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Abstract

English
In this licentiate thesis I will present some new insights in different problems
in the field of stochastic processes.

A stochastic resonance system is studied using path integral techniques,
originally developed in quantum field theory, to recover the optimal means
through which noise self-organises before a rare transition from one potential
well to the other. These results allow one to determine precursors to a rare
events in such system.

I then study the survival probability of an autonomous Ornstein-Uhlenbeck
process using the asymptotic matching techniques developed in fluid dynamics.
Here, I obtain a simple analytical expression for this quantity that exhibits a
good agreement with numerical determination.

Next, rare events in similar systems are studied using a recurrent neural
network to model the noisy part of the signal. The neural network facilitates
the prediction of future noise realisations and hence rare transitions.

Using a combination of analytical and numerical techniques a low-dimensional
model is constructed and it is able to predict and to reproduce the main dynam-
ical and equilibrium features of the El Niño and Southern Oscillation (ENSO),
the largest inter-annual variability phenomenon in the tropical Pacific which
has a global impact on climate.

Finally, using the results obtained for the survival probability of the Ornstein-
Uhlenbeck process, an approximate analytical solution for the probability den-
sity function and the response is derived for a stochastic resonance system in
the non-adiabatic limit.

Svenska
I denna licentiatavhandling kommer jag att presentera några nya insikter i
olika problem relaterade till stokastiska processer.
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Ett stokastiskt resonanssystem kommer att studeras med hjälp av baninte-
graltekniker, som ursprungligen utvecklats i kvantfältsteori, för att återställa
det optimala sättet för bruset att självorganisera innan en sällsynt övergång
från en potentialbrunn till en annan. Dessa resultat gör det möjligt att
bestämma föregångare till en sällsynt händelse i ett sådant system.

Jag kommer sedan att studera överlevnadssannolikheten för en autonom
Ornstein-Uhlenbeck-process med användning av asymptotiska matchningstekniker
lånade från vätskedynamik som gör det möjligt att fåett enkelt analytiskt ut-
tryck för denna kvantitet som uppvisar ett bra överensstämmelse med dess
numeriska uppskattning.

Sällsynta händelser i liknande system kommer senare att studeras med ett
återkommande neuralt nätverk för att modellera den bullriga delen av sig-
nalen. Neurala nätverket lyckas förutsäga framtida brusförverkligande vilket
möjliggör förutspår sällsynt övergång vissa bullerkorrelationstider i framtiden.

Senare kommer en kombination av analytiska och numeriska tekniker att
användas för att bygga en lågdimensionell modell som kan förutsäga och repro-
ducera de viktigaste dynamiska och jämviktsfunktionerna i ENSO, det största
variationen mellan olika år i det tropiska Stilla havet med hög inverkan på-
globala klimatförutsägelser.

Slutligen, med hjälp av de resultat som erhållits för överlevnadssanno-
likheten för Ornstein-Uhlenbeck-processen, kommer en ungefärlig analytisk
lösning för sannolikhetsdensitetsfunktionen och svaret att härledas för ett stokastiskt
resonanssystem i den icke-adiabatiska gränsen.
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Chapter 1

Introduction

A stochastic process refers to a system that evolves in time under the influence
of chance fluctuations. The random nature of such a process makes impossible
the exact prediction of its future state and a probabilistic approach is needed.
Randomness represents the complex processes that we have incomplete access
to, but nonetheless control the fate of our system. Complexity, unfortunately,
goes hand in hand with reality, since almost every natural or engineered system
has inaccessible facets that prevent a purely deterministic description of them.
For this reason, stochastic processes are ubiquitous non only in physics, but
also in many other disciplines, such us biology, chemistry, computer science,
engineering, finance, neuroscience and signal processing.

Because of the countless ways and settings in which stochastic processes
can be found, a unique way to treat them does not exist. However, depending
on the problem, different tools and techniques, often borrowed form other dis-
ciplines, are used. In this work I will address different problems that can all be
connected to the general area of stochastic processes using different analytical
and numerical tools, such as path integrals, a core approach in quantum field
theory, asymptotic matching, originally developed in fluid dynamics, and the
new area of machine learning.

Because most of the results that will be discussed in this work have already
been published or submitted to a journal, I will avoid simply rewriting them
here. All the papers on which I have worked during my PhD are attached at
the end of this thesis.

Ludovico Theo Giorgini, A Serendipitous Journey through Stochastic Processes, SU
2021
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2Chapter 2

Methods

In this chapter I will describe the main mathematical tools that will be applied
in different settings inside the papers attached at the end of my licentiate thesis.
In the title of each section I will specify for which paper it is relevant for. If
no paper will be specified, the section will be relevant to all papers.

2.1 From the Langevin equation to the Kolmogorov
Forward and Backward Equations

In this work we will deal with non-equilibrium systems, that are systems where
the temporal variable plays a fundamental role in their treatment. The simplest
approximate way to treat the dynamics of non-equilibrium systems is probably
the theory of Browninan motion. It was originally developed by observing the
random motion of particles of size ∼ µm fluctuating inside a solution, but has
been later extended to situations where the fluctuating object is not a real
particle at all, but instead some collective porperty of a macroscopic system.

The fundamental equation governing the dynamics of the Brownian motion
is called the Langevin equation

mẌ(t) = −γẊ(t) + R(t) (2.1)

where m is the particle mass, X(t) is the position of the particle and R is a
random force describing the rapidly fluctuating interactions between the par-
ticle and the molecules of the solution. The relationship between the frictional
and random forces in Eq. (2.1) is given by the fluctuation-dissipation theo-
rem, which is obtained by solving the previous equation for Ẋ and taking the
average of its square. For large values of t it becomes

lim
t→∞
〈Ẋ2(t)〉 = 1

2γm

∫ ∞
−∞

ds e−
γ
m
s〈R(0)R(s)〉, (2.2)

Ludovico Theo Giorgini, A Serendipitous Journey through Stochastic Processes, SU
2021
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Chapter 2. Methods

where the translational invariance of 〈R(0)R(s)〉 has been assumed. By invok-
ing the equipartition theorem 〈Ẋ2〉 = kT/m, with k the Boltzmann constant
and T the thermodynamic temperature, and assuming for the random force a
correlation time τ � γ/m, Eq. (2.2) becomes

2γkT =
∫ ∞
−∞

ds 〈R(0)R(s)〉 (2.3)

which gives the searched relationship between T , γ and R.
In this work I will mostly deal with delta-correlated random forces with

Gaussian distribution and I will consider overdamped Browninan motions,
that is the case where the inertia effects mẌ in Eq. (2.1) can be neglected,
inside a potential U(X). The Langevin equation to which I will restrict myself
during this work becomes then

Ẋ(t) = −∂XU(X) +
√

2bξ(t) (2.4)

where ξ(t) is Gaussian white noise with correlation 〈ξ(s)ξ(t)〉 = δ(t − s) and√
2b =

√
2γkT .

Associated with the one-dimensional diffusion process X(t) given by Eq.
(2.4) is the probability density function (PDF) ρ(y, t|x, s) such that∫

A
dy(dx) ρ(y, t|x, s) = P [X(t)(X(s)) ∈ A|X(s) = x(X(t) = y)] for t ≥ s,

(2.5)
where the y-integral (x-integral) over the set A gives the probability of finding
X(t)(X(s)) in the set A given the condition that it started as X(s) = x (ended
as X(t) = y). Depending on whether we are interested in the PDF at final
or initial time, we consider boundary conditions ρ(y = ±∞, t|x, s) = 0 for the
former case and ρ(y, t|x = ±∞, s) = 0 for the latter, with the decay to zero
being sufficiently fast to ensure∫ ∞

−∞
dy(dx) ρ(y, t|x, s) = 1, (2.6)

which means lim|y|→∞ |y|ρ(y, t|x, s) = 0 (lim|x|→∞ |x|ρ(y, t|x, s) = 0). More-
over, if t = s, then x = y and the following initial (final) condition must
holds

ρ(y, s(t)|x, s(t)) = δ(y − x). (2.7)

The PDF of the final (initial) position of the particle at final (initial) time
knowing its initial (final) position at initial (final) time is determined by solv-
ing the Kolmogorov forward (backward) equation. We start deriving the Kol-
mogorov forward equation (KFE) also known as Fokker-Plank equation.
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Using the Chapman-Kolmogorov equation, we can write

ρ(z, t+ ε|x, s) =
∫ ∞
−∞

dy ρ(z, t+ ε|y, t)ρ(y, t|x, s) (2.8)

with ε � 1. After an ε-expansion of the left term in Eq. (2.8) and using the
fact that the noise is Gaussian distributed, we get

ρ(z, t|x, s) + ε∂t(z, t|x, s) =
∫ ∞
−∞

dy
e(z−y+∂yU(y)ε)2/2b2ε

√
2πb2ε

ρ(y, t|x, s). (2.9)

Expanding in ε also the right term we can observe that the O(1) term cancels
with ρ(z, t|x, s) on the left hand side. Considering only the O(ε) terms we
finally get the KBE

∂tρ(y, t) = Lyρ(y, t) = ∂y[∂yU(y) + b2∂y,yρ(y, t)], (2.10)

where the dependency of ρ on x, s has been dropped and Ly is the generator of
the stochastic process viz., [Lyf ](y, t) = ∂y[∂yU(y)f(y, t)] + b2∂y,yρ(y, t)f(y, t).

The Kolmogorov backward equation (KBE) also known as Feynman-Kac
equation, can be derived using the same method, but perturbing the initial
time s→ s− ε instead of the final one. We get

− ∂sρ(x, s) = L∗xρ(x, s) = ∂x[−∂xU(x) + b2∂x,xρ(x, s)], (2.11)

where the operator L∗x is the adjoint of Ly.

2.1.1 Analytical Solution of the Kolmogorov Equations for
an Ornstein-Uhlenbeck Process

I report below the analytical solution of the forward and backward Kolmogorov
equations for a non autonomous stochastic process, that is a system which does
explicitly depend on the time. I will restrict myself to the non autonomous
Ornstein-Uhlenbeck process, i.e. I will consider a potential U(X, t) = 1

2a(t)X2

and a time dependent diffusion coefficient b(t). This particular process has
been studied in many different settings during my PhD.

2.1.1.1 Kolmogorov Forward Equation

We start solving the KFE given in Eq. (2.10). We go in the momentum space
through a Fourier transform

∂tρ̃(k, t) + a(t)k(t)∂kρ̃(k, t) = −b2(t)k2(t)ρ̃(k, t), (2.12)
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Chapter 2. Methods

where we have defined

ρ̃(k, t) =
∫
e−ikyρ(y, t)dy. (2.13)

In order to solve the KFE in momentum space we use the method of charac-
tristics. We write the right hand side of the KFE as a total derivative with
respect to the time

dρ̃(k, t)
dt

= ∂tρ̃(k, t) + dk(t)
dt

∂kρ̃(k, t) = −b2(t)k2(t)ρ̃(k, t), (2.14)

that implies
dk(t)
dt

= a(t)k(t) → k(t) = k(s)e
∫ t
s
a(r) dr. (2.15)

We can then write the KFE as a total derivative along each of the characteristic
curves k(t, s)

dρ̃(k, t)
dt

= −b2(t)k2(s)e2
∫ t
s
a(r) drρ̃(k, t). (2.16)

The solution becomes

ρ̃(k, t) =ρ̃(k, s) exp
[
−k2(s)

∫ t

s
drb2(r)e2

∫ r
s
a(u) du

]
=

= exp
[
−ik(s)x− k2(s)

∫ t

s
drb2(r)e2

∫ r
s
a(u) du

]
=

= exp
[
− ik(t)xe−

∫ t
s
a(r) dr − k2(t)e−2

∫ t
s
a(r) dr

×
∫ t

s
drb2(r)e2

∫ r
s
a(u) du

]
=

= exp
[
−ik(t)xmF (t, s)− σ2

F (t, s)
2 k2(t)

]
,

(2.17)

where we have defined

mF (t, s) = e−
∫ t
s
a(r) dr,

σ2
F (t, s) = 2e−2

∫ t
s
a(r) dr

∫ t

s
drb2(r)e2

∫ r
s
a(u) du.

(2.18)

This is the Fourier transform of a Gaussian with mean xmF (t) and standard
deviation σ2

F (t). Therefore, the solution of the KFE becomes

ρ(y, t; x, s) = 1√
2πσ2

F (t, s)
exp

[
−(y − xmF (t, s))2

2σ2
F (t, s)

]
. (2.19)
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2.1.1.2 Kolmogorov Backward Equation

Now we will solve the KBE (2.11), i.e. the PDF governing the time evolution
of the probability distribution backward in time. We can notice that if we
differentiate both sides of Eq. (2.11) with respect to x we can get an expression
similar to the KFE discussed previously. We now define φ(x, s) = ∂xρ(x, s)
and we write

− ∂sφ(x, s) = −a(s)∂x(xφ(x, s)) + b2(s)∂xxφ(x, s). (2.20)

In Fourier space it becomes

− ∂sφ̃(x, s)− a(s)k(s)∂k(φ̃(x, s)) = −b2(s)k2(s)φ̃(x, s). (2.21)

We solve the previous equation along the characteristics
dk(s)
ds

= a(s)k(s) → k(s) = k(t)e−
∫ t
s
a(r) dr, (2.22)

and we get
dφ̃(x, s)
ds

= b2(s)k2(t)e−2
∫ t
s
a(r) drφ̃(x, s), (2.23)

that has solution

φ̃(k, s) =φ̃(k, t) exp
[
−k2(t)

∫ t

s
drb2(r)e−2

∫ t
r
a(u) du

]
=

=− ik(s)e
∫ t
s
a(r) dr exp

[
− ik(s)e

∫ t
s
a(r) dry−

− k2(s)e2
∫ t
s
a(r) dr

∫ t

s
drb2(r)e−2

∫ r
s
a(u) du

]
=

=− ik(s)mB(t, s) exp
[
− ik(s)ymB(t, s)−

− σ2
B(t, s)

2 k2(s)
]
,

(2.24)

where we have defined

mB(t, s) = e
∫ t
s
a(r) dr, (2.25)

σ2
B(t, s) = 2e2

∫ t
s
a(r) dr

∫ t

s
drb2(r)e−2

∫ t
r
a(u) du, (2.26)

and we have used

φ̃(k, t) =
∫
dxe−ikxφ(x, t) =

=
∫
dxe−ikx∂xδ(x− y) = ike−iky.

(2.27)
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Performing the inverse Fourier transform we get

φ(x, s) = −mB(t, s)(x− ymB(t, s))√
2πσ2

B(t, s)σ2
B(t, s)

exp
[
−(x− ymB(t, s))2

2σ2
B(t, s)

]
. (2.28)

We can finally get the probability density integrating φ(x, s) with respect to x

ρ(x, s) =− mB(t, s)√
2πσ2

B(t, s)σ2
B(t, s)∫

(x− ymB(t, s)) exp
[
−(x− ymB(t, s))2

2σ2
B(t, s)

]
dx =

= mB(t, s)√
2πσ2

B(t, s)
exp

[
−(x− ymB(t, s))2

2σ2
B(t, s)

]
,

(2.29)

where the condition

lim
s→t

∫ ∞
−∞

ρ(y, t|x, s)dx = 1 (2.30)

has been imposed.

2.2 Survival analysis of the Ornstein-Uhlenbeck
process (papers II,V)

In this section I will introduce the survival probability of a non autonomous
Ornstein-Uhlenbeck (OU) process. The survival probability is associated with
the probability for the system X to reach a defined threshold β for the first
time starting at t = 0 from a given initial position x, that is

S(t, x) = P(t < T ), (2.31)

where T is a random variable denoting the time when the system reaches the
boundary for the first time

T ≡ inf{t : X(t) > β|X(0) = x}. (2.32)

I will restrict myself to an Ornstein-Uhlenbeck process defined by the
Langevin equation (2.4) with U(X, t) = 1

2a(t)X2. I will consider the sur-
vival probability of this process inside the closed set [−α, β] α, β > 0. Using
the definition of the KBE in Eq. (2.11), we can write the survival probability
as the integral of ρ over the interval [−α, β]

S(t; x, s) =
∫ β

−α
ρ(y, t; x, s)dy, (2.33)
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with initial condition

S(t = s; x, s) = Θ(x+ α)Θ(β − x), (2.34)

and boundary conditions

S(t; x = −α, s) = S(t; x = β, s) = 0 ∀ s ≤ t, (2.35)

where Θ(.) is the Heaviside theta function.
The survival probability will then satisfies

−∂sS(t; x, s) = −a(s)x∂xS(t; x, s) + b2(s)∂xxS(t; x, s), (2.36)

with conditions (2.34, 2.35).
We can notice that the survival probability satisfies the same equation

of the KBE with different boundary and initial conditions. This difference,
however, prevents it to be solved in the same manner. In fact, because the
support of S(t; x, s) is x ∈ [−α, β] we can not anymore take its Fourier trans-
form and solve Eq. (2.36) in momentum space. We can notice however that, if
α, β �

√
b2(t)
a(t) ∀t, the survival probability can be factorized. In fact, if we now

discretize the stochastic process, the survival probability after n time steps can
be written as

Sn =
n∏
i=1

(1− Pα
i − P

β
i ) =

n∏
i=1

[(1− Pα
i )(1− P β

i )− Pα
i P

β
i ]

'
n∏
i=1

(1− Pα
i )

n∏
i=1

(1− P β
i ) = SαnS

β
n .

(2.37)

We have called Pα
i (P β

i ) the probability of hitting for the first time −α(β) after
i time steps and Sα(Sβ) the survival probability with an absorbing boundary
only in −α(β). Because α and β are distant from the equilibrium position, we
can neglect the term Pα

i P
β
i in Eq. (2.37) and write the survival probability in

the interval [−α, β] as the product of the two survival probabilities in the two
intervals (−∞, β] and [−α,∞). Thanks to this factorization, we can study the
two survival probabilities separately and we will restrict ourselves only to that
one defined in (−∞, β].

Also if the Fourier transform is still impossible, because we have now ex-
tended the support of S(t; x, s) to −∞, we can solve Eq. (2.36) in Laplace
space. However, in this case additional terms coming from the finite boundary
at x = β will come out and they prevent a practicable solution for the survival
probability. For this reason we have developed a different approach which is
explained in details in II,V.
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2.3 Path integrals in stochastic processes (paper
I)

In this section I will provide a theoretical background on the use of path
integrals in stochastic process, a mathematical tool used in I. Here I will deal
with a more general case than that one described in Eq. (2.4) since I will take
into account a stochastic process with multiplicative noise.

We start form the following overdamped Langevin equation

Ẋ(t) = a(X) + b(X)ξ(t) (2.38)

with ξ(t) delta-correlated Gaussian white noise.
We write the process X(t) as the continuum limit of a sequence of Xn

evaluated on discrete time steps tn, with time step ∆t. Each Xn will then
satisfy

Xn
η= Xn−1 + a(Xn−1 + η(Xn−Xn−1))∆t+ b(Xn−1 + η(Xn−Xn−1))

√
∆tξn−1,
(2.39)

where the term η ∈ [0, 1] is due to the arbitrariness in the evaluation of a, b
between [Xn−1, Xn].

Since
Ẋ(t) η= a(X) + b(X)ξ(t) (2.40)

can be written as

Ẋ(t) 0= a(X)− ηb′(X)b(X) + b(X)ξ(t), (2.41)

when a stochastic process has additive noise the Ito discretization (η = 0) can
be considered without doing approximations.

Each trajectory X(t) with t ∈ [0, T ] and X(0) = X0 strictly depends on
the single noise realizations and its probability can be written as

P (X(ξ0, ξ1, . . . , ξN−1)) =
∫ N−1∏

i=0

dξi√
2π
e−

ξ2
i
2 (2.42)

where N = T/∆t.
Since the ξi are related to the Xi through

ξi = Xi+1 −Xi − ai∆t
bi
√

∆t
(2.43)

where ai = a(Xi + η(Xi+1 −Xi)) and bi = b(Xi + η(Xi+1 −Xi)), we can write
the integral in Eq. (2.42) in terms of Xi. To this end, we have to evaluate the
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Jacobian

J = |det ∂ξ
∂X
| = |

N−1∏
j=0

∂ξj
∂Xj+1

| = |
N−1∏
j=0

1
bj
√

∆t

[
1− ηa′j∆t− η

b′j
bj

(Xj+1 −Xj − aj∆t)
]
|,

(2.44)
end Eq. (2.42) becomes

P (X0, X1, . . . , XN−1) =
∫ (

N∏
i=1

dXi

)
J

(2π)N/2 exp
−1

2

N−1∑
j=0

(
Xj+1 −Xj − aj∆t

bj
√

∆t

)2


=
∫ (

N∏
i=1

dXi

)N−1∏
j=0

dX̃jbj
√

∆t
 J

(2π)N exp
N−1∑
j=0

(
−
b2
jX̃

2
j ∆t
2 − iX̃j(Xj+1 −Xj − aj∆t)

) .
(2.45)

Let’s go back to the Jacobian. Using its expression reported in Eq. (2.44),
we can writeN−1∏
j=0

bj
√

∆t
 J = |

N−1∏
j=0

[
1− ηa′j∆t− η

b′j
bj

(Xj+1 −Xj − aj∆t+ iX̃b2
j∆t− iX̃b2

j∆t)
]
|

= |
N−1∏
j=0

[
1− ηa′j∆t− η

b′j
bj

(
∂

∂(iX̃)
+ iX̃b2

j∆t
)]
|

' exp
−N−1∑

j=0

(
ηa′j∆t+ iX̃ηb′jbj∆t

) ,
(2.46)

where we used ∂
∂(iX̃) exp[. . . ] = (Xj+1 −Xj − aj∆t− iX̃b2

j∆t) exp[. . . ] and the
fact that exp[. . . ] vanishes at the extremes of integration.

Using the expression of the Jacobian of Eq. (2.46) inside Eq. (2.48) we get

P (X0, X1, . . . , XN−1) =
∫ (

N∏
i=1

dXi

)N−1∏
j=0

dpj
2πi


× exp

−N−1∑
j=0

(
−
b2
jp

2
j∆t
2 + pj(Xj+1 −Xj − aj∆t) + ηa′j∆t+ ηpjb

′
jbj∆t)

)
(2.47)

where we have defined pj = iX̃.
Taking the continuum limit and defining Dp(t) = ∏N−1

j=0
dpj
2πi , DX(t) =∏N

i=1 dXi we obtain

P (X(t)) =
∫
DX(t)Dp(t) e−S[X,p], (2.48)
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with

S[X, p] =
∫ T

0
dt

(
−b(X)p(t)2

2 + p(t)(Ẋ(t)− a(X)) + ηa′(X) + ηp(t)b′(X)b(X))
)
.

(2.49)
The action S[X, p] is commonly called Martin-Siggia-Rose-Janssen-De Domini-
cis action.

