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ABSTRACT

Context. Stellar winds are an integral part of the underlying dynamo, the motor of stellar activity. The wind controls the star’s angular
momentum loss, which depends on the magnetic field geometry which, in turn, varies significantly in time and latitude.
Aims. Here we study basic properties of a self-consistent model that includes simple representations of both the global stellar dynamo
in a spherical shell and the exterior in which the wind accelerates and becomes supersonic.
Methods. We numerically solved an axisymmetric mean-field model for the induction, momentum, and continuity equations using
an isothermal equation of state. The model allows for the simultaneous generation of a mean magnetic field and the development
of a Parker wind. The resulting flow is transonic at the critical point, which we arranged to be between the inner and outer radii of
the model. The boundary conditions are assumed to be such that the magnetic field is antisymmetric about the equator, that is to say
dipolar.
Results. At the solar rotation rate, the dynamo is oscillatory and of α2 type. In most of the domain, the magnetic field corresponds to
that of a split monopole. The magnetic energy flux is largest between the stellar surface and the critical point. The angular momentum
flux is highly variable in time and can reach negative values, especially at midlatitudes. At a rapid rotation of up to 50 times the solar
value, most of the magnetic field is lost along the axis within the inner tangential cylinder of the model.
Conclusions. The model reveals unexpected features that are not generally anticipated from models that are designed to reproduce
the solar wind: highly variable angular momentum fluxes even from just an α2 dynamo in the star. A major caveat of our isothermal
models with a magnetic field produced by a dynamo is the difficulty to reach small enough plasma betas without the dynamo itself
becoming unrealistically strong inside the star.

Key words. Sun: sunspots – Sun: dynamo – turbulence – magnetohydrodynamics (MHD) – hydrodynamics

1. Introduction

The emergence of a wind around stars is a remarkable and some-
what counter-intuitive phenomenon. The existence of the solar
wind was already suggested because the tails of comets always
point away from the Sun (Biermann, 1951). Nevertheless, the
wind was thought to be a relatively slow phenomenon associated
with evaporation of the corona (Chamberlain, 1960). The phys-
ical nature and mathematical theory of the solar wind was first
understood by Parker (1958). His theory showed that the wind
starts off as a subsonic flow some distance above the corona. It
gradually gains in speed as the gravitational force diminishes and
the effective outward pull resulting from the quadratic increase
of the cross-sectional area in Bernoulli’s law becomes dominant.
This is a purely hydrodynamic phenomenon, unlike what was
suggested by the popular notion of the solar corpuscular radia-
tion at the time.

Stellar winds play a crucial role in a star’s life. Without the
wind, the Sun would still be spinning rapidly and magnetically
superactive. A proper understanding of the rotational evolution
of a star through magnetic braking via a wind is important not
only for stellar evolution, but it also plays a role in understand-
ing the diversity of magnetic activity as a function of the rota-
tion rate and age (van Saders et al., 2016). As the star reaches
the age of the Sun, the magnetic field either changes its geome-
try such that stellar braking is reduced (Metcalfe & van Saders,

2017; See et al., 2019) or it can continue to brake and the star’s
differential rotation becomes antisolar-like (Gastine et al., 2014;
Käpylä et al., 2014), that is, the equator spins slower than the
poles. Stellar winds can also be important for the dynamo it-
self in that they can transport magnetic helicity away from the
dynamo region, and thereby alleviate what is known as catas-
trophic quenching; see Mitra et al. (2011) for mean-field mod-
els and Del Sordo et al. (2013) for computations of the magnetic
helicity flux in simulations in a turbulent wind. Magnetic winds
also affect the density and dynamics of cosmic rays in the helio-
sphere. Selfconsistently computing the dynamo-generated mag-
netic field evolution in the heliosphere is, therefore, also crucial
for modeling the magnetic shielding of Galactic cosmic rays on
Earth.

The theory of a magnetized stellar wind by Weber & Davis
(1967) employed a prescribed and time-independent stellar mag-
netic field, so any feedback on the underlying dynamics was
ignored. This is also true of the recent numerical models of
Réville et al. (2015), who compared different magnetic multi-
poles as initial conditions of their models. This has changed only
in recent years. Given that the wind normally dominates over the
magnetic field, one can separate the dynamics of the wind from
that of the solar dynamo. Pinto et al. (2011), and more recently
Perri et al. (2018), modeled this by using two separate codes that
are magnetically coupled through a matching condition at the
solar surface. In more recent work, Perri et al. (2020) extended
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their model to also include a mean-field dynamo solution in the
Pluto code, rather than matching the solutions of two separate
codes. This allows for feedback from the wind onto the dynamo.
This is therefore similar to the work presented here, except that
they still invoke what they call a multilayered boundary condi-
tion. This means that different equations are being solved inside
and outside the star. The model is therefore still not fully self-
consistent, but in some ways more realistic than ours.

The purpose of the present paper is to explore some basic
properties of stellar winds in the presence of dynamo-generated
magnetic fields. It is appropriate to adopt a mean-field model,
where we solve the equations for the azimuthally averaged mag-
netic and velocity fields. In this paper, those mean fields are de-
noted by an overbar. The effects of turbulence are then param-
eterized through a turbulent viscosity and a turbulent magnetic
diffusivity. In the star’s convection zone, there are also cyclonic
convective motions giving rise to kinetic helicity of opposite
signs in the two hemispheres. This is modeled through an α ef-
fect (Krause & Rädler, 1980). The turbulent magnetic diffusivity
is here assumed constant.

The presence of the magnetic field causes the kinetic and
magnetic stresses to be different from zero. The turbulent viscos-
ity is itself a result of kinetic and magnetic stresses caused by the
fluctuating components of the magnetic and velocity fields. In
the theory of turbulent accretion disks (Frank et al., 1992), those
stresses are parameterized by the Shakura & Sunyaev (1973) pa-
rameter, αSS. It quantifies the stress in terms of the background
differential rotation, the sound speed, and the scale height. In
accretion disks, where the differential rotation is Keplerian, this
amounts to a scaling of the stress by the sound speed squared.
In our case, the differential rotation is not related to the sound
speed, but the basic mechanism of angular momentum transfer
is the same, and we can still express the total stress in a similar
fashion.

