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Abstract

In this thesis the diffusive motion of a Brownian particle with a driving force
in two dimensions and in the presence of hard walls is studied by numerically
solving the Fokker-Planck equation using the finite difference method. The
task is to develop a computer program and to use it to study a particle
diffusing in a channel with a periodically varying cross section.



Chapter 1

Introduction

On scales of micrometer size and smaller, particles in an aqueous solution
have a diffusive component in their motion coming from thermal fluctuation
[1]. Faster moving water molecules hitting the particle leads to random
displacements. This stochastic process is called Brownian motion.

Brownian motion was first studied by the Scottish botanist Robert Brown
[2] in 1827. He was interested in the fertilization process of the then newly
discovered plant Clarkia pulchella. Grains of pollen from the plant were
suspended in water. He noticed that particles the size of 5-6 micrometer,
that had been trapped inside the grains, performed an persistent oscillatory
motion. He also studied inorganic particles and found the same type of
motion. The process is named after him, although he was not able to explain
it.

It was Albert Einstein who, in a paper 1905 [3], gave a theoretical descrip-
tion of the process. From statistical mechanics he showed that the random
pressure differences coming from the collisions with the particles in the liquid
would give rise to a random motion. He formulated the diffusion equation for
a Brownian particle and also showed how the diffusion coefficient is related
to the mean square displacement of a Brownian particle; the diffusion coef-
ficient is one half of the mean square displacement. Marian Smoluchowski
independently reached the same result, but published one year later [4].

In e.g. biological cells or artificial microfluidic devises, the Brownian mo-
tion is confined by hard walls in compartments or channel-like structures
[6]. Consider a Brownian particle in a two dimensional channel with varying
cross section with no applied force. This can be described by the Fick-Jacobs
equation. This equation was derived by Merkel. H. Jacobs [7]. It approxi-
mates the system as a one dimensional periodic potential. The confinement
of the particle gives rise to an entropic potential. The particle will have a
higher probability of ending up where the cross section of the channel is the
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largest. This probability effect is called an entropic force. This entropic force
is also of interest in for example ion channels (proteins in cell membrane that
allow ions to pass in or out of the cell) [8].

In this thesis the driven Brownian motion of a spherical shaped particle
in two dimensions in the presence of hard walls is studied by numerically
solving the Fokker-Planck equation using the finite difference method, with
reflecting boundaries representing the hard walls. The task is to develop
a computer program that is able to handle different structures of confining
hard walls and to use it to study the diffusion of a particle in a channel with
periodically varying cross section.

The Langevin equation, developed by Paul Langevin in 1908 [5], is a
stochastic differential equation that describes the dynamics of a subset of
degrees of freedom of the system. The Fokker-Plank equation describes the
time evolution of the probability distribution of the particle. Solving the
Fokker-Plank equation is a much more difficult approach from a computa-
tional perspective than solution of the Langevin equation using molecular
dynamics or Monte Carlo simulations. There exist many algorithms for sim-
ulations of the Langevin equation for confined Brownian motion. Many of
them contain hand waving arguments for dealing with the reflective bound-
aries [9]. With the program developed in this thesis, those methods can be
checked.

An explanation of the theory will be given in section 1.1. In section 2.1
the finite difference method is explained. How the boundaries are going to be
treated is discussed in section 2.2. The algorithm is presented and explained
in section 2.3. The code should be easy to maintain and develop. Therefore
an discussion of the design of the code is also included in section 2.3. Results
for different test cases are shown in sections 3.1-3.4. The result for a particle
in a periodic channel is shown in section 3.5.

