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Abstract

In this thesis, using the replica trick, I compute the time-dependent entanglement
entropy for three different conformal field theories (CFT): CFT on the real line
at zero temperature, CFT on the circle at zero temperature, and the CFT on the
real line at finite temperature. I compare the results with holographic covariant
entanglement entropy proposed by Hubeny, Rangamani and Takanayagi in [1], that
uses geodesics in: AdS3 in Poincaré’s and global coordinates, and he BTZ black hole
respectively. Both methods match perfectly and I present the details and subtleties
of the computations.
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Chapter 1

Introduction

For decades, relativistic quantum field theory (QFT) is a framework to describe
the observed behaviour and properties of elementary particles. QFT describes
the interactions between elementary particles. For example, we have quantum
electrodynamics (QED) which studies the interactions between electrically charged
particles by means of exchange of photons, and quantum chromodynamics [2] which
describes the interactions between quarks and gluons which make up the hadrons,
i.e(proton, neutron, pion). These theories work well only when the gravitational
interactions are sufficiently small that we can neglect the gravitational effects.

On the other hand we have General Relativity, which so far has been giving
great insights about orbits of planets, the evolution of the galaxies, the Big Bang,
black holes, etc. It unifies the description of gravity as a geometric property of
space and time. However, the problem is that this theory has not been related with
quantum mechanics yet. So far it has been very difficult to incorporate GR into
the QFT. The most prominent candidate seems to be string theory.

String theory was initially proposed to explain the observed relationship be-
tween mass and spin of hadrons. Nevertheless, it turned out to be a theory of
quantum gravity. The main idea of string theory is replacing the concept of point-
like particles with one dimensional objects called strings. This means that the
charge, mass and other properties are determined by the vibrational state. In this
sense the gravitons would correspond to a closed string in a low energy vibrational
state, which explains why gravitation is the weakest of the four interactions. A
theory of quantum gravity could have been considered in the QFT by inserting the
gravitational effects, but that results in a non-renormalizable theory, therefore it
cannot be used to make any physical predictions.

One of the big results that came out of string theory is the Holographic Prin-
ciple [3],[4]. It claims that the description of a volume of space can be encoded
on a boundary of the region. This arose after the microscopic derivation of the
Bekenstein-Hawking entropy SBH for BPS Holes [5] [6] that is given by:
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2 Chapter 1. Introduction

SA =
A

4GN
(1.1)

Where A is the area of the event horizon and GN is the gravitational constant.
This is a relation between gravitational entropy and the degeneration of quantum
field theory as its microscopic description. It also means that the whole information
corresponding of every object that have fallen into the black hole is distributed over
the area of the event horizon. This motivated Maldacena to propose the AdS/CFT
correspondence [7]. This duality claims that a (d+1)-dimensional CFT (CFTd+1) is
equivalent to String theory on a (d+2)-dimensional anti-de Sitter space (AdSd+2).
It is expected that the CFTd+1 lives on the boundary of the AdSd+2 space. An
example of this is the equivalence between type IIB string theory [8] compactified
on AdS5×S5, and 4-dimensionalN = 4 super-symmetric Yang Mills theory. Where
the S5 is a 5-dimensional sphere.

This duality has not been proven yet, but it has plenty of applications in nuclear
physics, condensed matter theory and high energy physics. Although it has numer-
ous evidences that this duality works, it is still unknown which region of AdS is
responsible for the particular information in the dual CFT. Recently it is believed
that in order to make progress in this specific problem, we need to formulate and
study the holography in terms of a universal observable. The best candidate so far
seems to be entanglement entropy.

Von Neumann entanglement entropy is the main subject of this thesis. This type
of entropy is the generalized form of Gibbs entropy that measures how quantum a
given wave function is. To calculate Von Neumann entropy the system is divided
into two subsystems A and B. This type of entropy relies on calculating the reduced
density matrix ρA for the subsystem A, which is obtained by tracing over the
subsystem B of the total density matrix ρ = |Ψ〉 〈Ψ|.

I will perform several computations of entanglement entropies using two different
methods in the AdS/CFT . The first method will be done in the CFT by using the
replica trick which consists in making n copies of the system [9], [10], [11]. The
local fields in the CFT will connect each copy one another. This is useful to obtain
the trace Tr(ρA)

n which is necessary for the Von Neumann entropy computation.
I will use the replica trick for a general 2D CFT on a real line and on a circle as
well as a CFT on a real line at finite temperature.

In AdS/CFT there exist a formula due to Ryu-Takayanagi for holographic en-
tanglement entropy [12]. The formula resembles (1.1), but the area A is replaced
by the area of the minimal surface that ends on the entangled region at the bound-
ary. Thus, the second method consists in determining the geodesics in a specific
metric of space-time. The metrics that I will consider for the holographic method
are: AdS3 in Poincaré’s and global coordinates, and the BTZ black hole [13]. I will
use these metrics for the non-static case as a main goal. Then, I will compare the
results with those from the CFT that should be equal due to AdS/CFT .
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It is really important to study the time-dependent version (covariant prescrip-
tion) of entanglement entropy, because it can give us a deeper understanding about
holography and quantum gravity since in QG space and time should be treated
on equal footing. Moreover, from the perspective of many body systems out of
equilibrium it is also desirable to have a precise notion of time-dependent degrees
of freedom, which entanglement entropy is a good measure.
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Chapter 2

Background Material

This chapter reviews the definition and properties of Von Neumann entanglement
entropy and its basic properties discussed. I begin explaining in section (2.1) of
how the quantum states |Ψ〉 are related to the density matrix ρ. This is considered
in the definition of Von Neumann entropy, which requires dividing the system into
two subsystems A and B. In general, this type of entropy is computed only for one
of the subsystems, which in this case I will take subsystem A.

Section (2.2) reviews two computational methods of entanglement entropy. The
first method is the Replica trick, which consists in replicating the World-sheet of a
system and gluing them each one another by using the local operators to compute
Von Neumann entropy. The second method consists in using the AdS/CFT duality
to compute entanglement entropy by using an area law proposed in [12] ,[1]. Where
the area in this formula corresponds to the extremized surface that ends on the
entangled region at the boundary.

2.1 Entanglement Entropy and Properties

Entanglement entropy is an important tool that quantifies entanglement. In this
thesis I study the case of a quantum mechanical system with many degrees of
freedom. Its definition relies on dividing the system into two subsystems A and B
at zero temperature. This implies that the Hilbert space of the total system can be
written as H = HA ⊗HB , where HA and HB are the Hilbert spaces of subsystems
A and B respectively. In quantum mechanics the density matrix can be obtained
from the pure state |Ψ〉 by the following:

ρtot = |Ψ〉 〈Ψ| (2.1)

If an observer is only accessible to subsystem A, then the observer will feel as
if the total system is described by the reduced density matrix ρA, which is:

5



6 Chapter 2. Background Material

ρA = trBρtot (2.2)

Where the trace is taken over the states of subsystem B. Then, we define
the entropy of subsystem A as the Von Neumann entropy which is related to the
reduced density matrix ρA. This is:

SA = −tr(ρA log(ρA)) (2.3)

This is important because it measures of how closely entangled the given wave-
function |ψ > is. If we want to calculate the entanglement entropy S(β) at finite
temperature T = β−1, we substitute ρthermal = e−βH in (2.3). By doing this, we
observe that the Von Neumann entropy SA(β) is the thermal entropy only if A is
the whole system.

Entanglement entropy satisfies the following properties:

• If the total system is in a pure quantum state, then Von Neumann entangle-
ment entropy satisfies: S=0

• If the total system state is pure, then we obtain:

SA = SB (2.4)

This equality is not true when the system is in a mixed state. I will discuss
this in chapter (3) and chapter (4).

• When subsystem A is divided into two submanifolds A1 and A2, subadditivity
is satisfied:

SA1 + SA2 ≥ SA (2.5)

This holds with equality when the two submanifolds are uncorrelated.

• For any three subsystems A,B and C that do not intersect each other, the
following strong sub-additivity inequality holds:

SA+B+C + SB ≤ SA+B + SB+C (2.6)

Also, for any subsystem A and B one can have a stronger version of (2.5):

SA + SB ≥ SA∪B + SA∩B (2.7)

This states that if subsystem A doesn’t intersect with subsystem B, then the
last relation reduces to the sub-additivity. These properties were previously
explained in [14], [15].
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2.2 Computational Methods of Entanglement

Entropy

In this section I will review the two computational methods of entanglement entropy.
The first method is the replica trick, which consists in replicating the world sheet of
a system. These world sheets will be glued by the local fields (twist fields), which
simplifies the computation of Von Neumann entropy. I will explain this method for
the static case (time fixed) and when the quantum states evolve in time.

However, in the AdS/CFT the Von Neumann entropy is related to the area of
the extremized surface that ends on the entangled region at the boundary. There-
fore, the second method consists of extremizing the geodesic path length between
two points in a metric of space and time. In general, this method is applied when
the time is not fixed as a constant. Fixing the time, the extremized geodesic path
length corresponds to the minimal geodesic path length which is the case studied
by Ryu-Takayanagi in [12].

2.2.1 Replica Trick

Entanglement entropy for time-independent states in CFT

Before explaining the replica trick, I will make a brief summary of the CFT. CFT
is a quantum field theory that is invariant under conformal transformations, which
means that it locally preserves angles between any two lines. For the 2-dimensional
CFT, these transformations are generated by two independent operators lm and
l̄m, where these generators are described by relations (A.8) and (A.9). The value of
m is any integer number and these operators represent a copy of the Witt algebra.

The Witt algebra of infinitesimal conformal transformations admits a central
extension (A.14), this is important because this is where the central charge c of the
CFT comes from. In general this central charge will appear in the computations of
entanglement entropy.

The conformal transformations simplifies the computations that is not required
to solve any quantum path integrals to determine the two point functions of the
fields. These results of the two point functions will be used in the replica trick.

The replica trick is a powerful tool used to compute the Rényi entropy. This
entropy is defined as:

Sn
A =

1

1− n
log (tr (ρnA)) (2.8)

Where this is a generalization of Von Neumann entropy. Actually, we can observe
that taking the limit n → 1 yields the Von Neumann entropy. It is better to
calculate first the Rényi entropy because it is too difficult to compute directly
the Von Neumann entropy by using the quantum path integral formulation of the
density matrix ρ. For the time fixed case, the quantum path integral formulation
of the density matrix is:
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Figure 2.1: Figure(a):Is the graphical form of path integral formulation of the
density matrix ρA(φ, φ

′). Figure(b): This cylinder has radius β, it represents the
partition function Z which is obtained by sewing the edges along τ = 0 and τ = β
to form this cylinder shape. Figure(c): Is an illustration of how to construct the
reduced density matrix ρA(φ, φ

′) which is obtained by sewing those points together
in x which are not in subsystem A

.

ρ({φx}{φ′
x′}) = Z−1

∫

[Dφ(y, τ)]
∏

x′

δ(φ(y, 0)− φ′
x′)

∏

x

δ(φ(y, β)− φx)e
−SE (2.9)

Where SE is the Euclidean action and is obtained by integrating the Lagrangian
of the system between the Euclidean times τ = 0 and τ = β. This integral is
obtained by considering the system as a lattice, where the lattice sites are labelled
as discrete variables x. The row and column vectors of the density matrix are the
fields at the boundary points: τ = 0, β. Figure (2.1a) illustrates the graphical form
of the integral version of the density matrix.

The factor Z from relation (2.9) is the partition function. According to [11]
this partition function is calculated by sewing the edges together along τ = 0 and
τ = β (see figure (2.1b) for an illustration). This is done by taking {φx} = {φ′

x′}
and integrating every possible value of the fields along the boundary points.

The computation of Rényi entropy requires the reduced density matrix ρA. For
this case, subsystem A is composed of the points of x in the disjoints intervals
(u1, v1), ..., (uN , vN ). The reduced density matrix can be obtained by sewing to-
gether in (2.9) the points of x which are not in A. This leaves some open cuts per
each interval defined in subsystem A (see figure (2.1c) for an illustration).