Unlike the work of Perri et al. (2018), we consider the evo-
lution of the dynamo and the wind within a single code. At this
point, our aim is not to produce a realistic model of the Sun, but
rather a physically consistent model under conditions where the
dynamics of the wind can no longer be separated from that of the
dynamo. Our models can also be applied to conditions of rapid
rotation, which strongly affects the wind. This can be particu-
larly relevant to young stars in their T Tauri phase. We begin by
presenting the basic equations of our model and turn then to the
discussion of our results.

The simplest wind solution is the isothermal one that was al-
ready found by Parker (1958). Heating is not explicitly invoked.
Its physics resembles that of a siphon flow. Once a fluid parcel
has moved over the top of the effective gravitational potential, it
simply continues to fall and pulls the remaining fluid behind it
(Shore, 1992). The top of the effective potential corresponds to
the critical point where the flow speed crosses the sonic point.
We arrange this point to be in the middle of the computational
domain such that the flow speed becomes supersonic well before
the outer point rout. We fit the dynamo-active zone (or stellar en-
velope) with an α effect different from zero into a spherical shell
between the inner point of the computational domain, rin, and a
radius R, which models the surface of the star.

The usefulness of an isothermal solution can be justified by
considering the fact that the sound speed both at the bottom of

the convection zone and in the solar wind is about 100 km s−1,
corresponding to a temperature of a million degrees. The lower
temperature near the photosphere is obviously ignored. For an
isothermal gas, the mean pressure p is then simply proportional
to the gas density ρ with p = ρc2s , where cs is the isothermal

sound speed. The pressure gradient is then given by (∇p)/ρ =
c2s∇ ln ρ. The implications of a cool photosphere will be dis-
cussed at the end of the paper.

We begin by discussing first the basic equations, boundary
conditions, and parameters in Sect. 2. We then present our results
in Sect. 3, and draw our conclusions in Sect. 4.

2. The model

We adopt spherical polar coordinates, (r, θ, φ), with the origin at
the center of the star. The vector r points away from the center,
the colatitude θ increases away from the north pole, and φ in-
creases in the eastward direction. We assume axisymmetry, that
is, ∂/∂φ = 0.

2.1. Basic equations

We write the mean magnetic field as B = ∇ ×A, where A is

the mean vector potential. This ensures that ∇ · B = 0 at all

times. The evolution equations for A, the mean velocity U , and
the logarithmic mean density ρ, are

∂A

∂t
= U ×B + αB − ηTµ0J , (1)

DU

Dt
= −c2s∇ ln ρ−

GM

r2
r̂ +

1

ρ
J ×B − νTQ, (2)

D ln ρ

Dt
= −∇ ·U , (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, G
is Newton’s constant, M is the stellar mass, r̂ = r/r is the ra-
dial unit vector, ηT and νT are the sums of turbulent and micro-
physical values of magnetic diffusivity and kinematic viscosity,
respectively, α is the aforementioned coefficient in the α effect,

J = ∇ × B/µ0 is the mean current density, µ0 is the vacuum
permeability,

−Q = ∇2U + 1
3
∇∇ ·U + 2S ·∇ ln(νTρ) (4)

is a term appearing in the viscous force, where S is the traceless

rate of strain tensor of the mean flow with components Sij =
1
2
(U i,j + U j,i) −

1
3
δij∇ · U . The dot in Eq. (4) denotes the

contraction over the free index of ∇ ln(νTρ).
The mean magnetic field is generated by the α effect. This

leads to exponential growth, provided the value of α is above
a certain critical value. Eventually, the dynamo must saturate

because the Lorentz force from the mean field, J × B, drives
fluid motions that feed back onto the dynamo to limit its growth.
This way of achieving saturation is sometimes referred to as
Malkus & Proctor (1975) mechanism. In addition, there can be
feedback from the small-scale magnetic field that leads to a non-
linear suppression of α, which is referred to as α quenching. We
assume here a simple quenching function for α, which is then
written in the form

α(r, θ,B) =
α0fα(r) cos θ sin

n θ

1 +QαB
2
/B2

eq

, (5)

where n = 6 is chosen to concentrate the α effect to low lati-
tudes (Jabbari et al., 2015; Cole et al., 2016), Qα is a quenching
parameter that determines the typical field strength, which is ex-

pected to be on the order of Q
−1/2
α Beq, and

fα(r) = Θ
(

(r −R)/wα

)

(6)
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is a radial profile function with Θ(x) being a smoothened step
function from 0 to 1 as x crosses zero. Here, R andwα determine
the location and width of the transition. The value of Qα de-
termines the nonlinear equilibration of the dynamo, in addition
to the macroscopic feedback from the Lorentz force mentioned
above. Our model thus comprises three distinct layers with

rin < R < rc < rout, (7)

where rin < r < R is the dynamo region (modeling the stellar
envelope), R < r < rc is the wind acceleration region (model-
ing the locations of the solar corona and the Alfvén point), and
rc < r < rout is the supersonic wind region with rc = GM/2c2s
being the critical point.

2.2. Boundary conditions

In most of the cases, we apply a uniform angular velocity Ω0 on
the inner boundary r = rin by setting uφ = rin sin θΩ0. For
the other two velocity components, we adopt “open” boundary
conditions by setting the second radial derivative to zero. This
condition turns out to be stable in all cases considered in this
paper. It allows for a weak inflow to replenish the mass loss on
the outer boundary r = rout, where we apply open boundary
conditions for all three velocity components. No precautions are
taken to ensure that the mass in the computational domain stays
constant. It turns out, however, that the total mass remains nearly
unchanged. This is, to some extent, also explained by the fact
that the total mass loss rate is small compared with other inverse
time scales in the problem.