Let’s consider now a stochastic process with additive noise, that is with
constant diffusion term b in the low noise limit, i.e. b � 1. After redefining
p(t)→ p(t)

b
, Eq. (2.48) becomes

P (X(t)) =
∫
DX(t)Dp(t)

b
exp

[
−1
b

∫ T

0
dt

(
−p(t)

2

2 + p(t)(Ẋ(t)− a(X)) + bηa′(X)
)]

'
∫
DX(t)Dp(t)

b
exp

[
−1
b

∫ T

0
dt

(
−p(t)

2

2 + p(t)(Ẋ(t)− a(X))
)]

.

(2.50)

We are interested in the in the most probable paths (instantons) through
which the system state passes between two given points X(ti) = Xi and
X(tf ) = Xf with tf > ti. Because we are considering b � 1, the integral
in Eq. (2.50) can be evaluated using the saddle point method by integrating
only over those paths that minimize the action and thus satisfy

∂S[p,X]
∂p

= 0,
∂S[p,X]
∂X

= 0.
(2.51)

The instantons then satisfy the following coupled system of equationsẊ(t) = a(X) + p(t),
ṗ(t) = p(t)a′(X),

(2.52)

with initial conditions
X(ti) = Xi,

p(ti) = pi,
(2.53)

end final condition

X(tf ) = Xf . (2.54)

The probability of the instanton trajectory becomes then

P (X(t)) ∼ exp
[
−1
b

∫ T

0
dtp2

i e
2
∫ t

0 dsa
′(X(s))

]
. (2.55)
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Chapter 3

Outlook

Currently, I’m following three different directions of research together with my
supervisor and his collaborators.

• We are studying the survival probability a non autonomous Ornstein-
Uhlenbeck process with time periodic drift and diffusion coefficients. We
managed to extend the results of II, V to a defined range of time depen-
dent coefficients and we are trying to obtain more general results.

• We are using Neural Ordinary Differential Equations, a neural network
architecture similar to the Recurrent Neural Network used in III, to
stochastic model dynamical systems in order to infer their dimension
and to perform reliable predictions. We are applying this architecture
to study ENSO, one of the most relevant global climate phenomenon,
which we studied using a different technique in IV.

• We are combining the survival analysis developed in II,V and the instan-
ton calculation used in I to obtain an analytical demonstration of the
Landauer principle, which provides a lower theoretical limit of energy
consumption in any irreversible logical operation.

Ludovico Theo Giorgini, A Serendipitous Journey through Stochastic Processes, SU
2021
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Abstract – In stochastic resonance, a periodically forced Brownian particle in a double-well
potential jumps between minima at rare increments, the prediction of which poses a major the-
oretical challenge. Here, we use a path-integral method to find a precursor to these transitions
by determining the most probable (or “optimal”) space-time path of a particle. We character-
ize the optimal path using a direct comparison principle between the Langevin and Hamiltonian
dynamical descriptions, allowing us to express the jump condition in terms of the accumulation
of noise around the stable periodic path. In consequence, as a system approaches a rare event
these fluctuations approach one of the deterministic minimizers, thereby providing a precursor for
predicting a stochastic transition. We demonstrate the method numerically, which allows us to
determine whether a state is following a stable periodic path or will experience an incipient jump
with a high probability. The vast range of systems that exhibit stochastic resonance behavior
insures broad relevance of our framework, which allows one to extract precursor fluctuations from
data.
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Published by the EPLA under the terms of the Creative Commons Attribution 3.0 License (CC BY).
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Introduction. – Rare events, which frequently accom-
pany fluctuations or phase transitions, arise in a wide
range of natural and social systems, such as infectious dis-
ease outbreaks, earthquakes, stock market crashes, and
many others (e.g., [1–3]). Of particular interest are dy-
namical systems that have bifurcations, at which sud-
den transitions to distinct dynamical regimes occur [4,5].
Even before reaching a bifurcation, noise-induced transi-
tions can occur with low probability [6]. In consequence,
a system experiences a large-magnitude change resulting
in significant positive or deleterious consequences. Hence,
it is important to understand the mechanism leading to
the occurrence of such events, and to seek precursors to
anticipate them [7].

The desire to predict these rare events in advance has
fueled studies, to simulate [8], classify [9], analyze [10] and
predict [11,12] their properties. Although the existence of
early warning signals for rare events has been suggested,
there are few results determining reliable and robust in-
dicators for noise-induced transitions [13]. Because most

systems are inherently noisy, understanding the role of
noise in inducing these transitions is critical for their quan-
titative prediction well in advance. Here we describe a
theory quantifying the role of noise in rare events, which
underlies probabilistic forecast models.

We study noise-induced transitions using a class of peri-
odically forced low-dimensional stochastic dynamical sys-
tems and identify a novel early warning indicator for the
jumps from one stable state of the system to another. Pe-
riodically forced stochastic systems are ubiquitous in na-
ture. For example, periodic forcing and background noise
are the main ingredients of stochastic resonance [14–17]
(see [18,19] for reviews), wherein the response to a weak
signal is magnified by noise-induced fluctuations that drive
hopping from one stable state to the other in a double-well
potential with two minima. Settings of relevance range
from the human cardiovascular system [20] to the seasonal
variability of the Earth’s climate [21].

This paper is organized as follows. In the following
section, we provide an outline of the mathematical
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formulation, with the details provided in the Supplemen-
tary Material Supplementarymaterial.pdf (SM). In the
third section, we discuss the task of finding precursors for
the occurrence of a rare event. We propose a data-driven
strategy to study the problem in the fourth section. This
strategy constitutes the main contribution of our paper
and is presented as a five-step procedure. We test this
strategy with an example in the fifth section using two
different numerical simulations before concluding in the
last section.

Outline of the mathematical formulation. – In or-
der to insure our treatment is reasonably self-contained,
here we outline the principal waypoints of the path-
integral treatment of stochastic processes. For readers not
intimate with this approach we have provided details in
the SM.

The state or position, x, of the system is modeled
by the following nonautonomous one-dimensional over-
damped Langevin equation:

ẋ(t) = F (x(t), t) +
√
2σξ(t), (1)

in which
F (x, t) = −U ′(x) +A cos(ωt), (2)

where the dot (prime) denotes differentiation with respect
to time (position), U(x) is a multi-well potential, A cos(ωt)
is external periodic forcing and ξ(t) is zero mean Gaussian
white noise with correlation function

〈ξ(t)ξ(s)〉 = δ(t− s). (3)

We study systems described by eqs. (1)–(3) with the (con-
stant) noise intensity σ % A by employing a path-integral
formulation [22,23]. The use of this formulation allows
us to identify the most probable (optimal) trajectories
(also called instantons) among all the possible trajecto-
ries that the system state follows to go from a point with
the space-time coordinates (xi, ti) to another point with
the coordinates (xf , tf ). These optimal paths can be de-
rived by studying large deviations from the unperturbed
deterministic dynamics of the system in the weak noise
regime (see [24] for the details of sample-path large devi-
ation theory for stochastic differential equations).

We are interested in the behavior of the system shortly
before its state jumps from one potential well to another.
Since tf−ti is finite, there exists a finite number of optimal
paths, of the order of (tf − ti)/T , where T = 2π/ω is the
period of the external periodic forcing. In fact, it can be
shown that these optimal paths, denoted as xk(t) (with
the subscript k denoting a particular path), satisfy the
following system of first-order differential equations [25]:

ẋk(t) = 2pk(t) + F (xk(t), t), (4)

ṗk(t) = −pk(t)F
′(xk(t), t), (5)

with the boundary conditions

xk(ti) = xi and xk(tf ) = xf . (6)

We have introduced the conjugate momenta pk(t) relative
to the optimal paths xk(t). These momenta are defined
as pk(t) := 1

2 [ẋk(t) − F (xk(t), t)] and they measure the
deviation from the deterministic unperturbed dynamics.
Each path xk(t) starts at t = ti and first follows a stable
periodic orbit xs(t), defined as the solution of eq. (1) with
σ = 0:

ẋs(t) = F (xs(t), t) and xs(t) = xs(t+ T ). (7)

The path begins to deviate from this periodic orbit at a
random time t0 and then transitions to a path that closely
follows another stable periodic orbit. This random time
t0, which also denotes the time at which the pk(t) begin
to deviate from zero, differs for different realizations of
system paths described by eq. (1).

Formally, the probability distribution that the process
x(t) reaches a point xf at time tf , given that it started at
a point xi at time ti can be written as

P (xf , tf |xi, ti) =

n∑

k=1

Pk(xf , tf |xi, ti), (8)

with n = &(tf − ti)/T ', where &·' denotes the floor func-
tion. Each optimal path xk gives the contribution

Pk(xf , tf |xi, ti) =
1√

4πσ2Qk(tf )
e−S[xk]/σ

2

(9)

to the series defining eq. (8). Here

S[xk(t)] =

∫ tf

ti

p2k(t)dt, (10)

where the Qk satisfy the following second-order initial
value problem [25]:

Q̈k(t)

2
−∂t[Qk(t)F

′(xk(t), t)]+Qk(t)pk(t)F
′′(xk(t), t) = 0,

(11)
with

Qk(ti) = 0, Q̇k(ti) = 1. (12)

The early warning indicator. – For a long time in-
terval with high probability the system will follow a stable
periodic orbit, xs(t), around one of the local minima of the
potential with fluctuations of order σ. Rarely, however,
the system will jump from one minimum to the other,
in which case the most probable path is described by
eqs. (4)–(6), with the jump beginning at time ti and end-
ing at time tf . Our principal goal is to obtain quantitative
precursors of such rare events and, combined with knowl-
edge of the optimal path, estimate the most probable time
of the rare event.

The key observation is as follows. We compare eq. (4)
with the Langevin equation (1) and observe that the opti-
mal condition for the system to jump from one potential
well to the other is when the fluctuations around the stable
periodic path,

ξ(t) =
1√
2σ

[ẋ(t)− F (x(t), t)], (13)
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accumulate to
√
2p(t)/σ, where p(t) is one of the pk(t)’s

satisfying eq. (5). Namely, up to a multiplicative factor
of

√
2/σ, as the system approaches a rare event, the fluc-

tuations around the stable state approach one of the de-
terministic minimizers

√
2pk(t)/σ. Therefore, it is crucial

to extract such fluctuations from data in order to deter-
mine whether a state is simply following a stable periodic
path, or begins to follow eqs. (4)–(6), describing the most
probable path that can lead the system to jump.

Clearly, p(t) acts as a forcing for x(t) and hence the for-
mer “anticipates” the latter. Thus, although when p ( σ
and |x− xs| ( σ the instanton and its conjugate momen-
tum can be resolved, the former condition is satisfied be-
fore the latter condition. Therefore, p(t) is a better early
warning indicator than x(t). Now, despite the momentum
being observable when p ( σ, the influence of the oscilla-
tory forcing term with amplitude A in eq. (4) is to delay
the effect of p(t) on x(t) until p(t) = O(A). Hence, there
will be a time window τ such that σ < p(t) < A for t ∈ τ
in which the noise accumulates prior to the appearance of
a large deviation. The system begins to follow eqs. (4), (5)
at t = t0 and after t− t0 > T the momenta behave as

p(t) = p(t0) exp

[
−
∫ t

t0

dsF ′(x(s), s)

]
* p(t0)e

−λs(t−t0),

(14)
where λs < 0 is the Lyapunov exponent of the stable peri-

odic orbit defined as λs = 1
T

∫ t+T

t
dzF ′(xs(z), z). There-

fore, during a “warning time” τW ∼ − 1
λS

ln[ A
p(t0)

], eq. (14)

describes the noise accumulation before x(t) exhibits a
transition. Clearly, because the warning time is inversely
proportional to λs < 0, in less stable orbits we can deter-
mine a jump precursor earlier.

The rare event momentum precursor is demonstrated
numerically in fig. 1, which shows the transition from
one potential well to the other. We used the instan-
ton dynamics described in the fourth section to force
the appropriate accumulation of noise in the case where
F (x, t) = x − x3 + 0.7 cos(2πt) and σ = 0.01 in eq. (1),
which we evolve for ten periods with initial condition
x(0) = −1. We then use eqs. (4)–(6) to simulate the jump.
Comparing figs. 1(a) and (b) one observes the “momen-
tum anticipation” of the deviation of the trajectory xF (t)
from the stable periodic orbit xs(t).

We can obtain an accurate estimate of the time inter-
val in which the jump will occur from eqs. (4), (5), (9)
and (10). Within each period there are only a few highly
probable paths and thus upon observation of optimal noise
accumulation, we can determine which path the system is
following. Hence, we can estimate the corresponding jump
time, tj , when the system shifts to the other stable basin
(fig. 2(b)). Therefore, by studying the fluctuations around
the stable periodic orbit to determine when they begin to
behave as p(t), we can predict if the system is approaching
a jump by computing the jump probability and time. Next
we provide a systematic outline of our prediction strategy.

Fig. 1: (a) Time evolution of the position xF (t), compared to
the stable periodic orbit xS(t). (b) A semi-log plot of |p(t)|. (c)
Time behavior of the jump probability computed from eq. (9).

Fig. 2: Values of the action corresponding to different values of
(a) t0 and (b) tj . The system has been evolved for 10 periods
setting p(t) = 0 in order to be sure that it follows the stable
periodic orbit, after which eq. (5) was used for p(t).

Prediction scheme. – Our program for the prediction
and study of rare events in stochastic resonance consists
of the following five main steps:

1) We start with the nonautonomous Langevin equa-
tion (1) describing the time evolution of the system,

ẋ(t) = F (x(t), t) +
√
2σξ(t),

assuming we know F (x(t), t) and σ. See [21] and [26]
regarding the construction of these expressions from
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the data (the latter paper treating the autonomous
case).

2) We determine the instantons as follows. First, we
evolve

ẋs(t) = F (xs(t), t),

with xs(t = 0) chosen inside one potential well. After
an initial transient, the system state evolves follow-
ing the stable periodic orbit. When this condition is
satisfied at t = t0, we modify the earlier equation to

ẋ(t) = 2p(t) + F (x(t), t),

ṗ(t) = −p(t)F ′(x(t), t),

with

x(t0) = xs(t0) and p(t0) = p0 > σ. (15)

We evolve the system many times until we observe a
shift to another stable basin at t = tj , using the same
value of p0 but with different values of t0 chosen inside
one period. For each of these paths we compute the
relative action

S[xk(t)] =

∫ tj

t0

p2k(t)dt.

Because S(t0) is periodic, there will be only one in-
stanton in every period. We find the instanton as the
path that minimizes the action in every period (see
fig. 2).

3) We isolate the noise from the data using the Langevin
equation as in eq. (13),

ξ(t) =
1√
2σ

[ẋ(t)− F (x(t), t)],

which is related to the conjugate momentum as p(t) =
σξ(t)/

√
2.

4) Prior to the jump the conjugate momentum is
expected to increase exponentially as p(t) =
p0e

−λs(t−t0). Thus, we scrutinize the behavior of p(t)
obtained from the data of x(t) through eq. (13) un-
til it ceases to exhibit fluctuations of order σ near
zero and begins to grow. We compare its behavior to
the conjugate momentum of the instanton and if the
noise structure differs from optimality we are unable
to make predictions; because the noise structure is not
optimal, the jump is more rare. However, when the
noise structure is optimal, we can accurately estimate
the jump probability and time.

Next we demonstrate this scheme in a numerical
example.

Fig. 3: (a) Plot of the position of the system x(t) and of p(t) =
1
2
[ẋ(t) − F (x(t), t)] computed numerically (using a leap frog

algorithm) from eq. (1), and denoted with the subscript S.
(b) Expansion of the previous plot and comparison with p(t)
computed from eqs. (4), (5), denoted with the subscript P .
Note that x(t) first hits the origin at approximately t = 1011.5,
which is preceded with a peak in p(t) by a time of 4 periods.
The data are smoothed using a moving average.

Numerical demonstration. – In order to demon-
strate this strategy, we evolve eq. (1) numerically for a
very long time, until the system jumps from one poten-
tial well to the other. We use a quartic potential U(x) =
−x2/2 + x4/4 with A = 0.7, ω = 2π and σ = 0.0727.
These parameters are chosen to maximize the difference
between A and σ and yet still yield a jump in a tractable
simulation time.

In the absence of noise and periodic forcing, the result-
ing Langevin equation has two stable periodic solutions
separated by an unstable one. We apply our prediction
scheme to study the transition between the two stable pe-
riodic solutions in the regime σ < A. The results are
discussed in the following.

Figure 3(a) shows the time evolution of the system state
x(t) and of the deviation p(t) from deterministic flow (the
noise) over a time of 2000 periods. We observe that p(t)
exhibits small oscillations around zero, showing a peak
near the jump. Since the system is driven by white noise,
p(t) has no temporal structure in the time frame consid-
ered, except for the increment very near the jump. In-
deed, as described above, this jump can only be observed
if the noise accumulates in an optimal way. Namely, in
this region the noise does not behave randomly. Rather,
in order to drive the system to a jump, the noise should
form a specific structure that depends on the shape of the
potential.

Figure 3(b) shows in detail the behavior of p(t) close to
the jump. When the value of p(t) is near zero, we expect
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that the noise, and thus p(t), will accumulate randomly.
Importantly, in that region, because there are many ways
for the noise to accumulate with equal probability, find-
ing an optimal path is meaningless. However, when p(t)
deviates from zero we find a substantially different cumu-
lative influence of the noise. Namely, because the prob-
ability differences between paths increase exponentially,
only a single path becomes relevant. This path is very
near the optimal path satisfying eqs. (4), (5). Indeed,
the solution of eq. (5) and numerical shapes of p(t) agree
well near the transition; increasing exponentially rather
far from zero as e−λst and then, when approaching the
unstable periodic orbit around the maximum of the po-
tential, it begins to decrease as e−λut, with λu the Lya-
punov exponent of the unstable periodic orbit defined as

λu = 1
T

∫ t+T

t
dzF ′(xu(z), z). Clearly the unstable peri-

odic orbit will not persist and, after reaching the max-
imum of the potential, the system will immediately fall
into the stable periodic orbit around the minimum of the
other well. However, the asymmetric influence of the noise
as the system transitions is responsible for the deviation of
the numerical and the analytical prediction near the peak.

Figures 4(a)–(c) show x(t) in three different simulations
and p(t) during the interval in which noise is accumulating
shortly before the transition. In each simulation we have
modified the shape of the potential in order to change the
value of the Lyapunov exponent of the stable orbit and
the noise amplitude to make the waiting time for the jump
comparable in each simulation. This is accomplished by
varying the value of a in −U ′(x) = a x−x3, with a = 1.5, 1
and 0.5 in figs. 4(a)–(c), respectively, as well as the values
of σ, with σ = 0.1233, 0.0727 and 0.0632 in figs. 4(a)–(c),
respectively. In all cases, A = 0.7 and ω = 2π. These
figures demonstrate the optimal nature of the noise accu-
mulation described by the instanton equations (4), (5). In
fig. 4(d) we show the mean standard error (MSE) between
the realizations of p(t) constructed from the realizations
of the noise and its optimal behavior described in eq. (14).
This is defined as

MSE(t) =
1

n
min
p0

{
m+n∑

i=m

(
pi − p0e

λsti
)
}
. (16)

We computed the MSE using the noise from fig. 4(c) taken
over a 200 period time window spanning an interval ex-
hibiting linear behavior on a logarithmic scale. We used
a moving time window of size n = 22 = 2.2dt(∼τW ), in
each of which we chose the value of p0 that minimizes the
MSE between the values of p(t) constructed from the re-
alizations of the noise and the exponential slope given in
eq. (14). We find that the MSE assumes larger values —
ten times larger at least— for the time interval in which
the noise deviates from p0e

−λst. Thus, these simulations
show that the time window during which the noise ac-
quires a specific structure increases thereby decreasing the
value of the Lyapunov exponent, consistent with the dis-
cussion in the second section. Namely, a smaller Lyapunov

Fig. 4: The trajectories of x(t) for 100 periods and p(t) immedi-
ately prior to the jump (along with the analytical prediction)
for three different simulations associated with three different
Lyapunov exponents are shown in (a)–(c). (d) The MSE of the
noise realizations with respect to the optimal behavior pre-
dicted in eq. (14), using the data from the simulation shown in
(c) displayed over a larger time window. The solid line is the
average MSE, the dashed line is the MSE corresponding to the
values of p(t) in the time window highlighted in the top left of
(c) and the dotted line is the minimum value reached by the
MSE if these values of p(t) are removed.

exponent implies a slower optimal accumulation of the
noise. Therefore, the system will take more time to shift
to another stable basin so that the warning time of a rare
event increases for less stable potentials.

When σ % A and σ % ∆U the jump probability is
extremely small and thus poses a substantial numerical
challenge. Having shown that our strategy works well un-
der less extreme cases we have thereby quantified how the
conjugate momentum of the instanton organizes the noise
prior to the jump. Therefore, we expect that the same
noise organization process will be operative in the case
where σ % A and σ % ∆U and the system behavior
shown in fig. 1 will be recovered.

Conclusion. – We have developed a theory to study
and find precursors to noise-induced rare events within the
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general framework of stochastic resonance. In stochas-
tic resonance, a periodically and noise forced system in
a double-well potential jumps between minima, but the
time-scale separation of these forcings insures that the
system oscillates for a long time about one of the local
minima of the potential and only very rarely jumps to the
other minima. The ubiquity of such transitions underlies
the importance of trying to predict when they will occur.

We have used a path-integral method to determine the
particular manner in which the fluctuations around
the unperturbed deterministic flow must organize prior
to the system jump. We have showed how to predict
the time within a period when the system will transit
to another minimum, and have harnessed the signature
of this fluctuation behavior as an advanced indicator of
a potential jump, as well as computing the probability
of such rare events. The method provides a framework
to examine data in a manner that facilitates predictions
across a broad spectrum of stochastic systems. Finally,
the approach identifies a short well-defined structure im-
mediately prior to the rare event. The detection of such
structures in a prediction setting is a central aspect of
many machine learning approaches to rare event predic-
tions (see, e.g., [27]), which provide a test bed for a wide
range of applications.
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Abstract
We use asymptotic methods from the theory of differential equations to obtain an analytical
expression for the survival probability of an Ornstein–Uhlenbeck process with a potential
defined over a broad domain. We form a uniformly continuous analytical solution covering
the entire domain by asymptotically matching approximate solutions in an interior region,
centered around the origin, to those in boundary layers, near the lateral boundaries of the
domain. The analytic solution agrees extremely well with the numerical solution and takes
into account the non-negligible leakage of probability that occurs at short times when the
stochastic process begins close to one of the boundaries. Given the range of applications of
Ornstein–Uhlenbeck processes, the analytic solution is of broad relevance across many fields
of natural and engineering science.