The Rényi entropy depends of tr(ρA)
n, where this trace is calculated by using

the replica trick. This method consists in making n copies of this constructed
object, and sewing them together cyclically to get a n-sheeted Riemann surface
Rn,N . Each surface will have the branch points defined by the interval (uj , vj) for
every j = 1, ..., n. The branch points are glued cyclically by the fields (see figure
(2.2)), so the trace tr(ρA)

n is:

tr(ρnA) =
Zn(A)

Zn
(2.10)
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τ

x

Figure 2.2: This is an example of a 3-sheeted system Riemann surface R3,1 and the
arrows indicates how the points from the cut must be linked with the other points
of the Riemann sheets.

where Zn(A) is the partition function over the n-sheeted surface.
The computation of entanglement entropy requires the continuous case, there-

fore limit a → 0 must be taken. This implies that the integrals of the reduced
density matrix ρA will be integrated over the fields on Rn,N .

In this thesis I will use one interval (u1, v1) and the n-sheeted Riemann structure
will be called as Rn. The locality is recovered by passing from the n world-sheets
to the target space. In the target space, the total Lagrangian of the replicated
system will be the sum of the Lagrangian of each Riemann surface. This target
space defines the local operators, which glue all the Riemann surfaces together.
These local operators are known as the twist fields, which satisfy two opposite
cyclic permutation symmetries: i → i + 1 and i + 1 → i. There are two type of
twist fields, where in [11] are denoted as Tn and T̃n. Where the Twist field Tn
satisfies the cyclic permutation i → i+ 1 and T̃n satisfies i+ 1 → i.

The partition function over Rn will be proportional to the two-point function
〈

Tn(u1, 0)T̃n(v1, 0)
〉

Ln,C
. In the branch points we have conical singularities, there-

fore, the Rényi entropy will depend of the cut-off value a. According to [10], this
implies that the trace of the reduced density matrix is:

tr(ρA)
n ∼ (Cn)(a)

2dn

〈

Tn(u1, 0)T̃n(v1, 0)
〉

Ln,C
(2.11)

Where Cn is a non-universal constant having C1 = 1. The two-point function
from above has a similar relation as in (A.38), but in the case of the twist fields
they have scaling dimension (dn,d̄n). Knowing this, the two-point function of the
twist fields is:
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〈

Tn(u1, 0)T̃n(v1, 0)
〉

= |v1 − u1|−2dn (2.12)

This relation will be important to compute entanglement entropy. In [11] they
compute entanglement entropy for the infinite size system by taking the mapping
w → (w − u1)

1/n/(w − v1)
1/n. This maps all the n-sheeted Riemann surface Rn

to the complex plane C. Afterwards, they calculate the expectation value of the
transformed stress tensor under conformal transformations on the n-sheeted surface
Rn. This expectation value has the following relation:

〈Ti(w)〉Rn
=

〈

Tn(u1, 0)T̃n(v1, 0)Ti(w)
〉

Ln,C
〈

Tn(u1, 0)T̃n(v1, 0)
〉

Ln,C

(2.13)

Using the above relation (2.13)and the Ward identity (A.35), Calabrese and
Cardy the conformal dimension dn was determined. In the end the entanglement
entropy they got was:

SA =
c

3
log (

l

a
) + C′

1 (2.14)

Where C′
1 = −∂nCn at n = 1. I will discuss the details of this calculation in

next chapter.

Entanglement entropy in time-dependent states in CFT

In this part I will summarize from [1] the method to compute entanglement entropy
for time-dependent states in the QFT, which in our case corresponds to CFT. First
we consider a QFT with a time-dependent background, and as we know from QFT
and quantum mechanics (QM), the states evolve with time by the time evolution
operators. At a time t, the state is denoted by |Ψ(t)〉. For the explicit time-
dependent Hamiltonian(t), the quantum state at an instant of time t is:

|Ψ(t)〉 = T exp

(

−i

∫ t

t0

dt1H(t1)

)

|Ψ(t0)〉 (2.15)

Where T is the time ordered operator [2] and t0 is the initial time. The ket and
bra state are constructed by the path integrals:

Ψ(t, φ0(x) =

∫ t1=t

−∞
[Dφ]eiS(φ)δ(φ(t, x) − φ0(x)) (2.16)

Ψ̄(t, φ0(x)) =

∫ ∞

t1=t

[Dφ]eiS(φ)δ(φ(t, x) − φ0(x)) (2.17)

Where we represent all the fields by φ. The two relations from above satisfy
Schrödinger equation for the ket and bra case. The time-dependent density ma-
trix is obtained by evolving in time the pure states of the quantum system. The
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φ+

φ-

ε-it

-ε-it

τ

τ=0

Figure 2.3: Illustration of the quantum path integral formulation of the reduced
density matrix [ρA]{φ+},{φ−}.

time dependent entanglement entropy requires the system to be divided into two
subsystems at a certain instant of time t. Thus, the time-dependent Von Neumann
entropy is:

SA(t) = −tr(ρA(t) log(ρA(t))) (2.18)

Where ρA(t) is the time dependent reduced density matrix, this is obtained by
tracing the total density matrix along subsystem B at an instant of time t. Its
quantum path integral formulation of the reduced density matrix is:

[ρA(t)]{φ+},{φ−} =
1

Z1

∫ t=∞

t=−∞
[Dφ]eiS(φ)

∏

x∈A

δ(φ(x, t+ǫ)−φ+(x))δ(φ(x, t−ǫ)−φ−(x))

(2.19)
The infinitesimal factors ǫ are the damping factors used in such a way that

the quantum path integral is absolutely convergent [16]. I inserted Figure (2.3) to
illustrate the integral form of the reduced density matrix. Using the replica trick
implies taking the product of n density matrices: [ρA(t)]φ1+φ1− ...[ρA(t)]φn+φn−

. In
the static case I mentioned that the replica trick computes Rényi entropy, which
in our case will depend of tr(ρA(t))

n. In order to get this trace it is necessary to
assume that: φ1− = φ2+, φ2− = φ3+, ... and φn− = φ1+. This yields the partition
function Zn(t) in the singular space-time manifold called Mn. Moving from the
manifold M of the replicated system to the complex plane C, it is obtained:

tr(ρA(t))
n ∼ Cn(a)

2dn

〈

Tn(z1(t), z̄1(t))T̃n(z2(t), z̄2(t))
〉

(2.20)

Where dn is the scaling dimension. In this case it is expected that the twist
fields depends of the complex conjugate because, as we will see in our computa-
tion of entanglement entropy in the CFT2, the complex variables z(t) are time
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dependent. These are functions that also depends of the branch points of subsys-
tem A. This coordinate behaves as a analytic function f(w) where w = x + iτ ,
where (τ = −it) is the imaginary time. In order to determine the relation between
the conformal dimension dn in terms of the number of copies of the system n and
conformal charge c. The Ward identity will be applied to the correlation function:
〈

T (z)Tn(z1, z̄1)T̃n(z2, z̄2)
〉

Ln,C
.

2.2.2 Holographic method

In here I will discuss how to compute the entanglement entropy in (d+1)-dimensional
conformal field theory (CFTd+1) via the AdS/CFT correspondence. I will summa-
rize from [17] the theoretical background of the holographic method having the
time t fixed.

The AdS/CFT correspondence is useful to calculate entanglement entropy as a
geometrical quantity in the AdSd+2 space, which must be equivalent to a specific
system in the CFT. Using the Poincaré’s patch of AdSd+2, the metric is:

ds2 = R2

dz2 − dx2
0 +

d−1
∑

i=1

x2
i

z2
(2.21)

According to this metric, the CFTd+1 is supposed to live in the boundary of
AdSd+2 which is R1,d at z → 0 spanned by the coordinates (x0, xi). Where the
coordinate x0 is the time t variable. The Poincaré metric has a point where it
diverges, which is for z → 0. For this reason we put a cut-off value by imposing the
condition z ≥ a. Using this cut-off value a implies that the boundary of AdSd+2 is
situated on z = a and it can be identified as the UV cut-off in the dual CFT .

Holographic Entanglement Entropy (static case)

Entanglement entropy can be calculated by using AdS/CFT . We know that in the
CFT, entanglement entropy is well defined by dividing the quantum system into
two subsystems A and B. This division is obtained by dividing a time slice N into
two parts A and B in the CFTd+1. Using the Poincaré patch, it is possible to
take the time slice N equal to Rd. On the other hand, the CFTd+1 lives on the
boundary z = a of the AdSd+2. According to [17], the gravity dual is obtained by
extending the division of the time slice N to the time slice M of the bulk.

Fixing the time in the Poincaré patch (2.21), the time slice of the bulk M is
a (d+1)-dimensional hyperbolic plane. Also, it is possible to extend the boundary
∂A of subsystem A to a surface γA in the entire Euclidean manifold M. In [12]
they propose that the Von Neumann entropy satisfies the following area:
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SA =
A(γA)

4G
(d+2)
N

(2.22)

Where G
(d+2)
N is the (d+2)-dimensional gravitational constant and A(γA) is the

static d-dimensional minimal area of γA.

In this thesis I will compute entanglement entropy for the (1+1)-dimensional
CFT, therefore I will use the area law for the restriction d = 1. It is known that
the conformal charge c is related with the constant G3

N by the following relation:

c =
3R

2G
(3)
N

(2.23)

Where R is the AdS3 radius. Also we should mention that for d = 1, the
minimal area of γA is the geodesic path length between two arbitrary points on
the space-time. Therefore, the holographic method will consists in determining
geodesics on a specific metric of space and time.

Covariant Prescription for Holographic Entanglement Entropy

In here I will review the covariant proposal of holographic entanglement entropy
explained in [1]. Hubeny, Rangamani, and Takayanagi explains that in principle
there shouldn’t be any problem in generalizing the area law (2.22) for the time-
dependent case. It is considered a time-dependent AdS/CFT , where the CFT is
still in the boundary of the AdS space-time. The quantum states in the CFT will
vary in time on a fixed background called ∂M. In this case, it is considered a
time-varying bulk geometry M. In its boundary M, it is possible to glue equal
time slices. For this foliation it is considered that the factor of time t is involved
in the time evolution of the field theory. This means that the fixed background is
∂M = ∂Nt × Rt.

As in the static case, we need to subdivide the total system into two parts A and
B in order to compute the entanglement entropy. It is possible to define the region
corresponding to subsystem A by time slices, where in [1] is denoted as At ∈ ∂Nt.
We will take this region to compute entanglement entropy.

According to [1], for the covariant prescription of entanglement entropy must
satisfy an area law similar to the static case. They propose four different covariant
constructions of the surface to be used in the area law. In this thesis I will take the
extremal surface W , which has a saddle point of the area action. For the AdS3, this
extremized surface corresponds to a space-like geodesic through the bulk connecting
all the points of ∂At. The area law for this covariant prescription of entanglement
entropy is:
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SA(t) =
A(W)

4G
(d+2)
N

(2.24)

Where A(W) is the extremized surface area on the AdS space.
In other words, for the 3-dimensional bulk the computation reduces in determin-

ing the geodesics on the time-dependent metric. The extremized path length can
be determined by using Euler Lagrange equations, where the path length between
two arbitrary points on the metric gµν is:

LW(t) =

∫ 2

1

√

gµνdxµdxν (2.25)

Also, it is assumed that in the AdS3/CFT2 duality the conformal charge c is
the same as in the static case (2.23).



Chapter 3

Entanglement Entropy
Results in the CFT

In this chapter I will introduce the results of the time-dependent entanglement
entropies by using the replica trick in the CFT. I will check that it is possible to fix
the time t in the entanglement entropy and that it yields the static solution. Also,
I will explain why the infinite or finite size of the quantum system at criticality,
the entanglement entropy of subsystem A yields the same result as its complement
subsystem B. I will also verify if this equality holds in the case of a infinite large
system at finite temperature.

I will first review the computations of entanglement entropy previously done in
[11] by using the replica trick in the static case. Therefore, the twist fields are time
independent because the pure states of the physical system are not evolving with
time.

After obtaining the static solution of entanglement entropy, I will consider that
the quantum states evolve with time. This implies that also the entanglement
entropy is dependent of time. I will compute entanglement entropy in 2D CFT for
the real line (infinite size), on a circle (finite size) at zero temperature and the real
line at finite temperature.

