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Monday 19th August, 2019

Advisors: Prof. Alexander Balatsky, Dr. Matthias Geilhufe, Dr. Johan Hellsvik, Prof. Eva
Lindroth

Nordic Institute for Theoretical Physics, Department of Condensed Matter, Nordita





Abstract

The steep increase in computational power and data storage capabili-
ties available to researchers begets the need for tools able to analyze
and interpret vast amounts of data. Machine learning (ML) is such
a tool, able to obtain new insights from data and provide predictive
capabilities for new samples.

The Organic Materials Database (OMDB) is an open access electronic
structure database for 3-dimensional crystal structures hosted at the
Nordic Institute for Theoretical Physics, Nordita. The OMDB was re-
cently extended to include magnetic structures and properties, to meet
the demand for novel magnetic materials with interesting properties
brought about by the construction of the European Spallation Source
(ESS). However, high throughput, ab initio calculation of these proper-
ties is a computationally demanding process. Thus, in this work we
propose a ML workflow capable of parametrizing Heisenberg Hamil-
tonians for new materials, bypassing the most demanding part of the
process.

From the OMDB we construct a dataset relating crystal structures and
magnetization for each site in the unit cell. We then develop novel
ML models for prediction of local properties in crystal structures, and
apply them to predict site magnetization for new materials. The best
performing model has a root mean squared error of 0.42µB, a precise
prediction for a dataset with a standard deviation of 1.51µB. These
models were then used to predict magnetic properties for 200, 000 ma-
terials, an infeasible task with traditional ab initio calculations for our
computational resources.

Then, we use similar techniques to study nuclei stability, training mod-
els with the data from the NUBASE2016 dataset, composed of experi-
mental measures of nuclear properties, showcasing the universality of
ML as a tool. These models are then used to predict stability of nu-
clei outside the experimentally reachable range, showing a region of
increased stability around Z=120, agreeing with previous predictions
of the island of stability.
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Chapter 1

Introduction

1.1 Machine learning

Machine Learning (ML) [1], a subset of Artificial Intelligence, is a technique
that allows computers to use data to solve problems without being explic-
itly programmed to do so. This term was coined in 1959 [2]. However, the
groundwork for Artificial Neural Networks (ANN or NN), one of the most
influential ML methods, was laid in 1957 by Rosenblatt [3], a psychologist,
inspired by biological neurons. Since then, ANNs utility as universal ap-
proximators [4] impulsed the scientific community and industry to invest a
significant effort in investigating them.

The explosion in available computational power and the improvement of
convolutional NNs, for image processing, and recurrent NNs, for text pro-
cessing, brought an exponential increase in ML research. We show this in
Figure 1.1, where we see that while the number of publications in arXiv per
year increases in a polynomial fashion, the number of those that contain
neural network in their abstract increases exponentially.

The improvement of computational power and data storage capabilities has
allowed us to obtain an ever increasing amount of data, be it from experi-
ments or computer simulations.

ML methods have proven their ability to use this data to extract information
and uncover exciting physics, or to make accurate predictions that bypass
otherwise expensive calculations and reach systems that are unavailable ex-
perimentally. It is being used in physics in a number of ways, e.g. at the
Large Hadron Collider (LHC) for analyzing massive amounts of highly di-
mensional data generated experimentally [5], or to characterize phases of
matter in quantum systems [6].

Multiple initiatives have been developed to handle the huge amount of data
generated nowadays, to facilitate sharing results and increase the repro-
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1. Introduction

Figure 1.1: Number of papers published in arXiv.org (red, left axis) and
number of papers containing the expression neural network in their abstract
(blue, right axis).

ducibility of experiments among different scientific groups. The NOMAD
Repository, based in the EU, and Materials Genome Initiative, in the US,
stand as such initiatives for materials science.

Specialized open databases such as Materials Project (https:
//materialsproject.org/) [7], or the Organic Materials Database (OMDB,
https://omdb.mathub.io) [8], allow researchers to access and analyze
vast amounts of data. The OMDB in particular is an electronic structure
database with data that has been obtained in a consistent, ab initio, way;
with multiple available advanced data mining tools, such as an online
electronic structure pattern search feature [9].

These databases make the perfect target for ML, having an extensive amount
of data, with multiple possible applications, e.g. electronic band gap [10] or
formation energies prediction[11].

As such, we will be using magnetization data from ab initio calculations in
the OMDB to develop a ML model able to predict whether a crystal displays
magnetic properties or not, and to parametrize Heisenberg’s Hamiltonian
for that material, allowing us to characterize its magnetic excitations, known
as magnons.

Furthermore, we will apply similar techniques to nuclear data to explore
nuclei stability, including the location of the fabled island of stability [12].

2
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1.2. Unifying Principles of Nature

(a) Stability of CemOn clusters deter-
mined from second formation energy
differences, figure from Yu et al. [15].
Left: ∆2Fm = F(m − 1, n) + F(m +
1, n)− 2F(m, n), right: ∆2Fn = F(m, n−
1) + F(m, n + 1)− 2F(m, n)
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(b) Stability of Nuclei according to ex-
perimental data from NUBASE2016 [16].
Stable nuclei are represented by black
squares.

Figure 1.2: Stability of crystal structures and nuclei.

1.2 Unifying Principles of Nature

In science, and physics in particular, a constant theme in time is that dis-
coveries made in one field have the potential to be useful in vastly differ-
ent fields, and, importantly, in applications. Crookes tubes were invented
around 1875 [13], however it was not until after Röntgen’s study [14] 15
years later, that their ability to visualize skeletons was discovered, bringing
significant advances to medicine. The advent of machine learning follows a
similar pattern, several decades after its invention it is now that we can take
full advantage of its potential.

Recently, similarities were discovered between the stability of oxide clusters
and nuclei stability. In Figure 1.2b we plot the order of magnitude of the half-
life of a given nucleus, defined by the number of neutrons and protons. In
Figure 1.2a we see a measure of stability of oxide clusters, CemOn, as second
energies with respect to the number of cerium atoms, m, and oxygen atoms
n. Both figures display a main stability diagonal; magic numbers, certain
numbers of components for which the structure is substantially more sta-
ble than their neighbors; and stability islands, regions of increased stability
outside the main diagonal [15, 12].

Nuclei stability is governed by high energy physics, while oxide clusters
belong to condensed matter physics, a branch of physics characterized by
much lower energies and much larger size. However, the results from Figure
1.2 seem to suggest a universal principle for determining which structures
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1. Introduction

are stable. In this work we will predict magnetization for stable crystal
structures, and then use similar techniques to study nuclei stability.

1.3 Dirac Materials

In 1928 Dirac explained the origin of the fine structure of atomic spectra
[17], by successfully combining both the quantum and relativistic behavior
of electrons, which show a linear energy-momentum relation,

E = h̄vD|k|, (1.1)

instead of the standard quadratic expression for the classical kinetic energy,

E =
h̄2k2

2m
. (1.2)

While Dirac’s equation (Equation 1.1) was developed in the context of high
energy physics, several condensed matter systems display low energy ex-
citations that behave as Dirac fermions. These systems are referred to as
Dirac materials [18], and include graphene, which has a linear dispersion
around the Fermi level (see Figure 1.3a), topological insulators and Dirac
semimetals.

Even more recently, examples of Dirac magnons were found in honeycomb
structures [19], showing behavioral similarities between fermions (electrons)
and bosons (magnons). Whilst in the fermionic case Dirac points are placed
along the fermi level, bosons are not subject to the Pauli exclusion principle,
and so, in the absence of excitations they all lie in the lowest energy state,
placing Dirac points further from the ground state.

In Figure 1.3 we see the two aforementioned examples. Figure 1.3a displays
the nearest neighbors tight-binding electronic band structure for graphene,
with a Dirac crossing at the K point at the fermi level. Figure 1.3b displays
the nearest neighbors ferromagnetic magnon dispersion for a honeycomb
structure, displaying a Dirac crossing at the K point at an excited state.

Advanced computational features of the OMDB have been successfully used
to discover new Dirac materials [20], by studying the electronic degrees of
freedom in organic crystals. A similar effort has now been done to establish
a magnetic database that studies bosonic excitations [21], with the objective
of identifying magnetic materials with fascinating properties, such as the
aforementioned Dirac magnons.

We observe, yet again, how a development in one field of physics, the Dirac
equation from high energy physics, shows its utility in a disparate field,
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1.4. Magnetic features

(a) Electronic band structure for
graphene with nearest neighbors
tight-binding. Figure from [18].

(b) Magnon dispersion for a honeycomb
structure with nearest neighbor ferro-
magnetic exchange.

Figure 1.3: Dirac Matter.

Dirac matter in condensed matter physics. To this date, the most cited con-
text for the Dirac equation is coming from the condensed matter community.

1.4 Magnetic features

With the European Spallation Source (ESS) construction ongoing there has
been an increasing demand for frameworks capable of identifying novel
functional materials with interesting magnetic properties. Organic materi-
als are excellent candidates for this due to their following properties:

• Metal-organic frameworks (MOFs) can be constructed by linking or-
ganic molecules with metallic ions. This allows for an infinite space
configuration with strong tunability.

• Due to their high complexity and bigger unit cell size than inorganic
crystals they are sparsely investigated, making them an excellent re-
search target.

• Organic materials tend to be soft and flexible, making them ideal for
certain engineering purposes.

5



1. Introduction

(a) Metal-organic material with formula
C3H6NiO6, available at https://omdb.
mathub.io/material/id/18715. Mag-
netic interaction mediated by nickel
(green site).

(b) Pure organic magnet with formula
C4H6O5, available at https://omdb.

mathub.io/material/id/36872

Figure 1.4: Examples of magnetic organic materials present on the OMDB.

There are two classes of magnetic organic materials, those where magnetism
arises by the mediation of transition or rare earth metal, known as metal-
organic materials, and those in which magnetic behavior arises directly in
the organic components, known as pure organic magnets [22]. In Figure 1.4
we see examples of both classes of magnets.

The Swedish QuEST for BIFROST is an international project that aims to
sample metal-organic compounds computationally through the OMDB and
later synthesize promising candidate materials to study their properties. It
is in this context that we extended the OMDB capabilities to display the adi-
abatic magnon dispersion, E(ω), and dynamic structure factor, S(q, ω). This
data was obtained using high throughput ab initio methods to characterize
the magnetic properties of the material.

The methodology used to obtain this data is explained in great detail in our
preprint [21], and an introduction to Linear Spin Wave Theory (LSWT) is
presented in Section 3.2.

However, the computation of this data is extremely expensive, over the
course of the last three years, we have done VASP simulations for over 26,000
materials. At an average of 60 [23] core-hours per material, it amounts to
over 150 core-years to calculate all the data in the OMDB. Furthermore, ob-
taining the Heisenberg exchange parameters is even more computationally
intensive, taking us around 4, 000 hours per material for a current total of
100 materials. On the other hand, once a ML model is trained it can compute
thousands of materials per hour, taking us 48 hours to obtain the properties
calculated in Section 3.3 for 200, 000 materials, amounting to around 4, 000
materials per core hour. This speed advantage with respect to traditional ab
initio methods is the biggest motivation for us to investigate ML methods

6
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1.4. Magnetic features

for magnetic properties in crystals.

The remainder of this thesis is organized as follows:

• In Chapter 2 we introduce basic ML concepts and discuss possible
representations of physical systems.

• In Chapter 3 we describe a high throughput workflow for calculating
magnetic excitations in crystals and the use of ML to expedite this
process.