Keywords Survival probability · Ornstein–Uhlenbeck Process · Fokker–Planck equation ·
Asymptotics

1 Introduction

The generalized Ornstein–Uhlenbeck (OU) model describes a stochastic process with at least
one equilibrium point. It provides a framework for a wide range of physical, biological and
social systems, wherein stabilization is viewed in terms of a potential minimum, characterized
by a negative Lyapunov exponent, and high-frequency fluctuations are interpreted in terms of
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Analytical Survival Analysis of the Ornstein–Uhlenbeck Process 2405

specific noise forcing. For example, an OU process is used to study neuronal activity [1] and
the time-evolution of trait values towards their evolutionary optima [2]. In a clinical setting the
health of the hepatic dynamic equilibrium is fit to an OU process using maximum likelihood
estimation [3]. Stochastic volatility, crucial for deducing stock returns or option pricing, is
treated in terms of an OU process [4], as are the noise spectra of climate observations [5–7].

A particular stochastic model is commonly studied in terms of the survival probability,
which is associated with the probability of one or more events occurring, or for the system
to reach a defined threshold for the first time starting from a given initial position. Due to
the generality of the question it addresses, survival analysis has been widely used in science
and engineering. Examples include Feshbach resonances and the quantum Zeno effect (for
example [8–10]), engineering reliability analysis [11], financial risk management [12], and
event history analysis in sociology [13]. Moreover, in the specific case of an OU process
survival analyses from neuroscience [14] and epidemiology [15,16] to quantitative finance
[17–19] and extreme value statistics of correlated random variables [20] demonstrate the
ubiquity of the approach. Our survival analysis is broadly relevant to all systems that can be
described by an OU process. For example, it can be shown [21] that the survival probability of
Brownian motion with an absorbing boundary that moves in time t as ∝ √

t can be recast as
an OU process with a fixed absorbing boundary using Lamperti’s (or Doob’s) transformation.

Let {X(t), t ≥ 0} be an OU process starting at x . The time it takes for the state of a system
to encounter a threshold X(t) = β for the first time is variously called the first hitting time
or first passage time, whose probability distribution function ζ(t, x), is defined as

ζ(t, x) = ∂

∂t
Prob{T ≤ t}, (1)

where

T ≡ inf{t : X(t) > β; X(0) = x}. (2)

The time integral of the probability distribution of the first passage time is the survival
probability (see for example [22–25] for reviews).

Despite the broad applicability of the survival probability, a simple accurate analytical
expression has been lacking, which is the primary motivation of our work. The exact math-
ematical form is constructed using the Laplace transform and its inverse, which results in
a series expansion of special functions [26]. However, its complexity confounds practical
implementation. In particular, when the initial data are close to the boundary of the confining
potential [27], or when the boundary itself is near the equilibrium point [28], one must retain
a considerable number of terms in the expansion.

Our treatment of survival probability is shown in the schematic potential of Fig. 1, which
contains a particle governed by a one-dimensional Ornstein–Uhlenbeck process through an
overdamped autonomous Langevin equation given by

Ẋ(t) = −aX(t) + √
2bξ(t), (3)

where a and b are positive constants and ξ(t) is Gaussian white noise with a zero mean and
〈ξ(t)ξ(s)〉 = δ(t − s).

The survival probability commonly characterizes the anomalous or abnormal behavior
of a system. This motivates our consideration of a threshold state (X = β) far from the
equilibrium state (X(t) = 0), so that it is rare that the system will reach the threshold.

The next section is devoted to our overall approach. In Sect. 2.1 we summarize our method.
In Sect. 2.2 we briefly review previous results on the survival probability of an OU process
that will be used in Sect. 2.3 to derive a simple analytical expression that reproduces the
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2406 L.T. Giorgini et al.

survival probability for large values of the domain boundaries and when the initial data are
close to the boundary. In Sect. 2.4 we compare the analytical and numerical results.

2 UsingMatched Asymptotic Methods to Determine the Survival
Probability

2.1 Summary of Analytical Method

Our approach is as follows. As shown in Fig. 1 we divide the domain into two regions [29]: a
broad O(1) region (I ) containing the minimum of the potential, X = 0, and a narrow O (1/β)

boundary layer near X = β. We solve the limiting differential equations in these regions, from
which we develop a uniform composite solution for the probability density of the survival
probability using asymptotic matching, which is a highly accurate general analytical method
[30], recently used to obtain the solution to the related problem of stochastic resonance [31].

2.2 Previous Results on the Survival Probability of an OU Process

The canonical approach of finding the survival probability of this OU process is to determine
the probability distribution for the first hitting time in Laplace space

ζ̃ (λ, x) =
∫ ∞

0
e−λtζ(t, x)dt, (4)

which leads to the following analytical expression [32–34],

ζ̃ (λ, x) = e
a(x2−β2)

4b
D−λ/a(−x

√
a/b)

D−λ/a(−β
√
a/b)

, (5)

where Dλ(z) is the parabolic cylinder function, β is the boundary position and x is the initial
position.

This equation can be written as a spectral decomposition [35], wherein the countable
number of eigenvalues correspond to the zeros of the denominator of Eq. (5). The final
expression for the probability distribution of the first hitting time can be obtained by invert-
ing each term of this spectral decomposition, which can be written as a weighted sum of

Fig. 1 Schematic of the problem
under study; what is the
probability that a particle reaches
the edge of the potential well?
We divide the potential into an
“outer” region I and a boundary
layer I I , or the “inner” region, of
the potential, in each of which the
asymptotically dominant
solutions are determined and then
matched
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exponential functions as

ζ(t, x) =
∞∑
p=0

eλp(β)t Φ(λp(β)/a, x
√
a/b)

Φ ′(λp(β)/a, β
√
a/b)

, (6)

where λp(β) is the solution of

Φ(λp(β)/a, β
√
a/b) = 0, (7)

and Φ and Φ ′ are defined in [35] in terms of Kummer and digamma functions.
For large values of t and β − x , Eq. (6) simplifies considerably. In fact, because all

the eigenvalues, λp(β), are negative, only that with the smallest magnitude will contribute
significantly as t → ∞. Moreover, for large values of β − x , Eq. (6) becomes

lim
β−x→∞ ζ(t, x) = 1

t1(β; 0)
exp

[
− t

t1(β; 0)

]
with

t1(β; 0) = 1
aβ

√
2πb

a
exp

[
aβ2

2b

]
,

(8)

where t1(β; 0) is the mean first passage time of the process from X(t = 0) = 0 to the
boundary β [36].

Importantly, however, the asymptotic expression in Eq. (8) is not valid when x ≈ β.
Indeed, as we show here, when the process starts in the neighborhood of x = β there is
a non-trivial leakage of probability. This leakage is not taken into account by Eq. (8) and
transpires very rapidly, on a time scale of order 1/β2. Therefore, taking this approach requires
that one calculate an enormous number of eigenvalues in Eq. (6), which is computationally
inefficient. Our approach avoids this problem.

2.3 Detailed Development of the Approach

We derive an asymptotic expression for the survival probability, which is the time integral
of the probability distribution of the first passage time, and in the large β limit it is trivial to
evaluate when x ≈ β.

The probability density, ρ(y, t; x, s), of the OU process in Eq. (3) is described by the
Kolmogorov forward (KFE) and backward (KBE) equations, the former of which is

∂tρ(y, t; x, s) = a ∂y[y(t)ρ(y, t; x, s)]
+ b ∂yyρ(y, t; x, s) ≡ Lyρ(y, t; x, s), (9)

where the operatorLy is the generator of the OU process viz., [Ly f ](y, t) = a ∂y[y f (y, t)]+
b ∂yy f (y, t). The KBE follows by replacingLy with its adjoint,L∗

x , defined as [L∗
x f ](x, s) =

−ax ∂x f (x, s) + b ∂xx f (x, s).
The KFE gives the evolution of the probability density of the process when the initial

position and time, (x, s), are known, while the KBE treats the evolution when the final
position and time, (y, t), are known. Both equations have initial condition

ρ(y, u; x, u) = δ(y − x), (10)

and boundary conditions

ρ(±∞, t; x, s) = 0 and ρ(y, t;±∞, s) = 0 (11)
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2408 L.T. Giorgini et al.

for the KFE and the KBE respectively.
The survival probability within the interval (α, β) is defined in terms of the KBE density,

ρK BE , as

S(t; x, s) =
∫ β

α

ρK BE (y, t; x, s)dy, (12)

which satisfies

−∂s S(t; x, s) = −a x(s)∂x S(t; x, s) + b ∂xx S(t; x, s), (13)

with initial condition

S(t = s; x, s) = Θ(x − α)Θ(β − x), (14)

and boundary conditions

S(t; x = α, s) = S(t; x = β, s) = 0 ∀ s ≤ t, (15)

where Θ(·) is the Heaviside theta function.
Let Pα

i (Pβ
i ) be the probability of hitting x = α(β) for the first time after i time steps and

let Sα(Sβ) be the survival probability with an absorbing boundary at x = α(β). Hence, if
we discretize the stochastic process, the survival probability after n time steps is

Sn =
n∏

i=1
(1 − Pα

i − Pβ
i ) =

n∏
i=1

[(1 − Pα
i )(1 − Pβ

i ) − Pα
i Pβ

i ]

�
n∏

i=1
(1 − Pα

i )

n∏
i=1

(1 − Pβ
i ) = Sα

n S
β
n .

(16)

In the second line of Eq. (16), we have neglected the term Pα
i Pβ

i for |α| � 1 and |β| � 1,
allowing us to write the survival probability in the interval (α, β) as the product of the two
survival probabilities in the two intervals (−∞, β) and (α, ∞) with α < β. From this point
on we will only consider the survival probability in the interval (−∞, β), and note that the
derivation for the interval (α, ∞) follows in straightforward analogy.

We now rewrite Eq. (13) in a rescaled form,

∂t S(x, t) = −x(t)∂x S(x, t) + ∂xx S(x, t), (17)

with the new variables,

x → xσ, β → βσ and s → − t

a
, (18)

in which the spatial coordinate is expressed in terms of the standard deviation σ = √
b/a of

a stationary OU process obtained from the solution of Eq. (9) in the limit t → ∞. The new
initial and boundary conditions are⎧⎪⎨

⎪⎩
S(x, t = 0) = Θ(β − x),

S(x = β, t) = 0, and
S(x = −∞, t) = 1.

(19)

We solve the limiting differential equations within the two regions, from which we construct
an approximate uniform solution by asymptotic matching. We denote Sout(x, t) and Sin(x, t)
as the solutions in region I and I I respectively.
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Analytical Survival Analysis of the Ornstein–Uhlenbeck Process 2409

Region I. The outer solution is obtained by imposing β − x � 1. In this limit the
probability distribution of the first hitting time in Eq. (8) is valid, and its time integral gives
the survival probability as

Sout(t)� e
−

(
β√
2π

e− β2
2

)
t

, (20)

where the rescaled β and t of Eq. (18) have been used.
Region II. In the boundary layer, or the inner region, we have x ∼ β, where the approx-

imation of Region I is no longer valid. We let ε ≡ 1/β � 1 and introduce the following
stretched coordinates,

η = x − 1
ε

ε
and θ = t

ε2 , (21)

that we use to rewrite Eq. (17) as

1
ε2 ∂θ Sin(η, θ) = −

[
1
ε2 + η(θ)

]
∂ηSin(η, θ)

+ 1
ε2 ∂ηηSin(η, θ), (22)

which at leading-order becomes

∂θ Sin(η, θ) = −∂ηSin(η, θ) + ∂ηηSin(η, θ). (23)

Clearly, Eq. (23) is a diffusion equation for Sin(η, θ) along the characteristics

dη

dθ
= 1 and

dρ

dθ
= 1, (24)

which we can then write as

∂ρSin(μ, ρ) = ∂μμSin(μ, ρ), (25)

wherein μ ≡ η−θ and ρ ≡ θ , so that the boundary condition becomes Sin(μ = −ρ, ρ) = 0.
We solve Eq. (25) by first finding its Green’s function, G(ρ, μ; ν), which satisfies

∂ρG(μ, ρ; ν) − ∂μμG(μ, ρ; ν) = δ(μ − ν)δ(ρ). (26)

This Green’s function is associated with the probability density ρK BE , satisfying the KBE,
and hence the survival probability through Eq. (12). Hence, this density satisfies the following
conditions;

{
ρK BE (μ, ρ = 0; ν) = δ(μ − ν),

ρK BE (μ = 0, ρ; ν) = ρK BE (μ = −∞, ρ; ν) = 0.
(27)

The Green’s function is (e.g., [37])

G(ρ, μ; ν) = 1√
4π ρ

(
exp

[
− (ν − μ)2

4 ρ

]

− exp
[
− (ν + μ)2

4 ρ
− ν

] )
,

(28)
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2410 L.T. Giorgini et al.

which, as noted above, now allows us to write the solution of Eq. (25) as

Sin(μ, ρ) =
∫ 0

−∞
dν

∫ ∞

−∞
dφ G(μ, ρ;φ)δ(φ − ν)

=
∫ 0

−∞
dν G(μ, ρ; ν).

(29)

Upon integration and reversion to the original variable t and to the stretched coordinate η,
we find

Sin(η, t)�K

2
eη

(
− erfc

[
1
2

√
1
t
(−t − η)

]

+ e−ηerfc
[

1
2

√
1
t
(−t + η)

])
≡ K S′

in(η, t).

(30)

We determine the constant K by requiring the outer limit of the inner solution to equal
the outer solution;

K = lim
η→−∞ Sin(η, t) = Sout(t)� e

−
(

β√
2π

e− β2
2

)
t

.
(31)

Therefore, the uniformly valid approximate composite analytical solution for the survival
probability is

S(x, t) = Sin(x, t) + Sout(t) − K

�1
2

e
−

(
β√
2π

e− β2
2

)
t

eβ(x−β)

×
(

− erfc
[

1
2

√
1
t
(−t − β(x − β))

)

+ e−β(x−β)erfc
[

1
2

√
1
t
(−t + β(x − β))

])

≡ S′
in(x, t)Sout(t),

(32)

written in terms of the original spatial coordinate x rather that the stretched coordinate η.

2.4 Comparing Analytical and Numerical Results

We compare Eq. (32) with the numerical solution of Eq. (17) for different values of the
parameter β in Fig. 2, and find excellent agreement even when β is not asymptotically large.
Indeed, the smallest value of the distance to the boundary is β = 1.645σ , corresponding to
a 90% probability that an unbounded stationary OU process remains below the boundary.

When t � 1/β2 the left hand side of Eq. (23) is negligible and Eq. (32) becomes Sout(t)[1−
eβ(x−β)] and depends on time solely through Sout(t), which is the prefactor of Sin(x, t). Thus,
depending on x the rate of the decrease in the survival probability is controlled by Sin(x, t),
decaying more rapidly near the boundary for early times.

The accuracy of the asymptotic solutions over a wide range of the β facilitates simple
and wide ranging applications. For example, determining the input parameters of a leaky
integrate-and-fire (LIF) neural model (see e.g., [38] and refs therein) based on experimentally
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Analytical Survival Analysis of the Ornstein–Uhlenbeck Process 2411

Fig. 2 a–c Plot of Eq. (32), S(x, t), versus x ∈ [0, β] for different values of t (solid lines) compared to the
numerical solution of Eq. (17) (crosses). We use three different values of the boundary position β; a 3.5,
b 1.96, and c 1.645, corresponding to the probability of finding the system below x = β as t → ∞ and
without absorbing boundaries of a 99.95%, b 99%, and c 90% respectively. d The numerical solution of
Eq. (17) with two boundaries (red circles), Sα,β (x, t), Sα(x, t)Sβ(x, t) (blue crosses), and the approximate
analytical solution in Eq. (33), S′

α(x, t)S′
β(x, t). Note that Sα,β (x, t) overlaps exactly with Sα(x, t)Sβ(x, t).

Here α = β = 3.5 and x = 0
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2412 L.T. Giorgini et al.

observable interspike intervals [28]. Of particular contemporary relevance is deducing the
“critical community size” in disease epidemiology [27], or the population threshold below
which infections do not persist.

Finally, we appeal to Eq. (16) to form the asymptotic expression for the survival probability
of an Ornstein–Uhlenbeck process with two absorbing boundaries as

Sα,β(x, t) = S′α
in(x, t)S

α
out(t)S

′β
in(x, t)S

β
out(t) ∀t > s. (33)

We note that only one of the boundary regions will contribute significantly viz.,

S′α,β
in (x, t) = S′α

in(x, t)S
′β
in(x, t) = S′γ

in(x, t),

γ = min|hα |,|hβ |(α, β),
(34)

where hα(β) = x − α(β).
In Fig. 2d we show that the numerical solution with two boundaries matches that obtained

by considering the two boundaries separately and with the analytical solution in Eq. (33).

3 Conclusion

We have obtained an asymptotic analytical solution for the survival probability of an Ornstein–
Uhlenbeck process for large potentials. We divide the potential into two layers near the
boundaries and a broad region between, which contains the origin, where we use the solution
of Ricciardi and Sato [35]. The uniformly continuous solution is obtained by matching the
two approximate solutions in the boundary layers with that in the broad region between.
The solution agrees extremely well with both the numerical solution and with the more
restricted asymptotic expression for the survival probability known in literature. Importantly,
our analysis remains valid even when the initial position of the stochastic process is close to
one of the boundaries, and furthermore it takes into account the non-negligible leakage of
the probability early in the time evolution.

Despite the analysis using the assumption of asymptotically large boundaries, we showed
that it agrees well with the numerical solution, even when the boundary positions are the same
order of magnitude as the standard deviation of the stationary probability distribution function
of the OU process. Indeed, we demonstrate consistency when there is a 90% probability that
the system without absorbing boundaries is found at a position less than β; when reaching
the boundary can no longer be considered a rare event. Therefore, our method can be easily
extended to more general (less restrictive) settings. Finally, our compact analytical solution
provides a computationally trivial framework for survival analysis of use across the broad
spectrum of stochastic systems where the Ornstein–Uhlenbeck process arises.
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ABSTRACT

We study the problem of predicting rare critical transition events for a class of slow–fast nonlinear dynamical systems. The state of the system
of interest is described by a slow process, whereas a faster process drives its evolution and induces critical transitions. By taking advantage
of recent advances in reservoir computing, we present a data-driven method to predict the future evolution of the state. We show that our
method is capable of predicting a critical transition event at least several numerical time steps in advance. We demonstrate the success as
well as the limitations of our method using numerical experiments on three examples of systems, ranging from low dimensional to high
dimensional. We discuss the mathematical and broader implications of our results.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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Critical transitions are ubiquitous in nature. These transition
events are often induced by a fast driving signal and are rare
and random. Since such events could lead to significant effects,
it is important to develop effective methods to predict signal-
induced critical transitions early. Recently, many studies have
been devoted to exploring early warning indicators to predict and
characterize the onset of critical transitions. In this paper, we pro-
pose and test an alternative method to predict critical transitions
within a class of multiscale dynamical systems. Our method is
data-driven, inspired by recent advances in reservoir computing,
and takes into account the multiscale nature of the systems. We
demonstrate the success as well as the limitations of our method
using numerical experiments on both low- and high-dimensional
systems. We anticipate that our work will serve as a catalyst for
further progress in tackling the problem of predicting critical
transitions using scientific machine learning.

I. INTRODUCTION
The dynamics of many systems in nature are nonlinear, multi-

scale, and noisy, making both the theoretical and numerical model-
ing and prediction of their states challenging. Of particular interest

are those dynamics that often lead to rare transition events. Par-
ticularly, the system under study spends very long periods of time
in various metastable states and only very rarely, and at seemingly
random times, does it hop between states. Such sudden changes in
the dynamical behavior of complex systems are known as critical
transitions,43,71 occurring at so-called tipping points.3

One mechanism that explains the hopping behavior is that it
is induced by a fast signal influencing the state of the otherwise
closed system. The usually noisy driving signal comes from an exter-
nal source. It is often the case that there is a large separation of
time scales on which the system state and the signal evolve. With-
out the driving signal, the system will remain in one state forever.
Understanding the dynamics of such system requires us to study
the ensemble of transition paths between the different metastable
states.19,21,35

The above signal-induced phenomenon can be modeled by a
class of non-autonomous open dynamical systems, whose state x :
[0,T] → Rn, T > 0, is described by

ẋ(t) = F(x(t), t)+ f(t), (1)

where F(x(t), t) is a force field, providing a deterministic backbone,
and f(t) is a fast driving noisy signal, describing small perturbations
imparted to the system. In principle, one does not have a priori
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knowledge of the mathematical model for f(t) but only has access
to data for x and, possibly, a mathematical model for F(x(t), t) at
their disposal. The unknown f(t) is generally a random function,
and it could be regular, chaotic, or stochastic. It is challenging to
infer an accurate model for f(t) using only the data for x. In fact,
in many cases, one could construct several models that are capable
of describing the data equally well, and often there are ambiguities
in the choice of model. An example that illustrates this issue is the
problem of distinguishing deterministic chaos from stochasticity.1,40

Indeed, on one hand, when certain assumptions are satisfied, chaotic
systems can be well approximated by a stochastic one.5,16,53 On the
other hand, many stochastic systems can be described by a chaotic
model.26 In the absence of a uniquely defined model for f(t), one has
to resort to a model-free, data-driven, approach, which is currently
an extremely active area in applied dynamical systems. We refer the
reader to the book by Brunton and Kutz13 for an excellent review of
data-driven methods.

An important and practical question concerning the system (1)
is the following—can we predict the future evolution of the system
state using only its data? Moreover, can we achieve this for a suffi-
ciently long time and to a desired level of accuracy and certainty?
Note that this is different from asking one to infer a mathematical
model (which may have a very low predictive power, as for exam-
ple in the case of a random walk model) from the data. Typically,
the data are complex and multiscale in nature, thereby complicat-
ing analysis and prediction. The main goal of this work is to propose
and test a machine learning based solution to predict rare events in
multiscale noisy nonlinear dynamical systems, making use of only
the (slow) system state data and a partial knowledge of the physics
of the generating system. Since the occurrence of rare events can
have significant deleterious or positive implications, it is impor-
tant to quantify and predict them in advance to inform decision
making27—this is the main motivation of this paper. To the best of
our knowledge, this is the first attempt to solve this particular prob-
lem using a machine learning method. Here, we will focus on the
case where the system of interest is one-dimensional.While we focus
on prediction of rare events, ourmethod can be applied to predicting
future states in general multiscale systems.

By exploiting recent advances in machine learning, we con-
struct an algorithm to solve the prediction problem. The field of
machine learning is experiencing a major recent resurgence of inter-
est, with wide ranging applications and significant implications in
many areas of science and engineering.14,55 We note, in particular,
neural networks and deep learning whose industry wide applications
have been made possible due to availability of large amount of data
and advances in computer hardware development.31 For instance,
by training on a sufficiently large set of data, one can classify
handwritten digits to unprecedented accuracy,44 predict and analyze
time series,78 infer the Hölder exponent of stochastic processes,74

characterize anomalous diffusion,11 learn how to construct linear
embeddings of nonlinear dynamics,52 replicate chaotic attractors
and calculate Lyapunov exponents,61 solve high-dimensional non-
linear PDEs,65 and others that are too numerous to list here. As pow-
erful as they appear, we emphasize that it is by nomeans an easy task
to apply the tools of machine learning to real world datasets and one
needs to proceed with caution and avoid potential pitfalls.66 Indeed,
one of the main challenges in machine learning deals with the ability

of the algorithm to be generalized to unseen data. Moreover, the
empirical approach of machine learning is refined only with prac-
tices that have principally been discovered by trial and error. Our
approach falls within the scope of scientific machine learning,4 an
emerging research area that is focused on the opportunities and
challenges of machine learning in the context of applications across
science and engineering.