3.1 Entanglement entropy in CFT2 for an infinite
long system at zero temperature (static case)

Having the time fixed, the calculation of entanglement entropy is simplified by
assuming t = 0. To compute entanglement entropy it is necessary to calculate the
scaling dimension dn in terms of the conformal dimensions h. Using the Replica
trick to compute the trace tr(ρA)

n, it is necessary to determine the two point

function
〈

Tn(u1, 0)T̃n(v1, 0)
〉

Ln,C
from (2.11) by using a quantum path integral

15
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u1 v1 0 ∞

w z

Figure 3.1: This figures shows the uniformizing transformation for the infinite size
system. We have w → ζ = (w−u1)/(w−v1) that maps the branch points to (0,∞).
The uniformazing transformation corresponds to ζ → z = ζ1/n.

formulation. Luckily, as I explained in (A.37), in the CFT there is an advantage
against the normal quantum field theory because the conformal symmetry can be
used to simplify the calculations. For the infinite long system, I mentioned in the
previous chapter that the two-point function of the twist fields is given by (2.12).

This section corresponds to the infinite size system at criticality. Thus, the
conformal mapping to use for this system is: w → ζ = w−u

w−v , which maps the branch
points to (0,∞). Also, it is required to map from the n-sheeted Riemann surface
Rn,1 to the complex plane C, this is done by taking the mapping ζ → z = ζ1/n,
(see figure (3.1) for an illustration).

The next step is to use holomorphic component of the stress tensor T (w), which
is related to the stress tensor in the complex coordinate z. Using relation (A.33),
this is:

T (w) =

(

dz

dw

)2

T (z) +
c

12
S(z, w) (3.1)

The next step is to connect this relation with the 2-point function (2.12), so we
must get first the expectation value over the n-sheeted surface Rn,N of the stress
tensor 〈T (w)〉Rn

. In that case we have that the expectation value 〈T (z)〉
C
= 0.

Thus, we have:

〈T (w)〉Rn,1
=

c(n2 − 1)

24n2

(v1 − u1)
2

(w − u1)2(w − v1)2
(3.2)

This was obtained by using the Schwarzian derivative (A.34), and this result is
only for a individual sheet surface. To compute entanglement entropy we need the
expectation value for the the n-sheet replicated surface. This is done by multiplying
a factor of n to the result obtained in (3.2). Knowing this, we must remember that
this is related to the correlation function (2.13). Therefore the correlation function
of the stress tensor is:

〈

Tn(u1, 0)T̃n(v1, 0)Ti(w)
〉

L(n),C
=

c(1− n−2)(v1 − u1)

24(w − u1)2(w − v1)2

〈

Tn(u1, 0)T̃n(v1, 0)
〉

Ln,C

(3.3)
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Where sub-index i for the stress tensor means that the result from (3.2) was for
a single sheet surface. This is why we multiply by n this result when we want the
solution for the n replicated system since the total stress tensor in that system will
be the sum of the stress tensor of each individual system. From this correlation
of function (3.3) for the energy tensor T we will use it as a reference in order to
calculate the scaling dimensions. On the other hand, using the Ward identity (A.35)
the correlation function of the stress tensor yields:

〈

Tn(u1, 0)T̃n(v1, 0)T n(w)
〉

Ln,C
= hn

(v1 − u1)
2

(w − u1)2(w − v1)2

〈

Tn(u1, 0)T̃n(v1, 0)
〉

Ln,C

(3.4)

Where hn = c(n−n−1)
24 is the conformal dimension, but this is only possible when

the scaling dimension dn is dn = 2hn. Therefore the scaling dimension is:

dn =
c(n− n−1)

12
(3.5)

In relation (3.4) we denoted T (n)(w) as the total energy-momentum tensor of
the n replicated system. Having the scaling dimension in terms of the conformal
charge and the number of sheet surfaces and inserting the two point function (2.12)
in (2.11), the trace of ρnA is:

tr(ρA)
n ∼ (Cn)

(

v − u

a

)−c(n−1/n)/6

(3.6)

Using (2.8) and l = v1−u1, which is the size of subsystem A, the Von Neumann
entropy is:

SA =
c

3
log

(

l

a

)

+ C′
1 (3.7)

where C′
1 is the minus derivative respect to n of the constant Cn at n = 1, where

C1 = 1.

3.2 Covariant prescription of entanglement

entropy in CFT2 for an infinite long system
at zero temperature

Now I proceed with the calculation of the time-dependent entanglement entropy. I
discussed before that the quantum states evolve with time t implies a time depen-
dence in the reduced density matrix ρA(t) (2.19). The calculation is quite similar
as in the static case, but in this case the twist fields depend of the conjugate of the
complex variable z. Also, the complex conjugate can be used as an independent
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variable in this case. The scaling dimension h̄ which corresponds to the complex
conjugate of z̄ is the same as the regular scaling dimension h. The correlation
function of the stress tensor for the time-dependent case is:

〈

Tn(s1(τ), s̄1(τ))T̃n(s2(τ), s̄2(τ))
〉

= (s1(τ) − s2(τ))
−dn(s̄1(τ) − s̄2(τ))

−dn (3.8)

Where s1(τ) and s2(τ) are complex variables of the form si(τ) = xi + iτi. The
variable τ is the imaginary time τ = −it, I will use this in the end of the computation
to get the Lorentzian solution of entanglement entropy. For this time-dependent
case, I am still working with the conformal mapping as in the static case, where

ζ = w−s1(τ)
w−s2(τ)

and ζ → z = ζ1/n. Even for the time dependent case, the Schwarzian

derivative yields the same result as in the fixed time case. The correlation function
of the stress tensor in our new notation is:

〈

Tn(s1(τ), s̄1(τ))T̃n(s2(τ), s̄2(τ))
〉

Ln,C
=

c(1− n−2)(s1(τ) − s2(τ))

24(w − s1(τ))2(w − s2(τ))2
×

×
〈

Tn(s1(τ), s̄2(τ))T̃n(s2(τ), s̄2(τ))
〉

(3.9)

The scaling dimension for this time-dependent case is the same as in the static
case (3.5). Substituting the s1(τ) and s2(τ) variables in (3.8) yields:

〈

Tn(z1(τ), z̄1(τ))T̃n(z2(τ), z̄2(τ))
〉

=
(

√

(x1 − x2)2 + (τ1 − τ2)2
)−2dn

(3.10)

By substituting the conformal dimension dn and (3.10) in the trace of the n
replicated system density matrix from (2.20), the entanglement entropy is:

SA(τ) =
c

3
log

(

√

(∆l)2 + (∆τ)2

a

)

+ C′
1 (3.11)

Where ∆l = x2−x1 is the interval length of subsystem A and ∆τ is the interval
of imaginary time τ . This result is for the Euclidean version, so changing back to
the Lorentzian time the entanglement entropy is:

SA(t) =
c

3
log

(

√

(∆l)2 − (∆t)2

a

)

+ C′
1 (3.12)

As we can see, there is no problem at all if we assume the fixed time in this
solution, it yields the same result obtained in the static case, not to mention that
C′
1 would be the same as in the static case even for any instant of time. This is

obvious since this calculation comes from the use of time evolution operators in the
CFT.
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3.3 Entanglement entropy in CFT2 for a finite

size of a system at zero temperature (static
case)

In this section I will review the computation of entanglement entropy for a finite
size from [11]. The finite length of the total system we denote it as L and we
will still denote l as the size of the interval in subsystem A. In this case, we take
the following conformal mapping: w → w = ei

2π
L

z, this corresponds to a cylinder
where the branch cuts are oriented perpendicular to the axis. Remember that these
branch cuts sew together to form the whole cylinder.

Now that we have the conformal mapping, I proceed to calculate the two-point
function. In this case, the two-point function is different from the infinite size
system because as it is explained in Appendix A, the primary fields satisfy a law
under conformal transformations (see A.17). In this case the two point function of
the twist fields transforms as follows:

〈

Tn(z1, z̄1)T̃n(z2, z̄2)
〉

Ln,C
=

∣

∣

∣

∣

∂w1

∂z1

∂w2

∂z2

∣

∣

∣

∣

dn 〈

Tn(w1, w̄1)T̃n(w2, w̄2)
〉

Ln,C
(3.13)

After using 2.12, the transformed two point function yields:

〈

Tn(w1, w̄1)T̃n(w2, w̄2)
〉

Ln,C
=

(

L

π
sin

(π

L
(z1 − z2)

)

)−2dn

(3.14)

Since the two point function transforms under a general conformal transfor-
mation, then the scaling dimension dn is the same as in the infinite size system
(3.5)

Having the two point function of the twist fields, we denote l = z1 − z2 as the
interval length of subsystem A. This will be an equivalent version of computation
for the finite temperature case. Having the scaling dimension value this leads us to
use (2.11) in order to compute the trace of the reduced density matrix:

tr(ρA)
n ∼ (Cn)a

2dn

〈

Tn(z1, z̄n)T̃n(z2, z̄2)
〉

Ln,C
= (Cn)

(

L

πa
sin

(π

L
(z1 − z2)

)

)−2dn

(3.15)
This lead to the static entanglement entropy in the CFT for the finite size.

SA =
c

3
log

(

L

πa
sin

(

πl

L

))

+ C′
1 (3.16)

This solution tends to the real line entanglement entropy when the size of sub-
system A is so small compared to the size of the system.
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3.4 Covariant prescription of entanglement

entropy in CFT2 for a finite size of a system
at zero temperature

For the time dependent case, using again the conformal mapping w → w = ei
2π
L

z.
The branch cuts are oriented perpendicular to the axis of the cylinder, even these
branch cuts are time dependent, these will sew together to form the whole cylinder.
Even when the twist fields are time dependent, the scaling dimension dn has the
same value as in the infinite size system. The only thing that changes is the value
of the two point function, so using the fact that the two point function transforms,
we get in this case:

〈

Tn(z1(τ), z̄1(τ))T̃n(z2(τ), z̄2(τ))
〉

Ln,C
=

(

L

2π

√

2 cosh

(

2π∆τ

L

)

− 2 cos

(

2π∆l

L

)

)−2dn

(3.17)
I calculated the two point function (3.17) in a similar way to the static case

only that this time I have zj = xj + iτj for (j = 1, 2). This solution depends of
the Euclidean time τ , so I used τ = −it to recover the Lorentzian time. Since the
scaling dimension remains invariant, we can proceed to calculate the trace of the
reduced density matrix (ρA(t))

n. For the Lorentzian time t I have:

tr(ρA(t))
n = Cn

(

L

2πa

√

2 cos

(

2π∆t

L

)

− 2 cos

(

2π∆l

L

)

)−c(n−n−1)/6

(3.18)

Afterwards, I computed the Rényi entropy and took the limit n → 1, so the Von
Neumann entanglement entropy is:

SA(t) =
c

3
log

(

L

2πa

√

2 cos

(

2π∆t

L

)

− 2 cos

(

2π∆l

L

)

)

+ C′
1 (3.19)

We can observe that fixing the time, this result tends to the static solution (3.16).
Something important to quote is that both results (3.16) and (3.19) are invariant
by changing l → L− l, this L− l corresponds exactly to the length of subsystem B
corresponding to the Hilbert space HB, this means that the entanglement entropy
for both subsystems are equal SA(t) = SB(t) even for the time dependent case
(remember that B is the compliment of subsystem A). This raises the question, the
fact that in the zero temperature case we have that both entanglement entropy are
the same SA(t) and SB(t), will this equality hold for the finite temperature case?
To answer this I will compute entanglement entropy in the CFT having the system
at the temperature β−1.
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3.5 Entanglement entropy in CFT2 of a system

at finite temperature (static case)

This configuration where we have a finite temperature in the system will be the
last configuration to study in the CFT. I will review the computation of the entan-
glement entropy by fixing the time and for the time-dependent case too. In this
configuration I will consider that the system is infinitely large at temperature β−1.