For the magnetic field, we adopt a perfect conductor bound-
ary condition on the inner radius, that is,

∂Ar

∂r
= Aθ = Aφ = 0 on r = rin, (8)

and a radial field condition on the outer radius, that is,

Ar =
∂Aθ

∂r
+

Aθ

r
=

∂Aφ

∂r
+

Aφ

r
= 0 on r = rout. (9)

On the pole, we assume

∂Ar

∂θ
= Aθ = Aφ = 0 on θ = 0◦ , (10)

while on the equator, we assume

∂Ar

∂θ
= Aθ =

∂Aφ

∂θ
= 0 on θ = 90◦. (11)

Since our simulations are axisymmetric, the magnetic field is
conveniently represented via Bφ and Aφ. In particular, contours

of r sin θ Aφ give the magnetic field lines of the poloidal field,

Bpol = ∇× (Aφφ̂).

2.3. Wind solution as initial condition

As initial condition for U ≡ (u, 0, 0) and ρ, we adopt the Parker
wind solution. In some cases we also add a finite angular ve-
locity with constant angular momentum, although its effect on
the dynamics is ignored in the initial condition. We begin by
discussing the Parker wind solution, which can be obtained by
solving the Bernoulli equation,

1
2
u2 + c2s ln ρ−GM/r = const, (12)

along with the equation of mass conservation, which states that

the mass loss rate is given by Ṁ = 4πr2ρu. We then obtain

1
2
u2 − c2s lnu− c2s ln r

2 −GM/r = Φ0, (13)

where Φ0 = −3/2 is obtained by inserting the values u = rc =
1 for the critical point. We solve the Bernoulli equation itera-
tively. For r ≤ rc, using u = csr/rc initially, we iterate

c2s lnui+1(r) =
1
2
u2
i − c2s ln r

2 −GM/r − Φ0, (14)

while for r > rc, using u0 = 2cs initially, we iterate

1
2
u2
i+1(r) = c2s lnui + c2s ln r

2 +GM/r +Φ0. (15)

This iteration procedure was implemented by Jörn Warnecke and
Dhrubaditya Mitra into the PENCIL CODE1 in 2012. We choose

the initial value of Ṁ to be Ṁ0.

2.4. Parameters and estimates for the Sun

It is convenient to work with nondimensional units by measur-
ing speeds in units of the isothermal sound speed and lengths
in units of the critical radius, rc = GM/2c2s . In the following,
we use tildae to denote nondimensional quantities. Using typical
numbers for the Sun, we have

cs = 107 cm s−1 = 100 kms−1, (16)

GM = GM⊙ ≈ 1.3× 1026 cm3 s−2, and therefore

rc = GM⊙/2c
2
s ≈ 7× 1011 cm ≈ 10R⊙ ≈ 0.05AU. (17)

In the Sun, the turbulent viscosity is νT ≈ urmsℓ/3 ≈
1013 cm2 s−1. The nondimensional viscosity is then

ν̃T ≡
2νTcs
GM⊙

≈ 2× 10−6, (18)

which is rather small.
For numerical stability, as already alluded to, we cannot

choose the value of νT to be too small. In practice, for a numeri-
cal resolution of 128× 32 mesh points in the r and θ directions,
we can choose ν̃T ≈ 0.01. For 4096× 1024 mesh points, on the
other hand, we can reduce it by a factor of 128 to ν̃T ≈ 8×10−5.
This then also means that in the stellar convection zone, we can-
not adopt significantly smaller values, as is expected theoreti-
cally based on our earlier estimates of urms and ℓ.

The nondimensional value of the angular velocity is given by

Ω̃ = rcΩ0/cs = GMΩ0/2c
3
s ≈ 0.2, (19)

where we have used Ω0 = 3 × 10−6 s−1. The strength of the
dynamo is determined by the two dynamo numbers,

Cα = α0R/ηT and CΩ = ∆ΩR2/ηT. (20)

where ∆Ω is the angular velocity difference in the equatorial
plane of the stellar envelope. The excitation conditions for dipo-
lar and quadrupolar parities are generally fairly close together
(Roberts, 1972). This is because the magnetic field is strongest
at high latitudes, so the hemispheric coupling is weak. In the fol-
lowing we restrict ourselves to solutions with dipolar parity. We
vary the value of Cα and focus on values that are about twice
supercritical.

1
http://github.com/pencil-code

(Pencil Code Collaboration., 2020), DOI:10.5281/zenodo.2315093
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In our simulations, we adopt nondimensional units by setting

rc = cs = Ṁ0 = µ0 = 1, (21)

which implies that GM = 2. Our unit of mass is then [M ] =

Ṁ0rc/cs. For the Sun, we have Ṁ0 ≈ 6 × 1012 g s−1, so

that our unit of density is [ρ] = Ṁ0/csr
2
c , which is about

1.2 × 10−18 g cm−3 for the Sun. Therefore, our unit of B is
[B] = (µ0[ρ])

1/2cs, which is about 0.04G for the Sun. The value
of Newton’s constant G never enters on its own. It could be de-
termined a posteriori, if we knew the total stellar mass. In our
model, we can compute the mass M∗ of the stellar envelope in
rin ≤ r ≤ R, but this still leaves the mass of the stellar core
undetermined. In the following, it is often convenient to retain

the symbols rc, cs, Ṁ0, and µ0 to remind ourselves of the nor-
malization.

There are a few other parameters of the model that we keep
fixed. In all cases we use wα = 0.02 for the transition thickness
of α near the surface; see Eq. (6). We always take rin = 0.1 and
R = 0.2. This corresponds to a fractional shell thickness of 50%
instead of the 30% in the case of the Sun, but we should keep in
mind that there are other properties that agree with the Sun only
qualitatively. Another example is our smaller choice of R/rin =
5 instead of the solar value of about 10. In all our simulations
with 4096× 1024 meshpoints, we use ν̃T = 8× 10−5.