• In Chapter 4 we apply the concepts previously discussed to predict
nuclear stability.

7





Chapter 2

Machine Learning

Machine learning [1] (ML) is a subset of Artificial Intelligence that provides
computers with the ability to learn from experience (data) to discern prop-
erties of a certain system without being explicitly programmed to do so.

ML is divided into three categories: supervised, unsupervised and rein-
forcement learning. Supervised learning requires and input variable (x) or
descriptor, and an output variable (y) or target, and learns the mapping
function y = f (x) using training data, e.g. translation software and im-
age recognition. Unsupervised learning only has the input variable (x) and
tries to learn about the underlying properties of the data, e.g. dimensional-
ity reduction. In reinforced learning the objective is to maximize a fitness
function, or reward function, e.g. self driving cars.

From now on, unless explicitly stated otherwise we will discuss supervised
learning.

Suppose that we have a function, ftarget(x), that maps an input space, VI , to
an output space, VO:

y = ftarget(x), x ∈ VI , y ∈ VO, (2.1)

from which we obtain a number of samples, xi.

We also have a function, Θp(x), Θ : VI → VO, that depends on x and on a
set of parameters, p ∈ VP. The machine learning algorithm will try to find
the best parameters, p, so that:

y = ftarget(x) = Θp(x). (2.2)

However, it is not usually possible to obtain the exact relation, so we need
to include an error term, e ∈ VO:

9



2. Machine Learning

y = ftarget(x) = Θp(x) + ep(x). (2.3)

Machine learning models learn by choosing the parameters p0 that minimize
a loss function Lp(x), such that:

∑
i

Lp0(xi) ≤∑
i

Lp(xi) ∀p ∈ VP, (2.4)

where i iterates over our data samples.

The function and parameters, Θp(x) and p, are referred together as the
model. For this model to be a valid ML model it should be able to make
accurate predictions on the value of y on new, unseen inputs. To ensure this
happens, our samples are divided in two sets: the training set and the test
set. The test set is excluded from the training process and is used to evaluate
the models.

Supervised learning is split into two further categories:

• Classification: where the predicted variable is one of multiple discrete
classes, e.g. characterizing a market transactions as profitable or un-
profitable.

• Regression: the predicted variable can take any value from a contin-
uous domain, e.g. calculating the amount of profit (or loss) from a
market transaction.

In this chapter we will first analyze how a ML model is capable of predict-
ing new data in unseen samples, and some pitfalls we need to be careful
about. Then we will introduce some representations (x) that allow us to
describe physical systems. Following by describing some algorithms (Θp),
and metrics that allow us to estimate the performance of our models.

2.1 Bias-variance tradeoff

When using machine learning to draw conclusions from a dataset we want
to ensure those conclusions are correct and capture real trends in the data
and not anomalies from our limited training samples. There is an ever-
present tradeoff between models with high bias—simple models unable to
uncover the real relationship within the data—and models with high vari-
ance, complex models that fail to discover actual trends due to memoriza-
tion of training data. We refer to the former as underfitting and the latter as
overfitting.

We will demonstrate this by considering the following polynomial:

10



2.1. Bias-variance tradeoff

f (x) = 1 + 3x2 − x3, (2.5)

from which we will sample ten points and add scaled random noise. We
then proceed to fit polynomials by the least squares method [24], minimizing
the squared error between the fit polynomial and the sampled data. This is
shown in Figure 2.1, where we observe that a second degree polynomial
underfits our data and a tenth degree polynomial overfits it, memorizing
the position of our samples.
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10th degree fit

Figure 2.1: Polynomial fitting of different degrees to data sampled from a
3rd degree polynomial with random noise added.

In this case, it is obvious that the best choice is a third degree polyno-
mial. However, in more complex datasets, with high-dimensional inputs
and where the relationship is not so obvious, the choice of function to fit is
not longer clear. To deal with this, we need to make a choice between either
using a model with high complexity and consequently variance and try to
counteract overfitting, e.g. neural networks with regularization or dropout,
or using simpler models with higher bias and deal with underfitting, e.g.
shallow decision trees ensembled into random forests.

Regardless of the method chosen, the dataset should always be divided into
two parts: a training set in which we conduct the optimization process, and
a test set which should stay untouched until after the model is trained and
then used to measure the performance of the model. The performance of
the model in data used for training is not indicative of how well the model
would actually measure in new, unseen data, and shouldn’t be interpreted
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2. Machine Learning

as a performance metric. This is not always evident. For example, a model
that uses temporal data requires a test set that is entirely in the future with
respect to the training set. This is because when making real predictions
in new data only data from the past will be available. Failure to correctly
separate the train and test site is known as data leakage.

2.2 Representations

A representation, or descriptor, is a vector, x, that contains the information
necessary to represent a system.

Choosing these representations or descriptors of the system is of extreme
importance for the performance of the model, and its generally beneficial to
posses prior knowledge about the system and its behavior.

In this thesis, ML is applied to predict:

1. Macroscopic properties of crystals based on their structure

2. Local properties based on atomic clusters around crystal sites

3. Nuclear properties

Thus, we will introduce various representations for each of these physical
systems.

2.2.1 Representations of Crystals

Choosing the appropriate representation for a crystal is a hotly debated
theme in the Materials Informatics community [25, 26, 11, 27, 28].

A crystal is identified by the lattice vectors (a1, a2, a3), the position of its
atoms (ri) in the unit cell, and their atomic numbers, (Zi). However, there is
an infinite number of a1, a2, a3, {ri, Zi} that describe any such system—due
to the invariance with respect to choosing the unit cell—and ML algorithms
would not be able to identify two crystals as the same if they have been
represented differently.

A good descriptor for a crystal should be:

1. Translationally invariant

2. Rotationally invariant

3. Invariant with respect to the size of the cell

4. Invariant with respect to permutation of equivalent atoms in different
cells

12



2.2. Representations

(a) Material 510, with formula C28H18Fe,
available at https://omdb.mathub.io/

material/id/510.

(b) Material 1583, with formula
C18H13Br, available at https:

//omdb.mathub.io/material/id/1583.

Figure 2.2: OMDB materials represented in table 2.1

2.2.1.1 Multi-Hot Encoding

We create a simple descriptor that only takes into account the species of the
atoms in the crystal. The crystals are represented by a vector, xi, with length
equal to the number of different chemical species in the entire dataset. The
presence or absence of a species gets represented by a 1 or a 0 respectively.

We illustrate this representation with two materials from the OMDB (Figure
2.2), as seen in table 2.1 where the first material has iron but not bromine,
but the second has bromine but not iron, determining the position of hot
spots, ones instead of zeros, in the vector.

Formula C H Fe Br ... x
C28H18Fe 1 1 1 0 ... [ 1 1 1 0 ...]
C18H13Br 1 1 0 1 ... [ 1 1 0 1 ...]

Table 2.1: Schematic representation of Multi-Hot encoding.

This representation takes inspiration from One-Hot encoding, a widely used
Ml representation for encoding binary features.

2.2.1.2 Sine Matrix

In order to understand the Sine Matrix (SM) [11], we need to first introduce
the Coulomb Matrix (CM) as the SM is a crystal structure representation
that extends the Coulomb Matrix, from molecules to crystal structures.
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2. Machine Learning

The Coulomb Matrix (CM) [25] was originally developed to provide a ML
representation of a molecule capable of predicting atomization energies, and
has been shown capable of predicting other properties [29]. A molecule can
be represented by a matrix M, with components:

Mij =

{
0.5Z2.4

i , i = j
ZiZj
|ri−ri | , i 6= j,

(2.6)

where the diagonal elements come from a polynomial fit of atomic energies
to atomic number, and the off-diagonal elements represent Coulomb repul-
sion between the atoms in the molecule. Zi, ri represent the atomic number
and the position of the atom i, respectively. This matrix is then flattened to
create the input vector, x.

The size of the CM still depends on the number of atoms in the molecule. In
order to keep the representation’s size constant we will pad the vector with
zeros up to a fixed size. Furthermore, multiple CMs can be produced from
the same molecule depending on the ordering of the atoms, we will address
this ambiguity by sorting columns and rows according to their euclidean
norm.

We can try, naı̈vely, to extend the Coulomb Matrix to support an infinitely
repeating crystal structure as:

Mij =

{
0.5Z2.4

i , i = j
ZiZj

N ∑m,n
1

|rm,i−rn,j| , i 6= j,
(2.7)

where m and n iterate over all N closest unit cells. However, as N → ∞,
convergence issues arise.

One solution is to use any arbitrary simpler potential, Φ(ri, rj), than the
electrostatic, that shares basic properties with the sum previously stated
and doesn’t have convergence issues:

Mij =

{
0.5Z2.4

i , i = j
ZiZjΦ(ri, rj), i 6= j.

(2.8)

Faber et al. [11] propose the interaction that defines the SM:

Φ(ri, rj) =

∣∣∣∣∣∣B · ∑
k={x,y,z}

ek sin2
[
πekB−1 · (ri − rj)

]∣∣∣∣∣∣
−1

, (2.9)

14



2.2. Representations

where ek refers to the k coordinate unit vectors, and B is the matrix formed
by the unit vectors. This interaction is displayed in Figure 2.3.

Figure 2.3: Φ(ri, rj) potential in a 2D crystal. The interaction strength be-
tween an atom situated at the origin and another one at (x, y) is represented
with colors. Figure from [11].

This interaction has the following properties:

1. The expression is periodic with respect to the crystal lattice.

2. The contribution from any pair of equivalent atoms is equivalent, that
is, invariance with respect to the selection of unit cell.

3. As in the Coulomb potential, Φ(ri, rj)→ ∞ as |ri − rj| → 0.

Which make the SM an appropriate crystal representation. In this thesis we
used the implementation from DScribe [30].

2.2.1.3 Smooth Overlap of Atomic Positions (SOAP)

The SOAP average kernel [27, 28], is defined as measure of similarity between
two structures, constructed by the similarity between the environments of
each atom in the structures. For an schematic representation see Figure 2.4.

The local density, ρχ(r), of an atom is constructed by placing a Gaussian on
top of every atom within an environment, χ, containing all atoms within a
certain radius, rc, of the central atom:

ρχ(r) = ∑
i∈χ

exp
(
− (xi − r)2

2σ2

)
, (2.10)

15



2. Machine Learning

Figure 2.4: Figure from [28]. The SOAP kernel between two structures
K(A, B) is determined by comparing their environments ρ(x). The function
g(x− xi) is the gaussian defined in 2.10.

where the standard deviation, σ, is a hyperparameter, set before the learning
process begins, usually set to 1 Å, the size of an hydrogen atom.

The SOAP kernel is then defined as the overlap of the environments, integrat-
ing all the possible 3D rotations, denoted by R̂:

k(χi, χj) =
∫

dR̂
∣∣∣∣∫ ρχi(r)ρχj(R̂r)dr

∣∣∣∣2 . (2.11)

Information about chemical species is introduced by modifying Equation
2.11 so that the species are matched separately:

k(χi, χj) = ∑
α,β

∫
dR̂
∣∣∣∣∫ drρα

χi
(r)ρβ

χj(R̂r)
∣∣∣∣2 , (2.12)

where all pairwise combinations of species, α, β are considered.