This paper is organized as follows. In Sec. II, we motivate and
describe the class of dynamical systems of interest from which the
data are generated. They are special cases of (1) with a specified
model for f(t). We then introduce the problem of data-based rare
event prediction. In Sec. III, we present and explain in detail a reser-
voir computing based method to solve the prediction problem using
a variant of the echo state network (ESN). In Sec. IV, we apply and
test the method to predict rare events in three different systems. We
make concluding remarks in Sec. V. The Appendix contains further
details on training, validation (model selection), and testing.

II. MULTISCALE NOISY SYSTEMS AND THE
PREDICTION PROBLEM

We consider scenarios where the available data are gener-
ated by the following family of continuous-time slow–fast systems
(parameterized by ε > 0):9,63,67

ẋ(t) = F(x(t), t)+
σ

ε
G(ξ(t)), (2)

ξ̇(t) =
1

ε2
H(ξ(t)), (3)

with the initial conditions x(0) = x0 and ξ(0) = ξ0, where x0 and ξ0
can be either fixed or random. In the case when both initial con-
ditions are fixed, (2) and (3) describe a deterministic dynamical
system; otherwise, it is a random dynamical system. In the above,
x : I → R is a slow process, ξ : I → Rm is a fast process (noise),
F : R × I → R is a deterministic force field, G : Rm → R is a func-
tional (observable) of the fast process, H : Rm → Rm is a determin-
istic vector field describing the fast process, σ > 0 is a small constant
controlling the strength of influence of the fast process on the slow
one, and I is a time interval on which the system evolves. Here F,G,
andH are O(1) as ε → 0. In many applications of interest, F, G, and
H may be highly nonlinear. The assumption that the data are mod-
eled by the above systems are not too restrictive, for as is very often
the case in the analysis of experimental data, there is not a unique
single model for the system generating the data.

Often one is interested in the dynamics of the slow process and
the case where the driving signal, f(t) = σ

ε
G(ξ(t)), is a stochastic

process such as Gaussian white noise. A crucial property of dynam-
ical systems of the form (2) and (3) is that stochastic behavior
emerges as ε becomes smaller. Indeed, it can be rigorously shown
that under appropriate assumptions on the initial conditions, F,
G, and H, x(t) converges in law (homogenizes) to X(t) as ε → 0
for t ∈ I, where X(t) is a diffusion process solving the stochastic
differential equation (SDE),16,56

dX(t) = F(X(t), t)dt+ σ̃dW(t). (4)
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Here, σ̃ > 0 is a constant (involving the time integral of the corre-
lation of the fast process) and W(t) is a Wiener process. Usually, a
mixing assumption is imposed on the fast flow. However, such an
assumption is not necessary for homogenization. The system only
needs to be sufficiently chaotic. See, for instance, Remark 2.1 in
Ref. 32 and also Refs. 16, 41, and 42.

Therefore, the family of Eqs. (2) and (3) can be viewed as
approximations of a stochastic model. Such a perspective has been
adopted to study a variety of noisy systems.2,10,36,57 We refer to
Sec. IV for concrete examples. An important class of ξ(t) are
those that exhibit deterministic chaos, which has been studied and
observed26 in a range of physical systems. Note that G can be gen-
eralized to be dependent on x(t), in which case the limiting SDE
will have a multiplicative noise, but we will not pursue this case
here.

We now formulate the prediction problem introduced in Sec. I
systematically. First, we lay out our assumptions. The only data
available to us are that for x, which is assumed to be generated by
the systems (2) and (3), and we do not have access to the data for ξ .
Let I = [tinit, tobs] ∪ [tobs, tf], where tinit < tobs < tf. Here, tinit denotes
an initial time, tobs denotes an observation time, beyond which we do
not have access to system state, and tf denotes the final time at which
the prediction will be made. Suppose that we are given a sufficiently
long and high-frequency time series for x on [tinit, tobs]. Furthermore,
we are blind to the actual mathematical model for the fast process.
However, a partial knowledge of the physics of the system of interest
is known. In particular, it is assumed that we know the exact expres-
sion describing the force field F. This assumption is satisfied when
one can reconstruct the force field from the data accurately, which
may be possible in many practical situations.25

We are given a time series data for x, a sequence (xk)k=0,...,N

= (x(t0), x(t1), x(t2), . . . , x(tN)), where t0 = tinit, ti = tinit + i$t
(i = 1, . . . ,N) are the sampling times, $t is the time step size,
tN = tinit + N$t =: tobs, and N+ 1 is the number of available sam-
ples. Our time series does not record the occurrence of a rare
event, and we assume that a rare event will occur shortly after
time tobs. Any precursors for this rare event must then be hid-
den in the time series. We then attempt to answer the following
questions.

(1) Can we predict if and when a rare event will occur in a given
future time window? Can we infer the characteristics of the
event?

(2) How far in advance can we predict the rare event?
(3) With what accuracy and certainty can we achieve these goals?
(4) Is it possible to answer all of these questions with a computa-

tionally inexpensive method and/or using a relatively short time
series data for x?

Clearly, these are challenging questions. The degree of difficulty
depends on the characteristics of the dynamical systems gen-
erating the data for x. For a given amount of data, the dif-
ficulty increases as ε becomes smaller, in which case the sta-
tistical behavior of the driving noise is closer to that of a
white noise; therefore, predictability is lost in the limit. Thus,
analysis of the data should be performed on a case by case
basis.

III. A MACHINE LEARNING BASED PREDICTION
METHOD

A. The method
We first present a three-step procedure that will allow us to

investigate the questions posed at the end of Sec. II. This proce-
dure lies at the heart of our method. We then discuss a number of
heuristic issues associated with our approach.

Algorithm III.1. Predicting rare critical transition events.
Under the assumptions, setting and notation described in

Sec. II:

(S1) Feature extraction. Extract the fast driving signal using the data
for x and the known expression for F,

f(ti) =
x(ti+1) − x(ti)

$t
− F(x(ti), ti) (5)

for i = 0, 1, . . . ,N − 1, where $t is a uniform time step.
(S2) Machine learning. Using (f(ti))i=0,...,N−1 as the training data, pre-

dict the values of f for M+ 1 time steps into the future (i.e.,
beyond time tobs − $t) using a supervised learning algorithm
(for instance, Algorithm III.2 in Sec. IV) that is best fit for the
task to infer (f(tN), f(tN+1), . . . , f(tN+M)).

(S3) Numerical integration. Numerically evolve the system (2) up
to time tN+M, with (f(t))t=t0,...,tN+M

in place of σ
ε
G(ξ(t)) in (2),

using the step size $t. The predicted values for x in the time
window [tobs + $t, tf = (N+M)$t] are then obtained from the
resulting numerical solutions.

Algorithm III.1 is the method that we propose and use for pre-
dicting rare events. It allows the prediction of the system state M
time steps beyond the observation time tobs, the result of which can
be used to investigate the questions posed in Sec. II. To be able to
answer these questions with a desired level of confidence, the pre-
dicted values should be as close as possible to the target (actual)
values; i.e., the generalization (out-of-sample) error should be small.

Before we discuss the details of implementation for each of the
three steps above, a few remarks are in order. A natural approach is
to apply a suitable machine learning algorithm directly to the data
for x and attempt to predict the future states. While this seems like a
sensible approach, it is unrealistic to expect an algorithm to learn the
multiscale nature of the data accurately. In fact, it is not clear before-
hand which algorithm is best, and in many cases, the rare event will
not be detected successfully (see Sec. IV). Our method circumvents
this challenge and provides an alternative route for handling mul-
tiscale data. Moreover, the simplicity of our method provides an
additional advantage.

The quality and accuracy of the prediction results will rely
strongly on how well each step in the algorithm is executed. Errors
will accumulate as one progresses through these steps. Indeed, (S1)
involves a numerical approximation of the driving signal. In (S2),
errors will arise from both the use of the training data [where the
numerical errors from (S1) are hidden] as well as the machine learn-
ing algorithm itself. In (S3), an additional error due to numerical
integration is inevitable. Provided that the accumulation of these
errors is negligibly small and well controlled, one can learn and
predict the system states with reasonably good accuracy, as demon-
strated with the examples in Sec. IV. Rigorous error analysis is not
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the focus of the present paper and, therefore, will not be presented
here.

Steps (S1) and (S3) are straightforward to implement; therefore,
we must discuss (S2), whose implementation is the most challenging
part of the method. We will formulate this step as the problem of
learning the training data (f(ti))i=0,...,N−1 with parameterized high-
dimensional nonlinear dynamical systems.

B. Echo state network (ESN) and its deep version
There are many machine learning algorithms that one can use

to implement step (S2). Algorithms from deep learning include
convolutional neural networks, recurrent neural networks (RNNs),
and encoder–decoder networks, each of which can be implemented
using various architectures and training schemes.31 As nonlinear
state-space models, RNNs have dynamical memory, which means
that they are capable of preserving in their internal state a nonlinear
transformation of the input history. They are, therefore, particularly
well suited to deal with sequential data. We will implement (S2)
using a type of brain-inspired RNN known as the echo state network
(ESN). For practical introductions and technical details on ESNs, we
refer the reader to Refs. 38 and 49.

ESN belongs to the paradigm of reservoir computing84 and is
computationally less costly to train than other variants of RNNs,
which typically use a backpropagation through time algorithm for
gradient descent based training.39,50 Similar to other RNNs, the ESN
can, under fairly mild and general assumptions, be shown to be a
universal approximator of arbitrary dynamical systems.33 In contrast
to standard design and training schemes for RNNs, but conceptu-
ally similar to the kernel methods (cf. Refs. 45 and 75), the neural
network (called the reservoir) in ESNs is generated randomly and
only the readout from the reservoir is trained. The outputs are
linear combinations of the internal states and possibly the inputs
and a constant (bias). This reduces the training to solving a linear
regression problem, minimizing the mean squared error between
the outputs and the target values.

It is crucial that typically the number of reservoir elements in an
ESN is larger than that used in RNNs trained with a gradient descent
based method, resulting in an over-parameterized neural network.
The key observation is that with sufficient over-parameterization,
gradient descent based methods will implicitly leave some weights
describing the network relatively unchanged; therefore, the opti-
mization dynamics will behave as if those weights are essentially
fixed at their initial values.81 Fixing these weights explicitly leads to
the approach of learning with random reservoir features. Therefore,
we can successfully learn with gradient descent based trained neural
networks whenever we can successfully learn with ESNs.

Even though not all the weights of the network are trained,
it has been shown that ESNs work surprisingly well and achieve
excellent performance in many benchmark tasks, including winning
the NN3 financial time series prediction challenge.37 Recently, ESNs
have been shown to predict chaotic systems remarkably well.48,60–62,83

They may outperform other machine learning algorithms in cer-
tain prediction tasks. For instance, it has been shown that the ESN
substantially outperforms the deep feed-forward neural network
and the RNN with long short-term memory (LSTM) for predict-
ing short-term evolution of a multiscale spatiotemporal Lorenz-96

system15 (see also Ref. 79). Moreover, ESNs do not suffer from the
vanishing and exploding gradient problem typically encountered
when training other RNNs.38 These results motivate our choice of
(a variant of) the ESN over other machine learning methods. We
emphasize, however, that the ESN may not be the most optimal
network for our prediction task, and we remain mindful of its short-
comings, in particular, its sensitive dependence on the hyperparam-
eters. We leave careful comparison of different machine learning
methods for our prediction problem to future work.

To achieve our goals, we also use a deep version of the ESN [see
also the discussion in Sec. IV(b)] whenever needed. Our deep echo
state network (DESN) consists of organized hierarchically stacked
ESNs whose architecture and training algorithm will be described in
Subsections III B 1 and III B 2. Such deep ESNs are more expressive
than shallow ESNs in the sense that they are able to develop in their
internal states a multiple time-scale representation of the temporal
information.22,23 We remark that in contrast to feed-forward neural
networks, it is often not obvious how one should construct a deep
RNN.59 In particular, different variants of deep echo state networks
can be constructed depending on the task at hand.

1. Architecture of the ESN and its deep version
Similar to other RNNs, the ESN is a parameterized, high-

dimensional, discrete-time, non-autonomous, nonlinear state-space
model, describing a dynamical input–output relation,

x(tn+1) = f(x(tn), u(tn), y(tn), ν(tn), θ f), (6)

y(tn+1) = g(x(tn+1), u(tn+1), ν(tn+1), θ g) (7)

for n = 0, 1, . . . ,N − 1. Here, u(t) ∈ Rnu is the input at time t, x(t)
∈ Rnx is the internal/hidden state of the reservoir, y(t) ∈ Rny is the
output, ν(t) ∈ Rnν is an external perturbation (noise/regularization),
f and g are generally nonlinear functions, and θ f and θ g are model
parameters. The network non-linearly embeds the input into a
higher dimensional space where the original problem is more likely
to be solved linearly.

Our ESN is a specific implementation of the above state-space
model, putting constraints on a fully connected RNN and with
the inputs (u(t0), . . . , u(tN−1)) set to be a training time series dur-
ing the training phase. In the following, tn = n$t, for n = 0, . . . ,
N − 1, where $t is a fixed time step size. If the number of layers,
nL := L+ 1, is chosen to be one, i.e., a shallow ESN, then we have
the following update equations for the states and outputs:

x(0)(tn+1) = tanh(W(0)x(0)(tn)+ bWb +Winu(tn))+ νξ (0)
n , (8)

y(tn+1) = Wout(x
(0)(tn+1); b) (9)

for n = 0, 1, . . . ,N − 1, with x(t0) := x(0)(t0) = 0. In the above,
we have used the following vector concatenation notation:
(a; b) := (a1, a2, . . . , an, b1, b2, . . . , bm) ∈ Rn+m for two vectors a
= (a1, a2, . . . , an) ∈ Rn and b = (b1, b2, . . . , bm) ∈ Rm. Also, we
have used the following convention for component-wise applica-
tion of the activation function: tanh(a) := (tanh(a1), . . . , tanh(an))
∈ Rn for a = (a1, . . . , an) ∈ Rn.
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Otherwise, we employ the following deep version of ESN,
which we refer to as DESN:

x(0)(tn+1) = tanh(W(0)x(0)(tn)+ bWb)+ νξ (0)
n , (10)

x(l)(tn+1) = tanh(W(l)x(l)(tn)+ V(l)x(l−1)(tn))+ νξ (l)
n

l = 1, . . . , L − 1, (11)

for

x(L)(tn+1) = tanh(W(L)x(L)(tn)+ V(L)x(L−1)(tn)+Winu(tn))+ νξ (L)
n ,
(12)

y(tn+1) = Wout(x
(0)(tn+1); . . . ; x

(L)(tn+1); b) (13)

for n = 0, 1, . . . ,N − 1, with the initial condition x(t0) := (x(0)(t0),
. . . , x(L)(t0)) = 0.

In (8)–(13), the training input u and output y come from a
compact subset of Rnu and of Rny , respectively, the vector x(i) ∈
Rnxi (for i = 0, . . . , L) is the ith hidden state; the constant b ∈ R
introduces a bias; the matrices W(i) ∈ Rnxi×nxi (for i = 0, . . . , L),
Wb ∈ Rnx0 , V(i) ∈ Rnxi×nxi−1 (for i = 1, . . . , L), and Win ∈ RnxL×nu

are fixed internal connection weights whose entry values are set to
random values; and the matrixWout ∈ Rny×(nx0+···+nxL+1) is the read-
out weight matrix whose entries are to be learned. The vectors ξ (k)

n ,
k = 0, . . . , L, n = 0, 1, . . . ,N − 1, are i.i.d. random vectors describ-
ing added noise during the sampling at each layer and ν is a noise
(regularization) intensity parameter (we have taken the same noise
level for each layer). The activation function in each layer is taken to
be a (vectorized) hyperbolic tangent function. At each training step,
the input is fed into the first layer, which is then connected to the
next layer via the connection weights. The ansatz for the output at
each update time is taken to be a linear combination of the elements
of the hidden states and a bias value.

2. Algorithm for training the ESN and its deep version
The above implementation gives a randomly constructed RNN

prior to training. It may generally develop oscillatory or chaotic
behavior even in the absence of external excitation by the input;
therefore, the subsequent network states, starting from an arbitrary
state x(t0), may not converge to the zero state. To ensure that the
ESN/DESN converges to the desired state, the internal connection
weights are scaled such that the resulting (untrained) input-driven
recurrent network (or the “dynamical reservoir”) is appropriately
stabilized or “damped,” forcing it to have the so-called “echo state
property.” The echo state property ensures that the current network
state is uniquely determined by the history of the input provided
that the RNN has been run for a sufficiently long time (see Refs. 38
and 54 and the references therein for details, subtleties, and other
equivalent conditions for the echo state property). Once this initial-
ization is made, we can proceed to the training phase and then the
prediction phase, to be described in the following.

We now give a complete description of setting up, training, and
using the ESN and its deep version for the prediction task. It is based
closely on the techniques developed in Ref. 38. For a schematic of a
general ESN/DESN architecture and the training process, we refer
to Fig. 1.

Algorithm III.2. Initializing, training, and using the ESN
(L = 0) and DESN (L ≥ 1). Given a training set consisting of the
input sequence (u(t0), . . . , u(tN−1)), we find a trained ESN/DESN
parameterized by (W(i),Wb,V

(j),Win,Wout, ν)i,j=0,...,L whose network
output (y(t0), . . . , y(tN−1)) approximates the input sequence.

(1) Initialize the ESN/DESN to “ensure”58 that the echo state property
is satisfied.
(1a) Depending on the training data (length, difficulty of task,

etc.), select appropriate dimensions/sizes (i.e., nx0 , . . . , nxL )
for the connection weight matrices. These dimensions are
hyperparameters that can be tuned. The matrix elements of
these matrices are then selected randomly as follows:

(Wb)kl ∼ Unif(−1, 1), (14)

(V(j))kl ∼ Unif(−0.5, 0.5) for j = 1, . . . , L, (15)

(W(i))kl ∼ Unif(−0.5, 0.5) for i = 0, . . . , L, (16)

(Win)kl ∼ Unif(−1, 1). (17)

(1b) These matrices are rescaled as follows:

Wb,V
(j),W(i),Win (→

Wb

‖Wb‖ + 0.001
,

V(j)

‖V(j)‖ + 0.001
,

×
W(i)

‖W(i)‖ + 0.001
,

Win

‖Win‖ + 0.001
,

(18)

where ‖ · ‖ denotes the Frobenius norm.
(1c) Set a fraction of elements (connection weights) in the matri-

cesW(i) to zero (the fraction, denoted ri, chosen is a hyper-
parameter for sparsity of the matrices used for each layer)

and then rescale the resulting matrices W̃
(i)

appropriately
using their spectral radius, i.e.,

W̃
(i)

(→ ρ
(i)
des

W̃
(i)

ρ(i)
, (19)

where ρ(i) is the spectral radius of W̃
(i)
, ρ

(i)
des is the desired

spectral radius, and i = 0, . . . , L. The desired spectral radius
chosen is less than one to ensure contractivity of the dynam-
ics and is another tunable hyperparameter. The sparsity
hyperparameter is chosen in such a way that sufficiently
rich dynamics of different internal units/hidden states can
be obtained. (1a)–(1c) then give an untrained network
(dynamical reservoir) that satisfies (typically in practice) the
required properties. We initialize the network state with
x(t0) = 0.

(2) Train the readout by solving a least squares linear regression
problem.
(2a) If needed, discard an initial transient by disregarding the

first itransient = min(int(N/10), 100) states, where int(x) is
the integer part of x and min(x, y) is the minimum of x
and y.

(2b) Run the network on the entire input (training) sequence
and collect the output sequence, i.e., according to (8) and (9)
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FIG. 1. A schematic of the ESN/DESN and the workflow during the training phase described in Sec. B (Algorithm III.1). In our numerical experiments, the training time series
(u(t0), . . . , u(tN−1)) is the fast driving signal extracted from (x(t0), . . . , x(tN)).

for the shallow ESN and (10)–(13) for the DESN. During
sampling, we have added a small amount of noise or reg-
ularization, whose intensity is determined by the hyperpa-
rameter ν, to stabilize the network and prevent overfitting.49

We choose the elements of the i.i.d. noise vectors ξ (k)
n to be

distributed according to Unif(−0.5, 0.5).
(2c) Solve the least squares regression problem,

min
Wout

1

N − itransient

N−1∑

i=itransient

‖Woutx̃(ti) − u(ti)‖
2, (20)

where x̃(ti) = (x(ti); b) ∈ Rnx0+···+nxL+1. We remind the
reader that Wout ∈ Rny×(nx0+···+nxL+1) is the only train-
able matrix in the ESN/DESN. As the above problem
admits a closed form solution, the solution, denoted
W

opt
out, can be obtained directly by applying the Moore–

Penrose pseudoinversion as follows.
Let X̃ = [X b] ∈ R(N−itransient)×(nx0+···+nxL+1), with X
∈ R(N−itransient)×(nx0+···+nxL ) the design matrix, i.e., a block
matrix stacked vertically with the matrices

[x(j)(titransient) . . . x(j)(tN−1)]
T

∈ R(N−itransient)×nxj (j = 0, . . . , L),
b = (b, b, . . . , b) ∈ RN−itransient , and U = [u(titransient) . . .
u(tN−1)]T ∈ R(N−itransient)×ny . Then, the solution to (20) can

be obtained as

W
opt
out = (X̃

+
U)

T
, (21)

where + and T denote the Moore–Penrose inverse and
transposition, respectively. This completes the training
phase.

(3) Run the trained ESN/DESN autonomously for prediction.

During the prediction phase, we use y(tm) = W
opt
out(x(tm); b) in

place of u(tm) for m ≥ N − 1 in the update equation (12) for
DESN [or (8) for ESN]. We then propagate the trained network
forward in time according to the resulting update equation. This
allows us to obtain the predicted values (y(tN), . . . , y(tN+M)),

where y(ti) = W
opt
outx̃(ti) for i = N, . . . ,N+M.

The smaller the generalization error on the prediction time
horizon, the more accurate is the prediction. The quality of pre-
diction achieved by our ESN/DESN depends on the selection of
hyperparameters, which need to be chosen following an appropri-
ate model selection procedure, which adapts to the data set on hand.
The tunable hyperparameters are nL := L+ 1 (number of layers in
the DESN), the nxi (dimension of the connection weight matrices at

layer i+ 1), the ri (sparsity parameter), the ρ
(i)
des (the desired spec-

tral radius of these matrices at layer i+ 1), and ν (noise intensity).
We remark that the above algorithm gives a specific way to initialize
and train the ESN/DESN. Other variants may also be considered.50
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To implement (S2) in Algorithm III.1, we apply Algorithm III.2 to
the training data (f(ti))i=0,...,N−1. Together with (S1) and (S3), this
completes the description of our rare event prediction method.