The conformal mapping to this configuration is: w → w = e
2π
β

z . According to [11],
this maps each sheet in the w plane to a infinitely long cylinder of circumference β.
The cylinder will be sewn up by the branch cuts which are aligned to the parallel
axis of the cylinder. The conformal dimension will yield again dn as in (3.5). By
using the fact that the two point function transforms by the conformal mapping,
this yields:

〈

Tn(u1, 0)T̃n(v1, 0)
〉

Ln,C
=

(

β

π
sinh

(

π

β
(v1 − u1)

))−c(n−n−1)/6

(3.20)

where u1 and v1 are the branch points, which defines the interval length (l =
v1−u1) of subsystem A. We can observe that the result from the finite size system
at zero temperature is obtained by substituting β = −iL in the two point function
(3.14). The trace of the reduced density matrix of the n-replicated system is:

tr(ρA)
n = Cn

(

β

πa
sinh

(

π

β
(v1 − u1)

))−c(n−n−1)/6

(3.21)

So by computing Rényi entropy and taking n → 1 we get the entanglement
entropy for subsystem A:

SA =
c

3
log

(

β

πa
sinh

(

πl

β

))

+ C′
1 (3.22)

This result of entanglement entropy was previously obtained in [11]. As we
can see, this solution doesn’t depend of a periodic function any more. This is
important in the sense that if we compute entanglement entropy for the complement
of subsystem A SB then we don’t get the same result as in SA.

3.6 Covariant prescription entanglement entropy

in CFT2 of a system at finite temperature

In this section I will calculate the entanglement entropy for a system at finite
temperature having the quantum states evolve with time. The conformal dimension
dn is the same as in the other systems. So in this sense, so far the computations
of entanglement entropy in the CFT are simplified by this fact, and this is because
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of the symmetries regarding to the conformal transformations in the field theory.
Computing the transformed version of the two point function we have:

〈

Tn(z1(τ1), z̄1(τ1))T̃n(z2(τ2), z̄2(τ2))
〉

Ln,C
=

(

β

2π

√

2 cosh

(

2π∆l

β

)

− 2 cos

(

2π(∆τ)

β

)

)−2dn

(3.23)
To calculate this two point function, I use zj = xj + iτj for (j = 1, 2). Also we

should mention that the interval length of subsystem A I denote it as ∆l = x2 −x1

and the interval of Euclidean time as ∆τ = τ2 − τ1. Taking back to the Lorentzian
time τ = −it and using the trace of the time-dependent reduced density matrix
ρA(t) from (2.20), the Von Neumann entanglement entropy is:

SA(t) =
c

3
log

(

β

2πa

√

2 cosh

(

2π∆l

β

)

− 2 cosh

(

2π∆t

β

)

)

+ C′
n (3.24)

For the finite temperature case if we fix the time t we get the static result
(3.22) which is expected. Also it is important to quote that since the entanglement
entropy doesn’t depend of any periodic functions as in the finite size case (3.19),
the entanglement entropy for subsystem A differs from its compliment subsystem
B. I finished with the computations done in the CFT side, now I shall proceed to
the computation of entanglement entropy using holographic method.



Chapter 4

Entanglement Entropy using
Holographic Method

Before calculating the time-dependent entanglement entropy, I will review first the
computations for the static case. Those results were previously obtained in see [12].
These are obtained by minimizing the geodesic length on the metric of space-time.
Also we will try to explain by illustrations of the geodesic lengths for three different
metrics, of how entanglement entropy in subsystem A differs from the complement
system B when the long system is at temperature β−1. The metrics that I will
use are: AdS3 in Poincareé’s and global coordinates, and the BTZ black hole for
the time-dependent case. In the end we expect that these time-dependent results
obtained by the covariant prescription yields the results obtained in chapter 3.

4.1 Entanglement entropy using Poincaré’s
metric for a fixed time

Before calculating the holographic entanglement entropy for the time-dependent
case, we will have to compute the minimum geodesic path length using the Poincaré’s
metric:

ds2 =
R2

z2
(−dt2 + dz2 + dr2) (4.1)

Where R is the radius of the AdS space, r is the radial variable.This coordinate
patch is the one that by covering part of the space gives the half-space coordina-
tization of AdS space. The coordinate z divides the AdS space in two regions.
Fixing the time in this coordinate patch corresponds to hyperbolic spaces in the
Poincaré half plane metric. This is conformally equivalent to Minkowski space
when z → 0. This why it is said that the Poincaré space-time contains a conformal

23



24 Chapter 4. Entanglement Entropy using Holographic Method

Minkowski space at infinity, where under Poincaré’s coordinates this corresponds
precisely when z → 0.

With this form of the metric, I proceed with the calculation of geodesics. I write
down the expression for the interval length on this space-time in terms of the total
derivative respect to ”z” of the ”r” (radial) variable, so we get:

ds2 =
R2

z2
(1 + (r′)2)dz2 (4.2)

Where r′ is the derivative of the variable r(z) respect to ”z”. In order to
calculate the geodesic path length, the following equation must be minimized:

LγA
=

∫ zf

zi

dz
R

z

√

1 + (r′)2 (4.3)

In this case we have the UV cut-off denoted as ”a” which is a really small value.
To find the geodesic path length between the points zf and zi, we need to solve the
Euler-Lagrange equation which in this case is:

∂z(∂r′L) = 0 (4.4)

Where the integrand of the geodesic path integral form (4.3) is denoted as L
. Solving this differential equation (4.4) we get the following conserved quantity
respect to the variable z.

∂r′L = C1 (4.5)

Where C1 is a constant and solving the partial derivative to the path length we
get the following result for r′:

r′ = ± C1z
√

R2 − C2
1z

2
(4.6)

In this case the sign in (4.6) can be absorbed in the constant C1. There should
be a point in the path trajectory where the variable z gets a maximum value and
that happens when r′ → ∞. That occurs when the denominator from relation (14)
is equal to zero. This is the reason why it is assumed C1 > 0. Therefore, the
constant is:

C1 =
R

z∗
(4.7)

Where z∗ is the maximum value of z of the geodesic path. The length of interval
of subsystem A depends of the interval points rf and ri by the following relation:
l = rf − ri. We need to find the expression of z∗ in terms of the known constants a,
rf and ri. The initial and final points in the z coordinates are precisely the cut-off
value ”a”. We will need to integrate (4.6) in order to know the geodesics in the
Poincaré’s space-time. Solving the integral we get:
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z

z=a

r

z=z*

r=l/2r=-l/2

Figure 4.1: Illustration of the geodesic path γA for the Poincaré’s having the time
fixed.

r(z) = rǫ +
(

√

z2∗ − a−
√

z2∗ − z2
)

(4.8)

Where rǫ is the point in r where z = a. The equation above (4.8) corresponds
to a half of a circle of radius l

2 but is translated by z = a(see figure 4.1). This
means that the geodesic path in the Poincaré’s metric is symmetric, which implies
zf = a so we can do the following trick in the integral form of the radial coordinate
r(z) in order to obtain z∗ in terms of the known interval length l of subsystem A.
The trick consists that if we integrate from z = a to z = z∗ and since the geodesic
path is symmetric we have that the maximum value of z is reached for r = 0, which
leads to the following equation:

l = 2
√

z2∗ − a2 (4.9)

In this relation, I can take the limit a → 0 so this yields: z∗ = l
2 . This point

is necessary in order to compute the minimum geodesic length, and basically this
is the procedure for computing entanglement entropy by the holographic method
at least for the other two metrics that I will use later. Now we can proceed with
the integral from (4.3) where it is considered that the path is half of a circle. Also,
using the fact that the geodesic path is symmetric for − l

2 6 r 6 l
2 , the geodesic

path length is:

LγA
= 2R

∫ z∗

a

dz
1

z

√

z2∗
z2∗ − z2

(4.10)

The extra 2 factor comes from the fact that the path is symmetric so we only
need to integrate from a to the maximum value z∗. In order to solve this integral I
made a change of variable z = l

2 sin (s). If we observe the boundary condition, when
z = a this implies sin (sǫ) = 2a

l . Also, we know that this value is small, actually
it can be considered as a infinitesimal value, so approximately this is: sǫ = 2a

l .
Therefore the integral we need to solve transforms into:
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LγA
= 2R

∫ π
2

2a
l

ds
1

sin (s)
(4.11)

Using the fact that the cut-off value is an infinitesimal value, the geodesic path
length is:

LγA
= 2R log

(

l

a

)

(4.12)

Since this computation is done by using the AdS3/CFT2 duality, then the
Area(γA) is precisely the minimum geodesic length in the space-time described
by its metric. We can see so far that the behaviour of the geodesic length is the
same as in the case of entanglement entropy we got for the infinite long quantum
system case having the time fixed (3.7) except for the proportion factor R

2G
(3)
N

. For

the AdS3 CFT2 correspondence there is a known relation between the central con-
formal charge c with the radius R of AdS and gravitational constant G3

N from
(2.23). Knowing this, the entanglement entropy is:

SA =
c

3
log (

l

a
) (4.13)

Comparing this with the entanglement entropy from the CFT result, we can
observe that it does not have the constant C′

n. This is quite natural because even
in the CFT results this constant can be ignored because the cut-off value ”a → 0”
is in the denominator. Therefore the logarithm part has a large value compared to
the constant C′

n.

4.2 Covariant prescription of entanglement

entropy using Poincaré’s metric

Now that we saw how the holographic method of entanglement entropy works in
the static case, now I proceed with the covariant prescription of entantlement. This
requires working with the complete version of Poincaré’s metric so I can’t fix the
time in this calculations for the geodesic length. The complete version of Poincaré’s

metric having the correct Lorentzian signature is: ds2 = R2

z2 (dz
2−dt2+dr2). Using

the same trick as in the case for the fixed time, I get the following relation for the
geodesic path length:

LW = R

∫ zf

a

dz
√

1− t′2 + r′2 (4.14)

Where r′ = ∂zr and t′ = ∂zt. We need to extremize the geodesic path length
between two points of the z coordinate, the way to find those conditions consists
in using the Euler-Lagrange equations, which in this case are:
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∂z(∂t′L) = 0 (4.15)

∂z(∂r′L) = 0 (4.16)

These equations mean that there are two conserved quantities. Integrating
both equations, this yields: ∂t′L = C1 and ∂r′L = C2 where L = R

√
1− t′2 + r′2.

Solving the partial derivatives of the Lagrangian L, one gets the following relations:

C1 =
−Rt′

z
√
1− t′2 + r′2

(4.17)

C2 =
Rr′

z
√
1− t′2 + r′2

(4.18)

From these two relations is not difficult to see that t′

r′ = −C1

C2
. Using this relation

one gets the equations for the derivatives r′ and t′:

r′ = ± C2z
√

R2 − (C2
2 − C2

1 )z
2

(4.19)

t′ = ∓ C1z
√

R2 − (C2
2 − C2

1 )z
2

(4.20)

By looking these two equations, we know that if C1 = 0 that would mean that
the time is fixed into some constant t0. If that is the case we can observe that we get
the same relation for r′ in the static case. It is natural to think that including the
factor of time in this problem there should be a maximum value of z that implies
r′ → ∞ and also t′ → ∞, using these conditions we get the following relation for
the maximum value we denote again as z∗:

z∗ =
R

√

C2
2 − C2

1

(4.21)

Which it only makes sense for C1 < C2, otherwise we get an imaginary number,
the problem about this is that the results for entanglement entropy will yield into
a complex expression. What we can do is to absorb the signs from (4.19) and
(4.20) into the constants C1 and C2. Even by considering the factor of time in the
Poincaré’s metric we have the cut-off value ”a”. After manipulating the interval of
integration in order to solve r′ and t′ in terms of the interval length of subsystem
A denoted as ∆l and the interval of time ∆t, I get:
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∆l = 2

∫ z∗

a

dz
C2z

√

R2 − (C2
2 − C2

1 )z
2

(4.22)

∆t = 2

∫ z∗

a

dz
C1z

√

R2 − (C2
2 − C2

1 )z
2

(4.23)

The factor of 2 in the integrals above comes from the fact that the geodesic path
are symmetric too. Solving these integrals we get:

∆l = 2
C2

√

C2
2 − C2

1

√

z2∗ − a2 (4.24)

∆t = 2
C1

√

C2
2 − C2

1

√

z2∗ − a2 (4.25)

The cut-off value ”a” is an infinitely small parameter where we can ignore it in

(4.24) and (4.25). Using these we obtain the value: z∗ =
√
∆l2−∆t2

2 which is the
main value to determine in order to compute the extremized geodesic length. After
some calculations we get the integral form of the geodesic path length which we
notice that it has the same integrand form as in the static case, the only difference
is the maximum point z∗ which in this case depends of the time interval ∆t.