Having two structures, A and B, we now calculate the pair wise similarity
matrix between them:

Cij(A, B) = k(χA
i , χB

j ), (2.13)

with a dimensionality, NA × NB, depending on the number of atoms in each
structure.
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2.2. Representations

The simplest way to convert this matrix into a single number, as a measure
of similarity between the structures, is to calculate the SOAP average kernel:

K(A, B) =
1

NaNb
∑
ij

Cij(A, B), (2.14)

which can be used as input for kernel based methods, such as Kernel Ridge
Regression or Support Vector Machines.

In this thesis we use the implementation from DScribe [30] and SOAP lite
[31].

2.2.2 Local environment representations

In order to calculate local properties in a crystal, we need all the information
needed to identify it: the lattice vectors (a1, a2, a3), the position of its atoms
(ri) and the atomic numbers, (Zi). Furthermore, to identify the site, we also
require the index of the site we are analyzing, from now on referred as the
central site k.

We will define the environment of a site by its nearest neighbors, deter-
mined using covalent radii information and a neighbor search algorithm
implemented in the atomic simulation environment (ASE) [32]. The central
site and its nearest atoms will be treated as if they were an independent
molecule for representation purposes. In Figure 2.5 we draw this environ-
ment from a 2D crystal.

Figure 2.5: From a 2D square lattice with a chequerboard pattern we extract
the environment from a central site (red) and a given covalent radius (black
circles) for each site.
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We need representations that focus on the central site and its environment,
while respecting the criteria given in Section 2.2.1 for good crystal represen-
tations.

Kernel representations, such as SOAP, are not fit for this task, as the kernel
matrix scales quadratically with the number of training samples. Due to
each crystal in the OMDB having around 80 sites, the matrix is impossible
to compute with the computational resources at our disposal.

The data on each site is highly correlated with the other sites on the same
crystal, this means that the split between test and training dataset should be
done at the crystal level, not the site level, to avoid data leakage (see Section
2.1).

2.2.2.1 Coulomb Matrix

We will apply the Coulomb Matrix (CM), as described in 2.2.1.2, to the site
environment as if it were an independent molecule.

2.2.2.2 Coulomb Vector

We propose the Coulomb Vector, C, as a modification of the CM where
only the row corresponding to the central site, k, is considered, disregarding
interactions between non central sites,

Ci = Mik. (2.15)

The ordering of the vector is also changed, the first element is the diagonal
term in the CM, Mkk, as it is the central site’s self interaction term, and the
remaining elements are sorted by magnitude.

The purpose of this representation is to focus on the information relevant to
the central site, compared to the full Coulomb Matrix.

2.2.2.3 Radial Multi-Hot

The CM representation fails to capture the similarities between atoms of
distant atomic numbers, neglecting the influence of periodic table groups
on chemical properties, e.g. if in an organic molecule we change a Carbon
atom (Z=6) for Nitrogen (Z=7) the CM will not vary significantly, however,
by changing it to Silicon (Z=14) the CM will vary greatly, even though both
C and Si belong to group 16 in the periodic table and have the same outer
electronic layer, resulting in similar oxidation states and similar covalent
binding properties.

To introduce the concept of similarities of different chemical species, in this
work we propose encoding the species of the central atom in a One-Hot
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representation, using a vector of length equal to the number of different
species in our dataset, with only one component different to 0. In table 2.2
we see an example of a dataset containing only C, H and O. We can define
this vector it in a compact way:

VOne-Hot
i = δik, (2.16)

Central site C H O VOne-Hot
C 1 0 0 [ 1 0 0 ]
H 0 1 0 [ 0 1 0 ]
O 0 0 1 [ 0 0 1 ]

Table 2.2: One-Hot encoding.

where k refers to the species of the central atom, and i is an index that
unequivocally identifies each specie.

Then, the distance of the atoms in the molecule is encoded in a similar
fashion, with the inverse of the distance instead of a binary representation:

Vdistance
i,l =

1
|rl − rcentral|

δisl , (2.17)

where l iterates over all other atoms in the environment, and sl is the species
of said atom.

The dimension of the vector, still depend on the number of sites in the envi-
ronment around the central atom. To ensure a constant representation size
we propose as the simplest solution to sum over the environment:

Vdistance
i = ∑

l

1
|rl − rcentral|

δisl . (2.18)

This vector is then concatenated with VOne-Hot resulting in of length equal
to twice the size of the total number of different chemical species in our
dataset:

V = [VOne-HotVdistance]. (2.19)

This model has the same information as in the previous Coulomb Vector.
However, by introducing a vectorial representation of the species instead of
using the atomic numbers, the model should be able to identify element
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similarities, that is, discovering the periodic table that better describes our
property.

We will give an example for the carbon sites of two simple molecules:
methane CH4 and carbon dioxide CO2. We will index the One-Hot vectors
in the same order as in table 2.2: C, H, O. Then, for both molecules:

VOne-Hot
C = [1, 0, 0]. (2.20)

In methane, the carbon-hydrogen bond length is of 1.09Å [33] and for car-
bon dioxide the carbon-oxygen bond length is of 1.16Å. Then the distance
vectors are:

Vdistance
CH4,C = [0, 3.67, 0], (2.21)

Vdistance
CO2,C = [0, 0, 1.72], (2.22)

Making the input vectors:

VCH4,C = [1, 0, 0, 0, 3.67, 0], (2.23)

VCO2,C = [1, 0, 0, 0, 0, 1.72]. (2.24)

2.2.3 Nuclear Representations

In this work we also will study the stability of a nucleus with a given number
of neutrons and protons.

Recall that a chemical element, or species, is defined by the number of pro-
tons (Z), and an isotope is determined by the number of neutrons (N) in the
nucleus.

Our objective is to predict the stability of nuclei that are impossible to syn-
thesize with the current technology, so the only information available a pri-
ori is the numbers Z and N. We will extend this representation with extra
information from nuclear models.

20



2.2. Representations

2.2.3.1 Magic Number Representation

The simplest possible representation is a vector comprised of the number of
protons and neutrons:

(Z, N). (2.25)

However, as shown by Costiris et al. [34] and Niu et al. [35] in their studies
on β-decay, an even or odd numbers of protons and neutrons has a signifi-
cant effect in the stability of the nucleus, e.g. there are 147 stable nuclei with
even number of both neutrons and protons, 101 with an even odd combina-
tion and 5 with both an odd number of protons and neutrons. Adding an
extra discrete parameter, δ, that encodes this parity will result in improved
models:

δ =


+1, for even-even nucleus

0, for even-odd nucleus
−1, for odd-odd nucleus

(2.26)

Furthermore, we will also add the distance—δZ, δN— to the closest magic
numbers, regions of increased stability [12], resulting in a vector composed
of 5 components:

(Z, N, δ, δZ, δN) (2.27)

2.2.3.2 Yukawa representation

In 1935 Yukawa [36] proposed that the strong force was mediated by an
exchange particle and had the following form:

VYukawa = −g2 e−αmr

r
, (2.28)

Where g is a scaling constant, m is the mass of the particle that mediates
the interaction and α determines the range of the interaction. In the case
of a massless interaction particle, e.g. photons, we obtain a Coulomb like
potential.

Nowadays, quantum chromodynamics (QCD) is the theory that explains
the strong force, however, models were built upon Yukawa’s potential that
successfully reproduced experimental results. One such model is the Reid
potential [37], which, in its simplest form, reads as a central potential:

V(x) = −h
e−x

x
− 1650.6

e−4x

x
+ 6484.2

e−7x

x
, (2.29)

21



2. Machine Learning

with h = 10.463 MeV and x = µr, µ = 0.7F−1.

This model was obtained by parametrizing a Yukawa interaction with soft
core repulsion and fitting to experimental results. We will be using in to
obtain representations similar to those used for crystals and molecules.

By setting up a system of neutrons and protons that interact with this po-
tential, and in the proton-proton case, adding Coulomb repulsion, we can
proceed with a global minimization process to obtain the most stable struc-
ture.

The minimization is done using basin hopping [38], a method based in
Monte Carlo minimization, that deforms the potential energy surface to the
local minima closest to each point as shown in Figure 2.6.

Figure 2.6: Potential energy surface deformation in basin hopping. The
Monte Carlo simulation explores the local minima, as if it were hopping the
basins, where the method takes it names from. Figure from [38].

We then treat the resulting structures as molecules for representation pur-
poses.

2.3 Algorithms

2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs or NNs) are one the of most versatile
machine learning methods. They were designed by Rosenblatt [3], a psy-
chologist, loosely inspired by the neurons in our brains.

The base element of a NN is a neuron, an object that transforms an input,
x ∈ Rm, into an output h ∈ R, and it is composed of the following parts:

• A set of weights, w ∈ Rm;

• A bias, b ∈ R;

• An activation function, f : R→ R.
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The neuron weights the output vector and adds a bias to it:

Y = w · x + b, (2.30)

and then applies the activation function to calculate the output:

h = f (Y). (2.31)

Multiple activation functions can be used: the step function, the hyperbolic
tangent, softmax, rectified linear units (ReLu), are just some examples. The
main reason to use activation functions is that they introduce non-linearities
in our model that help to learn arbitrarily complex mappings.

Neurons are connected to each other akin to the neural connections present
in brains. The connections can be arbitrary, but the simplest example is a
feedforward neural network, where all the neurons on one layer connect to
the next one. Such network is sketched in Figure 2.7.

During the training process, the weights and biases are optimized to find
the ones that minimize a defined loss function for the train set, e.g. mean
squared error. Usually this minimization is done by a stochastic gradient
descent process, such as ADAM [39]

x1 x2 xp...

z1 z2 zh...

...

w11
w12 w1h wph

b1 bh

(1) b2

(1)
(1)

(1)
(1)

(1)

wp1
(1)

wp2
(1)

(1)

y1 y2 yq...

...

b1 b
(2) b2

(2)
(2)

q

w11

(2)

w12

(2)

w1q

(2)

wh1

(2)

wh2

(2) whq

(2)

Figure 2.7: Two layer feedforward neural network with multiple inputs and
outputs. Figure by Mcstrother [40].
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In this thesis we use the NN implementation from scikit-learn [41].

2.3.2 Random Forests

A Random Forest (RF) is a ML algorithm that ensembles multiple simple
models called decision trees [42]. A decision tree divides the data at each
branch bifurcation according to features of the representation chosen for the
data itself.

In Figure 2.8 we display a simple decision tree that performs binary classifi-
cation (magnetic or non-magnetic) of materials. Assuming that the represen-
tation contains explicit information on the chemical formula of the material,
there are three possible paths, one for a material with iron, another one for
a material without iron but with chromium, and the last one for material
without either of them, this one being the only path that results in a not
magnetic prediction. This is an example of a really shallow decision tree
that suffers from high bias and low variation (underfitting).

Figure 2.8: Simple decision tree that asks yes (left) or no (right) questions to
classify a material as magnetic or not according to the presence of Fe or Cr
in it.

Deep decision trees suffer from the opposite problem, their complexity
brings high variance and low bias. A popular method consists of using
a high number of shallow decision trees trained differently, e.g. using dif-
ferent subsets of the training data (bagging). This method is called Random
Forest (RF), as it consists of multiple trees.

We use the RF implementation of scikit-learn [41].
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Figure 2.9: Hyperplane separating samples in two classes, support vectors
lie on the margin. Figure by Larhmam [44].

2.3.3 Support Vector Machines

Support-vector Machines (SVM) [43] are a machine learning method used
for binary classification. It separates the data into two classes, y = ±1, by
separating the input space into two regions with an hyperplane, which can
be written as:

w · x− b = 0. (2.32)

We want to obtain the maximum margin hyperplane, that is, the one that
correctly separates our data and maximizes the distance to the closest points,
which are called support vectors, giving the method its name. This plane is
shown in Figure 2.9.