Last, we discuss a physically motivated intuition about ESNs
(as can be said for DESNs). On one hand, ESNs can be constructed
by sampling from a class of continuous-time dynamical systems,73

which satisfy a universal property in the sense that they can approx-
imate any continuous-time system on compact time intervals to
arbitrary degree of precision. On the other hand, the data itself
are generated from a nonlinear chaotic system. The ESN approach
amounts to learning the data by feeding the data as input (sig-
nal) into an ESN, thereby inducing an interaction between the two
dynamical systems. In our case, we would like the output of the
network to reproduce the input time series, and good performance
could be obtained under suitable conditions (when the hyperpa-
rameters are tuned optimally). From a physical point of view, these
conditions cause the two dynamical systems to synchronize; there-
fore, learning here corresponds to finding optimal conditions to
achieve generalized synchronization of the system generating the
training data and a signal-fed ESN.64,80 Indeed, the idea of synchro-
nization between two dynamical systems has been exploited for time
series prediction.17 It remains interesting to understand how out-
of-sample performance of ESNs depends on the characteristics of
input data and the noise (either those present in the data or those
added to regularize the training) using the notion of generalized
synchronization.

IV. NUMERICAL EXPERIMENTS
We apply the method presented in Sec. III to study the ques-

tions posed in Sec. II for three datasets generated by dynamical
systems of different complexities.

From the dataset in each example, a training set (with N+ 1
− Nv data points), a validation set (with Nv data points), and a test
set (with M data points) are assigned before we apply the method.
We are going to perform an ensemble based prediction by utilizing
multiple independently trained networks. We take weighted aver-
aged values of the predicted values produced by these networks as
the final predicted values. We refer to the Appendix, in particular,
Fig. 5, for details of training and prediction procedure. We empha-
size that while a comprehensive investigation of dependence of the
results obtained here on the choice of hyperparameters is interesting
on its own, this is not our focus here.

Throughout this section, all variables considered are real and
one-dimensional.

A. Example 1: A bi-stable system, driven by a fast
Lorenz-63 system

1. Data generation
The data for x are generated by the following slow–fast

system:28

ẋ(t) = x(t)[1 − x2(t)]+
σ

ε
y2(t), (22)

ẏ1(t) =
10

ε2
[y2(t) − y1(t)], (23)

ẏ2(t) =
1

ε2
[28y1(t) − y2(t) − y1(t)y3(t)], (24)

ẏ3(t) =
1

ε2
[y1(t)y2(t) −

8

3
y3(t)]. (25)

In (22)–(25), x is the state of the system of interest and its
evolution is driven by a fast chaotic signal y2/ε, which is modeled
as follows. The vector state (y1, y2, y3) is described by the Lorenz-
63 model with the classical parameter values that lead to chaotic
behavior.46 At these parameter values, y2 is ergodic with an invariant
measure supported on a set of zero volume. The equation for x is,
therefore, an ODE driven by a fast chaotic signal with characteristic
time ε2.

To generate the data, we use a uniform time step of $t = 0.01
to integrate (22)–(25) with σ = 0.08, ε = 0.5, x(0) = −1.5, and
yi(0) ∼ Unif(−10, 10) for i = 1, 2, 3, up to time t = 100. The auto-
correlation time [defined as the time τ at which the autocorrelation
function R(τ ) = 1/e] of samples of the driving signal is estimated to
be 0.05. Note that the time step is chosen to be small enough so that
we can sample the scale on which the fast driving signal takes place.
The time series generated for x is plotted in Fig. 2.

We remark that repeating the above data generation using a
different numerical time step, initial conditions (or random seeds),
and parameters will produce time series with different character-
istics. For instance, the resulting time series will display a differ-
ent number of critical transitions occurring at different times. We
assume that we only have access to a segment of the single time series
plotted in Fig. 2 up to time t < τ0.

2. Generating system: Dynamics and applications
Applying the discussion in Sec. II, the family of systems

(22)–(25) (parameterized by ε) can be viewed as an approximation

FIG. 2. Time series data for x in Example 1 up to time t = 100, of which only
a segment prior to time t = 37 < τ0 = 38.52 (i.e., at most N + 1 = 3701 data
points) will be available for training. Note that the sample path of x first crosses
zero at t = τ0 (indicated by the yellow dashed line), where a critical transition
occurs.
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to the Markovian system,

dX(t) = X(t)[1 − X2(t)]dt+ σ̃dW(t), (26)

where σ̃ is an effective diffusion constant andW(t) is a Wiener pro-
cess in the sense that as ε becomes smaller, x(t) converges in law to
the process X(t), solving the SDE above. Recall that we have cho-
sen ε = 0.5 for data generation; therefore, the data can be thought
of coming from an approximately stochastic system.

In the absence of the driving signal, the equation for x has two
stable fixed points, at x = −1 and x = 1, and an unstable one at
x = 0. Starting from an initial state, the systemwill eventually evolve
toward a nearby stable state. The presence of noise alters this dynam-
ics, causing an occasional transition of the system between stable
states. In the case where the noise amplitude is small, such a tran-
sition is a rare event, occurring at a seemingly unpredictable time
(see Fig. 2). In our case, x starts near the fixed point x = −1 and
will eventually jump to that at x = 1, the prediction of which is of
great interest. From the data, we find that the first crossing time of
the sample path to zero is τ0 := inf{t ∈ [0, 100] : x(t) > 0} = 38.52.
Our goal is then to predict an approaching rare event using only (a
segment of) the data consisting of time series up to time t < τ0.

From a statistical mechanical point of view, the system
(22)–(25) describes an overdamped Brownian particle moving in a
symmetric double-well potential. In this case, x is the position of
the particle and time-integrated y2 models the fluctuations due to
its interaction with the environment. The above model for x is also

often used in climate physics, an example of which is to view x as
the sea-surface temperature anomaly and ξ = σ

ε
y2 as the impact of

small-scale atmospheric variability.10,36,57

3. Results and discussion
The prediction results for different training scenarios using

Algorithm III.1 are displayed in the figures of Tables I–III. For each
case where a fixed number of training data points is used, we present
two predictionmodels, each of which depends on the size (Nv) of the
validation set used (see the Appendix for details).

Figures 1(a) and 1(b) and 2(a) and 2(b) in Table I show that
our method is capable of quite confidently predicting the rare event
and its transition path at least 162 numerical time steps in advance,
i.e., prior to first crossing of the slow process to zero at τ0 = 38.52 or
equivalently, at least about 32 autocorrelation times of the fast driv-
ing signal. In particular, the target future trajectory lies principally
within the 90% confidence interval of the predicted trajectory. Given
that a relatively short time series was used for training, it would
appear that the accuracy of these predictions is remarkable.

Figures 3(a)–4(b) in Table I show how the inability of the ESN
to make accurate long-term predictions makes accurate prediction
of the entire transition path (i.e., up to time t = 40) from an earlier
time more difficult. Indeed, the longer into the future the prediction
is, the less confident the results are. This is shown by the growth
of the standard deviation of the prediction errors, which seems to

TABLE I. Prediction results using the dataset in Example 1 under various scenarios. N is the number of data points in the training set and Nv is the number of data points in
the validation set (see the Appendix). In each figure: the target trajectory for x (in red), Neff predicted trajectories from Neff independently trained and selected models, and the
averaged predicted trajectory (in thick blue) up to several time steps into the future. The shaded light blue region represents the 90% confidence interval of the predicted values.

Scenarios Nv = 10 Nv = 20

Baseline (0a) (0b)

N= 3700 (1a) (1b)

Continued.
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TABLE I. Continued.

Scenarios Nv = 10 Nv = 20

N= 3690 (2a) (2b)

N= 3680 (3a) (3b)

N= 3670 (4a) (4b)

saturate about a maximum value that increases with fewer training
data points. However, the results in Figs. 3(a) and 4(b) of Table I
are still respectable, as they indicate that the trajectory will cross the
origin during the prediction time window, albeit not able to trace
the target transition path precisely.

These figures also depict the difference in the prediction results
obtained with different values of Nv used [notably in Figs. 2(a)–4(b)
of Table I], showing intricacies of the machine learning based
method. However, the qualitative behavior of the mean value of
the error of the predicted results is essentially the same for dif-
ferent Nv (see the figures in Table II). The same can be said for
the standard deviation of these errors, which grows rapidly on
the prediction horizon where the rare transition occurs and then
approaches a plateau after that (see the figures in Table III). This
plateau is slightly higher in all the cases where Nv = 20 than those
where Nv = 10, indicating the higher variance of the prediction
models that set aside more data points for validation. However,
for the case of N = 3670, the model with the higher variance gives

better predictive performance than that with the lower variance and
is able to predict a crossover to the origin during the prediction
interval.

Figures 0(a) and 0(b) in Table I confirm that our method is far
better than the direct method of applying an ESN to the data for x,
which we take as a baseline result for comparison. We emphasize
that one can also apply other machine learning algorithms such as
the gradient descent based RNN and convolutional neural network
to implement the direct method.6 However, after some experiments,
we found that the predictive performance is similar to the baseline
result; i.e., they fail to predict the approaching rare event, render-
ing the prediction task almost impossible using the direct method.
This comparison study enhances the veracity of our method, which
exploits the crucial idea of appropriately taking into account the
multiscale nature of the system generating the data. The success of
our method in predicting the rare transition event lies in its ability
to separate the slow and fast components of the data with the help of
some physical knowledge about the generating system.
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TABLE II. Error of the predicted results and its mean value (in thick blue) for Example 1.

Scenarios Nv = 10 Nv = 20

N= 3700 1(a) (1b)

N= 3690 (2a) (2b)

N= 3680 (3a) (3b)

N= 3670 (4a) (4b)

We remark that if we run the trained networks much further
into the future, the predicted trajectory, not surprisingly, fails to
capture the second transition that occurs around t = 71. However,
we will be able to predict the second transition confidently if more
data points are used for training. All the results discussed so far are
obtained by training on a trajectory that starts from the initial time

(tinit = 0) and ends at a time before a rare event occurs. A natural
question is whether one can achieve prediction results of compara-
ble quality using a shorter trajectory that comes sufficiently close to
the rare event but starts at a later time tinit > 0. Given the chaoticity
of the generating system with a known predictability horizon deter-
mined by the Lyapunov exponent, one expects the answer to this
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TABLE III. Standard deviation of the errors for Example 1. (a) N= 3700, (b) N= 3690, (c) N= 3680, and (d) N= 3670.

(a) (b)

(c) (d)

question is affirmative and can indeed be supported by numerical
experiments.

Last, we emphasize that our problem is more challenging than
that of predicting the second component of a Lorenz-63 system
from numerical data generated by the system itself. Even though
we expect the extracted driving signal here is representative of the
second component of the Lorenz-63 system (up to a scaling fac-
tor) and therefore, one would expect that good prediction results
are achievable (in lights of recent results61), there are inherent errors
in the extraction process in step (S1) and consequently, here, we are

FIG. 3. Time series data for x in Example 2 up to time t = 100, of which only
a segment prior to t = 94.1 < τ1 = 96.16 (i.e., at most N + 1 = 9411 data
points) will be available for training. Note that the sample path of x first crosses one
at t = τ1 (indicated by the yellow dashed line), where a critical transition occurs.

really dealing with a noise corrupted version of the data. In this case,
the prediction could be highly non-trivial (and perhaps impossible
if the errors are large enough) due to possible dominance of noise in
certain segments of the reconstructed time series.

B. Example 2: A tri-stable system, with periodic
forcing and a fast Ornstein–Uhlenbeck-like process

1. Data generation
The data for x are generated by the following slow–fast system:

ẋ(t) = x(t)[1 − x(t)][1+ x(t)][x(t) − 2][x(t)+ 2]

+ A cos(ωt)+ σ0z(t), (27)

ż(t) = −α1z(t)+
σ1

ε
y2(t), (28)

where x describes the state of the system of interest whose evo-
lution is driven by a fast Ornstein–Uhlenbeck like signal z and
y2 is the second component of the Lorenz-63 system (23)–(25).
For data generation, we use a uniform time step of $t = 0.01 to
integrate (27) and (28) with x(0) = 0.1, z(0), yi(0) ∼ Unif(−10, 10)
(for i = 1, 2, 3), A = 0.5, ω = 2π , ε = 0.5, σ0 = 0.2, α1 = 1000, and
σ1 = 1000ε, up to time t = 100. The autocorrelation time of sam-
ples of the driving signal is estimated to be 0.07. The time step is
small enough to sample the scale on which the fast signal takes place.
The time series generated for x is plotted in Fig. 3. We assume that
we only have access to a segment of the single time series plotted in
Fig. 3 up to time t < τ1.
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2. Generating system: Dynamics and applications
The system (27) and (28) is more complex than that in Exam-

ple 1, of which it is an extended version, in the sense that the force
field is generalized to include a time-dependent external force and
the driving signal is described by a higher dimensional system. One
can view (27) and (28) as a family of systems (parameterized by ε)
approximating the following SDE system:

dX(t) = X(t)[1 − X(t)][1+ X(t)][X(t) − 2][X(t)+ 2]dt

+ A cos(2π t)dt+ σ0Z(t)dt, (29)

dZ(t) = −α1Z(t)dt+ σ̃1dW(t), (30)

where σ̃1 is an effective diffusion constant and W(t) is a Wiener
process. As ε (chosen to be 0.5 for data generation here) becomes
smaller, (x(t), z(t)) converges in law to (X(t),Z(t)) solving the non-
autonomous SDE system (29) and (30).

In contrast to Example 1, in the absence of the driving sig-
nal z(t), Eq. (27) for x has three stable periodic orbits centered at
x = −2, 0, 2 and two unstable ones centered at x = −1, 1. Here, our
system state starts in the middle potential well and will, due to influ-
ence of the driving signal as well as the periodic forcing, transits to
one of the left or right nearby stable orbits at a random time (see
Fig. 3). It is thus natural to ask which potential well will the sys-
tem transit to and at what time will the transition occur. From the

data, we find that the first crossing time of the sample path to one is
τ1 := inf{t ∈ [0, 100] : x(t) > 1} = 96.16.

The addition of the periodic forcing A cos(2π t) introduces
another time scale into the system. When this time scale is of the
same order of themean exit time from the potential (Kramers’ time),
a resonance-like mechanism where the noise can lead to the ampli-
fication of the periodic signal takes place. This resonance is induced
by a chaotic signal and is closely related to stochastic resonance, a
noise-induced phenomenon first introduced in the context of cli-
mate modeling,7,8 which has been found to occur in many physical
and biological systems.24

One example of such systems describes the dynamics of an
overdamped self-propelled active particle, which converts energy
absorbed from the environment into a directed motion, rendering
the system out of equilibrium. The position of the particle can be
described by X in (29) and the active force or self-propulsion is
modeled by Z in (30), in which case the particle is trapped in a triple-
well potential and subject to periodic forcing. This is a variant of
the model of an active Ornstein–Uhlenbeck process widely used to
study active matter.69

3. Results and discussion
The prediction results for different training scenarios using

Algorithm III.1 are displayed in the figures of Tables IV–VI. For

TABLE IV. Prediction results using the dataset in Example 2 under various scenarios. N is the number of data points in the training set and Nv is the number of data points in
the validation set (see the Appendix). In each figure, the target trajectory for x (in red), Neff predicted trajectories from Neff independently trained and selected models, and the
averaged predicted trajectory (in thick blue) up to several time steps into the future. The shaded light blue region represents the 90% confidence interval of the predicted values.

Scenarios Nv = 4 Nv = 8

Baseline (0a) (0b)

N= 9410 (1a) (1b)

Continued.
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TABLE IV. Continued.

N= 9400 (2a) (2b)

N= 9390 (3a) (3b)

TABLE V. Error of the predicted results and its mean value (in thick blue) for Example 2.

Scenarios Nv = 4 Nv = 8

N= 9410 (1a) (1b)

N= 9400 (2a) (2b)

Continued.
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TABLE V. Continued.

Scenarios Nv = 4 Nv = 8

N= 9390 (3a) (3b)

each case where a fixed number of training data points is used, we
present two prediction models, each of which depends on the size
(Nv) of the validation set used (see the Appendix for details).

Figures 1(b) and 2(b) in Table IV show that our method is
capable of quite confidently predicting the rare event and its tran-
sition path at least 216 numerical time steps in advance or at least
about 30 autocorrelation times of the fast driving signal prior to first
crossover of x to zero at t = τ1. Even though the prediction results
in Figs. 1(a) and 2(a) are inferior to those with the largerNv, they are
not too far behind since the crossover to the origin is successfully
predicted there.

However, Figs. 3(a) and 3(b) in Table IV show how the inability
of the DESN to make accurate long-term predictions again crip-
ples the performance of the prediction method, making prediction
of the rare event from an earlier time a very challenging task. In
particular, neither models can confidently predict the crossover of
x to the origin during the prediction interval, although the result
obtained by the model with Nv = 4 comes closer to achieving that.
We emphasize that these results are used primarily to demonstrate
our method. It may be possible to improve these results by using
a different training setting (with a higher number of layers and
more carefully optimizing values of the hyperparameters), enabling

TABLE VI. Standard deviation of the errors for Example 2. (a) N= 9410, (b) N= 9400, and (c) N= 9390.

(a) (b)

(c)
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successful longer-term prediction and, therefore, prediction of a rare
event from an earlier time.

These figures again depict the difference in the prediction
results obtained with different values of Nv used (see the figures in
Table V). Just like the case in Example 1, the qualitative behaviors of
both the mean value and the standard deviation of the error of the
predicted values are essentially the same for different Nv. However,
the standard deviation plateau is higher in all the cases where Nv is
lower (see Table VI) in contrast to the finding in the case of Exam-
ple 1. This indicates that larger values of Nv should be considered
here to obtain a prediction model with a lower variance.

We find that it is very difficult to obtain a comparable qual-
ity of predictions if we work with a shallow ESN instead of the
three-layered variant that we have used here. This finding may be
explained by the following. A closer look at the model for the driving
signal z(t) reveals that there are actually two widely separated time
scales in the system generating it instead of only one time scale as in
the case of Example 1. This difference in the multiscale behavior of
the system generating the driving signal explains why a shallow ESN
works well for Example 1 but not for Example 2. A deep version of
the ESN is needed to handle the multiscale nature of the data for z in
Example 2. This supports the intuition that increasing the depth of
the ESN can lead to a better multiple time scale representation of the
temporal information. This motivates our consideration of a deep
version of the ESN for our method in Sec. III.

Figures (0a) and (0b) in Table IV confirm that ourmethod is far
superior to the baseline method of applying a DESN to the data for
x. Indeed, the ability of our method to predict, at least 216 time steps
(at least 2 periods) in advance, has significant importance for many
systems exhibiting stochastic resonance. It is possible to achieve pre-
diction results of comparable quality using a shorter but sufficiently
long trajectory starting at a later time tinit > 0 and coming suffi-
ciently close to the rare event (see the relevant discussion on this
in Subsection IV A).

C. Example 3: A tri-stable system subject to periodic
forcing and driven by a multiscale Lorenz-96 system

1. Data generation
The data for x are generated by the following slow–fast system:

ẋ(t) = x(t)[1 − x(t)][1+ x(t)][x(t) − 2][x(t)+ 2]

+ B cos(+t)+ σξ1(t), (31)

ξ̇1 =
1

ε
((ξ2 − ξK−1)ξK) − ξ1 + F, (32)

ξ̇2 =
1

ε2
((ξ3 − ξK)ξ1 − ξ2 + F), (33)

ξ̇K =
1

ε2
((ξ1 − ξK−2)ξK−1 − ξK + F), (34)

ξ̇n =
1

ε2
((ξn+1 − ξn−2)ξn−1 − ξn + F) for n = 3, . . . ,K − 1. (35)

In (31)–(35), x is the state of the system of interest whose
evolution is driven by a fast K-dimensional Lorenz-96 system

whose state is denoted by the vector (ξ1, ξ2, . . . , ξK). We work with
K = 36 and F = 8, which are parameter values leading to chaotic
dynamics.47 For data generation, we use a uniform time step of
$t = 0.01 to integrate the above system with x(0) = 0, ξk(0) =
F = 8 for all k except for k = 20, with ξ20(0) = F+ 0.01, B = 0.1,
+ = 12π , σ = 0.4, and ε = 0.5, up to time t = 100. The autocorre-
lation time of samples of the driving signal is estimated to be 0.11.
The time step has again been chosen to be small enough to sample
the scale on which the fast signal takes place. The time series gener-
ated for x is plotted in Fig. 4. We assume that we only have access to
a segment of the single time series plotted in Fig. 4 up to time t < τ1.

2. Generating system: Dynamics and applications
The system described by (31)–(35) is similar to the one in

Example 2 except that it is driven by a different periodic forcing
and the fast driving signal comes from a single component of a
variant (due to the scaling introduced by ε) of the Lorenz-96 sys-
tem, a much higher dimensional chaotic system compared to the
ones considered in the previous examples. We remark that, due to
the scaling introduced, the limiting slow dynamics are determinis-
tic (averaging) rather than stochastic (homogenization). The critical
transitions in this multiscale system (31)–(35) are induced by finite
ε-effects, which are fluctuations around some constant mean driver.

The Lorenz-96 model (with ε = 1) above is the first model
introduced by Lorenz in Ref. 47. It is amodel extensively used in data
assimilation and parameter estimation (parameterization) research,
as well as in testing machine learning algorithms for parameter
learning (sub-grid parameterization).12,79 It was originally used by
Lorenz as a one-dimensional atmospheric model. The variables in
the model represent values of some atmospheric quantity in K sec-
tors of a latitude circle, giving a periodic system of K ODEs. The
basic physics of the atmosphere is captured in the right hand side
of the ODEs, which contains advection terms, damping terms, and
external forcing. One can, therefore, view x as a sea-surface temper-
ature anomaly, influenced by the atmospheric quantity in one of the
sectors of the latitude circle in the presence of a seasonal forcing.

FIG. 4. Time series data for x in Example 3 up to time t = 100, of which only
a segment prior to t = 82.33 < τ1 = 82.39 (i.e., at most N + 1 = 8234 data
points) will be available for training. Note that the sample path of x first crosses
one at t = τ1 (indicated by the yellow dashed line), where a critical transition
occurs.
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From the data, we find that the first crossing time of the sample path
to one is τ1 := inf{t ∈ [0, 100] : x(t) > 1} = 82.39.

3. Results and discussion
Figure 1(a) in Table VII shows that our method is capable of

confidently predicting the rare event and its transition path at least
six time steps in advance, prior to first crossing of the slow process
to one at τ1 = 82.39. This is equivalent to about 0.55 autocorrela-
tion times of the fast driving signal. The target future trajectory lies
mostly within the 90% confidence interval of the predicted trajec-
tory. This result is far better than the direct method of applying an
ESN to the data for x [see the figures in (0a)–(0b) of Table VII],
which we take as the baseline results.