2.5. Comparison of characteristic time scales

In our simulations, sound speed and the critical radius are set to
unity, so the characteristic sound travel time,

τs = rc/cs (22)

is therefore also unity. When we adopt the stellar rotation rate,

Ω̃ = 0.2, the corresponding rotational time scale

τΩ = Ω−1
0 (23)

is then five, and the rotation period is 2π/Ω̃ ≈ 30. The charac-
teristic time scale for the dynamo is the turbulent diffusive time
(e.g., Stix, 1974),

τTD = R2/ηT, (24)

which is around 500 in our models. Another interesting time
scale for our models is the mass loss time,

τmassloss = M/〈Ṁ〉 ≈ M0/Ṁ0. (25)

In our models, M0 ≈ 7000 and Ṁ0 = 1, so τmassloss ≈ 7000. It
turns out that the spindown time is of a similar order of magni-
tude. It is given by

τspindown = J∗/〈J̇〉, (26)

where J∗ =
∫

∗
ρ̟2Ω dV is the angular momentum of the stel-

lar envelope, with ̟ = r sin θ being the cylindrical radius,

Ω = Uφ/̟ is the local angular velocity, and J̇ is the angular
momentum loss, which we calculate in Sect. 3.5. The asterisk
on the integral denotes the volume of the envelope. The mass
loss and spindown times are the longest among the time scales
considered here, so the mass in the envelope cannot change sig-
nificantly during the time scales of interest for the wind and the
dynamo.

Fig. 1. Radial dependence of (a) Ṁ for different latitude ranges,
and (b) Mr (solid line) for Model A. The dotted line in (b) refers
to the mass within the computational domain only, so it vanishes
on r = rout.

3. Results

After some preliminary studies at low resolution of 128 × 32
meshpoints with νT = ηT = 10−2rccs, we performed high-
resolution simulations with 4096× 1024 meshpoints, where we
were able to decrease νT and ηT to 8 × 10−5rccs. These values
are still above the physically motivated value, but for numeri-
cal stability reasons, they cannot be decreased further without
invoking artificial viscosity and magnetic diffusivity.

Our main model is called Model A, which has the solar value
of Ω and a minimal amount of viscosity and magnetic diffusivity
that can still be tolerated. Later, we also consider more rapidly
rotating models cases (Models B and C).

3.1. Mass loss

In Figure 1a, we show the local mass loss density,

Ṁ(r, θ, t) = 4πr2ρ(r, θ, t)U r(r, θ, t), (27)

whose average over θ and t, 〈Ṁ〉 =
∫ π

0

∫ t0+T

t0
Ṁ dt sin θ dθ,

is close to the initial value Ṁ0. This is not too surprising, but
it should be emphasized that this is not enforced as a condition.
The good agreement suggests that the open boundary condition
at the bottom draws in a similar amount of mass at the inner
boundary as what is lost at the outer boundary.

To get a sense of the radial mass distribution in our model,
we plot in Figure 1b the cumulative mass,

Mr(r, θ, t) =

∫ ∞

r

4πr′2ρ(r′, θ, t) dr′, (28)

for different values of θ at t = 858. We see that the total mass at
r = rin is about 7000 mass units; one mass unit here is Ṁ0rc/cs.
The mass above the surface is about 10, so 99.9% of the total

4



P. Jakab and A. Brandenburg: The effect of a dynamo-generated field on the Parker wind

Fig. 2. Time series of the three magnetic field components at
one point for Model A. Here, Bθ and Bφ are multiplied by 25
to make those components better visible. We note that all three

components of B are asymmetric about zero. The 12 long tick
marks on the lower abscissa show the times for which snapshots
will be discussed later on.

mass in the computational domain is contained in the stellar en-
velope in rin ≤ r ≤ R. Thus, if no mass was replenished on
the inner boundary, the time it would take to lose all mass at the

initial rate would be τmassloss = M/Ṁ = 7000.

We emphasize at this point that the full stellar mass is unde-
termined, because the value of Newton’s constant G never en-
ters on its own. We could, in principle, constrain it by assuming,
for example, that the density in the core is constant and equal
to that at r = rin. This would give for the minimal core mass
Mcore ≫ 36000, which is five times the mass in the envelope.

Using GMcore = 2, we find G ≪ 6×10−5c3s/Ṁ0, which is sat-
isfied by a large margin for the values quoted above. We stress,
however, that this estimate was done only for illustrative pur-
poses.

3.2. Oscillatory model at solar rotation rate

We focus on a simulation with the solar value of the angular

velocity, that is, Ω̃ = 0.2 (Model A). In this case, the magnetic
field is oscillatory, but in a rather nonlinear fashion; see Figure 2,
where we plot the time dependence of the three magnetic field
components at one point in the wind. The Br component is pos-
itive most of the time and much smoother than the Bθ and Bφ

components. The period T is about 41 time units. This corre-
sponds to about 0.1 yr, which is short compared with the actual
solar 22 year cycle, but still about five times longer than the cy-
cle period in the model of Perri et al. (2020). Their parameters
are otherwise comparable to ours: ηT ≈ 4 × 1014 cm2 s−1 in

both models, Ṁ = 3× 10−14M⊙ yr−1 (a third of our value), an
Alfvén radius of about two stellar radii, and a domain size of 20
solar radii (twice our value).

3.3. Magnetic field geometry

In Figure 3 we show a sequence of magnetic field visualiza-
tions at different times. To make the magnetic field in the outer
parts better visible, we multiply Bφ by r2. Here, we show the

time span from t̃ = 814 to 858, covering just a little over a pe-
riod. We overplot the surfaces where U r is transalfvénic (solid

white lines), that is, where U r exceeds the Alfvén speed vA =

(B
2
/µ0ρ)

1/2. The surface is corrugated, but its mean radius is

around 0.4 rc. We also shows the surfaces where U r is trans-
magnetosonic, that is, where Ur exceeds the fast magnetosonic
speed cms (dashed white line), which obeys c2ms = c2s + v2A. The
mean radius of the magnetosonic surface is close to rc.

Butterfly diagrams of Br(θ, t) and Bφ(θ, t) are shown in
Figure 4. The field in the wind does not show any migration
in latitude, as is expected from models of the solar dynamo.
Figure 5 shows only the inner part of the domain. We see regions
with open and closed field lines at different times. However,
there is no clear magnetic field migration that manifests itself
in the Sun in a Maunder’s butterfly diagram of sunspot locations
versus time and latitude.