We force all positive samples to lie in one side of the hyperplane and all
negatives in the other side,

w · xi − b ≥ 1, if yi = 1;
w · xi − b ≤ −1, if yi = −1,

(2.33)

which can be simplified to:

yi(w · xi − b) ≥ 1. (2.34)

Maximizing the distance between the hyperplane and the support vectors
corresponds to maximizing 2/||w||, however, this is a non convex function,
so we will instead minimize the squared inverse, converting our problem to:
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min(||w||2/2),
subject to ysv

i (w · xsv
i − b) = 1,

(2.35)

where the superscript sv refers to the support vectors. Note that only the sup-
port vectors affect the determination of the hyperplane. This is a constrained
minimization problem, which can be solved using Lagrange multipliers:

L =
||w||2

2
− αi(ysv

i (w · xsv
i − b)− 1). (2.36)

However, the data is not usually perfectly separable, so we will introduce
the hinge loss:

Li = max(0, 1− yi(w · xi − b)). (2.37)

Often, it is not the hinge loss that is used (L1-SVM), but its square (L2-
SVM), as L2 is diferentiable [45] but L1 isn’t. Then the problem reduces to
minimizing the loss while maximizing the margin:

min

(
C

(
1
N

N

∑
i=1
L2

i

)
+
||w||2

2

)
, (2.38)

where C is a regularization parameter that determines the tradeoff between
correctly classifying the samples, and increasing the margin size of the hy-
perplane. A small C value will be too general and fail to adapt to the data
(underfitting) but a large C value will memorize our training data (overfit-
ting), as explained in Section 2.1.

In order to deal with imbalanced data, we will use a different weight for C
for each class, inversely proportional to the frequency of appearance of each
class in the training data:

Cyi = C ∗ n
nyi

, (2.39)

where n is the number of training samples and nyi the number of those with
class yi.

Thus, the optimization problem reduces to:

min

((
1
N

N

∑
i=1

CyiL2
i

)
+ ||w||2

)
, (2.40)
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and this minimization can be done numerically. We will be using sklearn’s
[41] implementation, which in turn uses LIBLINEAR’s [11].

2.4 Metrics

In this section we will define commonly used metrics [24, 46], indicators of
performance, for evaluating ML models, both for classification and regres-
sion.

2.4.1 Classification

The most used metric in classification is accuracy. It is defined as the ratio of
correct predictions over total predictions:

Accuracy :=
Correct predictions

Total predictions
. (2.41)

From this point on, we will suppose that we are in a binary classification
problem, that is, only two classes are present, denoted as positive and neg-
ative. If one of the classes is present much more frequently than the other
one, that is, we have an overrepresented class, we have an unbalanced dataset.
In this case, accuracy is not the best metric, because a model that always
predicts the overrepresented class it will have good accuracy, even if its pre-
dictive capabilities are null, e.g. if 99% of the data is negative, a model that
always predicts negative will achieve 0.99 accuracy.

In order to define new metrics, better suited for unbalanced problems, let us
introduce the Confusion Matrix, which, as its name indicates, informs us of
where our model is confused—where it makes wrong predictions. Then, by
looking at the predicted class and the real one, we can construct the matrix
displayed in table 2.3.

Predicted: Positive Predicted: Negative
Actual: Positive True Positive (TP) False Negative (FN)
Actual: Negative False Positive (FP) True Negative (TN)

Table 2.3: Confusion Matrix in a binary classification problem.

With these concepts, we can define:

• Accuracy, equivalent to Equation 2.41:

accuracy :=
TP + TN

TP + FP + TN + FN
. (2.42)
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The fraction of correct predictions over total predictions made.

• Precision:

precision :=
TP

TP + FP
. (2.43)

The fraction of correct positive predictions.

• Recall:

recall :=
TP

TP + FN
. (2.44)

The detection ratio for positive samples.

• F1:

F1 :=
2× recall× precision

recall + precision
. (2.45)

The harmonic mean of recall and precision.

When classifying an unbalanced dataset, it is important to analyze both
accuracy and F1 in order to evaluate a model. Furthermore, looking at the
Confusion Matrix allows us to know where the errors are.

How good a model is depends on its purpose, e.g. if the model is used
for cancer detection, missing a patient with cancer can have drastic conse-
quences, so a model that minimizes the number of FNs, or maximizes recall,
is desired.

2.4.2 Regression

The most straightforward metric for regression is Mean Absolute Error
(MAE), defined as the arithmetic mean of the absolute value of the errors in
the predictions,

MAE =
n

∑
i=1

∣∣∣ypred
i − ytarget

i

∣∣∣
n

, (2.46)

where ypred refers to the values predicted by our model and ytarget to the
target values our model tries to reproduce.

However, the metric most often optimized is Mean Squared Error (MSE),
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MSE =
n

∑
i=1

(
ypred

i − ytarget
i

)2

n
, (2.47)

as it punishes large mistakes more which provides better results for outliers.
The squared root of the MSE is defined as Root Mean Squared Error (RMSE)
has the same units as the target variable, therefore being easier to interpret.

However, these values are meaningless without prior knowledge of a dataset.
In order to know how good our model actually is we need to compare such
metrics with values such as the mean or standard deviation of the target
values. Consequently, we will use a metric that can be analyzed on its own.

The variance (VAR) of the target values corresponds to the MSE of a model
that always predicts the mean value, independently of the input, ypred

i = ȳ:

VAR =
n

∑
i=1

(
ȳ− ytarget

i

)2

n
. (2.48)

By comparing the variance with the mean squared error, we define r-
squared, r2, as:

r2 = 1− MSE
VAR

(2.49)

This metric is restricted to the interval (−∞, 1], where a negative value corre-
sponds a model that performs worse than simply predicting the mean, and
a value of 1 corresponds to a perfect model. By comparing our model to
a baseline, mean prediction, we can give an easy to interpret performance
metric that does not require extra knowledge about the dataset.
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Chapter 3

Magnetism

3.1 Introduction

We recently extended the OMDB to display magnon excitations [21], and this
feature is available publicly at https://omdb.mathub.io/material?type=

magnon.

The process used for high throughput calculations of magnetic excitations
[21] is extremely expensive, so we aim to bypass the costliest parts of the
process, the computation of the parameters of the Heisenberg Hamiltonian:
the exchange interaction parameters Jij and the magnetization per site mi.

In this chapter we will first introduce the theoretical background needed to
understand magnetic excitations and later apply the ML concepts discussed
in Chapter 2 to facilitate more efficient high throughput calculations.

3.2 Linear Spin Wave Theory

A particle that has a spin S has an associated magnetic moment B,

B = g
q

2m
S, (3.1)

where g is a dimensionless factor, and for an electron g ≈ 2; q denotes the
charge and m the mass. The orbital motion of the electron also contributes
to the magnetic moment, but we will work in the limit of weak spin-orbit
interaction so we will ignore it.

The spin configuration that minimizes energy is called the ground state,
and is denoted as the vacuum state. In Figure 3.1 we see some of the most
significant ground states, here listed:
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3. Magnetism

• Ferromagnetism: All spins have the same direction and magnitude.
Named after iron, it is also present in cobalt, nickel and many more
materials.

• Antiferromagnetic: All spins have alternating directions, resulting on
no net magnetization. Chromium is a well known example.

• Ferrimagnetic: All spins are collinear but different magnitudes, result-
ing in net magnetization—e.g. magnetite, Fe3O4.

• Spin Spiral: The direction of the spins is rotated a constant amount
per unit cell as we move in one direction, e.g. γ-iron [47].

(a) Ferromagnetic
(b) Antiferromagnetic

(c) Ferrimagnetic (d) Magnetic spiral

Figure 3.1: Schematic examples of magnetic groundstates on a 1D chain.

Spin waves transmit disturbances on the magnetic ground state of a material
with infinite periodicity. This excitation can be quantized. Which, from
a second quantization point of view, corresponds to quasiparticles, named
magnons. Magnons are spin-1 so they display bosonic behavior.

Linear Spin Wave Theory (LSWT) studies low energy magnetic excitations
in crystal structures. First introduced by Bloch [48] and independently by
Slater [49], it provides a framework that allows one to obtain the magnetic
dispersion relation, or energy momentum relation.

3.2.1 Ferromagnetic case

In this section we will assume that the groundstate of our crystal has Fer-
romagnetic ordering (see Figure 3.1a), meaning that all spins point in the
same direction on a global magnetization axis, which we will choose to be
the z-axis.

We start from the Heisenberg Hamiltonian:
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H = − ∑
mi,nj

Jmi,njSmi · Snj, (3.2)

where the indexes m and n sum over the cells, and i and j sum over the sites
inside the cells. Jmi,nj is the exchange interaction parameter, and has units of
energy. Smi is a unitless vector with the direction and magnitude of the spin
of the particle m, i.

We now introduce the spin ladder operators, that either raise or lower the
eigenvalue of Sz

mi:

S±mi = Sx
mi ± iSy

mi. (3.3)

Performing the scalar product in Equation 3.2 we get:

H = − ∑
mi,nj

Jmi,nj

(
Sz

miS
z
nj +

S+
miS
−
nj + S−miS

+
nj

2

)
. (3.4)

We now map the spin ladder operators to boson creation (a†
mi) and annihila-

tion (ami) operators by means of the Holstein-Primakoff transformation [50],

were we use the linear approximation, that is <a†
miami>
2S � 1, assuming a low

excitation state. Then:

S+
mi =

√
2Si

√
1−

a†
miami

2S
ami ≈

√
2Siami ,

S−mi =
√

2Sia†
mi

√
1−

a†
miami

2S
≈
√

2Sia†
mi ,

Sz
mi = Si − a†

miami .

(3.5)

Due to the translational symmetry of our system these operators can be
Fourier transformed, going from the real space (position), to the reciprocal
space (momentum), with the definitions:

ami = N−1/2 ∑
k

eikrmi ai(k),

a†
mi = N−1/2 ∑

k
e−ikrmi a†

i (k).
(3.6)

The commutator of the spin ladder operators obeys the following relation,
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[
S+

mi, S−nj

]
= δm,nδi,j, (3.7)

then, by taking into account Equation 3.5,

[
ami, a†

nj

]
= δm,nδi,j, (3.8)

allowing us to prove the following bosonic commutation relation:

[
ai(k), a†

j (k)
]
= N−1 ∑

nm
e−ikrmi eikrnj

[
ami, a†

nj

]
= N−1 ∑

nm
e−ikrmi eikrnj δmnδij

= N−1 ∑
m

e−i(k−k
′
)rmi δij

= δk,k′ δij.