1.1 Smoluchowski Equation

Consider a particle in a liquid. Suppose one would like to describe the motion
of the particle. One way to do it is to write the Newtonian equation of motion
for all N atoms in the system

mi
d2xi
dt2

= − ∂

∂xi
V (x1, ..., xN), (1.1)

where m is the mass and xi the position of atom i. Even in microscopic
systems such as proteins the number of atoms are between 103 and 105,
which makes the solution of (1.1) very computational expensive [10]. There
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exists an alternative way. The problem can be described by a stochastic
differential equation called the Langevin equation. It models a subset of
degrees of freedom. Often it is the slow, macroscopic, degrees of freedom that
are modelled, while the fast, microscopic, degrees of freedom are modelled
by noise. For a Brownian particle with driven diffusive motion the Langevin
equation is

mẍ = −γẋ + F(x) + σξ(t), (1.2)

where x is the position of the particle. The term to the left is the acceleration,
where m is the mass of the particle. The first term to the right is the frictional
forces coming from Stokes’ law, where γ is the scalar friction constant. The
second term is the external force. The last term is the time dependent
fluctuating force, where σ is the amplitude of the fluctuations and ξ(t) is
a Gaussian white noise,

〈ξi(t)〉 = 0, (1.3)

〈ξi(t1)ξj(t0)〉 = δijδ(t1 − t0). (1.4)

The generic Langevin equation, for which (1.2) is a special case, can been
derived from classical mechanics [11].

In this thesis the strong friction limit (the force of inertia is much smaller
than the frictional force) will be considered,

|γẋ| >> |mẍ|. (1.5)

With (1.5) the Langevin equation (1.2) becomes,

γẋ = F(x) + σξ(t), (1.6)

The Fokker-Planck equation corresponding to (1.6) is

∂p(x, t|x0, t0)

∂t
=

(
∇2 σ

2

2γ2
−∇ · F(x)

γ

)
p(x, t|x0, t0), (1.7)

where p(x, t|x0, t0) is the probability to find a particle at x at time t if it
started at x0 at time t0. The Fokker-Planck equation for the strong friction
limit is called the Smoluchowski equation. With the diffusion coefficient
D = σ2

2γ2 and the drift v(x) = F(x)
γ

and assuming the parameters are spatially

independent, equation (1.7) becomes

∂p(x, t|x0, t0)

∂t
=
(
D∇2 − v∇

)
p(x, t|x0, t0). (1.8)
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Call the domain in which the diffusion take place Ω and the boundary to
the domain Γ. The boundary Γ to the domain may allow passage of particles
or not. The total probability in Ω is given by

NΩ(t|x0, t0) =

∫
Ω

p(x, t|x0, t0)dx (1.9)

Take the time derivative of both sides in equation (1.9)

∂NΩ(t|x0, t0)

∂t
=

∫
Ω

∂p(x, t|x0, t0)

∂t
dx (1.10)

Then one can equation (1.8) to get

∂NΩ(t|x0, t0)

∂t
=

∫
Ω

(
D∇2 − v∇

)
p(x, t|x0, t0)dx (1.11)

Rewrite this as

∂NΩ(t|x0, t0)

∂t
=

∫
Ω

∇ · (D∇− v) p(x, t|x0, t0)dx (1.12)

and use Gauss theorem to get

∂NΩ(t|x0, t0)

∂t
=

∫
Γ

dS · (D∇− v) p(x, t|x0, t0). (1.13)

Since (1.13) describes the rate of change of the total probability, the proba-
bility current j is minus the expression in the integrand,

j(x, t|x0, t0) = (v −D∇) p(x, t|x0, t0). (1.14)

Since the Smoluchowski equation preserves the total probability the changes
to NΩ must comes from the boundary. The boundary conditions are written
in terms of the flux at the boundary. There are three types of possible
boundary conditions. The first type is the reflective boundary condition,(

n · vp(xΓ, t|x0, t0)−D∂p(xΓ, t|x0, t0)

∂n

)
= 0, (1.15)

where xΓ is a point on the boundary and n is the normal to the boundary at
the position xΓ. No probability leaves the domain in this case, instead it is
reflected. The second type is the absorbing boundary condition

p(xΓ, t|x0, t0) = 0, (1.16)
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In this case all particles that hit the wall are taken out of the system. The
third type of boundary condition is an intermediate case(

n · vp(xΓ, t|x0, t0)−Dp(xΓ, t|x0, t0)

∂n

)
= wp(xΓ, t|x0, t0), (1.17)

where w is a parameter that describes the reactivity of the boundary. In this
thesis reflective boundaries are studied.

