If NEMPI was to be responsible for this, we should ex-
pect the effective magnetic pressure to be negative at a depth of
about 10Mm. Here, the equipartition field strength is about 3 kG.
If NEMPI operates at B

max
z /Beq ≈ 0.1, this would correspond to

B
max
z ≈ 300G, which appears plausible. At that depth, the den-

sity scale height is also about 10Mm. Thus, if magnetic flux con-
centrations have a size of 5 density scale heights, then this would
correspond to 50Mm at that depth. To produce spots higher up,
the field would need to be more concentrated, which would re-
duce the size by a factor of 3 again. However, given the many
uncertainties, it is impossible to draw any further conclusions
until NEMPI has been studied under more realistic conditions
relevant to the Sun.

Fig. 22. Surface appearance of the vertical magnetic field, Bmaxz , in the
ILES simulations with different Mach numbers (top to bottom). The
color coding shows Bmaxz /Beq in the range of −0.1 (white) to +1.0
(black). Root-mean-square Mach numbers are given by the labels. For
the upper two rowswith lower Mach number, the left column is for fixed
initial mean field, whereas in the right column the initial field is adjusted
between the runs, such that the field strength remains constant relative
to the kinetic energy in the background turbulence.

5. Conclusions
Using DNS, ILES and MFS in a wide range of parameters we
have demonstrated that an initially uniform vertical weak mag-
netic field in strongly stratified MHD turbulence with large scale
separation results in the formation of circular magnetic spots of
equipartition and super-equipartition field strengths. Although
we have confirmed that the normalized horizontal wavenumber
of magnetic flux concentrations is k⊥Hρ ≈ 0.8, as found earlier
for horizontal imposed field (Kemel et al. 2013), it is now clear
that in the nonlinear regime smaller values can be attained. This
happens in a fashion reminiscent of an inverse cascade or inverse
transfer5 in helically forced turbulence (Brandenburg 2001). In
the present case, this inverse transfer is found both in MFS and
in DNS. This property helps explaining the possibility of larger
length scales separating different flux concentrations.

The study of axisymmetric MFS helps understanding
the dependence of NEMPI on the parameters β� and βp,
which determine the parameterization of the effective magnetic
5 In both cases, the transfer is nonlocal in wavenumber space. It is
therefore more appropriate to use the term inverse transfer instead of
inverse cascade.
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pressure, Peff(β). It was always clear that changes in those pa-
rameters can significantly change the functional form of Peff(β),
and yet the resulting growth rate of NEMPI was found to de-
pend mainly on the value of β�. We now see, however, that the
shape of the resulting solutions still depends on the value of
βp, in addition to a dependence on β�. In fact, smaller values
of βp as well as larger values of β� both result in longer struc-
tures. This is important background information in attempts to
find flux concentrations in DNS, where the domain might not al-
ways be tall enough. As a rule of thumb, we can now say that
the domain is deep enough if the resulting large-scale magnetic
field is below 1% of the equipartition value. This is confirmed
by Figs. 13 and 14 as well as Figs. 20 and 21, where all runs
with B

max
z /Beq(z) ≤ 0.01 at z = zbot reach B

max
z /Beq(z) = O(1)

at z = ztop, provided the domain is also high enough. A limited
extent at the top appears to be less critical than at the bottom,
because NEMPI still develops in almost the same way as before.

It is important to emphasize that the formation of magnetic
flux concentrations is equally well possible at large Mach num-
bers. This is important in view of applications to the Sun, where
in the upper layers Ma ≈ 0.5 can be expected. Nevertheless,
our present investigations have not yet been able to address the
question whether sunspots can really form through NEMPI. For
that, we would need to abandon the assumption of isothermality.
Nevertheless, we expect the basic feature of downflows along
flux tubes to persist also in that case. It is the associated inflow
from the side that keeps the tube concentrated. Such flows have
indeed been seen in local helioseismology (Zhao et al. 2010).
Those authors also find an additional outflow higher in the pho-
tosphere that is known as the Evershed flow.

We expect that the downflow in the tube plays an important
role in an unstably stratified layer, such as in the Sun, where
it brings low entropy material to deeper layers, lowering there-
fore the effective temperature in the magnetic tubes. Future work
should hopefully be able to demonstrate that in detail. The con-
ceptual difference between NEMPI and other mechanisms may
not always be very clear. However, by using an isothermal layer,
we can be sure that convection is not operating. Thus, the phe-
nomenon of flux segregation found by Tao et al. (1998) would
not work. Conversely, however, NEMPI might well be a viable
explanation for this phenomenon too. Whether the concept of
flux expulsion can really serve as an alternative paradigm is un-
clear, because it is difficult to draw any quantitative predictions
from it. In particular, flux expulsion does not make any refer-
ence to turbulent pressure or its suppression. Instead, the source
of free energy is more directly potential energy which can be
tapped through the superadiabatic gradient in convection. By
contrast, the source of free energy for NEMPI is turbulent en-
ergy. The other possibility discussed above is the network of
downdrafts associated with the supergranulation layer (Stein &
Nordlund 2012). This mechanism is not easily disentangled from
NEMPI, because both imply flux concentrations in downdrafts.
However, in an isothermal layer, we can be sure that supergran-
ulation flows are absent, so NEMPI is the only known mecha-
nism able to explain the flux concentrations shown in the present
paper.
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