Figures 1(b), 2(a), and 2(b) in Table VII show that the predic-
tion models are unable to anticipate the rare transition event in the

prediction interval. Therefore, in comparison with the results in ear-
lier examples, here, the predictive performance of our models is far
inferior. However, we still manage to produce an accurate prediction
model as shown in Fig. 1(a). This is despite the fact that we are work-
ing with a set of data extracted only from one of the components of
the Lorenz-96 system; moreover, these data are noise corrupted—a
highly challenging task even in the case when the data are noise-free
(see Ref. 79). We have also attempted to use deeper versions of net-
work for training, but, unlike the case of Example 2, we are unable to
obtain better predictions than those obtained by shallow networks.

Figures 1(a)–2(b) in Table VII depict the difference in the pre-
diction results obtained with different values ofNv used, as discussed
before. Unlike the earlier examples, the qualitative behavior of both
the mean value and the standard deviation of the error of the pre-
dicted results is not the same for different Nv in the case when
N = 8233 (see the figures in Tables VIII and IX). This indicates

TABLE VII. Prediction results using the dataset in Example 3 under various scenarios. N is the number of data points in the training set and Nv is the number of data points in
the validation set (see the Appendix). In each figure: the target trajectory for x (in red), Neff predicted trajectories from Neff independently trained and selected models, and the
averaged predicted trajectory (in thick blue) up to several time steps into the future. The shaded light blue region represents the 90% confidence interval of the predicted values.

Scenarios Nv = 5 Nv = 8

Baseline (0a) (0b)

N= 8233 (1a) (1b)

N= 8231 (2a) (2b)
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TABLE VIII. Error of the predicted results and its mean value (in thick blue) for Example 3.

Scenarios Nv = 5 Nv = 8

N= 8233 (1a) (1b)

N= 8231 (2a) (2b)

high sensitivity of the prediction models to the choice of Nv when
dealing with highly complex multiscale data. We suspect that such
sensitivity is due not only to the sensitivity of the echo state net-
work to the choice of parameters, but also due to the noise corrupted
nature of the extracted data. It is interesting to observe that the suc-
cessful prediction model described here produces predictions whose
standard deviation of the error shows a peak on the prediction inter-
val, whereas those for the unsuccessful ones have strictly increasing
standard deviation on the interval.

V. CONCLUSIONS
We have presented a data-driven method for tackling the task

of predicting noise-induced critical transition events in a large class

ofmultiscale nonlinear dynamical systems. Themethodwas demon-
strated on three examples of different complexity, each providing
a model for many important physical and biological systems. For
Examples 1 and 2, we obtain excellent predictions that would not be
possible by using a direct method that does not take into account
the multiscale nature of the problem. In particular, our method suc-
cessfully predicts a rare transition event up to several numerical
time steps in advance. Each run of the ESN/DESN incurs relatively
low computational cost, thanks to the use of a reservoir comput-
ing based training technique, rather than a gradient descent based
method. This low computational cost allows us to leverage the power
of ensemble learning for the predictions.

These results demonstrate the promise of our reservoir com-
puting based method in predicting rare events occurring in a wide

TABLE IX. Standard deviation of the errors for Example 3. (a) N= 8233 and (b) N= 8231.

(a) (b)
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range of dynamical systems, a problem that is of substantial inter-
est in science and engineering. We expect the accuracy of these
results to improve by carefully optimizing the hyperparameters,
using a more refined training method and other more sophisticated
machine learning algorithms, at the expense of a higher computa-
tional cost. Importantly, rather than demonstrating only the suc-
cessful results, we also highlight the limitation of the approach when
dealing with highly complex multiscale datasets, such as that shown
in Example 3.We also empirically show and discuss the sensitivity of
the method to parameters and training data. Apart from achieving
successful predictions, understanding and mitigating these issues
are equally important. Therefore, our findings open up a range of
interesting problems for future work.

We now discuss a few potential future directions. Thus far, we
have applied the method to “toy examples,” where there are few
widely separated time scales. In many systems of interest, there may
be many widely separated time scales and the competition between
them may be crucial in triggering a critical transition event. The
driving noise may also be multiplicative in nature. Therefore, it is
important to extend the present work to these systems. In many
realistic situations, the available time series data may be multivari-
ate, rather than univariate, and additionally, there may be missing
and/or uneven data. It would then be important to extend our
method to treat these situations.

It is also of practical interest to apply the method presented
here to study more non-trivial yet physically relevant datasets,
such as those generated by a chaotic version of the model in
Ref. 20 and/or real world data from climate science.68,72 On the
other hand, because the method is based on the use of (a deep
version of) an echo state network, a firm theoretical understand-
ing of the underpinnings behind such a network, in particular,
its initialization (e.g., the role of randomness70) and the gener-
alization error, will shed light on the nature of the prediction
results. Therefore, it is important to carry out a systematic the-
oretical study to understand how the network works. This is,
in fact, an important problem in the field of reservoir com-
puting, and vigorous efforts have been made in recent years
to tackle this task (see, for instance, Refs. 18, 29, 30, 34, 76,
and 77).
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APPENDIX: DETAILS ON TRAINING, MODEL
SELECTION, AND TESTING

We adopt the following approach for training, validation
(model selection), and testing for the three examples studied in the
paper.

From a given time series for the slow variable x (consisting of
at leastN+ 1+M data points), we assign a training set, a validation
set (with a total of N+ 1 data points), and a test set (with M data
points). The training set and the validation set are the only accessible
(in-sample) data, and we are not allowed to use the (out-of-sample)
data in the test set, which records the occurrence of a rare event.

From these accessible data, we first extract the driving signal accord-
ing to (S1) in Algorithm III.1. There will be N data points for the
signal. We set aside the last Nv data points of the extracted signal on
the time interval [(N − Nv)$t, (N − 1)$t] to build a validation set,
which will be used for hyperparameter tuning and model selection.

For each realization of the ESN/DESN, our model selection
procedure is as follows. We employ the classical static validation
scheme (see Ref. 51 for details) and perform a grid search over a pre-
chosen hyperparameter space, looking for hyperparameter values
that minimize the root mean squared error (RMSE) on the vali-
dation set. To choose this space, we focus on optimizing over the
number of reservoir elements (nxi ) in each layer, while fixing the

desired spectral radius (ρ(i)
des), noise intensity (ν), and sparsity param-

eter (ri) to reasonable default values. This choice is informed by
the practice that optimizing over nx (the memory capacity) should
be prioritized over other hyperparameters.49 The values of all these
hyperparameters are not fully optimized; i.e., an exhaustive search
over the hyperparameters has not been performed. However, good
average performance is typically not found in a very narrow param-
eter range; thus, a very detailed fine-tuning of parameters does not
give a significant improvement and is not necessary.49 An alterna-
tive model selection procedure is the more expensive automated
Bayesian optimization approach proposed in Ref. 82.

The optimal ESN/DESN models selected by the above proce-
dure will depend on the choice of Nv. The choice of Nv should be
guided by the size and characteristic of the accessible data: Nv needs
to be sufficiently large so that the validation error is a reliable esti-
mate of an out-of-sample error but should be small enough, keeping
in mind the size of accessible data and the short-term forecasting
capability of ESN/DESN. Different choices ofNv will, therefore, give
rise to different prediction models. Once an optimal model is cho-
sen, we run the trained network to obtain predicted values for the
driving signal on the time interval [(N − Nv)$t, (N+M)$t] [see
(S2) in Algorithm III.1] and proceed to (S3) in Algorithm III.1. For
numerical integration in (S3), we use a Runge–Kutta method with a
uniform step size of $t = 0.01.

Our prediction and testing procedure is as follows. We per-
form an ensemble-like prediction by repeating the above training
and model selection procedure Nens times, obtaining Nens indepen-
dently trained and optimized prediction models, whose networks
are initialized using different random seeds. The idea of this ensem-
ble algorithm is that independent training and model selection here
produce different learners (committee of networks), learning on a
diverse set of features. The predictions of several base models built
with the same algorithm are then aggregated in order to improve
robustness over a single model; there may be predictions that are
completely off, but these will partially cancel each other out. This
increases stability, lowers the variance, and optimizes the overall
predictive performance. A higher (lower) Nens gives a more (less)
confident estimator. The choice of Nens should not be too large to
minimize computational expense in training models and to avoid
diminishing returns in performance from adding more ensemble
members. We choose Nens = 50 in all examples here. We have
repeated the experiments with a larger Nens of 100 but find only a
slight improvement in performance.

Since some members of the ensemble will make better
predictions than others, we expect to reduce the test error further
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if we assign greater weight to some members than to others. For this
reason, we are taking weighted averaged values as the final predicted
values as follows. LetNeff be the number of predicted trajectories that
lie entirely inside a pre-chosen confidence interval (which should
also cover the trajectory obtained from the validation set) around
the mean predicted trajectory on the time interval defining the vali-
dation set. The weight ascribed to each predicted trajectory is set to
1/Neff (getting a vote) if it falls entirely inside the confidence inter-
val and zero (getting no vote) otherwise. This filters out the outliers,
leaving us with Neff ≤ Nens selected models that are expected to have
reasonably good short-term forecasting capability, at least on the
validation set. To compute the ensemble average in our experiments,
we choose the confidence interval to be within eight standard devia-
tions of the mean predicted trajectory on the validation time interval

(if none of the predicted trajectories falls inside this region, we
increase the number of standard deviations used by one iteratively
until at least one falls inside the region).

To evaluate the quality of the predictions of the Neff models, we
study the statistics (the mean and standard deviation) of the differ-
ence between the predicted values and the target (real) values. Note
that alternative measures for evaluating the predictive performance
could also be considered. Our choice of measure here, in contrast
with coarse-grained metrics such as the percentage of predicted tra-
jectories that display a jump at a time close to the real one, reflects
our focus on inferring the characteristics of the whole transition
path. Figure 5 shows a schematic of our method.

The following are implementation details specific to each
example.

FIG. 5. A schematic summarizing the workflow of our data-driven method for a rare event prediction. In the schematic above, (S1)–(S3) denote the procedures described
in Algorithm III.1, M denotes a (realization of) ESN/DESN model described in Sec. III B during the training phase, P denotes a prediction model obtained by running a
ESN/DESN model autonomously during the prediction phase, M∗ denotes an optimal ESN/DESN model produced by our model selection procedure, N is the number of
data points in the training set, Nv is the number of data points in the validation set, Nens is the number of learners in an ensemble, Neff is the number of predicted paths that
lie entirely inside a pre-chosen confidence interval around the mean predicted path on [tN−Nv , tN−1], and the x̂i denote the predicted values obtained by the chosen learners
in the ensemble. In the plot (not drawn to scale) for the final prediction model, the target path (x) is in red and the predicted paths (x̂i ) are in blue. We take the averaged
predicted paths (over the Neff blue paths) as the final prediction model.
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• Example 1. We apply Algorithms III.1 and III.2 using a shallow
ESN (i.e., nL = 1 and L = 0) with nu = ny = 1, the bias value of
b = 1, and itransient = 0. The size of the validation set is chosen to
be Nv = 10 and Nv = 20. For the grid search, the range of values

that we use for nx0 are from 600 to 740, while ρ
(0)
des = 0.7, r0 = 0.1,

and ν = 0.001.
• Example 2. We apply Algorithms III.1 and III.2 using a three-
layered DESN (i.e., nL = 3, L = 2) with nu = ny = 1, the bias
value of b = 1, and itransient = 0. The size of the validation set is
chosen to be Nv = 4 and Nv = 8. For the grid search, the range
of values that we use for nxi (for i = 0, 1, 2) is from 100 to 300,

while ρ
(0)
des = 0.6, ρ

(1)
des = 0.7, ρ

(2)
des = 0.8, r0 = r1 = r2 = 0.05, and

ν = 0.003.
• Example 3. We apply Algorithms III.1 and III.2 using a shallow
ESN (i.e., nL = 1 and L = 0) with nu = ny = 1 and the bias b = 1.
The first 200 data points are not used (therefore, t0 = 2), and the
first itransient = 100 hidden states of the ESN are discarded during
training. The size of the validation set is chosen to be Nv = 5 and
Nv = 8. For the grid search, the range of values that we use for nx0
is from 500 to 700, while ρ

(0)
des = 0.95, r0 = 0.1, and ν = 0.003.

We invite interested readers to experiment with the choice of hyper-
parameters using the codes provided at the website in the Data
Availability section.

DATA AVAILABILITY
Complete codes (in Python) that reproduce all the results

obtained in this paper are openly available in GitHub at https://
github.com/shoelim/predicting-rare-critical-transitions-in-multisc
ale-systems.
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A Non-Gaussian Stochastic Model for the El Niño Southern Oscillation
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A non-autonomous stochastic dynamical model approach is developed to describe the seasonal
to interannual variability of the El Niño-Southern Oscillation (ENSO). We determine the model
coefficients by systematic statistical estimations using partial observations involving only sea surface
temperature data. Our approach reproduces the observed seasonal phase locking and its uncertainty,
as well as the highly non-Gaussian statistics of ENSO. Finally, we recover the intermittent time series
of the hidden processes, including the thermocline depth and the wind bursts.

Air-sea interactions in the tropical Pacific drive the
largest interannual variability process in climate called
the El Niño-Southern Oscillation (ENSO), with an in-
fluence that reaches the higher latitudes via atmospheric
and oceanic teleconnections [1, 2]. Due to its spatiotem-
poral impacts, estimating the seasonal to interannual
state of ENSO is essential for predicting a wide range of
regional and global climate phenomena [3, 4]. However,
the complexity of ENSO, involving as it does stochastic
forcing from atmospheric transients [e.g., 5] and nonlin-
ear air-sea interactions [e.g., 6], poses great challenges in
both modeling and prediction.

There are two traditional methods of modeling ENSO
[see e.g., 7, for a review]. One is to use the state-of-art
coupled general circulation models (GCMs), which solve
the governing conservation (energy, mass, momentum)
equations for the rotating planet with many sub-grid-
scale parameterizations of unresolved small-scale pro-
cesses. The other is to build low-order statistical models.
The former treat the main physical aspects of ENSO and
thus provide reasonable representations of the spatiotem-
poral patterns and air-sea interactions from intraseasonal
to interannual time scales [8]. The latter, commonly de-
signed to describe and predict particular ENSO indices,
characterize the large-scale features of the system and are
much cheaper computationally than GCMs [9]. Nonethe-
less, despite great progress in developing these methods,
there remain limitations to advancing analysis and pre-
diction. On the one hand, GCMs incur systematic er-
rors originating from inaccurate state estimations and
incomplete sub-grid-scale parameterizations associated
with the ocean thermocline, tropical instability waves,
and the Madden-Julian Oscillation (MJO) [11, 12]. On
the other hand, the statistical models based on multi-
variate regressions cannot provide detailed physical infor-
mation regarding the phase and intensity of ENSO [13].

∗ ludovico.giorgini@su.se
† woosok.moon@su.se
‡ chennan@math.wisc.edu
§ john.wettlaufer@yale.edu

One direction for progress is to utilize a hybrid strategy
that simultaneously maximizes the advantages of both
physically-oriented and statistical models.

The basic theoretical understanding of the tropical air-
sea interactions underlying ENSO [14, 15] has lead to a
hierarchy of simple models of the main processes that
control the sea surface temperature (SST) in the tropical
ocean [e.g., 16]. A prominent approach is the recharge-
discharge model [17], and its extensions and generaliza-
tions, derived from the forced shallow water equations
using the two-strip approximation. Despite it being a
two-dimensional linear model, it (and its generalizations)
can capture inter-annual variability, seasonal variability
with time-periodic coefficients [18, 19], and a range of
stochastic forcing representing weather and intraseasonal
processes, such as westerly wind bursts (WWBs) [20].

Here we describe a two-stage stochastic model ap-
proach that captures the large-scale dynamical and sta-
tistical characteristics of ENSO. Stochastic recharge-
discharge oscillator models have used observations to re-
cover statistics on inter-annual time-scales [21, 22], and
have incorporated the seasonal cycle of the Bjerknes feed-
back to treat ENSO phase-locking and the spring pre-
dictability barrier [18, 19, 23]. However, while our ap-
proach builds upon the recharge-discharge model, we in-
corporate a slowly-varying low-order deterministic com-
ponent that systematically treats time-varying coeffi-
cients and multiplicative noise to accurately describe the
central intraseasonal to interannual features of ENSO.
In particular, our framework reproduces ENSO’s ob-
served seasonal phase locking, uncertainty and highly
non-Gaussian statistics. However, we clearly depart
from multivariate regression statistical models that re-
quire observations of all state variables. Rather, our
non-Gaussian model incorporates a subset of observa-
tions from which we can infer unobserved quantities
and quantify their uncertainties using an efficient and
exact data assimilation scheme, and can thereby accu-
rately recover the difficult to observe thermocline depth
and wind bursts. Finally, by systematically determining
time-dependent model coefficients, we precisely simulate
the seasonal to inter-annual ENSO statistics.
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We begin with the following coupled model,

ẋ(t) = a(t)x(t) + ω(t)h(t) +N(t)ξx(t) and

ḣ(t) = −ω(t)x(t) + λh(t) + σξh(t),
(1)

in which x(t) is the averaged SST anomaly in the equato-
rial central-eastern Pacific (the so-called Niño 3.4 region),
and h(t) is the thermocline depth, which is a surrogate
of the heat content, averaged over the western tropical
Pacific. The time-dependent function, a(t), represents
the seasonal evolution of the Bjerknes feedback and the
noise amplitude, N(t), captures the role of the relatively
short time-scale forcing of the SST anomaly x(t). Both
ξx(t) and ξh(t) are independent Gaussian white noise
processes. Finally, the other time-dependent function,
ω(t), controls the coupling of tropical atmosphere and
the upper ocean, which is one of the key parameters that
determines the quasi-oscillatory behavior of the domi-
nant ENSO modes, and in traditional low-order models
is treated as a constant [18]. Here, however, treating it
as time-dependent facilitates a more accurate description
of the intraseasonal and interannual statistics.

We emphasize the role of the seasonality of background
fields in the tropical Pacific by making all the time de-
pendent coefficients in (1) periodic on the annual cy-
cle. We determine the functions a(t) and N(t) using
the monthly statistics of the Niño 3.4 index [24]. The
coefficient a(t) is related to the relationship between the
monthly variance 〈x2(t)〉 and the covariance between two
adjacent months 〈x(t)x(t+∆t)〉. We use the derived a(t)
to estimate N(t) from the statistics of the derived data;
y = x(t+∆t)−x(t)−a(t)x(t)∆t. It has been shown pre-
viously that a(t) and N(t) can be accurately estimated
independent of the other coefficients (see supplementary
material in [24]). The coupling function, ω(t), and the
constants λ and σ, are determined by an expectation-
maximization algorithm [26, 27, 42], which is a useful
and efficient statistical estimation method involving in-
complete data. We note that only the Niño 3.4 index
data is used as the partial observation for model calibra-
tion, whereas the thermocline depth, h(t), is assumed to
be unknown since it is not directly available from satel-
lite observations. Therefore, as detailed in Appendix B,
C, we infer h(t) together with unknown coefficients ω(t),
λ, and σ [28].

We evaluate the quality of the model by comparing
the model statistics with those of the observed Niño 3.4
index in Fig. 5. A qualitative comparison between a
random realization of the model and the observed data
show comparable variability in Fig. 5(a) and quanti-
tative comparisons of the probability density functions
(PDFs) and the autocorrelation functions (ACFs) of the
SST anomaly shown in Figs. 5(b) and (c) demonstrate
that the model is able to accurately simulate the inter-
annual quasi-oscillatory behavior of ENSO. Moreover, as
seen in Fig. 5(d), the model reproduces monthly stan-
dard deviations of the Niño 3.4 index data with high
precision. Therefore, two important seasonal features of

ENSO, “phase locking” to the seasonal cycle [29] and the
“spring predictability barrier” [19], are accurately cap-
tured in this two dimensional model. Phase locking is re-
lated to the activation of the positive Bjerknes feedback
from summer to early winter, which leads to the concen-
tration of abnormal ENSO events during November and
December, as is clear from the maximum of the standard
deviation near the end of the year. This phase locking
feature is clearly seen from the model trajectory (Fig.
5a), where the peaks of nearly all of the major ENSO
events occur in the boreal winter, consistent with the ob-
servations. The spring predictability barrier is related
to the increase of the noise magnitude, N(t), during the
spring, which increases model uncertainties during the
boreal summer thereby causing the loss of predictability
[24]. Indeed, this is reflected by the structural similarity
between the model and the observations in the persis-
tence forecast diagrams shown in Figs. 5(e) and (f).

Despite its simplicity, the model system of Eqs. (1) re-
covers the monthly standard deviation and ACFs of the
Niño 3.4 index with higher accuracy than coupled GCMs
[30], linear and nonlinear statistical models [31], and sim-
pler recharge-discharge based approaches [18]. Our sys-
tematic statistical estimation of coefficients enable this
stochastic model to regenerate the statistics of the Niño
3.4 index. In particular, as shown in Fig. 5(c), the precise
representation of the ACFs beyond 2 years suggests that
the overall dynamical features of the thermocline depth,
h(t), are well captured in this model. Variations in h(t),
and thus of the equatorial warm water volume (WWV)
in the western tropical Pacific, influence the SST through
vertical advection of temperature anomalies by mean up-
welling, a process known as the “thermocline feedback”.
Thus, the thermocline depth acts as a precursor for the
inter-annual prediction of SST anomalies [32].

Although the linear model described above success-
fully captures the seasonal variability and the interan-
nual large-scale dynamical features of ENSO, it only al-
lows Gaussian PDFs, whereas the observed statistics are
highly non-Gaussian. Importantly, a model must include
atmospheric wind burst forcing, which plays a critical
role in generating the extreme ENSO events responsible
for non-Gaussianity [20, 34]. Therefore, we include wind
bursts in the stochastic model of Eqs. (1) as follows,

ẋ(t) = a(t)x(t) + ω(t)h(t) + α1τ(t) +N(t)ξx(t),

ḣ(t) = −ω(t)x(t) + λh(t) + α2τ(t) + σξh(t) and
τ̇(t) = dτ τ(t) + ρ(x)ξτ (t),

(2)

where we adopt a simple linear process with multiplica-
tive noise to generate the stochastic wind bursts τ(t) that
drive the SST and thermocline dynamics. The parame-
ters in the wind burst equation are chosen to accurately
reproduce the observed wind stress (Fig. 6 (d)-(f)), while
the coefficients of Eqs. (1) were slightly modified to take
into account the additional process in the model. De-
spite the non-Gaussianity of the model, the thermocline
depth and the wind bursts remain as Gaussian processes
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FIG. 1. Comparison of the observed SST (blue; bottom x-axis) with the model Eq. (1) (red; top x-axis). The SST time series
are shown in (a), where the model result is one of the random realizations from Eq. (1) that shares the same length as the
observational data from 1983 to 2016. The comparisons of the PDFs and ACFs are shown in (b) and (c). The SST standard
deviation as a function of calendar month is shown in (d). In (e) and (f), the diagram of the persistence forecast from the
observational data and that from the model can be compared.

conditioned on the observed SST. Moreover, by using the
partial observations that involve only the Niño SST data,
we have closed analytic formulae for solving the condi-
tional distribution of the unobserved thermocline depth
and the wind bursts [see 33, and Appendix B],

p(h(t), τ (t)|x(s), s ≤ t) ∼ N (µf (t), Rf (t)), (3)

where µf (t) and Rf (t) are the so-called filter mean and
filter covariance in data assimilation.