(3.9)

We rewrite the Heisenberg Hamiltonian 3.2 in terms of the ai(k) and a†
i (k)

operators:

H =− ∑
mi,nj

Jmi,nj

[Si − N−1 ∑
k,k′

a†
i (k)ai(k

′
)e−i(k−k

′
)rmi


Sj − N−1 ∑

k,k′
a†

j (k)aj(k
′
)e−i(k−k

′
)rnj


+

√
SiSj

2
N−1 ∑

k,k′

(
ei(k−k

′
)rmi ai(k)a†

j (k
′
)e−ik

′
d + e−i(k−k

′
)rmi aj(k)a†

i (k
′
)eik

′
d
)]

,

(3.10)

where we have defined dmi,nj as rnj = rmi + d and dropped the indexes on d
for convenience. Due to the crystal’s translational symmetry:

Jmi,nj = Ji,j(rmi − rnj) = Ji,j(d). (3.11)

After simplifying Equation 3.10, using the commutation relation from Equa-
tion 3.9 and keeping terms up to second order in the magnon operators, we
obtain the following terms:
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• Zeroth order, corresponding to the magnetic ground state:

HGS = − ∑
mi,nj

Jmi,njSiSj. (3.12)

• Second order, corresponding to the magnetic excitations:

H2(k) = ∑
i,j

[
Ji,j(0)

(
Sia†

j (k)aj(k
′
) + Sja†

i (k)ai(k
′
)
)

− Ji,j(k)

√
SiSj

2

(
ai(k)a†

j (k) + aj(k)a†
i (k)

) ]
,

(3.13)

where we have Fourier transformed Ji,j(d) as:

Jij(k) = ∑
d

Ji,j(d)e−ikd. (3.14)

This Hamiltonian can be written in matrix form:

H2(k) = x(k)T,†h(k)x(k), (3.15)

with:

x(k) = (a1(k), a2(k), ..., aN(k)), (3.16)

hi,j(k) = δij ∑
l

Sl Ji,l(0)− Ji,j(k)

√
SiSj

2
. (3.17)

An explicit example of the ferromagnetic case (honeycomb ferromag-
net) is given in Section 3.2.3.

3.2.2 Single Q case

In this section we will follow the methodology detailed by Haraldsen [51]
and later expanded by Toth [52] to calculate the magnetic excitations of non-
collinear crystal structures, such as spin spirals.

The introduction of magnetic moments might disturb the symmetries of the
crystal, defining a magnetic unit cell (MU) bigger than the chemical unit cell
(CU), as seen in Figure 3.2. We introduce the magnetic ordering vector, Q,
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Figure 3.2: For a 1D chain, the introduction of an antiferromagnetic spin
alignment gives a magnetic unit cell (MU), bottom, with double the size of
the chemical unit cell (CU), top.

in reciprocal space, such that the spin in the m:th CU can be obtained by
applying a rotation Rm to the spin in the 0:th CU. With Rm defined by the
angle ϕ = Q · rm around a given axis.

By applying Rm over the spins Sm,i our system is transformed into one with
the same periodicity as in the CU:

Smi = RmS0i = RmSi. (3.18)

We can define another rotation to transform our system into ferromagnetic
ordering with the matrix Ri, such that Si = RiS

′
i, where i iterates over the

sites in the unit cell. These rotations are shown in Figure 3.3 for an antifer-
romagnetic spiral.

The matrix Ri can be expressed by its components:

Sα
i = ∑

µ

R
′αµ
i S

′µ
0i . (3.19)

As we will need them later, we define the useful vectors:

uα±
i = R

′α1
i ± iR

′α2
i ,

vα
i = R

′α3
i .

(3.20)

With the rotated spins now in a ferromagnetic configuration, we can apply
the Holstein-Primakoff transformation. After some work, our spins take the
form:
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Rm

Ri

Sm,i

Si

S
′
i

Figure 3.3: Schematic representation of how the rotation matrices Rm and Ri
act on a antiferromagnetic spin spiral of Q = ( 1

4 , 0, 0) written in terms of the
reciprocal basis vectors.

Smi = Rm

[√
Si

2
(u+

i ami + u−i a†
mi) + vi(Si − a†

miami)

]
. (3.21)

With this result, we proceed as in Section 3.2.1: we Fourier transform the ami
and a†

mi operators; obtain the Hamiltonian; and separate by order in magnon
operators, obtaining:

• Zeroth order: H0 = −∑mi,nj SiSjvT
i J
′
mi,njvj, the ground state energy.

Where we have used J
′
mi,nj = RT

m Jmi,njRn.

• Second order:

H2 = −∑
i,j,k

√
SiSj

2

(
uT,+

i J
′
ij(k)u

+
j ai(k)aj(−k) + uT,+

i J
′
ij(−k)u−j ai(k)a†

j (k)

uT,−
i J

′
ij(k)u

+
j a†

i (k)aj(k) + uT,−
i J

′
ij(−k)u−j a†

i (k)a†
j (−k)

)
−

vT
i Jij
′(0)vj

[
Siaj(k)a†

j (k) + Sjai(k)a†
i (k)

]
,

(3.22)

with J
′
ij(k) = ∑d J

′
ij(d)e

ikd, as in Equations 3.11 and 3.14.

This Hamiltonian can be written in matrix form as:
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H2(k) = x(k)T,†h(k)x(k), (3.23)

with:

x(k) =
(

a1(k), ..., aN(k), a†
1(−k), ..., a†

N(−k)
)T

, (3.24)

and h(k) a 2N by 2N matrix:

h(k) = −
(

A(k)− C B(k)
B(k)† Ā(−k)− C

)
, (3.25)

formed by the N by N Matrices:

Aij(k) =

√
SiSj

2
uT,−

i J
′
ij(k)u

+
j ,

Bij(k) =

√
SiSj

2
uT,+

i J
′
ij(k)u

+
j ,

Cij(k) = δij ∑
l

Slvi J
′
il(0)vl .

(3.26)

3.2.2.1 Antiferromagnet

In this section we will apply single Q LSWT to a 2D-crystal along the XY
plane with two sites per CU, with spins pointing in opposite direction along
the z-axis and same magnitude, S1 = −S2 = S, J < 0.

As our CU and MU coincide, Rm = 1, so J
′
(k) = 1J(k)1 = J(k).

We will denote the particle with spin pointing upwards as i = 1, and down-
wards i = 2. In order to bring our system to ferromagnetic ordering we need
to do a rotation of π along the y-axis, giving:

R1 = 1 , R2 =

−1 0 0
0 1 0
0 0 −1

 . (3.27)

Then the vectors u±i and vi are:

v1 = z,
u±1 = x± iy,
v2 = −z,

u±2 = −x± iy.

(3.28)
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Hence, Equation 3.26 becomes:

A =
S
2

J(k)

(
0 uT,−

1 u+
2

uT,−
2 u+

1 0

)
=

(
0 0
0 0

)
,

B =
S
2

J(k)

(
0 uT,+

1 u+
2

uT,+
2 u+

1 0

)
= SJ(k)

(
0 −1
−1 0

)
,

C =

(
Sv1 J(0)v2 0

0 Sv2 J(0)v1

)
= SJ(0)

(
−1 0
0 −1

)
,

(3.29)

where we have dropped the index J12 = J. Thus Equation 3.25 takes the
form:

H2(k) = −


SJ
′
(0) 0 0 −SJ

′
(k)

0 SJ
′
(0) −SJ

′
(k) 0

0 −SJ
′
(−k) SJ

′
(0) 0

−SJ
′
(−k) 0 0 SJ

′
(0)

 , (3.30)

which can be diagonalized by taking into account the commutation relation
of the bosonic operators, as detailed in Colpa’s [53] and Toth’s [52] work,
giving the following degenerate eigenvalue:

E(k) =
√

SJ(0)2 − S|J(k)|2. (3.31)

3.2.3 Honeycomb Magnets: Ferromagnetic and Antiferromagnetic
case

In this section we will use LSWT to analyze magnon excitations for both the
ferromagnetic and antiferromagnetic case for the honeycomb lattice.

A honeycomb lattice (as seen in Figure 3.4) is a two site lattice in which
the sites arrange themselves in an hexagonal pattern characteristic of bees’
honeycombs. Such a lattice has been shown to display Dirac magnons in
ferromagnets [19], such as chromium trihalides, CrX3, where X is a halogen
e.g. CrF3.

The honeycomb lattice can be described by the lattice vectors:

a± =
a
2

(√
3,±1

)
, (3.32)

and an atomic basis of two atoms distanced a√
3

apart along the x-axis.
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Figure 3.4: Honeycomb lattice (left) and reciprocal unit cell (right). The
lattice is defined by the two sites, at r1 and r2, and the lattice vectors, a±.
The vector d is the difference in the positions of the sites.

By taking into account only the nearest neighbors interactions, we obtain:

J(k) = J
(

eikd + eik(d−a−) + eik(d−a+)
)

, (3.33)

with d being the vector from site two to site one. As it will be useful later,
J(0) = 3J and

|J(k)| = J
√

3 + 2 cos ka+ + 2 cos ka− + 2 cos k(a+ − a−). (3.34)

Ferromagnet

From Equation 3.15 and assuming a two site ferromagnet with only nearest
neighbor interaction:

S1 = S2 = S, J > 0, (3.35)

then, we obtain the following eigenvalues from the Hamiltonian in Equation
3.17:

E(k) = SJ(0)± S|J(k)|, (3.36)

These eigenvalues are plotted, in 2D and 3D, in Figure 3.5a, where we can
see linear crossings, or Dirac points, at the high symmetry points K and K

′
.
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3.2. Linear Spin Wave Theory

(a) Magnon dispersion of a ferromagnetic honeycomb lattice in 2D (left) and 3D
(right). Dirac points are present at the K and K

′
points, the latter only seen in the

3D plot.

(b) Magnon dispersion of an antiferromagnetic honeycomb lattice in 2D (left) and
3D (right). A linear crossing is present at the Γ point.

Figure 3.5: Magnon dispersions in a honeycomb lattice.

Antiferromagnet

Using the two site antiferromagnet Equation 3.31, we can obtain the magnon
dispersion for a honeycomb lattice in antiferromagnetic configuration, dis-
played in Figure 3.5b. It displays a linear crossing at the ground state, recog-
nizable by the cone in the 3d plot at the Γ point.
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3.3 Prediction of Heisenberg Hamiltonians

In Section 3.2 we have shown how to use LSWT to characterize low energy
excitations of collinear and non-collinear magnets, given the full Heisenberg
Hamiltonian. Now we will discuss how to formulate the Heisenberg Hamil-
tonian for an unknown complex organic crystal, using ML, for which we
need to predict two quantities: the magnetic moment per site, mi and the
Heisenberg exchange parameters, Jij.

However, we will predict the magnitude of this vector |mi|, as it is a simpler
problem and the ground state determination [21] is not so computationally
expensive.

In this section we will apply the methods introduced in Chapter 2 to predict
these magnetic properties using the materials in the OMDB. We will divide
the process into four steps:

1. Classify crystals as magnetic or not.

2. For the crystals that are magnetic, classify their sites as magnetic or
not.

3. For the sites that are magnetic, obtain their magnetization |mi|.

4. Obtain the exchange interaction parameters, Jij, for every pair of sites.

Once these steps have been completed, we will have all the parameters nec-
essary to calculate the magnetic ground state [21], and spin excitations as
per Section 3.2, bypassing |mi| and Jij calculations that can take thousands
of cpu-hours per material.

An schematic representation of the OMDB dataset is presented in Figure 3.6,
from where we conclude that the first two steps are necessary because 99.3
% of the sites in the OMDB are non-magnetic, therefore, trying to directly
predict site magnetization would make the model be extremely conservative,
always predicting magnetization values close to zero.

3.3.1 Crystal Structures

In this section we aim to present a ML model able to predict if a crystal is
magnetic or not in unseen data.

We are using data from the OMDB [8], containing over 22000 organic crys-
tals, with properties calculated by DFT. Our dataset is composed by the
12991 of those that have magnetization per site calculated.