The analytical solution of the Smoluchowski equation (1.8) in two dimen-
sions can be computed only when the solution can be separated in the x-
and y-direction. That is when there is no boundary, a boundary consisting
of a straight line, two parallel lines or two orthogonal lines. In other cases
numerical methods are needed to get a solution. The total two dimensional
probability distribution with a reflecting boundary at y = 0 is

p(x, y) = p(x)p(y) = pF (x)pS(y), (1.18)

where pF (x) is the equation for infinite space (no boundary) and pS(y) is the
solution for a half space (boundary at y = 0). The one dimensional analytical
solution for infinite space is [10]

pF (x, t|x0, 0) =
1√

4πDt
exp

[
− (x− x0 − vxt)2 /4Dt

]
. (1.19)

The analytical solution for a half space, with a boundary at y = 0, is [10]

pS(y, t|y0, 0) =
3∑
j=1

pj(y, t|y0, 0), (1.20)

with

p1(y, t|y0, 0) =
1√

4πDt
exp

[
− (y − y0 − vyt)2 /4Dt

]
, (1.21)

p2(y, t|y0, 0) =
1√

4πDt
exp

[
−vyy0/D − (y + y0 − vyt)2 /4Dt

]
, (1.22)

p3(y, t|y0, 0) =
−vy
2D

exp (vyy)erfc
[
(y + y0 + vyt) /

√
4Dt

]
. (1.23)

Consider now a ”tilted” boundary, that is a boundary for which the angle
between the boundary line and the x-axis is non-zero. The analytical solution
for a tilted boundary can be computed from equation (1.18), by rotating the
coordinates so that the boundary is at ỹ = 0 in the rotated coordinate
system (x̃, ỹ). To get the solution p(x, y), one needs the coordinates (x, y) in
the rotated coordinate system (x̃, ỹ). For this situation the solution can be
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computed using p(x, y) = pS(ỹ, t|ỹ0, 0)pF (x̃, t|x̃0, 0). The rotated coordinates
is calculated from

x̃ = Rx, (1.24)

where the rotation matrix R is

R =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (1.25)

To get the drift normal to the boundary, which is needed in the boundary
condition (1.15), the same rotation matrix is used,

ṽ = Rv. (1.26)

The analytical expression for the current in the y-direction is

jy = vyp−D
∂p

∂y
= vyp−D

(
∂x̃

∂y

∂p

∂x̃
+
∂ỹ

∂y

∂p

∂ỹ

)
=

vyp−D
(

sin θ
∂p

∂x̃
+ cos θ

∂p

∂ỹ

)
=

vyp−D
(

sin θpS(ỹ)
∂pF (x̃)

∂x̃
+ cos θpF (x̃)

∂pS(ỹ)

∂ỹ

)
(1.27)
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Chapter 2

Method

2.1 Finite Difference Method

The finite difference method is used to get an approximate solution to a
differential equation using discretization of the derivatives. Another way to
solve differential equations is to use the finite element method which uses
ansatzes and variational methods to find the solution. The finite difference
method was chosen since it is easier to implement.

The one dimensional diffusion equation will be used as an example in this
section,

∂u

∂t
= D∇2u. (2.1)

The models can easily be extended to more general cases. The equation 2.1
is (1.8) without the force term. Here u is used instead of p to follow the
standard in numerical methods to use u for the solution.

Discretize the axis into n grid points xi, i = 1, ..., n with step size ∆x.
Let u

(n)
i be a difference approximation of u(xi, tn).