The filter estimate (3) of the non-Gaussian model (2)
can be used to carry out an online time series recon-
struction of the unobserved variables and analyze the as-
sociated uncertainty, which can also serve as the forecast
initialization. Note that the observational data for the
equatorial heat content (the integrated WWV above the
20oC isotherm between 5N-5S, 120E to 80W [32], which
is equivalent to the thermocline depth h(t) in (2)) is only
available since 1983 [? ], whereas SST data is available
from the pre-industrial era. Therefore, the available SST
data can be incorporated into the model (2) to recon-
struct the thermocline data over a much longer period.

We first validate the accuracy of the recovered h(t) and
τ(t) in the period after 1983. Fig. 6 (a) shows the filter
mean time series of the thermocline depth, h(t), (red)
from the non-Gaussian model (2), which compares fa-
vorably to the observational value (blue) with a pattern
correlation that is nearly 0.9. Moreover, the small error
between the observed and the recovered time series lies
approximately within one standard deviation of the filter
estimated uncertainty (pink shaded region). In partic-
ular, as expected from the physical role of the WWBs,
the extreme events are accurately recovered. Similar con-
clusions are reached for the wind burst time series (Fig.
6e). In addition to a skillful state estimation, the recon-
structed wind burst time series has the further influence
of filtering out the independent white noise in observa-

tions. As shown in Figs. 6(b, f), the model PDFs cap-
ture those of the observations for both the thermocline
depth and the wind bursts, particularly the significant
non-Gaussian skewness and kurtosis. Moreover, simi-
lar accuracy is found in ACFs and the power spectra as
shown Figs. 6(c, d, g, h). The success in recovering un-
observed processes is due to the confluence of the model
containing the essential physics and properly constrained
stochastic forcing and coefficients.

As shown Fig. 6, the accurate nonlinear filter esti-
mates of Eq. (3) provide an online estimation method
of the thermocline depth h(t) and the wind bursts τ(t)
relevant for model initialization. On the other hand, re-
constructing historical data can be achieved by solving a
slightly different conditional distribution

p(h(t), τ (t)|x(s), 0 ≤ s ≤ T ) ∼ N (µs(t), Rs(t)), (4)

where t ∈ [0, T ]. This is the so-called smoother estimate.
It differs from the filter in the sense that it exploits all
the available information up to the current time instant.
One desirable feature of the nonlinear smoother estimate
in Eq. (4) associated with the non-Gaussian system in
Eqs. (2) is that it can be solved via closed analytic for-
mulae (see Appendix B). We use the smoother estimate
to recover the historical realizations of the two hidden
variables conditioned on the entire observational period
of the Niño 3.4 index from 1870 to present. The results
are shown in Fig. 3. Since the thermocline depth and
the wind bursts are the most important precursors for
predicting the state of ENSO, these recovered variables
can be used to evaluate and improve prediction models
and provide a guideline for improving parameterizations
in coupled GCMs.

Understanding the complexity of climate dynamics
presents a dilemma of completeness, between using solely
statistical regression models lack the essential physics, to
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FIG. 2. Comparison of the observational value (blue) and the recovered time series from the filter estimate (red) using Eq. (3),
based on the non-Gaussian model (2) for the thermocline depth (a) and the wind bursts (e). The solid red curves are the filter
mean while the shaded red areas show one standard deviation in the filter estimate (the square root of the filter variance). The
comparison of the PDFs, the ACFs and the power spectra between the observations and simulations from the non-Gaussian
model (2) are shown in (b)–(d), for the thermocline depth and (f)–(h), for the wind bursts.
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FIG. 3. The recovered time series of the hidden variables (red curves; left y-axis) for (a) the thermocline depth and (b) the
wind bursts, using the non-Gaussian model, Eqs. (2), with the partial observations involving only SST data (dashed black
curves; right y-axis) from 1870 to 2016. The method used here is the nonlinear smoother estimate, Eq. (4). The blue curves
show the observational data from 1983 to 2016.

global climate models, which have more variables and pa-
rameterizations than observables. Our approach presents
a compromise through hybridization. We combine a
slowly-varying low-order dynamical system with an ob-
servationally faithful statistical representation of short-
time processes. In consequence we find a realistic de-
scription of ENSO as measured by the success in (i) re-
producing the observed seasonal phase locking and its un-
certainty; (ii) capturing the spring predictability barrier;
(iii) simulating the observed highly non-Gaussian statis-
tics, and (iv) accurately recovering the intermittent time
series of the hidden processes via a nonlinear but analyt-
ically solvable data assimilation scheme. Furthermore,
we suggest that extending the approach described here
to examine climate variability on a wide range of time
scales [2, 36], wherein proxy data are available, will pro-
vide important insights into mechanisms and feedbacks
in the climate system. Finally, given the generality of the
stochastic dynamical systems in physics, it is hoped that
our approach can be adopted not only for other problems
in climate, but far more broadly in the physical sciences.
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Appendix A: Observational Data

All the observational data used in the main paper are
plotted in Fig. (4) and described here.

(1) Monthly sea surface temperature (SST) anomalies
derived from the temperature analyses of the Bu-
reau National Operations Centre (BNOC) at the
Australian Bureau of Meteorology [37]. These data
have been averaged over the Niño 3.4 region (5N-
5S, 170W-120W) and start from the pre-industrial
era spanning the entire period 1870-2016. The SST
data are the only observations used in the main pa-
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per to recover the model coefficients and to recon-
struct the hidden processes involved.

(2) Daily thermocline depth data, defined as the inte-
grated warm water volume (WWV) above the 200C
isotherm, downloaded from the NCEP/GODAS re-
analysis [38] and averaged within 5N-5S and 80W-
120W in the tropical Pacific Ocean. This dataset
was used in the main paper to test the performance
of both the two and three dimensional models in es-
timating the hidden state of the thermocline depth
correctly, together with their long-term (or “equilib-
rium”) statistical and dynamical features, evaluated
by comparing the probability distribution functions
(PDFs) and the autocorrelation functions (ACFs)
obtained from the models and from observations.
The thermocline depth data are available only in
the post-industrial era, from 1983. Therefore, it
was not possible to compare with observations the
recovered hidden process over its total length, but
only its realization from 1983.

(3) Daily westerly wind bursts (WWBs) at 850hPa
from the NCEP/NCAR reanalysis [39]. By in-
troducing the WWBs into our three dimensional
model (Eqs. 2 in the main paper) we repro-
duced the non-Gaussian features observed in ENSO
statistics that are not possible in a linear model.
The relevant observations were only available from
1983 and thus comparisons of the mean state to the
statistics of the hidden processes recovered through
the model to observations began at that date.

Appendix B: State Estimation and Data
Assimilation

1. Online data assimilation

Our two-dimensional model (Eqs. 1 in the main text)
is a linear model with time-varying coefficients. There-
fore, given the observations of the SST, the classical
Kalman-Bucy filter [40] can be directly applied to ob-
tain the state estimation of the thermocline depth. In
our three-dimensional non-Gaussian model (Eqs. 2 of the
main text), the multiplicative noise prevents the use of
the Kalman-Bucy filter for the state estimation. Never-
theless, conditional on the observed SST, the thermocline
depth and the wind bursts remain as Gaussian processes.
For such a conditional Gaussian system, the conditional
distribution p(h(t), τ (t)|x(s), s ≤ t) ∼ N (µf (t),Rf (t))
is Gaussian. Note that despite the non-Gaussianity, the
conditional Gaussian distribution can be solved via closed
analytic formulae [33]. This facilitates an efficient data
assimilation scheme to recover the states of h(t) and τ(t)
and their uncertainties through the filter mean µf (t) and
the square root of the filter covariance Rf (t), which for

our three dimensional model are given by

dµf = (c0 + c1µf ) dt+ RfCT
1 B
−2( dx− (C0 + C1µf ) dt),

(B1a)

dRf =
(
c1Rf + RfcT1 + bbT − (RfCT

1 )B−2(RfCT
1 )T

)
dt,

(B1b)

respectively, where

c0 =

[
−ωx

0

]
, c1 =

[
λ α2

0 dτ

]
,

C0 = ax, C1 =
[
ω α1

]
,

B = N, b =

[
σ 0
0 ρ

]
.

(B2)

The filter mean and covariance of the two dimensional
model can be obtained from these expressions by setting
α1, α2 = 0.

2. Offline smoothing

The data assimilation process exploits the observations
up to the current time instant for the purpose of ini-
tialization. On the other hand, for reconstructing the
unobserved variables, conditioned on the entire observa-
tional signal (such as obtaining reanalysis data), the so-
called smoothing technique is preferable. For example,
the smoothing of the three-dimensional non-Gaussian
system aims to solve p(h(t), τ (t)|x(s), 0 ≤ s ≤ T ) ∼
N (µs(t),Rs(t)), where t ∈ [0, T ]. The smoothing tech-
nique can be regarded as a two-step data assimilation
process, with a forward pass of filtering and a backward
pass of smoothing. Although there are no closed formu-
lae for the smoother mean µs(t) and covariance Rs(t),
closed analytic formulae are available for both the sys-
tems studied in the main text with appeal to the condi-
tional Gaussian structure [41]

d(−µs) =
(
− c0 − c1µs + (bbT )R−1

f (µf − µs)
)

dt,

(B3a)

d(−Rs) =−
(
(c1 + (bbT )R−1

f )Rs

+ Rs(cT1 + (bbT )R−1
f )− bbT

)
dt,

(B3b)

where µf ,Rf are the filter mean and covariance respec-
tively, defined in Eq. (B1), while the coefficients c0, c1,b
have been specified in Eq. (B2).

In (B3), the terms of the left hand side are understood
as

d(−µs) = lim
∆t→0

µs(t)− µs(t+ ∆t),

d(−Rs) = lim
∆t→0

Rs(t)−Rs(t+ ∆t).
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FIG. 4. Observational data used (a) the Niño 3.4 index, (b) the thermocline depth averaged over the west Pacific and (c) the
westerly wind bursts.

Appendix C: Parameter Estimation

1. Parameter estimation of the time-varying
parameters a(t) and N(t)

In this section, we will use the monthly-averaged SST
data to construct the periodic drift and diffusion coeffi-
cients, a(t) and N(t), that appear in the x-equation of
Eqs. (1) in the main paper viz.,

ẋ(t) = a(t)x(t) + ω(t)h(t) +N(t)ξx(t) and

ḣ(t) = −ω(t)x(t) + λh(t) + σξh(t).
(C1)

Here we consider a discretized version of this two dimen-
sional model with ∆t the discrete time unit. For simplic-
ity, we set the yearly frequency of the coefficients equal
to 2π. We define Ny as the total number of years of the
observed SST data, each of which contains ∆t−1 data
points. We multiply both sides of the x-equation by x,

and upon taking the average we obtain

〈xixi+1〉i−〈x2
i 〉i = ∆t(ai〈x2

i 〉i−ωi〈hi xi〉i) ∀i ∈ (0,∆t−1],
(C2)

where the average has been performed only over the
quantities in the i-th time step inside each period T with
T = 1. Using the h-equation, the last term on the right
hand side of Eq. (C2) can be written as

〈hi xi〉i '
1

Ny




Ny∑

j=1

j∆t−1+i∆t∑

s=0

e−λ(j∆t−1+i∆t−s)ωsxsxi∆t




' 1

Ny
ω̄




Ny∑

j=1

j∆t−1+i∆t∑

s=j∆t−1+i∆t−Λ(λ)

xs xi∆t


 '

' ω̄〈xi+ 1
4∆t

xi〉i ' 0.

(C3)
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Here we have used the fact that x is periodic and oscil-
lates around a mean of zero with an average frequency of
π/2 (the natural frequency of ENSO is approximately 4
years), which is four times smaller than that of ω. There-
fore, this last coefficient has been approximated in the
sum with its average over one period. Moreover, we have
exploited the effect of the exponential inside the sum,
which provides a cutoff in the lower limit. Thus, the av-
erage of this periodic function is a phase shift of a quarter
of period and we can approximate this term as zero.

We can then write

ai =
〈xixi+1〉i − 〈x2

i 〉i
∆t〈x2

i 〉i
+ ∆ai, (C4)

where ∆ai is the subleading correction to ai arising from
the term 〈hi xi〉i.

Taking the square of the x-equation in Eq. (C1) and
then averaging, we can isolate Ni viz.,

N2
i ∆t =〈[xi+1 − xi −∆t(aixi − ωihi)]2〉i '

'〈[xi+1 − xi −∆taixi]
2〉i + ∆t2ω2

i 〈h2
i 〉i

∀i ∈ (0,∆t−1],

(C5)

where all the terms proportional to 〈hi xi〉i have been
neglected. Now we define yi = xi+1 − xi − ∆taixi and
write

〈y2
i 〉i − 〈yi+1yi〉i

∆t
= N2

i + ∆t(ω2
i 〈hi+1hi〉i − ω2

i 〈h2
i 〉i) '

' N2
i +O(∆t2) ∀i ∈ (0,∆t−1].

(C6)

Finally we can write

Ni =

√
〈y2
i 〉i − 〈yi+1yi〉i

∆t
+ ∆Ni. (C7)

We have used Eqs. (C4), (C7) to reconstruct the coef-
ficients a(t) and N(t) from the data and we have plotted
them in Fig. (5). From Fig. (5)(a) can be noticed a good
agreement between our estimation of a(t) (blue) and the
seasonal Bjerknes instability index as given by [18] (red)
as a(t) = −1− sin(2πt).

2. Parameter estimation of the constant coefficients
using an expectation-maximization algorithm

An expectation-maximization (EM) algorithm is used
for parameter estimation of both the two- and three-
dimensional systems. We use this algorithm because we
only have the SST data over the entire observational pe-
riod and hence the system is only “partially observed”.
Therefore, the parameters and the unobserved states of
the thermocline depth and the wind bursts must be es-
timated simultaneously. The advantage of the EM al-
gorithm is that it iterates and updates the parameters

and the hidden states alternatively. Moreover, conver-
gence can be guaranteed. In particular, in the E-step
the smoother is applied to estimate the state while in
the M-step a maximum likelihood approach is used for
parameter estimation. In the E-step, we have used for
convenience a normalized (i.e., with unitary variance)
smoother estimate of the hidden process, which is the
thermocline depth for the two dimensional model. The
details of the algorithm can be found in [42].

Below, the EM algorithm is applied to estimate ω =
ω0 + ω1 sin(2πt) + ω2 cos(2πt) and σ in the linear model.
These coefficients have been estimated keeping the drift
term λ of the h-process constant in order to guarantee
the stability of the algorithm. This procedure has been
iterated many times for different values of λ choosing that
which minimizes both the relative and spectral relative
entropy (see [43] and references therein).

Figure 6 illustrates the iteration of the coefficients to-
wards their optima; ω0 = 1.5, ω1 = 0.6, ω2 = −0.5
and σ = 0.9, with the optimal value of λ = −0.8. Note
that because of the simplicity of the model structure, the
convergence here is global.

3. Parameter estimation of the wind bursts
coefficients

We introduced a three dimensional model (Eqs. 2 in
the main paper) to take into account the effects of wind
bursts as

ẋ(t) = a(t)x(t) + ω(t)h(t) + α1τ(t) +N(t)ξx(t),

ḣ(t) = −ω(t)x(t) + λh(t) + α2τ(t) + σξh(t) and
τ̇(t) = dτ τ(t) + ρ(x)ξτ (t),

(C8)

with the following parameters

a(t)→ 1.5a(t), N(t)→ 0.8N(t),

ω0 = 1.5, ω1 = 0.6, ω2 = −0.5,

λ = −1.5, σ = 0.8,

α1 = 1, α2 = −0.6, dτ = −1.5,

ρ(x) = 4.5(tanh(x) + 1) + 8.

(C9)

The parameters that were part of the two dimensional
model have been slightly modified to take into account
the additional process of wind bursts.

The coefficient ρ(x) in the τ equation has two addi-
tive components. The first is a multiplicative noise ef-
fect arising from the fact that the warmer SST in the
eastern tropical Pacific is usually accompanied by strong
wind bursts [e.g., 44]. The second is an additive noise
effect, which will increase the variability of the quiescent
phases of the SST. These combined effects reproduce the
observed non-Gaussian statistics of the model variables.

We let dτ = π/2, so that the damping time scale of the
wind bursts is 1/4 year, but we emphasize that this is not
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FIG. 5. Shape of a(t) and N(t) obtained from the data (blue) and comparison with the estimation of a(t) used in [18] (red).

the time scale for the wind bursts themselves. Rather,
this is the time scale for the accumulation effect of the
wind bursts, tropical convection and the MJO to trigger

ENSO. This choice ensures that the decorrelation time-
scale of the wind bursts in the model is the same as that
of the observations.
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We generalize stochastic resonance to the non-adiabatic limit by treating the double-well potential
using two quadratic potentials. We use a singular perturbation method to determine an approximate
analytical solution for the probability density function that asymptotically connects local solutions
in boundary layers near the two minima with those in the region of the maximum that separates
them. The validity of the analytical solution is confirmed numerically. Free from the constraints
of the adiabatic limit, the approach allows us to predict the escape rate from one stable basin to
another for systems experiencing a more complex periodic forcing.

I. INTRODUCTION

It is common to consider noise as a hindrance in mea-
surements and observations, which underlies the general
idea of filtering in signal processing [1, 2]. In contrast,
there are circumstances in which the presence of noise
may facilitate the detection of a signal. A prominent
example is stochastic resonance, during which noise can
amplify a weak signal and drive a dramatic transition in
the state of a system [3–7]. The simplest stochastic res-
onance configuration considers the trajectory of a Brow-
nian particle in a double-well potential influenced by a
weak periodic forcing; as the random forcing increases
so too does the observed signal-to-noise ratio [6]? As
the noise amplitude varies a resonance with the periodic
forcing triggers transitions between the stable minima.

The term stochastic resonance originated in a series of
studies by Benzi et al., [3–5] that focused on the observed
periodicity of Earth’s ice ages. Namely, because the 100
kyr eccentricity of the Milankovitch orbital cycles pro-
vides such a weak periodic solar insolation forcing, as the
strength of random forcing varies, a resonance may drive
the transition between the cold and warm states of the
Earth’s climate system. Whilst the original motivation
was an explanation of ice-age periodicity, the generality
of the framework has driven a myriad of studies across
science and engineering. For example, a modest subset
in which stochastic resonance is a key process includes
the sensory systems of many animals, including humans,
facilitating the recognition of weak signals buried in en-
vironment noise [8–10], it is used to enhance signals in
blurry images [11, 12] and in detecting machine faults in
mechanical engineering [13]. Despite this breadth, the
theoretical foundation of stochastic resonance is based
on the Kramer’s escape rate from one of the mimina of a
bi-stable system within the adiabatic limit [6, 7]. In par-
ticular, rather than directly solving the non-autonomous
Fokker-Planck equation, the periodic forcing of the po-
tential is treated as a constant assuming that the fre-
quency of the periodic forcing is asymptotically small.
However, in most realistic settings, a weak signal is not
consistent with a single periodic function, but rather with

a continuous spectrum of many frequencies [14]. There-
fore, use of stochastic resonance in practical systems re-
quires a generalization of the existing theory to the non-
adiabatic case.

We have made a recent advance in this direction as fol-
lows [15]. We first treated the Kramers escape problem
with periodic forcing within the framework of singular
perturbation theory and matched asymptotic expansions.
In particular, we divided the cubic potential into three
regions–two boundary layers near the extrema and one
connecting them–and determined the local approximate
analytic solutions of the Fokker-Planck equation within
each region. We constructed a uniformly valid composite
global solution by systematic asymptotic matching of the
local solutions. The bi-stable system was then obtained
by reflection of the Kramers problem. In consequence,
the non-adiabatic hopping rate was determined and the
full solution was tested numerically. The analytic solu-
tion is principally reliable only when the magnitude of
the periodic forcing is much smaller than the noise mag-
nitude. Our goal here is the simplify this calculation to
make more transparent and useful the general treatment
of non-adiabatic stochastic resonance.

Insight for this simplification is provided from a calcu-
lation of the mean first passage time of the Ornstein-
Uhlenbeck process using similar singular perturbation
methods [16]. In that problem we solve the Fokker-
Planck equation with an absorbing boundary condition
at a point far away from the minimum of a quadratic po-
tential. In what follows we revisit this problem and derive
the probability density function from which we determine
the escape rate. We will then use this method to treat
the stochastic resonance problem as a periodically forced
bi-stable potential by combining two quadratic poten-
tials. We then obtain approximate analytical solutions
for stochastic resonance in the non-adiabatic regime. The
analytical solutions compare extremely well with the nu-
merical solutions.
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II. FIRST PASSAGE PROBLEM FOR THE
ORNSTEIN-UHLENBECK PROCESS

In order to make this paper reasonably self-contained,
we outline the asymptotic method previously used to
solve the survival probability problem for the Ornstein-
Uhlenbeck problem [16], which we relate explicitly in this
section to the first passage problem. As shown in Fig. 1
we divide the domain into two regions: a broad O(1) re-
gion (I) containing the minimum of the potential, x = 0,
and a narrow O (1/β) boundary layer (II) near x = β. In
the parlance of asymptotic methods in differential equa-
tions [17], the boundary layer is referred to as the in-
ner region and the remainder of the domain is the outer
region, although in this case the latter is in the inte-
rior of the potential. We solve the limiting differential
equations in these regions, from which we develop a uni-
form composite solution for the probability density using
asymptotic matching. From this composite solution we
calculate the mean first passage time.

x = 0 x = �

U(x)
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FIG. 1: Schematic of the first passage problem with a quadratic
potential U(x) = 1

2
λx2 and Gaussian white noise of magnitude√

2σ. The potential is divided into an “outer” region (I) around
the minimum at x = 0, and a “boundary layer”, or the “inner”
region (II), near the absorbing boundary at x = β. In each region
the asymptotically dominant solutions are determined and then
matched throughout the entire domain. The boundary layer
solution, Qin, satisfying the boundary condition x = β converges
to Qout as the independent variable approaches the origin.

A Brownian particle resides in a quadratic poten-
tial (Fig. 1) and its position, x(t), obeys the following
Langevin equation,

dx

dt
= −λx+

√
2σξ(t), (1)

where λ > 0 captures the stability of the quadratic po-
tential, ξ(t) is Gaussian white noise with zero mean, in-

tensity
√

2σ, and correlation 〈ξ(t)ξ(s)〉 = δ(t− s).
The first passage problem describes the mean time re-

quired for the Brownian particle to reach a particular
location, say x = β. The Langevin equation can be trans-
formed to a Fokker-Planck equation for the probability

density, P (x, t), given by

∂P

∂t
= λ

∂

∂x
(xP ) + σ2 ∂

2P

∂x2
, (2)

with an absorbing boundary condition at x = β, P (x =
β) = 0, and P (x = −∞) = 0. Here, the absorbing
boundary condition implies that Brownian particles dis-
appear at x = β, where we seek the loss rate of probabil-
ity density. We have solved this problem analytically for
β � 1 with both λ and σ = O(1) [16].