It is interesting to note the appearance of V-shaped field lines
in the panels for t = 822–834 and perhaps also for t = 846.
This means that there are magnetic field lines in the wind that
are not anchored in the star. This may be a bit surprising, but we
have to remember that the magnetic field is time-dependent and
the medium electrically conducting. The time-varying magnetic
field can therefore induce toroidal currents in the stellar wind,
which then produce poloidal field lines that are closed outside
the star. This phenomenon may be similar to what is known as
“switchbacks” in the solar wind (Bale et al., 2019; Squire et al.,
2020).

3.4. Poynting flux

The wind carries with it not only mass, but also kinetic and mag-
netic energies. The latter is quantified by the mean Poynting flux,

FPoy(r, t) =

∮

(E ×B/µ0) · dS, (29)

where E = ηTµ0J − αB − U ×B is the mean electric field.

The magnetic energy loss is then ĖM = 4πr2FPoy. In the steady

state, 〈ĖM〉 would be independent of r if there was no Ohmic
dissipation and no conversion between kinetic and magnetic en-
ergies in the wind.

As a good estimate for the magnetic energy loss of the

solar wind, Brandenburg et al. (2011) computed ĖM(r) ≈

4πr2〈(B
2
/2µ0)U r〉, which they found to be on the order of

1018W and slowly decreasing with radius. Estimating the to-
tal magnetic energy content within the convection zone based
on a mean field of 300G over the convection zone of volume
4π(R3 − r3in)/3, we find a time scale of about 10 years, which
is comparable with the solar cycle period.

Figure 6 shows the latitudinal dependence of ĖM at differ-
ent times for Model A. It depends not only on latitude and time,
but also somewhat on radius. There is a window at high lati-
tudes where it is almost constant in θ, but the width of this win-
dow changes with time. It can have a width of over 45◦ (e.g., at
t = 818 and 858), but it can also be almost nonexistent (e.g.,
at t = 842). Comparing with Figure 3, we see that this window

of nearly constant ĖM corresponds to regions where the radial

field in the wind ist mostly negative. The dips in ĖM correspond
to regions where the radial field is weak and changes sign. Near

the equator, ĖM shows a sharp drop for most times, except for
t = 826. Again, comparing with Figure 3, we see that nothing
special happens near those dips, except that for t = 826 the field
is a bit weaker. These dips are probably a consequence of the
radial field reversal in the equatorial plane and the existence of
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Fig. 3. Color representation of r2Bφ(r, θ) for different times for Model A. The nearly concentric red solid lines show the surfaces

where U r is transalfvénic and the red dashed ones show the surfaces where it is transmagnetosonic. The times correspond to the
long tick marks of Figure 2.

Fig. 4. Butterfly diagrams of Br(r, θ) and Bφ(r, θ) for Model A at r/rc = 1.9. Again the asymmetry of those components with
respect to zero, which is different from the properties of the solar magnetic field.

a field component that is purely vertical to the equatorial plane,
thus inhibiting the wind.

Next, we look at the radial dependence of the kinetic and
magnetic energy losses for different times and latitudes. The re-
sult is shown in Figure 7, where we define compute them as

ĖK = 4πr2(ρU
2
/2)ur, (30)

ĖM = 4πr2(B
2
/2µ0)ur, (31)

respectively. It turns out that ĖM is much smaller than ĖK. To
accommodate both quantities in the same plot, we have multi-

plied ĖM by a factor of 20.

We see that ĖK increases with radius. This is a peculiar
feature of isothermal models which is absent both in isentropic
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Fig. 5. Similar to Figure 3, but this time with a color representation of Bφ(r, θ) showing only the region close to the center. Note
the occurrence of V-shaped field lines during certain times at 822 ≤ t ≤ 834, and 846. The field shows radial outward migration
during certain times: negative Bφ at low latitudes for 814 ≤ t ≤ 826, and positive Bφ at midlatitudes for 834 ≤ t ≤ 854.

Fig. 6. Latitudinal dependence of the magnetic energy loss at different times for Model A. Note the occurrence of a plateau for
small values of θ for 814 ≤ t ≤ 830 and after t = 854.

7
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Fig. 7. Radial dependence of ĖK and ĖM for different latitude ranges at different times for Model A. Note that ĖM has been

multiplied by a factor of 20. ĖK shows only little variability and always increases radially outward, while ĖM has a maximum near
the Alfvén surface at r/rc ≈ 0.4. The maxima are particularly high for 822 ≤ t ≤ 826.

Fig. 8. Similar to Figure 7, for a semilogarithmic representation, without having rescaled ĖM. Blue (red) lines indicate kinetic

(magnetic) energy losses. Note that ĖM ≈ ĖK near the Alfvén surface at r/rc ≈ 0.4, which is marked by a vertical line.

models with constant specific entropy and in nonisentropic mod-
els with variable specific entropy; see Figs. 9.18 and 9.20 of
Brandenburg (2003), respectively. This is mainly because in
those models the sound speed decreases with radius in such a
way that the Mach number still increases, just as in the isother-
mal models. Thus, the basic dynamics is similar in that the flow
becomes supersonic. In isothermal models, where the sound
speed is constant, this transition must always be accompanied

by a radial increase of the wind speed. In this sense, a polytropic
model would seem more realistic, but it would still ignore the
internal energy or entropy equation, which would be even more
important for making our models more realistic, as is discussed
below; see Sect. 3.8.

We also see that for t = 826, when the field was a bit weaker
further out in the wind (Figure 3), the kinetic energy loss is par-
ticularly strong around the Alfvén surface; see Figure 7. At other
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Fig. 9. Latitudinal dependence of the angular momentum loss J̇(r, θ, t) for 1.5 ≤ r/rc ≤ 2 at different times for Model A. The blue
(red) lines refer to kinetic (magnetic) contributions, and the black lines denote the turbulent viscous contribution. Positive (negative)

values are shown as solid (dotted) lines. Note the strong latitudinal variability of J̇ .

times, especially for t ≤ 842 ≤ 850, the kinetic energy loss
is generally much weaker. Comparing again with Figure 3, this
corresponds to times when the radial field near the equator is
strong.

In Figure 8, we show ĖM and ĖK for r ≤ rc as a semilog-

arithmic representation. We see that ĖM ≈ ĖK at r/rc ≈ 0.4.