LW = 2R

∫ z∗

a

dz
1

z

√

z2∗
z2∗ − z2

(4.26)

The factor of 2 comes from the fact that the geodesic path is symmetric. As we
did in the static case, we use the change of variables z = z∗ sin (s). So we get:

LW = 2R log

(

csc (si) + cot (si)

csc (s∗) + cot (s∗)

)

(4.27)

Where si is the initial angle when z = a and s∗ is precisely the angle where the
maximum value z∗ is located which in this case we have that s∗ = π/2. In the end
when we substitute si, which depends of z∗, and sf in (4.27) we finally obtain the
geodesic path length:

LW(t) = 2R log

(√
∆l2 −∆t2

a

)

(4.28)

Therefore, by using relation (2.24) for holographic entanglement entropy in the
time dependent case we get:

SA(t) =
c

3
log

(√
∆l2 −∆t2

a

)

(4.29)

This is the same result obtained in the CFT for the infinitely long system,
remember that we can ignore the constant Cn since the cut-off value makes the
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entanglement entropy to go high values by the logarithm term. So far, the covariant
prescription of holography works pretty well and we know for sure that we don’t
have any restriction at all by fixing the time in order to get the entanglement
entropy for subsystem A.

4.3 Entanglement entropy in the AdS3 using

global coordinates with fixed time

In this section we are going to solve the holographic entanglement entropy using
the AdS3 in global coordinates. These coordinates satisfies the following relation:

−X2
−1 −X2

0 +X2
1 +X2

2 = −R2 (4.30)

Where R is the radius of the space. The coordinates that satisfies this relation are:

X−1 = R cosh (ρ) cos (T ) (4.31)

X0 = R cosh (ρ) sin (T ) (4.32)

X1 = R sinh (ρ) cos (θ) (4.33)

X2 = R sinh (ρ) sin (θ) (4.34)

Using these coordinates we get that the metric for the AdS3 space is just:

ds2 = R2(− cosh2 (ρ)dT 2 + dρ2 + sinh2 (ρ)dθ2) (4.35)

From the metric we can see that for ρ → ∞ the differential path length ds2

diverges too. This is the reason that in the following computation we will define a
cut-off value for the ρ coordinate which we will call it ρc, which is a large number.
In this case, I denote T as the factor of time, but this coordinate doesn’t have any
units as we can see in (4.31) and (4.32). This time T works as an angle and in
fact T ∈ [0, 2π]. We will avoid closed time-like curves, so we will take the universal
cover T ∈ R. Now we have to find the geodesic path length of the system, in order
to compute the entropy. Computing the geodesic length it is required to integrate
over all the space, but since we have a cut-off value and we are fixing the time ”t”
then the integral expression for the path length is:

LγA
=

∫ ρc

ρi

dρR

√

1 + sinh2 (ρ)θ′2 (4.36)

where θ′ = ∂ρθ. Using Euler Lagrange equation and noticing that the integrand
doesn’t depend of θ then we have a conserved quantity corresponding to ∂θL = C1

with some constant C1. So we get the following relation:
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C1 =
sinh2 (ρ)θ′

√

1 + sinh2 (ρ)θ′2
(4.37)

Using this relation we get θ′ as a function of ρ and C1, so we get:

θ′(ρ) =
C1

sinh (ρ)
√

sinh2 (ρ)− C2
1

(4.38)

In this case this relation must be an absolute value, but the geodesic path can
also be interpreted as the motion path of a massive particle and we could put the
condition that the change in angular coordinate is changing positively. There should
be a point for ρ coordinate in the geodesic path where this variable is minimum
because for a fixed time in the AdS3, we are working over a circumference of radius
ρc defined on a hyperbolic plane. This means that the geodesics in this space are
going to be closed curves which has a returning point at ρ∗. This minimum point
of ρ is what the geodesic path length will depend in our computation. Since ρ∗
is a minimum point, it must satisfy that θ′ → ∞. With this condition we have
(C1 = sinh (ρ∗)). Inserting this relation into the expression for θ′(ρ) we get:

θ′(ρ) =
sinh (ρ∗)

sinh (ρ)
√

sinh2 (ρ)− sinh2 (ρ∗)
(4.39)

Inserting the equation above in the integral form of the path length, this yields:

LγA
= R

∫ ρc

ρi

dρ
sinh (ρ)

√

sinh2 (ρ)− sinh2 (ρ∗)
(4.40)

The next step is to get a relation between the initial and final points of the
angular θ coordinate with the minimum radial point ρ∗ and the cut-off value ρc.
In order to do that we will manipulate the limits of integrations so we will have
a certain angular difference that is related with the angle corresponding to the
minimum radius ρ∗, these differences are:

θf − θ∗ =

∫ ρc

ρ∗

dρ
sinh (ρ∗)

sinh (ρ)
√

sinh2 (ρ)− sinh2 (ρ∗)
(4.41)

θ∗ − θi =

∫ ρc

ρ∗

dρ
sinh (ρ∗)

sinh (ρ)
√

sinh2 (ρ)− sinh2 (ρ∗)
(4.42)

Summing both relations (4.41) and (4.42) yields the angular difference ∆θ =
θf − θi, so by solving the integral we get an equation relating the difference angle
of the trajectory of the geodesic path and the ρ known parameters.
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Figure 4.2: Figure(a): This is a plot of the AdS space where the red curve cor-
responds to the geodesic in the static case. Figure(b): Corresponds to a more
detailed illustration of the geodesic path γA. The blue curve represents the interval
corresponding to subsystem A and the black curve corresponds to the complement
which is subsystem B.

∆θ

2
= − tan−1

( √
2 sinh (ρ∗) cosh (ρc)

√

−2sinh2(ρ∗) + cosh(2ρc)− 1

)

+
π

2
(4.43)

Also, we can write down the angular difference ∆θ in terms of the total size
length L of the total system and the size of subsystem A that I denoted as l.
Since we have a circumference over a hyperbolic plane, then we can obtain another
relation of the interval length l by integrating the metric having fixed the radial
coordinate ρ = ρc. Also, a similar procedure can be done in order to have an
expression for the length of the total system L. As we can see in figure (4.2),
the geodesic path is just over the hyperbolic disk defined by the AdS3 space when
having the time T fixed, in this figure we can illustrate the fact that the observer is
only accessible to the subsystem A and cannot receive any signals from B, in some
sense it is similar case as what it happens in a black hole. After integrating the
metric by fixing ρ = ρc we obtain the boundary condition:

∆θ =
2πl

L
(4.44)

Using the expression for ∆θ from (4.43) and using the fact that the cut-off value
ρc >> 1 we get the relation for the minimum radial value ρ∗:
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sinh(ρ∗) = cot

(

∆θ

2

)

(4.45)

Using (4.40), where the geodesic path γA begins the trajectory for ρi = ρc
and using the fact that this geodesic is symmetrical we get that the length of this
geodesic is:

LγA
= 2R log





√

cosh (2ρc)− 2 sinh2 (ρc)− 1 +
√
2 cosh (ρc)√

2 cosh (ρ∗)



 (4.46)

Since we have ρc >> 1, we approximated cosh (ρc) ≈ eρc and sinh (ρc) ≈ eρc .
Inserting equation (4.45) this yields the following:

LγA
≈ 2R log

(

2 eρc sin

(

πl

L

))

(4.47)

We can observe that this result of geodesic path length has a similar behaviour
as the entanglement entropy result we did for the fixed time finite size system in
the CFT. So again using the Area law (2.22) and the relation of conformal charge
(2.23) with the gravitational constant G3

N , the entanglement entropy is:

SA =
c

3
log

(

2eρcsin

(

πl

L

))

(4.48)

If we want to know what is exactly the cut-off value ρc then we should use the
limit when l is really small compared to the total size length of the system ”L”. By
doing this we can compare it with the one obtained in Poincaré case (4.13) This
implies that ρc =

L
2πa where ”a” is the cut-off value in the Poincaré’s entanglement

entropy solution. So in the end we get:

SA =
c

3
log

(

L

πa
sin

(

πl

L

))

(4.49)

Which is in fact the entropy calculated for the finite size system we did in the
CFT side (4.13). So far we can see how the duality works, which basically we have
a certain quantum system configuration in the CFT and its entanglement entropy
is equivalent into a particular geometry of space-time in the gravity side. This is
important since as we have mentioned before, quantum gravity is what precisely
consists about, determining the corresponding geometry in the gravity side for a
certain field theory in the boundary. In this case it seems that the finite size
system at zero temperature is dual to a geometry of AdS space. If we go back
in our discussion in (chapter 4) about the fact that this solution of entanglement
entropy for subsystem A satisfies SA = SB, this would mean that the geodesic
length for subsystem B is basically the same as γA. Physically speaking this means
that whenever the system is at zero temperature, the systems will always be in a
pure state, but this changes when temperature is present in the system.
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4.4 Covariant prescription of entanglement

entropy in the AdS3 using global coordinates

In this section I will compute the entanglement entropy including the factor of time
T . In other words we have that the metric is of the form of relation (4.35). The
geodesic path length can be written in the following form:

LγA
= R

∫ ρf

ρi

dρ

√

− cosh2 (ρ)T ′2 + sinh2 (ρ)dθ2 + 1 (4.50)

Using the Euler-Lagrange equation, I will extremize this length. There are
two quantities that are conserved since the geodesic path doesn’t depend of the
coordinates θ and T explicitly. So I have:

C1 =
sinh2 (ρ)θ′

√

sinh2 (ρ)θ′2 − cosh2(ρ)T ′2 + 1
(4.51)

C2 =
− cosh2 (ρ)T ′

sinh2 (ρ)θ′2 − cosh2 (ρ)T ′2 + 1
(4.52)

From these two constants, I have the relation between θ′ and T ′ which is: (T ′ =
−C2

C1
tanh2 (ρ)θ′). From this, I obtain the expressions the corresponding for θ′ and

T ′, so in the end I will have to integrate them after getting both relations:

θ′ =
C1

sinh (ρ)
√

sinh2 (ρ)− C2
1 + C2

2 tanh
2(ρ)

(4.53)

T ′ = − C2 tanh (ρ)

cosh (ρ)
√

sinh2 (ρ)− C2
1 + C2

2 tanh
2(ρ))

(4.54)

Doing the same procedure as in the static case, I will find a specific value for ρ
corresponding to the geodesic path, we will call it ρ∗ as in the static solution. Also
we should quote that we can absorb the sign in one of the constants C1 or C2. The
fact that in this complete version of AdS3 we have a point in the path where ρ is
minimum, this means that the derivatives θ′(ρ∗) and T ′(ρ∗) tends to ∞. This leads
to the following condition for the constant C1:

C2
1 = sinh2 (ρ∗) + tanh2(ρ∗)C

2
2 (4.55)

Now after doing something similar as in the infinite long system time-dependent
case, I work out again the limits of integration so we have the following relations
for ∆θ and time interval ∆T :
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∆θ

2
=

∫ ρc

ρ∗

dρ
C1

sinh (ρ)
√

sinh2 (ρ)− sinh2 (ρ∗) + (tanh2 (ρ)− tanh2 (ρ∗))C2
2

(4.56)

∆T

2
=

∫ ρc

ρ∗

dρ
C2sinh(ρ)

cosh2(ρ)
√

sinh2(ρ)− sinh2(ρ∗) + (tanh2 (ρ)− tanh2 (ρ∗))C2
2

(4.57)

In this section ∆θ and ∆T are the angular and time difference between the cor-
responding initial point and last point of the geodesic path. Solving these integrals
and using the fact that the cut-off is really large ρc >> 1, I get:

∆θ

2
= tan−1

(

√

cosh2(ρ∗) + C2
2

cosh(ρ∗)sinh(ρ∗)

)

(4.58)

∆T

2
= tan−1

(

C2

cosh2(ρ∗)

)

(4.59)

I have used already the fact that the cut-off value ρc >> 1 before computing
the extremized geodesic path length because in the end, this will be a leading
term compared to the other parameters. Now we can ask ourselves if the angular
difference has the same relation as in the static case. In order to calculate it I will
have to compute a path integral using the metric for global coordinates. Since l is
the size of the interval between the initial and the last points of the geodesic path
length, I will have to integrate the square root of the metric having ρ = ρc fixed
between the points θi and θf . Also, if I want the expression for the size of the whole
system L, integrating from 0 to 2π, I have:

l =

∫ θf

θi

dθR

√

sinh2 (ρc)− tanh2 (ρc) sinh
2 (ρc)

C2
2

C2
1

(4.60)

L =

∫ 2π

0

dθR

√

sinh2 (ρc)− tanh2 (ρc) sinh
2 (ρc)

C2
2

C2
1

(4.61)

So the size length l of subsystem A and the length L of the total system are:

l =
R∆θ

√

C2
1 sinh

2 (ρc)− C2
2 tanh

2 (ρc) sinh
2 (ρc)

C1
(4.62)

L =
2πR

√

C2
1 sinh

2 (ρc)− C2
2 tanh

2 (ρc) sinh
2 (ρc)

C1
(4.63)
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ρ

Figure 4.3: Geodesic path in the AdS3 metric. The points 1 and 2 corresponds to
the initial and final points respectively.