We will define magnetic materials as those with at least one site with mag-
netization larger than 0.1µB. According to this definition, 2048 out of the
12991 crystals are magnetic.
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3.3. Prediction of Heisenberg Hamiltonians

Figure 3.6: Schematic representation of the dataset. The red arrows indicate
where ML can be used to classify (magnetic and not magnetic), or to do
regression (Jij, |mi|).

In order to evaluate our model’s ability to make predictions in materials
outside our dataset, we will divide our data into a training set and a test set,
with sizes of 80% and 20% of the total dataset respectively. Which material
was in which set was decided randomly.

3.3.1.1 Baseline Models

Our training set is composed of 10392 materials, of which 1658 are mag-
netic, and the test set is formed of 2599 materials, 390 of them magnetic.
The proportion of magnetic materials versus non-magnetic ones makes it an
unbalanced dataset problem, which, as discussed in Section 2.4.1, requires us
to examine different metrics to evaluate and discuss proposed models.
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3. Magnetism

As a first step, we will analyze the scalar model, defined as always predicting
the majority class, that is, our model will always predict that a material is
not magnetic, no matter what crystal structure is used as input. Using this
model we obtain an accuracy of 0.84, which in another problem could be an
excellent model, however, by looking at F1, which evaluates to 0, we know
that the scalar model has no actual predictive capabilities.
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Figure 3.7: For a given chemical species we display the ratio of magnetic
materials. Elements are colored according to their IUPAC (International
Union of Pure and Applied Chemistry) group. To avoid cluttering, only
elements that are present on more than 10 materials are displayed.

In Figure 3.7 we display the ratio of magnetic materials for all the materials
in the training set that contain a given chemical species. We observe that
the presence or absence of certain chemical species is a strong indicator of a
material being magnetic or not. In fact, we can define a simple model that
classifies a material as magnetic if it contains any element with a ratio over
0.5 (purple line on figure). By evaluating this model in the test set, we obtain
the following metrics:

• Accuracy = 0.951;

• F1 = 0.831;

• Confusion Matrix:
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3.3. Prediction of Heisenberg Hamiltonians

Predicted: Positive Predicted: Negative
Actual: Positive 313 77
Actual: Negative 50 2159

We will consider this model as the baseline model due to its simplicity, and
that we will discard any model that performs worse.

3.3.1.2 Machine learning models

In this section we analyze the performance of two different representations,
SOAP [Sec. 2.2.1.3] and Multi-Hot [Sec. 2.2.1.1], for predicting magnetic
crystals. Which we combine with the following algorithms: for SOAP we
employed Support Vector Machines (SVM) [Sec. 2.3.3] as it is ideal for a ker-
nel based classification problem, and for Multi-Hot we will compare Ran-
dom Forests (RF) [Sec. 2.3.2] and Artificial Neural Networks (ANN) [Sec
2.3.1], as they are algorithms widely used in classification tasks.

For all the models presented, the hyperparameters of the model have been
optimized using random search with cross validation on the training set.

In Figure 3.8 we can see our models’ performance as a function of the train-
ing set sample. We observe an increase in quality of our model with the
increase in size of the training set, however, diminishing returns soon kick
in.

By comparing the models we observe that the baseline model quality is
almost independent of the number of training samples, performing well
even for a small number of training samples.

Despite its simplicity, Multi-Hot representation proves to be a more than
adequate descriptor of a crystal for this task, indicating that the chemical
formula is the main determinant of magnetic presence in an organic crystal.
However, it has a restricted input domain, so once the model has observed
most variations of inputs it will keep making the same mistakes no matter
how many more training samples, e.g. Multi-Hot ANN past 4000 materials
stops improving.

Furthermore, there exists materials with the same chemical elements where
one exhibits magnetic properties and other ones don’t, for example: the
materials with COD ID [54] 2218516 and 4021177 have the same elements
present (C, H, Ni, O), and so the same Multi-Hot representation, but only
the latter is magnetic. To illustrate this limit, in Figure 3.8 we include an
horizontal line representing the model Ideal Multi-Hot, a model that for each
possible Multi-Hot input representation on the test set always predicts the
class which will maximize the accuracy. This model was trained and eval-
uated in the test set to indicate the maximum possible metrics Multi-Hot
models could achieve, evaluating it in other sets of materials will give worse
results.
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Figure 3.8: Performance of the model according to the number of training
samples.

On the other hand, SOAP, a much more complex representation that has
knowledge of the crystal structure, is able to obtain the best results for a
large amount of training samples, with accuracy and F1 continuing to in-
crease with the number of training samples, unlike the other descriptors.
For the full training set, SOAP achieves the following metrics:

• Accuracy = 0.97;

• F1 = 0.89;

• Confusion Matrix:

Predicted: Positive Predicted: Negative
Actual: Positive 326 64
Actual: Negative 14 2194

Both metrics, accuracy and F1 can take values in the interval [0, 1]. By plot-
ting log10(1− metric), Figure 3.9, we observe a roughly linear behavior in
the logarithmic space as the number of training samples increases.

We can then fit a linear function and extrapolate it, which will allow us
to evaluate the potential performance of our models as we increase our
dataset’s size. For F1:
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Figure 3.9: Logarithmic plot of the performance of the model according to
the number of training samples.

log(1− F1) = m log(N) + C → F1 = 1− 10C Nm. (3.37)

For the best model, SOAP, for accuracy we obtain the values m = −0.23 and
C = −0.59; for F1 we obtain m = −0.26 and C = −0.6. Extrapolating to 105

materials, a realistic number for the OMDB in the following years, would
give a F1 score of 0.94 and an accuracy of 0.98.

3.3.2 Site Classification

After separating the magnetic materials from the non-magnetic ones we can
proceed to the next step described in Figure 3.6: for those materials that are
magnetic, we will try to determine which sites contribute to the magnetic
Hamiltonian. We will say that a site is magnetic if it has a magnetization
magnitude of at least 0.1µB.

This is a different problem, with different challenges to the previous one.
There is no literature about how to represent specific sites in a crystal, nor
there is information about how to use ML to predict a local property. We
addressed this issue in 2.2.2 by introducing new representations, able to
represent the central site and its environment.
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In average, every crystal in the OMDB has 80 sites, meaning that our
dataset’s size has now increased by two orders of magnitude compared to
the previous task of identifying magnetic materials, rendering kernel meth-
ods impractical due to the N2 scaling in memory and time to generate the
kernel matrix. For example, in order to create a N × N kernel of the whole
site dataset (N=163782) using double precision floats, the matrix will require
over 210 GB of RAM. While that is achievable with current computers, our
limitations in computing power and available time renders kernel methods
impossible to analyze in this work. Moreover, one of the objectives of us-
ing ML methods in this work is to reduce computational load, making it
counterproductive to investigate kernel methods for this problem.

From the previous dataset we have 2048 magnetic materials, whose 163782
sites and magnetizations comprise the new dataset. Of these, only 7391 are
magnetic, making it, as in the crystal case, an unbalanced dataset problem.

Adding to the complexity, in order to accurately characterize the Heisenberg
Hamiltonian, it is important to correctly classify all sites in a material, as
just one mistake in the predictions will completely change the predicted
properties, e.g. missing one site in an antiferromagnetic material might lead
to it being predicted as ferromagnetic.

3.3.2.1 Baseline Models

We will proceed in a similar fashion to earlier by stating a baseline model
that will serve as a minimum threshold for other models to improve.

In Figure 3.10 we display the ratio of magnetic sites per chemical species for
the materials in the training set. There is a much clearer influence of the
chemical group in the ratio of magnetic elements with respect to the crystal
case, seen in Figure 3.7.

For our baseline model we will consider the elements with a ratio of mag-
netic sites over 0.5 as magnetic, and predict all the sites of that element as
such. When this model is evaluated on the test dataset we obtain the follow-
ing metrics:

• Accuracy = 0.975

• F1 = 0.642;

• Confusion Matrix:
Predicted: Positive Predicted: Negative

Actual: Positive 695 751
Actual: Negative 23 29722

This model has more errors—in particular with the False Negatives (FN)—
which in turn means less accuracy, than a model that always predicts non-
magnetic, demonstrating the biggest problem in unbalanced data problems:
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Figure 3.10: For a given chemical species we display the ratio of magnetic
sites. Elements are colored according to their IUPAC group.

increasing the number of true positives might increase the number of false
positives at a faster rate.

This baseline model performs worse than the equivalent one for crystals, in
Section 3.3.1.2], pointing to this being a more challenging problem.

3.3.2.2 Machine Learning Models

In this section we will analyze three representations, Coulomb Matrix (CM),
Coulomb Vector (CM Vector) and Radial Multi-Hot (RMH), described in
Section 2.2.2, for predicting magnetic sties. Each of these representations is
then used as an input for two ML algorithms, Artificial Neural Networks
(ANN) and Random Forests (RF), from Section 2.3.

In Figure 3.11 we display the performance metrics of the representations
with its best performing algorithm and the dependence on the number of
training samples. As seen in the figure, ML models quickly outperform the
baseline model, particularly for F1, as the baseline has a high number of
false negatives. Furthermore, every ML model achieves better accuracy than
always predicting non-magnetic for the maximum training size.

RMH outperforms the other models, achieving an accuracy of 0.983 and a
F1 of 0.797, highlighting the importance of not biasing our representation
to assume similarity based on the atomic number, but instead letting our
model figure out which chemical species are similar by itself.

49



3. Magnetism

0.965

0.970

0.975

0.980

Ac
cu
ra
cy

RMH (ANN)
CM (RF)
CM vectors (RF)
Baseline
Always Negative

0 250005000075000100000125000
Training size

0.60

0.65

0.70

0.75

0.80

F1

Figure 3.11: Comparison of the performance of the models according to the
number of training samples.

These metrics were evaluated in a test set comprised of the sites from the
same materials as the magnetic materials from the test set from Section 3.3.1.
However, if we were processing a completely new material, according to
Figure 3.6, the false negatives from classifying a material as magnetic or not,
that is, materials which we incorrectly predicted as non-magnetic, will not
propagate into this step. By removing them from the test set, we obtain an
accuracy of 0.988 and a F1 of 0.862—as seen in figure 3.12—improving both
our metrics, revealing a correlation between mistakes made in the first step
and the ones made in the second step. In fact, our RMH model predicts all
sites as non-magnetic for all the false positive crystals.

From now on, all the results will have this false positives removed.

In table 3.1 we can see the confusion model for our RMH at the maximum
number of training samples, and in Figure 3.12 we observe that the perfor-
mance of all our models improves after the removal of the false negatives.

Following the previous logic, we again analyze the performance of our
model in logarithmic space, as seen in Figure 3.13, revealing again linear
behavior.

We then extrapolate our metrics to 106 sites, one order of magnitude more
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Figure 3.12: Performance of the model according to the number of training
samples after removing false negatives from the previous problem.

Predicted: Positive Predicted: Negative
Actual: Positive 937 173
Actual: Negative 125 24624

Table 3.1: Confusion Matrix for RMH model.

than the current number, giving a F1 score of 0.89 and an accuracy of 0.99,
giving an idea of achievable performance in the near future.

The errors in site predictions are concentrated in a few materials, such that
81 % of the materials have all their sites predicted correctly. However, we
need to take into account the false positives from crystal classification, which
do propagate into this section, resulting in 76 % of the materials displayed
as magnetic having all their sites correctly classified as magnetic or not.