The radial profiles of ĖK are fairly independent of θ and t. This
is because the wind is rather powerful and not much affected
by rotation or magnetic fields, which are the main factors that
provide non-spherically symmetric contributions to the system.

It is interesting to note that ĖM(r) has a maximum at r ≈
rc/2. This radius is a certain distance above the stellar surface
and still below the critical point. This radius coincides with the
Alfvén radius; see Figure 3. This is the point where most of the
star’s magnetic energy has been deposited into the wind. In the
Sun, we expect that this energy deposition occurs in the corona.
One may tentatively associate the location of the maximum of

ĖM(r) with some representation of the star’s corona, although it
is unclear whether there is any relation to the real corona of the
Sun.

At large radii, r ≫ rc, the magnetic energy loss declines
slowly with radius. Such a decline has also been seen for the
solar wind (Brandenburg et al., 2011). In the Sun, it may be con-
nected with the conversion of magnetic energy into heat.

3.5. Angular momentum flux

There are no sinks or sources to the angular momentum density,
ρ̟2Ω, and it therefore satisfies a conservation equation of the
form (Mestel, 1968, 1999)

∂

∂t

(

ρ̟2Ω
)

= −∇ · FAM, (32)

where

FAM = ρ̟2ΩU −̟BφB/µ0 − ρνT̟
2∇Ω (33)

Fig. 10. Time averaged radial profiles of latitudinally averaged

J̇ for θ < 70◦ (upper panel) and θ > 70◦ (lower panel). The
blue (red) lines refer to kinetic (magnetic) contributions, and the
black lines denote the turbulent viscous contribution. Positive
(negative) values are shown as solid (dotted) lines. The kinetic
contributions from different times are shown as gray lines. The
gray background on the left indicates the location of the stellar
envelope.

is the angular momentum flux. Analogously to the energy

loss, the expression for the angular momentum loss is J̇ =

9
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Fig. 11. Angular velocity contours superimposed on a color representation of U r(r, θ) for Model A. Positive (negative) values of
Ω are shown as solid (dotted) black contours. Note the extended region at midlatitudes were Ω < 0.

4πr2FAM
r , which is shown in Figure 9 for 1.5 ≤ r/rc ≤ 2

for the kinetic, magnetic, and viscous contributions, J̇K, J̇M,

and J̇ν , respectively. We see that the angular momentum flux is
highly structured, with positive and negative contributions at dif-
ferent latitudes and times. At these radii, the kinetic term propor-
tional to UφU r dominates over the magnetic term proportional

to BφBr, and the turbulent viscous term is negligible.

The strongly negative contributions to the angular momen-
tum flux are unexpected and may be connected with the time
dependence of the solution. It may be of interest to study angu-
lar momentum fluxes along magnetic field lines; see the work
of Pantolmos & Matt (2017), who compare flow speeds along
different field lines. For our unsteady wind solutions, this pro-
cedure may no longer be particularly advantageous. However,
to get some idea about the latitudes contributing to the negative
angular momentum flux, we show in Figure 10 the radial depen-

dence of the time- and latitude-averaged profiles of J̇ separately
for the cones θ < 70◦ (away from the equator) and θ ≥ 70◦

(around the equator). We see that negative angular momentum
fluxes dominate and originate mainly from regions away from

the equator. Nevertheless, in the range 0.2 ≤ r/rc ≤ 0.6, J̇K
and J̇M can be of comparable magnitude, as is expected from the
theory of Weber & Davis (1967). This range agrees well with the
Alfvén radius; see Figure 3.

To understand the variability of Ω and the occurrence of neg-
ative values at certain times, we show in Figure 11 angular veloc-
ity contours superimposed on a color representation of U r(r, θ).
Interestingly, Ω is often negative over an extended range of mid-
latitudes. As we have seen above, this is chiefly responsible for
the inward angular momentum transport discussed above. This
could be related to our rather primitive modeling of the hydrody-
namics inside the star, which lacks realistic differential rotation,
for example. We return to this question briefly in the conclu-
sions. We also note that U r(r, θ) shows clear latitudinal varia-
tions. The occurrence of regions with negative angular momen-
tum transport is interesting in view of the recent discovery of fast
wind episodes observed with Parker Solar Probe at certain lon-
gitudes (Finley et al., 2020a,b). Our model is of course axisym-
metric and cannot address longitudinal variations, but it reminds
us that negative angular momentum transport is not impossible.

We should point out that J̇ is given here in standard units

where Ṁ = cs = 1. Therefore, Figure 9 can be directly
interpreted as a plot of the mean-field (MF) analogue of the
Shakura & Sunyaev (1973) parameter,

αMF
SS = (ρU rUφ −BrBφ/µ0)/c

2
s . (34)

Here, the superscript MF indicates that this expression is ap-
plied to the two-dimensional mean fields rather than to the
fluctuations, as in the usual turbulent case. This parameter
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is also frequently used in solar wind studies (see Eq. (2)
of Finley et al., 2019); see also Keppens & Goedbloed (1999),
Réville et al. (2015), and Pantolmos & Matt (2017) for earlier
two-dimensional stellar wind models.

The angular momentum in the dynamo zone is J∗ ≈ 68 in
our units. Owing to cancelation, it is difficult to determine reli-

able values of J̇ and αMF
SS , but for the purpose of a preliminary

assessment, it suffices to estimate J̇ ≈ 0.01. As we discuss be-
low in more detail, there can be certain periods where J̇ can
even be negative. This then implies spindown or spinup at a rate
τspin ≈ 7000, which is indeed similar to the value of τmassloss

quoted in Sect. 2.5. It may well be that αMF
SS is much less than

0.01. This would then imply an even larger value of τspindown.

3.6. Resulting dynamo parameters

In our model, differential rotation is automatically established
as a result of magnetic braking. Since our turbulent viscosity
is assumed to be purely isotropic, differential rotation can only
result from the torque on the star established by the magnetized
wind (Mestel, 1968). This leads to a nearly constant angular mo-
mentum per unit mass, that is, ̟2Ω ≈ const. The contours of
constant angular velocity tend to approach a pattern that is close
to cylindrical, as will be discussed below in the context of rapid
rotation. Given that Ω ∝ ̟−2, the angular velocity difference
between the rin and R is ∆Ω = (1 − r2in/R

2)Ω0 = 0.75Ω0.
Therefore, we have for the second dynamo parameter in Eq. (20)

the values CΩ = 75, 375, and 3750 for Ω̃ = 0.2, 1, and 10, re-
spectively. The first dynamo parameter in Eq. (20) is Cα = 125,
where we have used α̃0 ≡ α0/cs = 0.05 for Model A, and
ηT = 8× 10−5rccs.