Dividing both terms we get that ∆θ = 2πl
L , which is the same result as in the

static solution.
Using (4.59) we get the constant C2 in terms of the minimum radius ρ∗ and the

time interval T .

C2 = cosh2(ρ∗) tan

(

∆T

2

)

(4.64)

Now that we have this value, I need to find the relation for the minimum radius
ρ∗ in terms of the boundary conditions of this system. Using (4.58) we get:

sinh (ρ∗) =
1

cos
(

∆T
2

)

√

tan2
(

∆θ
2

)

− tan2
(

∆T
2

)

(4.65)

The geodesic path is symmetric and is a closed curve which connects two points
from the boundary of the infinite cylinder of radius ρc. As we can see in (figure
4.3) the projection of the geodesic path in the hyperbolic plane would correspond
to the curve that we had in the static case.

LW(T ) = 2R

∫ ρc

ρ∗

dρ
sinh(ρ)

√

sinh2(ρ)− sinh2 (ρ∗) + (tanh2 (ρ)− tanh2 (ρ∗))C2
2

(4.66)

This geodesic length after some difficult computation and using the equation
for the minimum radial value ρ∗ yields:
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LW(T ) = 2R log

(

2eρccos

(

∆T

2

)

cos

(

∆θ

2

)

√

tan2
(

∆θ

2

)

− tan2
(

∆t

2

)

)

(4.67)

After using some trigonometric identities and using (2.24), we get that the time-
dependent holographic entanglement entropy for using AdS3 in global coordinates
is:

SA(T ) =
c

3
log

(

eρc

√

2 cos (∆T )− 2 cos (∆θ)
)

(4.68)

We can observe that I got again this parameter eρc that depends of the cut-
off value. This value was e

L
2πa , and this shouldn’t change for this time-dependent

case since is only a constant depending of the cut-off value ”a”. Also, we can see
that the solution I got for entanglement entropy for subsystem A depends in a non-
dimensional time, this is because of the form is constructed the metric that we used
in the AdS3 metric. If we want to express this in terms of the Lorentzian time t, we
must use: T = 2π∆t

L . We don’t have to worry about taking a Wick rotation since
we have already used the correct Lorentzian signature in the metric. By taking the
change of variable in time and using the angular difference ∆θ in terms of the size
of interval of subsystem A, we have:

SA(t) =
c

3
log

(

L

2πa

√

2 cos

(

2π∆t

L

)

− 2 cos

(

2π∆l

L

)

)

(4.69)

This result is exactly the same as the one we computed in the CFT for finite size
quantum system at zero temperature. The fact that this entropy is invariant under
the transformation l → L− l, in the holographic sense this means that the geodesic
path corresponding to the complement subsystem B is equal to the geodesic path of
subsystem A in the AdS3 space-time. The question if this holds true for every well
defined metric, where one can divide the Hilbert space of a system in two subsystems
A and B and the entanglement entropy for both subsystems are equal is already
answered when we calculated the entanglement entropy for a infinite long system
at finite temperature in the CFT, where we basically obtained that SA(t) = SB(t).
What would the corresponding geometry for this case be in the gravity side? The
main candidate is the BTZ black hole which is our next computation and we will
check the interesting things that happens with the geodesic paths corresponding to
subsystem A and subsystem B.

4.5 Entanglement entropy for the static BTZ

black hole

A BTZ black hole is the black hole solution having a negative cosmological constant.
This has similar properties to the 3+1 dimensional black hole.
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In [12], they discuss this case of entanglement entropy in the static Euclidean
BTZ black hole, where they concluded that this geometric prescription is dual to
the quantum system at a certain temperature β−1. We will compute again this
static case to illustrate what happens to the geodesic path depending of certain
values of the system we have. In order to proceed with the calculation of entropies
we must use the metric corresponding to the Euclidean BTZ black hole which is:

ds2 =
(r2 − r2+)

R2
dτ2 +

R2

(r2 − r2+)
dr2 + r2dϕ2 (4.70)

Where the euclidean time is compactified as τ ∼ τ + 2πR2

r+
in order to have a

smooth geometry and also we have the periodicity φ ∼ φ + 2π. Looking at its
boundary, we obtain the relation β

L = R
r+

<< 1 between the BTZ black hole and

the CFT. Since we want to compute the geodesic path length for the static case, we
fix the euclidean time to some constant τ = τ0. The integral form of the geodesic
path length LγA

is obtained by using the static version of the metric (4.70), so we
have:

LγA
=

∫ rf

ri

dr

√

R2

r2 − r2+
+ r2ϕ′2 (4.71)

Where ϕ′ is just ∂rϕ. Before starting computing this, we will write down the
difference angle ∆ϕ which is the difference between the final and initial angle.
To do this we notice that for this static metric, we will have a torus, one of the
circumference is of radius r+ and the other will have the radius corresponding to the
cut-off for this system. The geodesic path will be similar to the one we calculated
for the AdS3 global coordinate static case. Only that this time one has to be more
careful because the geodesic path may enclose the horizon region. Fixing r = rc
where rc is the cut-off radius, we calculate the length l of subsystem A and the
length of the whole system L by integrating ds.

l = rc∆ϕ (4.72)

L = 2πrc (4.73)

∆ϕ =
2πl

L
(4.74)

Relation (4.74) is obtained by dividing (4.72) with (4.73). Using Euler-Lagrange
equation in order to find geodesics for this metric, we get an expression for ϕ′ which
is:
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ϕ′ =
C1R

r
√

(r2 − r2+)(r
2 − C2

1 )
(4.75)

Where C1 is the constant of motion related with the Euler-Lagrange equation
for the ϕ coordinate. The geodesic path has a point where the radial coordinate is
minimum. This is satisfied when ϕ(r∗) → ∞, so this happens only when:

r∗ = C1 (4.76)

Why not r∗ = r+? The answer is that every point in the radial coordinate r
corresponding to the geodesic path there should be a value of r which is lower than
the cut-off value but is higher than the r+, since this is the point of the horizon
of Euclidean BTZ black hole. The geodesic path never reaches the point of event
horizon r = r+, but it may surround it very close to it, that is why (4.76) is the
correct expression for r∗. Using a similar procedure as we did in the static solution
of AdS3 global coordinates we get:

∆ϕ

2
=

∫ rc

r∗

dr
r∗R

r
√

(r2 − r2+)(r
2 − r2∗)

(4.77)

Solving this integral, we get a dependence of Appell hypergeometric function of

two variables, the integral yields Rr∗
2r2 F1(1;

1
2 ,

1
2 ; 2;

r2+
r2 ,

r2
∗

r2 ), but when we evaluate for
r = rc and r = r∗ and using the fact that rc >> 1 we get:

∆ϕ

2
=

R

r+
tanh−1

(

r+
r∗

)

(4.78)

This yields since F1(1;
1
2 ,

1
2 ; 2;

r2+
r2
∗

, 1) = 2r∗
r+

tanh−1
(

r+
r∗

)

and for the case when

r = rc, the term of the result of the integral vanishes so basically (4.78) is enough
for our computation of entanglement entropy. From equation above we can get the
expression for the minimum radius r∗ which is necessary in order to compute the
geodesic length in terms of known parameters. We have:

r∗ = r+ coth

(

πl

β

)

(4.79)

Where the inverse temperature is β = RL
r+

. The integral corresponding to the

geodesic path length yields:

LγA
= 2R log





√

r2c − r2+ +
√

r2c − r2∗

r2∗ − r2+



 (4.80)

Using the fact rc >> 1 and using relation (4.79) we get:
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Figure 4.4: Figure(a): Geodesics or minimal surfaces γA in the BTZ black hole for
various size of A. Figure(b): Illustration of how γA and γB surrounds differently
the event horizon. Fiugre(c): This case is when when subsystem A is almost as
large as the total system.

.

LγA
= 2R log

(

2rc
r+

sinh

(

πl

β

))

(4.81)

Using the transformation r = r+ cosh (ρ), which is useful to transform the metric
from BTZ black hole to a similar Euclidean version of global AdS3, and using the
limit for a short length interval l of subsystem A, we have that rc ≈ r+β

2πa , where a is
the cut-off and is a really small value value a → 0. In the end, we use the relation
corresponding to the central charge of the CFT (2.23) so we get the solution:

SA =
c

3
log

(

β

πa
sinh

(

πl

β

))

(4.82)

Now we will discuss about the different geodesic path and its corresponding
lengths in this metric of BTZ black hole (see figure 4.4 for an illustration). In
(fig 4.4a) we can observe the form of the geodesic paths having different sizes of
subsystem A, there is one of them that looks like the geodesic in the AdS3 space-
time, that corresponds only when the size l of subsystem A is a small value, if that
happens compared to the inverse of temperature β we get SA = c

3 log
(

l
a

)

. This
actually has the same behaviour as the infinite long system at zero temperature, this
makes sense since we consider l << β is another way of saying that the temperature
β−1 << 1. In the case of those geodesics that surrounds the BTZ black hole
corresponds to those sizes of subsystem A that are bigger than those from subsystem
B.

In (figure 4.4b) we illustrate that when the size l of subsystem A is comparable
with the corresponding size of subsystem B we have the case that the path γA
surrounds the btz black hole, but γB doesn’t, this illustrates and explains the
reason of why the entanglement entropies corresponding to those subsystems are
different. We notice that in the gravity side, the one that is responsible that both
geodesic paths are different is because we have a event horizon located at r+ in this
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space-time. In the CFT the reason of why it differs would be that since the system
is at a finite temperature this implies that the system is no longer in a pure state,
in fact it is in a mixture state this is the reason of why SA 6= SB.

The last case we have is from (figure 4.4c), in here we have the case when the
geodesic path encloses the BTZ black hole. This is the case if the size l ∼ L, where
the size corresponding to subsystem B is a really small number. So in this sense
the corresponding geodesic path γB is the same as in the AdS3. Now we will see
if using the whole version of the metric of BTZ black holes yields the same result
as we obtained in the CFT (3.24), in order to check that the covariant prescription
works.