3.3.3 Magnetization Regression

Now that we are able to discern magnetic sites from non-magnetic ones we
will develop models capable of predicting the magnetization of the magnetic
sites, following the flowchart in Figure 3.6.
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Figure 3.13: Logarithmic plot of the performance of the model according to
the number of training samples.

As this is a regression problem, we will use the metrics defined in Section
2.4.2, such as r2, mean absolute error (MAE), and root mean squared error
(RMSE).

The dataset consists of 7391 materials, with an average magnetization of
1.01µB and a standard deviation of 1.34µB. This dataset is then randomly
split into training and testing sets, with 80 % of the samples in the training
set. The distribution of magnetizations and number of sites can be seen in
Figure 3.14.

3.3.3.1 Baseline Model

We will define our baseline model by only considering the chemical species
of the central site, the one we are predicting magnetization for, and predict-
ing the mean magnetization of all the training samples from this chemical
species. In Figure 3.15, we show the mean values and standard deviation of
the train set species by species.

We can see that transition and rare earth metals tend to have higher
magnetizations—the latter with the highest values—than other element
types. The materials with higher standard deviation have multiple mag-
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Figure 3.14: Magnetization histogram, only magnetic (|mi| > 0.1µB) sites are
displayed. The width of each bar is 0.2µB

netization values present in the dataset, which our model is not able to
differentiate, due to it only knowing the species of the central site.

As in the previous chapter, for evaluating our model in the test dataset,
we will discard the false negatives from the crystal classification as they
wouldn’t have propagated to this step, and wouldn’t be representative of
the predictions on an unknown crystal.

In Figure 3.16 we show the performance of our baseline model in the test
dataset. We plot the predicted magnetization on the y-axis and our ground
truth, VASP magnetization, on the x-axis. In an ideal model, without any
error, all the samples would lie over the identity line, which we represent as
a black continuous line. However, due to the simplicity of our model, the
points are clustered in horizontal lines, each line corresponding to the mean
magnetization value of a given element.

By applying this model on the test dataset, we obtain the following metrics:

• r2 = 0.858;

• MAE = 0.294;

• RMSE = 0.55.

This r2 value means that we explain just over 85% of the variance of our
dataset, a remarkable performance for such a simple model. However, our
model struggles the most with species with high standard deviation (see
Figure 3.16).

53



3. Magnetism

0 20 40 60 80 100
Atomic Number

0

1

2

3

4

5

6

7
M

ea
n 

Si
te

 M
ag

ne
tiz

at
io

n 
[μ

B
]

H
C
N
O
F
Na
P
S

Cl

Ti
V

Cr

Mn

Fe

Co

Ni

Cu

Zn
Br Zr
Nb

Mo

Tc

Ru
Rh In

Ce

Nd

Eu
Gd

Tb

Ho

Er

Hf Ta

W

Re

Os
Ir

Pb

U

Np

Pu

Am

Cm

Mean Magnetization
Groups 1-2
Groups 13-18
Groups 3-12
Lanthanides & Actinides

Figure 3.15: Mean and standard deviation of magnetization per site for each
chemical species in the train set. Elements are colored according to their
IUPAC group.

In the right panel of Figure 3.16 we plot the predicted versus real (VASP)
plot for Cobalt, Manganese and Oxygen. We observe that the real magneti-
zation values tend to be around a number of clusters, which correspond to
sites with a different number of unpaired electrons, from different oxidation
states. These species were selected as they had high variation in magnetiza-
tion and enough samples to be statistically significant and of quite general
interest.

3.3.4 Machine Learning models

In this section we will analyze the same three representations as in Section
3.3.2, this time in a regression context.

In Figure 3.17 we observe that the models that promote site information (CM
vectors, RMH) outperform those that don’t (Baseline, CM). Furthermore, all
of our models outperform the baseline, and RMH is the best performing
for most sizes of the training set, confirming that the atomic number, Z, is
not an adequate descriptor for chemical species compared to the less biased
approach of letting the model figure out which species are related to each
other.

For our best model (RMH), the following metrics are obtained:
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Figure 3.16: Predicted versus real plot of the baseline model for the test
dataset. In the right plot we only plot manganese, cobalt and oxygen.
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Figure 3.17: Comparison of the performance (r2) of the models according to
the number of training samples.

• r2 = 0.923;

• MAE = 0.21;

• RMSE = 0.42.

In order to understand where our model performs worse and why, in Figure
3.18, we plot predicted versus real (VASP) magnetization for our test dataset.
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Three regions of this graph stand out due to poor performance, and they
are marked by transparent vertical bands. These bands relate to the clusters
from different oxidation states, discussed in the context of figure 3.16, not
being correctly identified, e.g. the overestimated values in the red band are
due to our model predicting values from the yellow band.

Figure 3.18: Predicted versus real plot of the best model for the full test
dataset (left) and only O, Mn and Co . The vertical bands indicate the regions
where the model performs the worst.

Even though this is a regression problem, the clustering of target values
around different points lets us consider predicting points in different clus-
ters as classification errors. In order to study this, three species were selected
for the central atom: O, Mn and Co. To analyze them, we will define a new
metric, r2

s which takes the same form as r2, considering only a certain specie,
s, instead of the whole set:

r2
s = 1− ∑

i∈test

(ypred
i,s − ytarget

i,s )2

(ytarget
i,s − ȳtarget

s )2
, (3.38)

giving:

• O: r2
O = 0.70;

• Mn: r2
Mn = 0.44;

• Co: r2
Co = 0.22.

We observe that the r2
s values are smaller than the r2 value for the whole

dataset, r2 = 0.921, due to most of the variance being explained with just
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3.3. Prediction of Heisenberg Hamiltonians

the species of the central atom. However, a positive value of r2 shows that
our model is able to explain some of the remaining variance.

3.3.5 Magnetization Density

We define the magnetization density as the net magnetization per unit of
volume a material would have if it was ferromagnetic,

ρm = ∑
i

|mi|
V

, (3.39)

where i iterates over all the sites in the unit cell of volume V. ρm is a global
property of the crystal that can be expressed in terms of local properties of
the sites, so it makes an ideal target to test the performance of our model.

We ran predictions for the test dataset following the flowchart in Figure 3.6,
this results can be seen in Figure 3.19 as a predicted vs real plot.
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Figure 3.19: Predicted versus real plot on the test dataset of magnetization
density. Blue asterisks represent missclassified materials.

This prediction has an r2 value of 0.67, however, the biggest contributor to
the error is the missclassification of materials as magnetic or not (see Section
3.3.1), by removing this errors, 78 materials out of 2510 (blue asterisks in
Figure 3.19), we obtain r2 = 0.89, a significant improvement, showcasing the
importance of improving the performance of material classification.

In conclusion, most of the materials have a reasonable magnetization, com-
pared to VASP calculations. However, 3% of them are missclassified, having
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a high contribution to the error metrics. Furthermore, we have demonstrated
that predictions of local properties able to reconstruct global properties in
the crystal, even though the models are trained to predict local properties of
a site and have no knowledge about the crystal’s structure.

3.4 Predicted data

In this section we apply the previously defined model to the organic
materials in the Crystallographic Open Database (COD, http://www.

crystallography.net/cod), obtaining results for 196, 471 materials. Of
these, 35, 724 are predicted as magnetic, and in Figure 3.20 we observe the
magnetization density of these materials and the VASP calculated ones from
the OMDB as logarithmic histograms.

Figure 3.20: Magnetization density histogram. In the left we observe the
distribution for the 23, 486 materials from VASP calculations available at the
OMDB. On the right, the distribution for 196, 471 materials is displayed.

This data will be made available in the OMDB, allowing users to browse
predictions as a first step to identify interesting magnetic materials.

3.4.1 Exchange Interaction Parameters

In order to fully characterize the Heisenberg Hamiltonian using ML, we
need to predict the exchange interaction parameters, Jij. This was not com-
pleted in the time frame of this thesis, however it is planned to be done in the
near future. In this section we will present a short summary of some of the
anticipated difficulties associated to this problem and possible approaches
to solve them.

We have shown how to represent crystals and sites, however in order to pre-
dict Jij we need to represent two sites and their interaction. The simplest
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3.4. Predicted data

solution would be to represent both sites using the Radial Multi-Hot repre-
sentation, seen in Section 2.2.2.3, and include the distance between them as
an extra variable. This representation has some pitfalls:

• It is not invariant with respect to the permutation of the sites. There is
no obvious condition available to order the two sites.

• We lack information about what other atoms lie between the two sites.

In order to address the second point we will suggest considering three ob-
jects: two environments representing the sites, and one representing the
connections between them, as sketched in Figure 3.21. In a 3D example the
circles would become spheres and the rectangle a cylinder.

Figure 3.21: Interaction between two sites, i and j, on a 2D square lattice.
Site environments are represented as orange circles and the space between
the environments is represented as a blue rectangle.

The site’s environments can be represented with Radial Multi-Hot represen-
tation vectors, V1 and V2. Then we might define the two connection vectors,
in a Multi-Hot way, according to chemical species:

Vconn
i,sl

= ∑
l

1
|ril |

δi,sl ,

where Sl identifies one chemical specie, l iterates over all the atoms in the
cylinder of such species and i = 1, 2 identifies one of the central sites.

The aforementioned ordering issue can now be be solved by duplicating the
training samples so that we have two input vectors, one for each possible
ordering, associated with one target value:

X1 = [V1V conn
1 V2V conn

2 ],
X2 = [V2V conn

2 V1V conn
1 ],

(3.40)
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both representing the same two site interaction.
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Chapter 4

Machine learning for nuclei stability

4.1 Introduction

In recent years, the synthesis of new superheavy elements and their confir-
mation has expanded the periodic table up to Z = 118 (Og, Oganesson)
[55]. These accomplishments have revitalized scientific investigation around
superheavy nuclei and their stability [56].

In this chapter we will use ML methods to estimate the lifetime of nuclei
currently unattainable experimentally.

4.1.1 Nuclei Stability

Since the establishment of the nuclear shell model in 1949, which was
awarded a Nobel prize in 1963, we have known about the concept of magic
numbers of nucleons which give more tightly bound and stable nuclei.

The experimental magic numbers for protons are 2, 8, 20, 28, 50, 82 and 2,
8, 20, 28, 50, 82, 126 for neutrons. The shells for neutrons and protons are
independent, and so are the magic numbers—that is, the nuclear shells for
protons and neutrons are filled independently of each other because Pauli’s
exclusion principle applies separately, as they are different fermions.

The possible existence of higher magic numbers leads to the island of sta-
bility, a concept introduced in the 1960s [57], a region of superheavy atoms
of relatively long lifetime, disconnected from the main stability region.

Another factor that influences stability is the parity in the number of protons
and neutrons. An even-even nucleus usually has a higher half-life than an
even-odd or odd-even which in turn has a higher half-life than an odd-odd
nucleus. Take as an example the number of stable nuclei: 147 for even-even,
101 for even-odd or odd-even and 5 for odd-odd.
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4. Machine learning for nuclei stability

4.2 Results

In this section we will try to estimate half-lives of atomic nuclei via ML with
the objective of corroborating the existence of the island of stability using
the representations from Section 2.2.3.

4.2.1 Magic Number Representation

We start by using the representation described in Section 2.2.3.1. We train a
fully connected feedforward Artificial Neural Network (ANN) to perform re-
gression on the order of magnitude of the half-lives of the nuclei (log10(t1/2))
obtained from the NUBASE2016 [16] dataset of experimentally measured
properties of atomic nuclei, split into a training and testing dataset as usual.