Region I: The outer solution. The probability density

in the outer region (the interior of the potential), P out ,
satisfies

∂P out

∂t
= λ

∂

∂x

(
xP out

)
+ σ2 ∂

2P out

∂x2
, (3)

with boundary conditions P out (±∞) = 0. The
steady-state solution of Eq. (3) is Pss

out =√
λ

2πσ2 exp(−λx2/2σ2). Now, we let P (x, t) =

Pss
out Q(x, t) in Eq. (2) and hence Q(x, t) satisfies

∂Q

∂t
= −λx∂Q

∂x
+ σ2 ∂

2Q

∂x2
. (4)

Therefore, in the interior of the potential Q ≡ Qout ≈
N(t), where N(t) is a very slowly-varying function due
to the leaking of probability density at x = β. Thus, we
set N(t) = N to be a constant.

Region II: The inner solution. In the boundary layer
we have x ∼ β and because β � 1, we have ε ≡ 1/β � 1,

motivating the stretched coordinate η =
x− 1

ε

ε = β(x−β).
Thus, expressed using η, in the boundary layer Eq. (4)
becomes

∂Qin

∂t
= −λ(η + β2)

∂Qin

∂η
+ β2σ2 ∂

2Qin

∂η2
. (5)

Because β � 1 the leading-order balance in Eq. (17) is

−λ∂Q
in

∂η
+ σ2 ∂

2Qin

∂η2
' 0. (6)

Therefore, Qin ' K1exp(λη/σ2) +K2 with constants K1

and K2. To satisfy the boundary condition P (x = β) =
0, which is equivalent to Qin(η = 0) = 0, we must have
K2 +K1 = 0.

Uniformly Valid Composite Solution: Asymptotic
matching of the solutions between Regions I and II
requires that limη→−∞Qin = Qout = N , which gives
Qin = N [1 − exp(λη/σ2)]. A uniformly valid composite
solution is then Q ≡ Qout + Qin − limη→−∞Qin, or
Q ' N

(
1− exp[βλ(x− β)/σ2]

)
, which gives

P ' N
√

λ

2πσ2
exp

(
− λ

2σ2
x2
)(

1− exp

[
βλ

σ2
(x− β)

])
.

(7)
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Integrating the Fokker-Planck equation (2) over the en-
tire domain (−∞, β) we have

∂

∂t

∫ β

−∞
Pdx = Jx=β , (8)

where J = λxP + σ2∂P/∂x and we use J(x = −∞) = 0.
Probability density is principally concentrated near x =
0, and hence

∫ β

−∞
Pdx ' Qout

∫ ∞

−∞
P out dx = N, (9)

so that Eq. (8) becomes

dN

dt
= −βλ

√
λ

2πσ2
exp

(
−λβ

2

2σ2

)
N ≡ −rN. (10)

Therefore, the global probability density decreases with
rate r and the mean first passage time is 〈T 〉 = 1/r, with

r = βλ

√
λ

2πσ2
exp

(
−λβ

2

2σ2

)
(11)

III. STOCHASTIC RESONANCE IN DOUBLE
QUADRATIC POTENTIALS

O

✓
1

�

◆

x = �x = �� x = 0

<latexit sha1_base64="8yaoKCskarkczxuKjVJDmOoaVJQ=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diC/YA2lM120q7dbMLuRiyhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD6DGNAg==</latexit>x

O

✓
1

�

◆

<latexit sha1_base64="exwRQFMR8dhoarSQq5m88oDaz64=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIR9Vj04rEF+wFtDJvtpl262YTdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSATX4Djf1tr6xubWdmmnvLu3f3BoH1XaOk4VZS0ai1h1A6KZ4JK1gINg3UQxEgWCdYLx3czvPDGleSwfYJowLyJDyUNOCRjJtytZ8zHrA5sAzrjMc9/Nfbvq1Jw58CpxC1JFBRq+/dUfxDSNmAQqiNY910nAy4gCTgXLy/1Us4TQMRmynqGSREx72fz2HJ8ZZYDDWJmSgOfq74mMRFpPo8B0RgRGetmbif95vRTCG8/8lKTAJF0sClOBIcazIPCAK0ZBTA0hVHFzK6YjoggFE1fZhOAuv7xK2hc196rmNi+r9dsijhI6QafoHLnoGtXRPWqgFqJogp7RK3qzcuvFerc+Fq1rVjFzjP7A+vwBWOaUpA==</latexit>

Qin
1

<latexit sha1_base64="Y1uR31kRH1HDDCrnQHXNNzo/T3Y=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx5bsB/QxrDZbtulm03YnUhLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzglhwDY7zbRU2Nre2d4q7pb39g8Mj+7jc1lGiKGvRSESqGxDNBJesBRwE68aKkTAQrBNM7uZ+54kpzSP5ALOYeSEZST7klICRfLucNh/TPrAp4JTLLPNrmW9XnKqzAF4nbk4qKEfDt7/6g4gmIZNABdG65zoxeClRwKlgWamfaBYTOiEj1jNUkpBpL13cnuFzowzwMFKmJOCF+nsiJaHWszAwnSGBsV715uJ/Xi+B4Y1nfooTYJIuFw0TgSHC8yDwgCtGQcwMIVRxcyumY6IIBRNXyYTgrr68Ttq1qntVdZuXlfptHkcRnaIzdIFcdI3q6B41UAtRNEXP6BW9WZn1Yr1bH8vWgpXPnKA/sD5/AFprlKU=</latexit>

Qin
2

<latexit sha1_base64="1xWhZZvYChU/ThBjFnjkOUzv3kA=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiRF1GXRjcsW7APaGCbTSTt08mDmRgwh/oobF4q49UPc+TdO2yy09cCFwzn3cu89Xiy4Asv6Nkpr6xubW+Xtys7u3v6BeXjUVVEiKevQSESy7xHFBA9ZBzgI1o8lI4EnWM+b3sz83gOTikfhHaQxcwIyDrnPKQEtuWY1a99nQ2CPgLMogTx3G7lr1qy6NQdeJXZBaqhAyzW/hqOIJgELgQqi1MC2YnAyIoFTwfLKMFEsJnRKxmygaUgCppxsfnyOT7Uywn4kdYWA5+rviYwESqWBpzsDAhO17M3E/7xBAv6Vk/EwToCFdLHITwSGCM+SwCMuGQWRakKo5PpWTCdEEgo6r4oOwV5+eZV0G3X7om63z2vN6yKOMjpGJ+gM2egSNdEtaqEOoihFz+gVvRlPxovxbnwsWktGMVNFf2B8/gBK85Uw</latexit>

Qout
2

<latexit sha1_base64="1yMpxdnPXyP0EiqDS507mIBsGOQ=">AAAB/HicbVBNS8NAEN34WetXtEcvi0XwVBIR9Vj04rEF+wFtDJvttl26yYbdiRhC/CtePCji1R/izX/jts1BWx8MPN6bYWZeEAuuwXG+rZXVtfWNzdJWeXtnd2/fPjhsa5koylpUCqm6AdFM8Ii1gINg3VgxEgaCdYLJzdTvPDCluYzuII2ZF5JRxIecEjCSb1ey5n3WB/YIOJMJ5Lnv5r5ddWrODHiZuAWpogIN3/7qDyRNQhYBFUTrnuvE4GVEAaeC5eV+ollM6ISMWM/QiIRMe9ns+ByfGGWAh1KZigDP1N8TGQm1TsPAdIYExnrRm4r/eb0EhldexqM4ARbR+aJhIjBIPE0CD7hiFERqCKGKm1sxHRNFKJi8yiYEd/HlZdI+q7kXNbd5Xq1fF3GU0BE6RqfIRZeojm5RA7UQRSl6Rq/ozXqyXqx362PeumIVMxX0B9bnD0lulS8=</latexit>

Qout
1

<latexit sha1_base64="4Sstb+jk8pOHLrzD+MmfHCqKBmE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OLNCvYD2qVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33miSrNIPpppTH2BR5KFjGCTSfdV73xQrrg1dw60SrycVCBHc1D+6g8jkggqDeFY657nxsZPsTKMcDor9RNNY0wmeER7lkosqPbT+a0zdGaVIQojZUsaNFd/T6RYaD0Vge0U2Iz1speJ/3m9xITXfspknBgqyWJRmHBkIpQ9joZMUWL41BJMFLO3IjLGChNj4ynZELzll1dJ+6LmXda8h3qlcZPHUYQTOIUqeHAFDbiDJrSAwBie4RXeHOG8OO/Ox6K14OQzx/AHzucP30SNeQ==</latexit>

O(1)
<latexit sha1_base64="4Sstb+jk8pOHLrzD+MmfHCqKBmE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OLNCvYD2qVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33miSrNIPpppTH2BR5KFjGCTSfdV73xQrrg1dw60SrycVCBHc1D+6g8jkggqDeFY657nxsZPsTKMcDor9RNNY0wmeER7lkosqPbT+a0zdGaVIQojZUsaNFd/T6RYaD0Vge0U2Iz1speJ/3m9xITXfspknBgqyWJRmHBkIpQ9joZMUWL41BJMFLO3IjLGChNj4ynZELzll1dJ+6LmXda8h3qlcZPHUYQTOIUqeHAFDbiDJrSAwBie4RXeHOG8OO/Ox6K14OQzx/AHzucP30SNeQ==</latexit>

O(1)
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FIG. 2: Schematic of stochastic resonance in which a double-well
potential is treated using two quadratic potentials,
U1(x) = 1

2
λ(x+ β)2 when x < 0 and U2(x) = 1

2
λ(x− β)2 when

x ≥ 0. There are two regions, the interior of each near the two
minima x = ±β and boundary layers near x = 0.

A. Asymptotic solutions

We now combine the asymptotic methods used to solve
the general problem of stochastic resonance [15] with the
particular setting described in §II, to treat the double-
well potential in stochastic resonance using two quadratic

potentials. As shown in Fig. 2, the potential U(x) is
1
2λ(x+β)2 when x < 0 and 1

2λ(x−β)2 when x ≥ 0. Thus,

with the addition of noise,
√

2σξ(t), and periodic forc-
ing Acos(ωt), stochastic resonance between the minima
at x = ±β is described by the following Fokker-Planck
equation for the probability density P (x, t),

∂P

∂t
=

∂

∂x

{[
dU

dx
−Acos(ωt)

]
P

}
+ σ2 ∂

2P

∂x2
, (12)

with boundary conditions P (x = ±∞, t) = 0.
As shown in the Fig. (2), there are two outer regions

interior to each side of the potential centered upon the
two minima, x = ±β, and two boundary layers for each
quadratic potential at x = 0. We now consider approxi-
mate solutions to Eq. (12) in these regions.

In the outer region of U1(x) centered on x = −β, the
probability density P out

1 satisfies

∂P out
1

∂t
= λ

∂

∂y
(yP out

1 )−Acos(ωt)
∂P out

1

∂y
+ σ2 ∂

2P out
1

∂y2

(13)

with P out
1 (y = ±∞) = 0, where y = x+ β. Eq. (13) has

solution

P out
1 =

√
λ

2πσ2
exp

(
− λ

2σ2
[y − h(t)]2

)
(14)

where

h(t) =
A√

λ2 + ω2
cos(ωt− φ) (15)

and tanφ = ω/λ.
Now we substitute P (x, t) = P out

1 Q(x, t) into Eq. (12)
which becomes

∂Q

∂t
= [−λy +Acos(ωt− 2φ)]

∂Q

∂y
+ σ2 ∂

2Q

∂y2
, (16)

the outer solution of which is Qout
1 = N1(t); a slowly-

varying function of time that we approximate as a con-
stant, N1.

In the boundary layer we introduce the stretched co-
ordinate η = βx, which leads to

∂Qin
1

∂t
= [−λη + β2λ+ βAcos(ωt− 2φ)]

∂Qin
1

∂η

+ β2σ2 ∂
2Qin

1

∂η2
. (17)

Because β � 1, keeping terms to O(β) and higher, gives

[
−λ+

A

β
cos(ωt− 2φ)

]
∂Qin

1

∂η
+ σ2 ∂

2Qin
1

∂η2
' 0, (18)

the solution of which is

Qin
1 = K1exp

([
λ− A

β cos(ωt− 2φ)

σ2

]
η

)
+K2, (19)
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with constants K1 and K2 to be determined. We note
here that Eq. (17) could be solved using a regular per-
turbation method by setting Qin

1 ' Qin
10 + 1

βQ
in
11, which

results in Qin
1 ' K1exp

(
λ
σ2 η
) (

1− A
βσ2 cos(ωt− 2φ)η

)
+

K2. However, as noted, to O(β), the solution (19) uses

exp
(
− A
βσ2 cos(ωt− 2φ)η

)
instead of 1− A

βσ2 cos(ωt−2φ)η,

simplifying the subsequent development at that order.
Asymptotic matching requires that the outer limit of

the inner solution equal the inner limit of the outer so-
lution; limη→−∞Qin

1 = limy→β Qout
1 = N1 and hence

K2 = N1. Therefore, a uniformly valid composite asymp-
totic solution in U1(x) is Q1 = Qout

1 +Qin
1 −limη→−∞Qin

1 ,
giving

P1 =

√
λ

2πσ2
exp

(
− λ

2σ2
[x+ β − h(t)]2

)

×
{
N1 +K1exp

(
βλ−Acos(ωt− 2φ)

σ2
x

)}
. (20)

Similarly, we obtain the solution P2 in U2(x) as

P2 =

√
λ

2πσ2
exp

(
− λ

2σ2
[x− β − h(t)]2

)

×
{
N2 +D1exp

(
−βλ+Acos(ωt− 2φ)

σ2
x

)}
. (21)

Now we determine the constants K1 and D1 from the
continuity of probability density P (x) and flux J(x) at
x = 0, where J(x) = [dU/dx − Acos(ωt)]P + σ2∂P/∂x.
Firstly, continuity of P (x) at x = 0 is P1(x = 0) =
P2(x = 0), which results in

D1 = (N1 +K1)exp

(
2βλ

σ2
h(t)

)
−N2. (22)

The fluxes at the origin from both sides are

J1(x = 0) = [(βλ+ λh(t)− 2Acos(φ)cos(ωt− φ))K1

+(λh(t)−Acos(ωt))N1]

√
λ

2πσ2
exp

(
− λ

2σ2
[β − h(t)]2

)

and

J2(x = 0) = [(−βλ+ λh(t)− 2Acos(φ)cos(ωt− φ))D1

+(λh(t)−Acos(ωt))N2]

√
λ

2πσ2
exp

(
− λ

2σ2
[β + h(t)]2

)
,

(23)

respectively. Now, imposing J1(x = 0) = J2(x = 0) and
P1(x = 0) = P2(x = 0), viz., Eq. (22), gives

K1 =

[
1

2
+

A

2βλ
cos(ωt− 2φ)

]

×
[
−N1 +N2exp

(
−2βλ

σ2
h(t)

)]

D1 =

[
1

2
− A

2βλ
cos(ωt− 2φ)

]

×
[
−N2 +N1exp

(
2βλ

σ2
h(t)

)]
. (24)

Integration of Eq. (12) from x = −∞ to x = 0,

∂

∂t

∫ 0

−∞
P1dx = J1|x=0, (25)

gives

dN1

dt
= −r1N1 + r2N2, (26)

with escape rates

r1 =

[
1

2
− A

2βλ
cos(ωt− 2φ)

]
[βλ− λh(t) + Acos(ωt)

+Acos(ωt− 2φ)]

√
λ

2πσ2
exp

(
− λ

2σ2
[β − h(t)]2

)

and

r2 =

[
1

2
+

A

2βλ
cos(ωt− 2φ)

]
[βλ+ λh(t)−Acos(ωt)

−Acos(ωt− 2φ)]

√
λ

2πσ2
exp

(
− λ

2σ2
[β + h(t)]2

)
.

(27)

Similarly, upon integration of Eq. (12) from x = 0 to
x =∞, we obtain

dN2

dt
= r1N1 − r2N2. (28)

Therefore, r1 and r2 are the escape rates from x = ±β
over the barrier at the origin and Eqs. (26) and (28) are
simplified forms of the two-state Master equations de-
rived for general quartic potentials [15].

B. The validity of asymptotic solutions

We test the validity of the asymptotic solutions by
comparison with full numerical solutions of the Fokker-
Planck equation (12) using the implicit finite difference
method of Chang and Cooper [18]. To facilitate this com-
parison, near x = 0 we introduce a function defined as
H(x) = P1/P

out
1 when x < 0 andH(x) = P2/P

out
2 when

x ≥ 0. We study two different magnitudes of the peri-
odic forcing, A, and the noise magnitude, σ, and com-
bined with the range of the angular frequency ω, this
puts our results in the non-adiabatic regime. In particu-
lar, A is not asymptotically smaller than σ, and ω is not
trivially small. Previously we showed that the adiabatic
limit requires ω � 1 and A � σ and the non-adiabatic
case referred to non-trivial ω [15]. Here, we extend the
non-adiabaticity with the condition A ∼ σ. Figure 3
shows that the asymptotic and numerical solutions com-
pare very well. When A ∼ σ or A� 1 (not shown), the
asymptotic solutions are nearly indistinguishable from
numerical solutions. However, when A � σ, the ana-
lytic solutions become less accurate.
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FIG. 3: The comparison between numerical simulations (thick
lines) and asymptotic solutions (dashed lines) using H(x, t)
defined by H(x, t) = P1(x, t)/P out

1 when x < 0 and
H(x, t) = P2(x, t)/P out

2 . The two examples use ω = π/20,
β = 1.0, and λ = 1.0 as common variables. The first case (a) has
A = 0.1 and σ = 0.2 and the second case (b) has A = 0.3 and
σ = 0.1.

The central quantity in stochastic resonance is the flux
at the barrier (x = 0) between the two wells of the poten-
tial, which controls the oscillatory behavior of the prob-
ability density. In Figure 4 we compare the analytical
(dashed lines from Eq. 23) and numerical (solid lines)
fluxes at x = 0. Clearly these compare very favorably.

The escape (or hopping) rates r1 and r2 shown in Eq.
(27) are valid independent of the magnitude of ω and A,
and so long as A is not much larger than σ, the analytic
solutions are very accurate. Therefore, our analytic so-
lutions can be used for the wide range of applications of
stochastic resonance that appear in science and engineer-
ing, which removes the need for substantial simulations
of either the Langevin or Fokker-Planck equations.

C. Weak periodic forcing A � 1

In the original treatment of stochastic resonance [3–5],
one has A� 1, which implies that there is a weak signal
in a noise dominated background. Here, we still seek
to understand the amplification of the periodic forcing
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FIG. 4: The probability flux calculated at the barrier (x = 0)
between the two wells of the potential. Comparison between
numerical simulations (solid lines) and asymptotic solutions
(dashed lines from Eq. 23) for the same two cases used in figure 3.

Acos(ωt) for A � 1, however we treat ω as arbitrary
so that we are have the non-adiabatic case, which is not
within the corpus of the original work.

Because we are in possession of the probability density
function P (x, t), we can calculate the mean position of a
Brownian particle as

〈x〉 =

∫ 0

−∞
xP1dx+

∫ ∞

0

xP2dx. (29)

We note that P1 and P2 are principally concentrated near
x = −β and x = β, so that

∫ 0

−∞
xP1dx

'
√

λ

2πσ2
N1

∫ ∞

−∞
xexp

(
− λ

2σ2
[x+ β − h(t)]2

)
dx

' −N1β. (30)

Similarly, because
∫∞
0
xP2dx ' N2β, we have 〈x〉 =

β(−N1 + N2). Using Eqs. (26) and (28), we write the

Pa
pe

r
V

Paper V – 4 (79)



6

time-evolution of −N1 +N2 as

d

dt
(−N1 +N2) = −(r1 + r2)(−N1 +N2) + (r1 − r2).

(31)

We now take A� 1 to find

r1 + r2 ≡ r ' βλ
√

λ

2πσ2
exp

(
−λβ

2

2σ2

)
and

r1 − r2 ' r
βλh(t)

σ2
, (32)

and hence the approximate solution of Eq. (31) is

−N1 +N2 '
βA

σ2
cosφcosψcos(ωt− φ− ψ), (33)

where cosφ = λ/
√
λ2 + ω2 and cosψ = r/

√
r2 + ω2.

Hence,

〈x〉 = β(−N1 +N2) = β2 A

σ2
cosφcosψcos(ωt− φ− ψ).

(34)

Therefore, the original signal is Acos(ωt) and the re-
sponse, 〈x〉, is order O(β2).

Eq. (34) shows that the magnitude of the response, 〈x〉,
depends nonlinearly on the stability factor, λ, and the
noise amplitude, σ, as λA

σ2 cosψ, where cosψ is a function
of λ and σ (and other parameters) as seen in Eq. (32).
Figure 5 shows two contour plots of the magnitude of
the response, λA

σ2 cosψ for two values of the location of
the absorbing boundary (a) β = 5 and (b) β = 10 for
fixed ω = 0.1. Optimal values of the noise amplitude, σ,
and the stability of the potential, λ, are revealed as the
maxima in these plots. This optimal noise magnitude is
signature of stochastic resonance.

When A � 1 our results are similar to the adiabatic
limit, except for the fact that there is a phase shift, φ.
However, as shown above and expected from the original
theory, the response to the periodic forcing, Acos(ωt), is
magnified by a factor β2. In strong contrast to the orig-
inal theory, we provide an explicit mathematical expres-
sion, Eq. (34), that shows this dependence. Although we
have focused upon a single forcing frequency, our method
can be generalized to weak signals consisting of many fre-
quencies.

IV. CONCLUSION

We have used asymptotic methods that are central in
the theory of differential equations to derive analytical
expressions for the entire suite of results in stochastic
resonance. Having previously used this general method-
ology to analyze the Fokker Planck equation (2) for a

general quartic potential in the non-adiabatic limit [15],
here we have managed to further simplify the problem
whilst maintaining the key features of that analysis. In

a.

b.

FIG. 5: Contour plot of the σ and λ dependence of the
magnitude of the response λA

σ2 cosψ from Eq. (34). The location of
the absorbing boundary is (a) β = 5 and (b) β = 10 for a fixed
angular frequency of ω = 0.1.

particular, we approximated the quartic potential of the
underlying Ornstein-Uhlenbeck process as two parabolic
potentials. We derived explicit formulae for the escape
rates from one basin to the other free from the constraints
of the adiabatic limit, and have shown their veracity us-
ing direct numerical solutions of the dynamical equations.
Our results can easily be generalized to multiple frequen-
cies and forcing amplitudes and the ease of use of explicit
formulae free a practitioner interested in stochastic reso-
nance from the labor of numerical simulations.
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