4.6 Covariant prescription of entanglement
entropy for the BTZ black hole

Now I shall proceed with the last computation which is considering the factor of
time in the BTZ black hole. First, I will begin with the computation using the
Euclidean version of this metric just for simplifying the calculation. Afterwards, I
will make a Wick rotation in order to recover the Lorentzian signature. In order
to calculate the geodesic path length in this metric, I express this metric in terms
of only derivatives of our coordinates ϕ = ∂rϕ and τ ′ = ∂rτ . So the geodesic path
length is:

LγA
=

∫ rf

ri

dr

√

f(r)τ ′2 +
1

f(r)
+ r2ϕ′2 (4.83)

where I denoted f(r) =
r2−r2+
R2 The corresponding Lagrangian doesn’t depend

explicitly of ϕ and τ , only of their corresponding derivatives. This means that we
have two conserved quantities, in other words:

C1 =
f(r)τ ′

√

f(r)dτ ′2 + 1
f(r) + r2ϕ′2

(4.84)

C2 =
r2ϕ′

√

f(r)τ ′2 + 1
f(r) + r2ϕ′2

(4.85)

From these two relations we get the equations of the partial derivatives of our

coordinates. We can observe that τ ′ = C1r
2

C2f(r)
ϕ′, so using this relation we can get

the equalities for the derivatives:
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ϕ′(r) =
C2

r
√

f(r)(r2 − C2
2 )− r2C2

1

(4.86)

τ ′(r) =
C1r

f(r)
√

f(r)(r2 − C2
2 )− r2C2

1

(4.87)

There should be a minimum value of r where we denote again r∗, since the
geodesics will be symmetric and will surround the BTZ black hole as in the static
case. This means that both ϕ′ and τ ′ diverges at this point. This condition yields
an equation relating the two constants C1 and C2:

C2
1 =

f(r∗)(r2∗ − C2
2 )

r2∗
(4.88)

By integrating both (4.86) and (btzt5) we can get the angular and time intervals
in function of the constant C2 and r∗. So using the expression of f(r) we get:

∆τ =
2R2

r∗

∫ rc

r∗

dr
r
√

(r2∗ − r2+)(r
2
∗ − C2

2 )

(r2 − r2+)

√

(r2 − r2∗)(r
2 − r2+C2

2

r2
∗

)

(4.89)

∆ϕ = 2R

∫ rc

r∗

dr
C2

r

√

(r2 − r2∗)(r
2 − r2+C2

2

r2
∗

)

(4.90)

These integrals yields the following by considering the limit of cut-off value
rc >> 1:

∆τ =
2R2

r+
tan−1

(

r+
r∗

√

r2∗ − C2
2

r2∗ − r2+

)

(4.91)

∆ϕ =
2R

r+
tanh−1

(

r+C2

r2∗

)

(4.92)

From (4.92) we get the value of constant C2 in terms of r∗, the radius of BTZ
black hole r+, the space radius R and angular difference ∆ϕ.

C2 =
r2∗
r+

tanh

(△ϕr+
2R

)

(4.93)

Using this value of C2 and using equation (4.91) we finally get the relation
between the minimum radial distance r∗ in terms of the known parameters ∆l and
∆τ :
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r∗ =
r+ sec

(

∆τr+
2R2

)

√

tan2
(

∆τr+
2R2

)

+ tanh2
(

∆ϕr+
2R

)

(4.94)

Now that i have gotten the minimum point of radial coordinate r∗, I can insert
this along with the conserved quantities C1 and C2 in the integral form of the
geodesic path length, this yields:

LγA
= 2R

∫ rc

r∗

dr
r

√

(r2 − r2∗)(r
2 − r2+C2

2

r2
∗

)

(4.95)

Again considering the limit rc >> 1 we basically have:

LγA
= 2R log









2rc
√

r2∗ −
r2+C2

2

r2
∗









(4.96)

Now from here we can see that the extremized length has a similar behaviour
as in the Euclidean result of time-dependent entanglement entropy we got in the
CFT for the finite temperature case. Nowe we can recover The Lorentzian case for
this problem by using Wick rotation τ = −it where t is the Lorentzian time. Using
the area law, and the conformal charge we get:

SA(t) =
c

3
log

(

rc
r+

√

2 cosh

(

∆ϕr+
R

)

− 2 cosh

(

∆tr+
R2

)

)

(4.97)

It seems that this is not exactly the same result as in the CFT (3.24) since we
have a dependence of the BTZ black hole radius r+ and the AdS radius R. However
we haven’t considered yet the fact that one can get the following relation: β =
2πR2

r+
. This expression is found by calculating the deficit angles using the Lorentzian

version of BTZ black hole, which is the responsible for the conical singularity of
this space-time. Using the expression for ∆ϕ, β and using the same value for the
cut-off radius rc ≈ r+β

2πa that we had in the static solution, we finally get:

SA(t) =
c

3
log

(

β

2πa

√

2 cosh

(

2π∆l

β

)

− 2 cosh

(

2π∆t

β

)

)

(4.98)

We basically got the same result of entanglement entropy for the time-dependent
case of a system at finite temperature except by some constant that can be ignored
compared to the large value of the logarithm term. We now include a graph in order
to visualize the geodesic trajectory in the Lorentzian BTZ black hole (see figure4.5).
We can see that extending the time t ∈ R we have a infinite cylinder of radius rc,
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t

1

2

γ
AγB

Figure 4.5: Geodesic path in the non-static BTZ black hole corresponding to sub-
system A and subsystem B.

but it has a event horizon of the BTZ black hole of radius r+. The black cylinder
represents the BTZ black hole, and we denoted γA and γB as the geodesics paths
corresponding to subsystem A and subsystem B respectively. This graph illustrates
that both geodesic paths are different, we can see that for a larger size of subsystem
A than its complement subsystem B, γA surrounds the black hole, while γB doesn’t.
So we can finally say that when a system is at finite temperature, this is dual to a
BTZ black hole in the gravity side, which it will describe a quantum mixture state,
which breaks the equality of entanglement entropies of our two subsystem A and
B.
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Chapter 5

Summary and conclusions

This chapter will present a brief summary of the two computational procedures used
in this thesis to obtain entanglement entropy finalizing some conclusions about the
results that were obtained.

I explained in Chapter 2 that the way of computing entanglement entropy for a
certain quantum system relies in dividing its Hilbert space H into two subsystems
A and B. This was possible by assuming that each subsystem has their own Hilbert
space well defined where I denoted them as HA and HB, and they must satisfy that
their direct product yields the total Hilbert space of the system (H = HB ⊗HB).

The quantum states |Ψ〉 can be used in order to construct the density matrix
ρ, which in general it could be time-dependent if and only if the quantum states
evolve with time. We have seen that this density matrix is the key for computing
entanglement entropy, which in general one uses only the reduced version of this
matrix respect to one of both subsystems A or B. The study of this is important
since entanglement entropy is a good measurement of how entangled or quantum
a wave function is. The fact that one only compute entanglement entropy for
one subsystem, which in this case I chose A, is equivalently saying that SA is the
entropy for an observer who is only accessible to subsystem A and cannot receive
any information from B. This subsystem B would be equivalent to the inside of a
black hole after crossing the event horizon for an observer who is outside of the
horizon. That is why the holographic entanglement entropy satisfy an area law
similar to the Bekenstein Hawking entropy [6].

Entanglement entropy is well defined in a quantum field theory, which in this
project we worked in the quantum field theories that preserves angles (CFT). We
have seen that the conformal field theory satisfies some symmetries which simpli-
fies the calculation of correlation functions of a certain operator. We have seen
that entanglement entropy in the CFT is hard to compute if one tries using the
quantum path integral formulation of the density matrix (2.19). This is why in the
2-dimensional CFT it is always used the Replica Trick, which consists in replicat-
ing the system and then passing the replicated world sheets into the target space
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recovering locality. Doing this, the interval of the subsystem being studied defines
a branch cut to the world sheet, and in order to compute the Rényi entropy ,which
is related to Von Neumann entropy, one has to glue all this world sheets together
by some local fields called twist fields.

I worked in the CFT using three configurations of a quantum system by having
the quantum states evolving in time (covariant case): the infinite long system at
zero temperature, the finite size case at criticality and the last one was a infinite
long system at a finite temperature. These computations depends of the conformal
transformations being used in the CFT, and the computations for the two point
functions of the twist fields were easy to solved, this is because of the symmetries
involved in the CFT.

The results of entanglement entropy for the infinite long and finite size at zero
temperature case yields the same result if one considers the size l of subsystem A
to be small in comparison with the size L of the total system. Also I observed
that for these two configurations, the entanglement entropy corresponding to both
subsystems A and B are equal (SA = SB). This tells us that we have only pure
states when the system is at zero temperature.

However, I observed that this fact totally changes when the quantum system is
at some finite temperature β. The result of entropy I got in this case, means that
the equality for both sybsystems (2.4) doesn’t hold anymore. This tells us that the
density matrix is in a mixed state generically.

In the other hand, I used the holographic method to calculate entanglement
entropy. As I previously explained, the holographic method is another example of
the AdS/CFT correspondence, which claims that the (d+1)-dimensional conformal
field theory (CFTd+1) is equivalent to the supergravity on the (d+2)-dimensional
anti-de-Sitter space (AdSd+2), where is expected that the CFTd+1 sits in the bound-
ary of the AdSd+2. In this case I only worked with the AdS3/CFT2 correspondence.

I explained that for the covariant prescription of the holographic method consists
in extremizing the length of the interval between two points in a specific metric
of space-time. In this project I worked with three different metrics which were:
Poincaré’s, AdS3 written in global coordinates and the BTZ black hole.

Using the AdS3 metric, we obtained the same result of entanglement entropy for
the finite size length in the CFT, which I observed that using the Poincaré’s patch,
one obtains the case when the length of subsystem A is too small compared to the
total length of the system. Analyzing the geodesics in these metrics, we concluded
that those corresponding to subsystem A are equal to those corresponding to B,
the physical meaning of this is that the entanglement entropies from our both
subsystems A and B are equal, which we already know that in the CFT this means
that the system is composed of only pure quantum states.

However when I analysed the covariant prescription of holographic entanglement
entropy in the BTZ black hole, based on the time-dependent result of entanglement
entropy, I conclude that a quantum infinite long system is at a finite temperature
in the CFT this is dual to a BTZ black hole on the gravity side. The geodesics
corresponding to both subsystems A and B for this space-time differs from each
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other, which this means in the CFT side that the system is composed of mixture
states.

To conclude we can say that it resulted successful the computations of time-
dependent entanglement entropies by using holography since all the results from
the CFT side are equal from those obtained in the gravity side. I can say that for
the three metrics we used we can always fixed time yielding the known static results
discussed in [12], where is not necessarily true for a generic metric of space-time.
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Appendix A

Useful Relations in the CFT

This appendix is a brief summary of CFT explained in [18]. We review the minimal
theoretical background material in order to understand the calculations of entan-
glement entropy in the (1+1)d-CFT and also some notations used for the Replica
Trick. Also I will explain the definitions and conditions that must be satisfied for
conformal invariance and what are their implications.

A.1 Conformal Field Theory

In general Conformal Field Theory (CFT) differs from Quantum Field Theory
(QFT). In QFT it is required to start with the classical action of the quantized
fields. If we want to compute the correlation functions it is necessary to work with
quantum path integrals. Most of the cases the quantum path integrals are difficult
and tedious to compute. On the contrary, CFT simplifies this by exploiting its
symmetries. Especially this is possible when dealing with 2 dimensions because the
algebra of infinitesimal conformal transformations is infinite dimensional.

A.1.1 Conformal Group

Conformal transformations are basically transformations of a plane in d dimen-
sions which locally preserve the angles between any two lines. The conformal
transformation is defined by considering differentiable maps: φ : U → V where
M is a smooth manifold, U ⊂ M and V ⊂ M ′ are open subsets. The map φ is
called a conformal transformation, if the metric tensor satisfies φ∗g′ = Λφ. There-
fore, using a flat space and having M ′ = M with a constant metric of the form
ηµν = diag(−1, ...,+1, ...):
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ηρσ
∂x′ρ

∂xµ

∂x′σ

∂xν
= Λ(x)ηµν (A.1)

Where the scale factor Λ(x) = 1 corresponds to the Poincaré group which
consists of Lorentz transformations.