3.7. Rapid rotation

The study of models at rapid rotation is motivated by the inter-
est in understanding the evolution of magnetic activity of young
stars, that is, before they have slowed down to the solar rota-
tion rate. For us, there is also another motivation in that all our
models were of α2 type, that is, the Ω effect was weak and CΩ

was not much larger than Cα, as required for an αΩ dynamo
(Brandenburg and Subramanian, 2005). To increase CΩ, the ro-
tation rate could be increased. Another possibility is to lowerCα.
However, to prevent the dynamo from decaying, one would need
to decrease ηT even further, but this is computationally difficult.

For rapid rotation, the magnetic field lines and contours
of the toroidal magnetic field are much more concentrated to
the bottom of the dynamo region, r ≈ rin. At faster rotation,
the contours become more cylindrical. This is an effect of the
Taylor–Proudman theorem and results generally in small varia-
tions along the rotation axis.

The Taylor–Proudman theorem applies primarily to the an-
gular velocity contours. This can be seen by writing the relevant

part of the U ·∇U nonlinearity of Eq. (2) in the form

φ̂ ·∇×
(

−U ·∇U
)

p
= ̟

∂

∂z
Ω2 + ..., (35)

whereΩ = Uφ/̟ is the local angular velocity, and the dots indi-
cate the presence of other terms not relevant here. In Figure 12a
we show contours of Ω together with a color-coded represen-
tation of Ur. We see that the Ω contours are already strongly

cylindrical for Ω̃ = 1. As we increase the value of Ω̃ to 10, the
cylindrical contours begin to extent much further out along the
rotation axis; see Figure 12b.

Fig. 12. Angular velocity contours superimposed on a color rep-

resentation of U r(r, θ) for Model B (a) with Ω̃ = 1 and Model C

(b) with Ω̃ = 10. The nearly concentric red solid lines show the
surfaces where U r is transalfvénic and the red dashed ones show
the surfaces where it is transmagnetosonic.

Fig. 13. Magnetic field lines superimposed on a color represen-

tation of Bφ(r, θ) for Model B with Ω̃ = 1. Strong fields only
occur near r = rin; the weak-field regions elsewhere cannot be
seen.

For Ω̃ = 10, the radial velocity develops a marked indenta-
tion inside of what is known as the inner tangent cylinder where

̟ ≥ rin (inner tangent cylinder); (36)

see Figure 12b. Here the outflow is suppressed and supersonic
flows occur only for z ≥ 2rc ≈ rout, that is, near the outer
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Fig. 14. Similar to Figure 13, but for Model C with Ω̃ = 10.
Stronger fields now extend along the axis outside the star.

boundary of the computational domain. For Ω̃ = 1, by com-
parison, the contours of U r(r, θ) are almost perfectly spheri-
cally symmetric – much more so than even for the case with

Ω̃ = 0.2; cf. Figure 11. Similar results have also been found
by Washimi & Shibata (1993) in their rotating models where a
central dipole magnetic field was assumed.

It turns out that our models are now no longer oscillatory
and are thus still not of αΩ type, contrary to what was originally
hoped for. Visualizations of the toroidal and poloidal fields for
Models B and C are shown in Figures 13 and 14, respectively.
The fields are strong only inside the star, where the dynamo is
active. Outside the star, the field is much weaker and not visible
in our graphical representation, but it is never vanishing.

Table 1. Summary of the simulations discussed in this paper.

Model α̃ Qα Ω̃ Cα CΩ Bmax Pcyc

A 0.05 10
−2 0.2 125 75 6–13 41.0

B 0.1 10
−2 1 250 375 16.0 —

C 0.1 10
−1 10 250 3750 8.8 —

Fig. 15. Latitudinal dependence of ĖM for different radius

ranges for Model B. Note that ĖM is large only near the axis.

To discuss the nonoscillatory nature of these two models, it
is useful to consider the dynamo parametersCα and CΩ. We find
Cα = 125 andCΩ = 3750 for ηT = νT = 8×10−5; see Table 1.
To get an idea about the latitudinal variation of the magnetic field

in the wind, the plot ĖM as a function of θ for different radii.
The result is shown in Figure 15. It turns out that the magnetic
activity is confined to a narrow cone with an opening angle of
about 15◦.

Noticeable magnetic energy losses are found only near the
rotation axis. As a function of radius, similarly to the case of

slow rotation, ĖM(r) has a maximum somewhere in R < r <
rc, which is where the Alfvén point lies. Furthermore, Model B
has a much smaller magnetic energy loss at large radii than
Model A.

The model shows similarities with earlier simulations
of outflows emanating from stellar accretion disk dynamos
(von Rekowski et al., 2003, 2004), but there the opening angle
was closer to 30◦. In the present simulations, the opening angle
is essentially zero. It corresponds to a cylinder in which most of
the magnetic fields are ejected, although the flow speed here is
strongly reduced.

For these rapidly rotating models, we expect significant out-
ward angular momentum transport. To demonstrate this in more
detail, we show in Figure 16 the radial profiles of the latitu-

dinally averaged J̇ for Models A–C for the kinetic, magnetic,
and viscous contributions, just as we did in Figure 10. Since
Models B and C are steady, time averaging is only needed for
Model A.