Current models do not agree on predicted magic numbers for superheavy
atoms, however, most of them predict them around N ≈ 172− 184 and P ≈
112− 126 [56], so we chose N = 178 and P = 120 as the extra magic numbers
for our predictions, as representative even midpoints of these ranges.

In Figure 4.1 we plot the prediction of the model for an extended region
of nuclei and compare it with experimental results. This model seems to
be able to predict the main stability features for currently known nuclei.
For example, an increase of stability around magic numbers, and the sharp
decrease of half-lives after the double magical 208Pb, as seen in Figure 4.1b.
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(a) Experimental order of magnitude of
half-lives. Stable atoms are denoted by
black dots.
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(b) ANN half-life predictions for nuclei.

Figure 4.1: Experimental versus predicted nuclei stability. The horizontal
and vertical lines denote the magic numbers for protons and neutrons re-
spectively.

This ML model obtains an r2 value of r2 = 0.84 and a RMSE of 3.77 orders
of magnitude of half-life. Both metrics were evaluated in the test dataset.
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4.2. Results

4.2.1.1 Decay Channels

Nuclei usually decay by more than one channel, and the lifetime of each
channel can be measured independently. For superheavy atoms, alpha emis-
sion and spontaneous fission are the dominant decay channels, while in
lighter atoms β± decay dominates,as seen in Figure 4.2.
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Figure 4.2: Dominant decay channels according to experiments [16]. SF is
spontaneous fission; α represents the emission of He nucleus; β+ and β− de-
notes the process of emiting a positron or electron respectively, transforming
a proton into a neutron or vice versa; p and n are the emission of a proton
or neutron respectively and occur in nuclei that are proton or neutron heavy,
away from the stability diagonal. SF and α emission dominate in the heavier
atoms.

This ANN was then trained separately for each of the main decay channels.
Each model’s performance on the test set can be seen in Table 4.1, with
RMSE in orders of magnitude of half-life.
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Decay Channel RMSE r2

All combined 3.77 0.84
β+ 1.39 0.78
β− 2.99 0.44
α 2.54 0.92

Spontaneous Fission 2.80 0.86

Table 4.1: Performance metrics on the test set for the magic number repre-
sentation.

We observe that the model performs better if trained in a particular decay
channel than globally, which is expected, as each channel obeys different
physics. Each of the decay channels’ subset of data has a smaller variance
than the whole dataset, that is why smaller values of RMSE correspond to
similar values of r2.

4.2.1.2 Stability of the superheavy region

So far, all the predictions have been done in a region close to the training
data (Figure 4.1), a problem known as interpolation.

However, the aim of this section is to use ML to provide predictions of
lifetime in the superheavy region of atomic nuclei. ML methods have issues
when performing extrapolation, defined as making predictions outside of
the domain the training data is from. Extrapolation is a complex problem,
subject to study from ML researchers, and has been successfully dealt with
for certain problems, such as solving mathematical equations [58]. However,
this is far from a solved topic in the general case.

In a NN there are multiple optimization methods [59] that can be used to
obtain the optimal weight and biases for each problem. In this case, we used
ADAM [39], based in stochastic gradient descent.

These methods have a degree of randomness included in them in order to
avoid local minima in the parameter space. Another source of randomness
is batching, a technique in which the parameters are updated each time a
certain number, batch size, of training data is used to calculate the gradient,
instead of using the whole set. This makes the final weights and biases
sensitive to the order of the data set.

In Figure 4.3 we show the effect randomness has in a NN by training mul-
tiple NNs with the same architecture, one hidden layer with a hundred
neurons and a hyperbolic tangent the as activation function, but varying the
random seed. We train these NNs in data sampled from a sine function with
added random noise. Due to limited range of the training data, the NNs fail

64



4.2. Results

to recognize the periodicity of the sine function, displaying wrong trends
outside of the training domain. Furthermore, due to the randomness on the
weights and biases, the predictions from the NNs start diverging outside of
the training domain.

Figure 4.3: Extrapolation with a NN. The blue line represents the sine func-
tion, from which the red points were sampled with added random noise.
The black dotted lines mark the boundaries of the domain in which the
training samples are located. The orange lines are the predictions of NNs
trained to the data initialized with different random seeds. Outside of the
training region the predictions deviate considerably from the original sine
function and there is a divergence between the predictions of each NN.

Coming back to the nuclear context, we will attempt to deal with the diver-
gence of predictions outside of the training data by training 200 NNs with
the same architecture, but different random seeds and different train and
test dataset splits. In Figure 4.4 we display the mean, standard deviation
and error of the predictions—considering only predictions on the test sets—
of the 200 NN ensemble. It shows that the model performs better around the
borders of our data, where all the nuclei are consistently unstable. Further-
more, our model struggles to predict the magnitude of the dip in stability
after lead (Z=82)
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Figure 4.4: Statistical analysis of NN ensemble. A predicted versus real plot
is displayed in the top left, and the rest of the figures correspond to the
mean, standard deviation and error of the half-lives predicted for the test
set. Blue lines represent the magic numbers.

This ensemble of NNs predicts a stability island soon after the predicted
magic number for neutrons 178. However, this region also displays an in-
creased standard deviation, meaning our models disagree on some level in
their predictions, as expected in an extrapolation context. Furthermore, as
shown in Figure 4.3, one has to be extremely careful when drawing conclu-
sions outside if the training region. Nevertheless, our model did predict the
stability island agreeing with the theoretical models [56].

4.2.2 Yukawa Representation

Continuing with the intention of avoiding extrapolation—and to use the
knowledge gained from Chapter 3 on how to use ML in crystals, molecules
and local enviroments—we developed a nuclear representation based in
Reid’s potential [37], as described in section 2.2.3.2, that identifies a nucleus
as a structure similar to a molecule’s, with each nucleon having a fixed po-
sition. In Figure 4.5 we plot the structures achieved by this method for two
nuclei: 16O and 40Ca.
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A structure based representation has an advantage with respect to the one
presented in section 2.2.3.1, as in an unseen, larger structure, the environ-
ment around each nucleon might be similar to one of a smaller nucleon
present in the training data, possibly reducing extrapolation errors.

Figure 4.5: Nucleon positions for 16O (left, P=8, N=8) and 40Ca (right, P=20,
N=20).

In order to keep computational times short, we will first restrict ourselves
to nuclei with a total number of nucleons equal to or lower than 50. By
plotting a histogram of nucleons and their distance from the center of mass
(Figure 4.6), we realize that the nucleons are distributed in layers and that
protons tend to be present in the outer layers of the nucleus, presumably
due to Coulomb repulsion.
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Figure 4.6: Histogram of distance of nucleons to the center of mass of the
nucleus.

Once we have these structures, we can define the similarity between two
nucleons i, j—that are either a proton or a neutron, α ∈ {p, n}, belonging to
two different nuclei m, n to all other nucleons that are either a proton or a
neutron β ∈ {p, n}—by considering the overlap of radial Gaussians placed
on top of each nucleon:

Aαβ
ij,mn = ∑

s∈αm

∑
t∈βn

∫ ∞

0
dre−

(r−ris)
2

2σ2 e−
(r−rjt)

2

2σ2 . (4.1)

The matrix Aαβ
mn contains the similarity information between nucleus m and

nucleus n by comparing the distances between all nucleons of type α and
the ones of type β. In order to obtain a single number that represents the
similarity between the two nuclei, we propose using the Frobenius norm:

Kαβ
mn = Tr

[
(Aαβ

mn)
† Aαβ

mn

]
, (4.2)

which leaves us with four similarity kernels between nuclei: p-p, p-n, n-p
and n-n.

Now we can perform Kernel Ridge Regression [60], a kernel method similar
to Support Vector Machines, Section 2.3.3, but with a focus on regression
and not classification, on the lifetime data.
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Kernel RMSE r2

p-p 11.91 0.17
n-n 12.11 0.14
p-n 7.98 0.63
n-p 8.02 0.61

Table 4.2: Performance of the kernels in the training set. Positive values of
r2 indicate that the models are able to differentiate between nuclei with the
information from the similarity kernel.

The p-n and n-n kernels were able to achieve some success in the training
dataset. The performance metrics are displayed in Table 4.2.

However, in the test set the results were unsatisfactory, obtaining r2 values
smaller than 0, as seen in Table 4.3. The model therefore has no predictive
capabilities and is outperformed by the scalar model (always predicting a
mean value).

Kernel RMSE r2

p-p 10.39 -0.04
n-n 10.32 -0.02
p-n 10.58 -0.08
n-p 10.44 -0.05

Table 4.3: Performance of the kernels in the test set. Negative values of r2

indicate that our model is unable to make meaningful predictions in previ-
ously unseen samples.

Significantly superior performance on the training set than on the test set is
a clear indicator of overfitting, as described in Section 2.1, signaling that our
model is not able to detect real trends in data and instead memorizes the
training set.

Two other kernels, one comprised of the sum of all the kernels and the other
one the sum of p-n and n-p kernels, were also tried as a way of including all
the data into one model. However, this didn’t improve the metrics.

Further investigation of how ML methods can be used to predict nuclear
stability and detect stability island would take a more focused effort. Here
we summarized the approach and results we obtained to this date.
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Chapter 5

Conclusions

In this thesis I have deployed state of the art machine learning tools for
investigations of research questions arising in modern physics. ML proves
to be statistical tool with great potential, due to its ability to analyze data
and obtain new insights and predictions. In Chapter 2, we introduced many
statistical concepts, useful not only for creating ML models, but also to give
accurate measurements of their performance in realistic scenarios, and their
ability to address the challenges of unseen data.

Then, in Chapters 3 and 4, we applied these concepts to two different prob-
lems: prediction of magnetic characteristics and nuclei lifetime estimation.

The aim of the study of nuclear stability was to corroborate the existence
of the island of stability, already predicted by nuclear physics models [56],
with novel ML techniques. This was achieved by using a ML model with
information about the number of nucleons and the location of nuclear magic
numbers [12], however, this ML model is not well suited for extrapolation.
It was in this context that we introduced another ML model—using the
experimentally based Reid’s potential [37]—less susceptible to extrapolation
issues. Nonetheless, this model had no predictive capabilities outside of its
training data. ML is a potent and popular tool, however, it is important to
recognize its limitations and extrapolation is still a challenge [58].

In Chapter 3 we first used Linear Spin Wave Theory [52, 51] to under-
stand magnetic excitations in crystals, applying them to honeycomb mag-
nets. Then, we used the OMDB [8] data to construct a ML model able to
identify magnetic properties and with the aim of parametrizing magnetic
Hamiltonians of organic crystals. This model showed the capabilities of
ML for predicting the magnetic properties of crystals, obtaining accurate
results when classifying a crystal as magnetic or non-magnetic. We then
introduced ML as a tool to analyze local properties of crystals, including
the creation of several site representations. Of those, Radial Multi-Hot—a
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representation developed by us—achieves the best performance, both when
classifying magnetism in sites and when performing regression for their
magnetization. Moreover, these local property predictions are able to re-
construct global properties successfully, such as magnetization density. This
model was then applied to around 200, 000 organic crystals—previously syn-
thesized and present in the Crystallographic Open Database [54]—and this
predicted dataset will be soon available publicly in the OMDB. Finally, we
proposed a possible representation for pairwise site interactions, such as
Heisenberg exchange parameters, paving the way for ML to be used for
modelling and prediction of magnetic ground states and excitations.
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[28] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi,
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