The goal of this thesis is to study the holography of entanglement entropy
using AdS3/CFT2, this means that in the CFT the biggest concern is to study the
conformal group in two dimensions. Let’s analyse first the conditions that must
be satisfied in order to get a conformal invariance in d dimensions. By doing an
infinitesimal coordinate transformation in first order of the small parameter ǫ(x)
we get:

x′ρ = xρ + ǫρ(x) + O(ǫ2) (A.2)

Using this infinitesimal coordinate transformation we can insert this in relation
(A.1), which gives:

∂µǫν + ∂νǫµ =
2

d
(∂.ǫ)ηµν (A.3)

Where ∂.ǫ = ∂µǫµ, this is important because if we use the infinitesimal transfor-
mation (A.2) and the conformal transformation from (A.1) we now get an expression
for the the scalar factor Λ(x):

Λ(x) = 1 +
2

d
(∂.ǫ) (A.4)

If we restrict the CFT in two dimensions (d=2) and we use equation from (A.3)
we basically get the following differential equations:

∂0ǫ0 = ∂1ǫ1, ∂0ǫ1 = −∂1ǫ0 (A.5)

These are the Cauchy-Riemann equations, so it is straightforward to think that
we can use complex variables in the following way:

z = x0 + ix1, ǫ = ǫ0 + iǫ1, ∂z =
1

2
(∂0 − i∂1) (A.6)

In order to get the corresponding equations of z̄, ǭ, we simply use the complex
conjugate of each equation from (A.6). Using these results we simply observe that
the metric tensor transforms under z → f(z) by the following form:

ds2 = dzdz̄ → ∂f

∂z

∂f̄

∂z̄
dzdz̄ (A.7)

Where we recognize that |∂f∂z |2 is the scalar factor. For a conformal transforma-
tion in two dimensions the function ǫ(z) is holomorphic in some open set because
it satisfies Cauchy-Riemann equations. It can be considered that this function has
isolated singularities outside this open set. Thus, ǫ(z) can be expanded by Laurent
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series around z = 0, so basically this will be of the form: ǫ(z) = −∑

n∈Z
ǫnz

n+1.
Where ǫn is a constant. The generators corresponding to a transformation for a
particular n are:

ln = −zn+1∂z (A.8)

l̄n = −z̄n+1∂z (A.9)

Relation (A.8) is the generator related to the functions ǫ(z) and (A.9) is the one
related to the complex conjugate ǭ. These two are independent copies of the Witt
algebra, we can use z and ẑ as independent variables. This is why is sufficient to
express the twist fields as Tn(z, ẑ) in chapter 2.

Since n ∈ Z we can notice that the number of infinitesimal conformal trans-
formation is infinite. These generators must determine a corresponding algebra,
therefore these generators must be related by the following commutators:

[lm, ln] = (m− n)lm+n (A.10)
[

l̄m, l̄n
]

= (m− n)l̄m+n (A.11)
[

lm, l̄n
]

= 0 (A.12)

The first commutator represent one copy of the Witt algebra, the other two re-
lations implies that there is another copy that commutes with the first one. Thus,
according to [18], we can say that the algebra of an infinitesimal conformal trans-
formation in an Euclidean two-dimensional space is infinite dimensional.

We can notice that on the Euclidean plane R2 ≃ C, the generators are ln are
not everywhere defined. There is a problem at z = 0, so we can’t work only with
the complex plane C. Also on the Riemann sphere S2 ≃ C ∪ [∞], which is the
conformal compactification of R2, not all of the generators are well defined. For
z=0 we find that ln is non singular only when n ≥ −1. The other problem would
be if z → ∞, since taking this limit and changing the coordinates to z = − 1

w , there
is a non-singular point at w = 0 only for n ≤ 1. Therefore, the globally defined
transformations on the Riemann sphere S2 = C ∪∞ are generated by [l−1, l0, l1].

We can observe that the operator l−1 is the generator of translations z → z+ b,
the operator l0 generates transformations z → az with a ∈ C, and l1 generates the
known Special Conformal Transformations, which are translations for the variable
w = − 1

z . We can conclude from this that the operators l−1, l0, l1 are the generators
corresponding to the the following transformation:

z → az + b

cz + d
(A.13)

Where a, b, c, d ∈ C and since ad− bc must be different from 0, one can always
scale these constants in order to have ad−bc = 1.These conditions make us conclude
that the conformal group of the Riemann sphere is the Möbius group SL(2,C)/Z2.
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This form of conformal mapping (A.13) is used when solving entanglement entropy
for the real line case.

It is important to quote that the Witt algebra of infinitesimal conformal trans-
formations admits a central extension. The elements corresponding to central ex-
tension of the Witt algebra are Ln with n ∈ Z. This central extension satisfies the
following commutator equation:

[Lm, Ln] = (m− n)Lm+n + cp(m,n) (A.14)

Where p : ZXZ → C is bilinear and c is what is called as the CFT charge. An
expression for the bilinear p(m,n) can be found by analysing the antisymmetry of
the commutator, and one can modify the generators in order that the commutators
doesn’t depend of bilinear p(m,n) (see calculation in [blumenhagen2009introduction]).
In the end the commutator that describes the Virasoro algebra V irc with central
charge c is:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (A.15)

A.1.2 Primary Fields

Working in a 2-dimensional, conformal field theory, specifically in Euclidean space,
as we mentioned before, we can identify R2 ≃ C, by introducing the complex
variables as we did in (2.6). Since the generators of Witt algebras are expressed in
terms of z and z̄, these two complex variables can be treated as independent terms.
For the fields φ in CFT, we practically have R2 → C2, which means:

φ(x0, x1) → φ(z, z̄) (A.16)

Where x0, x1 ∈ R
2 and z, z̄ ∈ C

2. The fields which depend of z is called chiral
fields φ(z) and φ(z̄) are the anti-chiral fields. The chiral field is called a primary field
of conformal dimension (h, h̄) when it transforms under conformal transformations
z → f(z) according to:

φ(z, z̄) → φ′(z, z̄) =

(

∂f

∂z

)h (
∂f̄

∂z̄

)h̄

φ(z, z̄) (A.17)

If we want to study how the primary fields behaves under infinitesimal conformal
transformations, one can take the map f(z) = z + ǫ(z) having ǫ << 1. Under
these transformations one get that the transformation of a primary field under
infinitesimal conformal transformations one have:

δǫ,ǭφ(z, z̄) = (h∂zǫ+ ǫ∂z + h̄∂z̄ ǭ+ ǭ∂z̄)φ(z, z̄) (A.18)
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A.1.3 Energy-Momentum Tensor

In general, for any field theory it is defined in terms of a Lagrangian action, which
it basically has important properties of the theory. The energy-momentum tensor
is one of them, which can be deduced by varying the action with respect of the met-
ric. Since the algebra of infinitesimal conformal transformations in 2 dimensions is
infinite dimensional, there are strong constraints on a CFT. The CFT is a powerful
theory, that we don’t even need to have the explicit form of the action.

We can recall Noether’s theorem since it basically claims that for every contin-
uous symmetry in a Field theory, there is a current jµ that it will be conserved. In
the CFT, what it looks for is the conformal symmetry xµ → xµ+ǫµ. The conserved
current associated with the conformal symmetry is:

jµ = Tµνǫ
ν (A.19)

Where the Tµν is symmetric and is the energy-momentum tensor. Since it must
be a conserved current, using the fact ∂µj

µ = 0, one can prove that the energy-
momentum tensors are traceless in the CFT.

T µ
µ = 0 (A.20)

For this conserved current, there is a conserved charge which is related to the
j0 in the following form:

Q =

∫

dx1j0 (A.21)

The integral above is having x0 = constant. In the field theory, this conserved
charge is actually the generator of symmetry transformations for an arbitrary op-
erator A:

δA = [Q,A] (A.22)

The commutator above is evaluated at equal times. Changing variable z =
ex0eix1 , it basically represents the mapping from an infinite cylinder to the complex
plane. Since we have the x0 fixed this basically means that |z| = constant too, so
the integral that defines the conserved charge is transformed into a contour integral
∮

dz and one can generalize (2.21) in terms of contour integrals:

Q =
1

2πi

∮

(

dzT (z)ǫ(z) + dz̄T̄ (z̄)ǭ(z̄)
)

(A.23)

This relation is useful in order to calculate the variation δφ, using (2.22). So we
practically have:
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δǫǭφ(z, z̄) =
1

2πi

∮

C

dz[T (z)ǫ(z), φ(w, w̄)] +
1

2πi

∮

C

dz̄[T̄ (z̄)ǭ(z̄), φ(w, w̄)] (A.24)

The problem with the expression above (A.21) is that it has an ambiguity since
one has to decide whether w or w̄ is inside or outside of the contour C. In QFT, it
is common that the correlation functions are only defined in terms of time ordered
products. Considering our infinite cylinder mapping z = ex0eix1 , the time ordering
becomes a radial ordering, so the product of two observables A(z)B(w) makes sense
for |z| > |w|. In that sense if we compute the contour path integral we will have:

∮

dz[A(z), B(w)] =

∮

|z|>|w|
dzA(z)B(w)−

∮

|z|<|w|
dzB(w)A(z) (A.25)

=

∮

C(w)

dzR(A(z)B(w)) (A.26)

Where R(A(z)B(w)) is the radial ordering of two operators. In that sense the
variation of the primary field will be:

δǫǭφ(w, w̄) =
1

2πi

∮

C(w)

dzǫ(z)R(T (z)φ(w, w̄)) + antichiral (A.27)

Comparing relation (A.27) with (A.24) we can obtain:

R(T (z)φ(w, w̄)) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) + ... (A.28)

We can rewrite (2.18) in terms of contour integrals:

h(∂wǫ(w))φ(w, w̄) =
1

2πi

∮

C(w)

dz
hǫ(z)

(z − w)2
φ(w, w̄) (A.29)

ǫ(w)(∂wφ(w, w̄)) =
1

2πi

∮

C(w)

dz
ǫ(z)

z − w
∂wφ(w, w̄) (A.30)

The field φ(z, z̄) is called primary with conformal dimensions (h, h̄), if the op-
erator product expansion, between the energy-momentum tensors and φ(z, z̄):

T (z)φ(w, w̄) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) (A.31)

T̄ (z̄)φ(w, w̄) =
h̄

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄
∂w̄φ(w, w̄) (A.32)

Now, let’s study the behaviour of the energy-momentum tensor under conformal
transformations. To be precise, when there is a conformal transformation f(z), the
energy-momentum tensor behaves as:
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T ′(z) =

(

∂f

∂z

)2

T (f(z)) +
c

12
S (f(z), z) (A.33)

Where S(w, z) is what is known Schwarzian derivative:

S(w, z) =
1

(∂zw)2

(

(∂zw)(∂
3
zw) −

3

2
(∂2

zw)
2

)

(A.34)

We will need this in our computations, because we will always make a change of
coordinates and then take the expectation value of the energy-momentum tensor,
since as we shall explain later, it is related to the n-point correlation function. In
QFT, the correlation function can be computed with perturbative approach via
canonical quantization or path integral method. None of these will be used when
calculating the 2-point function for the fields in the CFT, in fact it is described by
the symmetries.

The last thing to talk about the energy-momentum is the Ward Identity, This
is related to the calculation of n-point functions. Basically by using the primary
fields φi and relations (A.29) and (A.30)one derives the Ward Identity:

〈T (z)φ1(w1, w̄1)...φN (wN , w̄N )〉 =
N
∑

i=1

(

hi

(z − wi)2
+

1

z − wi
∂wi

)

×

× 〈φ1(w1, w̄1)...φN (wN , w̄N )〉
(A.35)

In our case we only need the 2-point functions, so we must consider the invari-
ance under translations f(z) → z + a which is generated by L−1 and invariance
under L0 that corresponds to rescaling of the form f(z) = λz. If we have:

〈φ1(z)φ2(w)〉 = g(z, w) (A.36)

For the translation invariance, it actually implies that g(z, w) = g(z − w) and
the rescaling invariance yields the condition λ1λ2g(λ(z−w)) = g(z−w), so we get:

〈φ1(z)φ2(w)〉 =
d12

(z − w)h1+h2
(A.37)

Where d12 is the structure constant. The last invariance that it must satisfy
is from generator L1, in other words the invariance under transformations of the
form f(z) → −1/z. This last invariance can only by satisfied if h1 = h2. Therefore
the SL(2,C)/Z2 conformal symmetry fixes the two-point function of two chiral
semi-primary fields to be:
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〈φi(z)φj(w)〉 =
dijδhi,hj

(z − w)2hi
(A.38)

This is the most important result that we need in order to calculate the entan-
glement entropy using the Replica Trick. The problem will be in calculating the
conformal dimensions h, so basically we will need to use Ward Identity for that.
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