Figure 16 shows that in Models B and C, the angular mo-

mentum transport is outward and J̇ is independent of r through-
out most of the wind. For Model A, however, the time-averaged
angular momentum transport becomes negative some distance

away from the Alfvén point. Furthermore, J̇ is more than ten
times larger in Model C than in the ten times more slowly ro-
tating Model B. For Model B, the viscous contribution exceeds
the magnetic one at all radii, while in Model C, the magnetic
contribution exceeds the viscous one for r/rc > 1.5. Inside the
star, the angular momentum transport is negative and caused by
a strong poleward circulation. The viscous contribution is also
rather strong, but positive.
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Fig. 16. Radial profiles of the latitudinally averaged J̇ for
Models A–C in panels (a)–(c). The blue (red) lines refer to ki-
netic (magnetic) contributions, and the black lines denote the tur-
bulent viscous contribution. Positive (negative) values are shown
as solid (dotted) lines. The total (kinetic, magnetic, and viscous)
angular momentum transport is dominated by the kinetic contri-
bution, except for Model A, where the magnetic contribution is
rather strong, but negative in the outer parts.

Fig. 17. Radial dependence of the plasma β for Models A (dot-
ted black lines), B (dashed red line), and C (solid blue line).

3.8. Comparison of the plasma betas for our models

We have seen that in Model A with the slowest rotation, the
angular momentum flux was occasionally inward, especially at
midlatitudes. We then considered Models B and C with faster ro-
tation in the hope that not only the outward angular momentum
flux would be outward, but also that the dynamo in the star would
be in the αΩ regime. We found that the angular momentum flux
was then indeed outward, but the dynamo was still in the α2

regime. In the introduction, we did already emphasize that the

Fig. 18. U r (red solid lines) and Uφ (blue dashed lines) at the
stellar surface at r = R as a function of colatitude for the same
times as in Figure 10. Ur is usually positive, but |Uφ| is much
larger and most of the time in the prograde direction, but some-
times it is retrograde, which is a consequence of the low moment
of inertia of the stellar envelope in our model.

lack of a cool photosphere just beneath the corona was ignored.
This makes it generally very difficult to reach low plasma betas,
which we define as

β = 2ρc2s/B
2. (37)

In Figure 17, we plot the radial dependencies of the minimum
value of β, βmin, for Models A–C. We see that the largest values
of βmin occur for Model B with an intermediate angular velocity.
Increasing the angular velocity further (Model C) increases the
field strength and does therefore also lead to a smaller value of
βmin. The smallest values occur for Model A. This is mainly
because Model A is the only model where the magnetic field
in the wind is of comparable strength at all latitudes. For faster
rotation, the field in the wind is strongly concentrated around the
axis.

Let us now return to the potential role of the photosphere.
The photosphere of a star is the region where it cools and
loses specific entropy. Everywhere else in the wind, the spe-
cific entropy does not change much, and therefore the potential
enthalpy must be approximately constant (von Rekowski et al.,
2003). The potential enthalpy is defined as H = h + Φ, where
h = cpT is the specific enthalpy with cp being the specific heat
at constant pressure and T the temperature, and Φ = −GM/r is
the potential energy. Hydrostatic equilibrium requires that

0 = −∇H + h∇s/cp, (38)

where s is the specific entropy. For the corona, this implies
T = GM/rcp ≈ 2 × 106 K, which is realistic and agrees also
with our model. Toward the photosphere, T decreases abruptly
because of surface cooling, and therefore the density increases
abruptly. Thus, the density would then be much larger than what
was possible in our models. This, in turn, would allow us to reach
much larger field strengths and therefore smaller plasma betas.

Another important consequence of having larger densities in
the stellar envelope would be that the angular velocity at the stel-
lar surface would always be in the prograde direction. In our
present models, this is not always the case, as can be seen from
Figure 18, where we show the radial and azimuthal velocities
at the stellar surface. We see that the local rotational velocity is
there occasionally in the retrograde direction, especially near the
equator.
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4. Conclusions

Our work has shown that a simplified realization of a dynamo
with a stellar wind can easily be treated self-consistently in
one and the same model, provided certain compromises are be-
ing made. The assumption of an isothermal equation of state
has simplified matters conceptionally. Relaxing this restriction
would allow us to include the energy deposition in the corona
and to model the effects of a sharp density drop at the stellar sur-
face. This might require a significant increase in resolution near
the surface, which in turn requires the use of a nonuniform mesh.
Another restriction has been the use of a relatively large turbu-
lent magnetic diffusivity and viscosity. This was mainly needed
to resolve shocks that develop within the wind. Those typically
emerged in response to rapid changes in the magnetic field. This
could probably be avoided by allowing for an additional shock
viscosity, but this has been avoided in the present work. On the
other hand, the angular momentum flux associated with turbu-
lent viscosity was already negligible, so its presence may not
have caused any artifacts.

Future work might involve the inclusion of a Λ effect
(Rüdiger, 1980, 1989), which would allow for the develop-
ment of differential rotation in the stellar envelope. Without
including the effects of stellar winds, such models with com-
bined α and Λ effects were studied by Brandenburg et al. (1990,
1991), who found significant alignment of the Ω contours with
the rotation axis unless the baroclinic term was also included
(Brandenburg et al., 1992). But this may change when their
boundary condition on r = R is replaced by a continuous transi-
tion to the solar exterior; see Warnecke et al. (2013) for spherical
convection simulations with a simplified representation of a stel-
lar corona.

The inclusion of the Λ effect might allow us to model the
stellar dynamo more realistically. It would be interesting to see
how this affects the angular momentum transport and whether it
could help in producing predominantly outward angular momen-
tum transport in cases of slow rotation. It might then allow us to
study dynamos in the αΩ regime. This has not been possible in
the present model for reasons that are not entirely clear, because
the value of CΩ was thought to be already large enough. There
could have been other side effects arising from the coupling to
the outflow that are not yet fully understood. Nevertheless, it is
interesting to note that the inward angular momentum transport
occurs even in the Sun within fast-wind regions at certain longi-
tudes; see Finley et al. (2020a,b).

Another important aspect requiring further attention is the
study of angular momentum losses from mean-field stresses. Our
work has shown that the angular momentum loss can be quan-
tified in terms of a nondimensional Shakura–Sunyaev parame-
ter. This is a somewhat unusual concept in the context of stellar
winds, but it may help putting the theories of turbulent stellar
winds and accretion disks on a common footing.
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