Discretize the spatial derivative in the equation using the central differ-
ence scheme

∂2u

∂x2
=
ui+1 − 2ui + ui−1

(∆x)2
+O((∆x)2). (2.2)

In one dimension the result is

∂u

∂t
= D

(
u

(n)
i+1 − 2u

(n)
i + u

(n)
i−1

(∆x)2

)
. (2.3)

There are different ways to get the next time step u
(n+1)
i . The simplest
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method is to use the explicit method,

u
(n+1)
i − u(n)

i

∆t
= D

(
u

(n)
i+1 − 2u

(n)
i + u

(n)
i−1

(∆x)2

)
. (2.4)

Very small time steps are needed to get a stable solution with this method,
which makes the method inefficient. Another method is the implicit method,
where the solution at the next time step is used in the approximation of the
spatial derivatives,

u
(n+1)
i − u(n)

i

∆t
= D

(
u

(n+1)
i+1 − 2u

(n+1)
i + u

(n+1)
i−1

(∆x)2

)
. (2.5)

This method is, like the previous, only first order accurate in time. A method
that is of second order in time is the Crank-Nicolson’s method, which can be
seen as the average of the explicit and implicit method. In one dimension

u
(n+1)
i − u(n)

i

∆t
=
D

2

[(
u

(n+1)
i+1 − 2u

(n+1)
i + u

(n+1)
i−1

(∆x)2

)
+

(
u

(n)
i+1 − 2u

(n)
i + u

(n)
i−1

(∆x)2

)]
.

(2.6)
In two dimensions, discretize the x-axis into nx grid points xi, i = 1, ..., nx
with step size ∆x and discretize the y-axis into ny points yj, j = 1, ..., ny
with step size ∆y. Let u

(n)
i,j be a difference approximation of u(xi, yj, tn). The

Crank-Nicolson’s method for (2.1) is then

u
(n+1)
i,j − u(n)

i,j

∆t
=
D

2

(
u

(n+1)
i+1,j − 2u

(n+1)
i,j + u

(n+1)
i−1,j

(∆x)2
+
u

(n)
i+1,j − 2u

(n)
i,j + u

(n)
i−1,j

(∆x)2
+

+
u

(n+1)
i,j+1 − 2u

(n+1)
i,j + u

(n+1)
i,j−1

(∆y)2
+
u

(n)
i,j+1 − 2u

(n)
i,j + u

(n)
i,j−1

(∆y)2

)
. (2.7)

Crank-Nicolson’s method is stable for all time step sizes and space step sizes
as long as the time step size is small enough compared to the space step size
[12]. How small depends on the problem.

The solutions u
(n)
i,j can be written as a vector, with the grid points num-

bered in some way, for example u
(n)
inx+j, see figure (2.1). In this case the
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Figure 2.1: One way to number the grid points.

solution vector will have the form,

u(n) =



u
(n)
1

u
(n)
2
...

u
(n)
iny+j−1

u
(n)
iny+j

...

u
(n)
(i+1)ny+j

u
(n)
(i+1)ny+j+1

...
unxny



. (2.8)

Taking the solution at the next time step at the left hand side and the solution
at the previous time at the right hand side, equation (2.7) becomes

u
(n+1)
i,j − D∆t

2

(
u

(n+1)
i+1,j − 2u

(n+1)
i,j + u

(n+1)
i−1,j

(∆x)2
+
u

(n+1)
i,j+1 − 2u

(n+1)
i,j + u

(n+1)
i,j−1

(∆y)2

)
=

u
(n)
i,j +

D∆t

2

(
u

(n)
i+1,j − 2u

(n)
i,j + u

(n)
i−1,j

(∆x)2
+
u

(n)
i,j+1 − 2u

(n)
i,j + u

(n)
i,j−1

(∆y)2

)
. (2.9)

These equations (equation (2.9) for i = 1, ..., nx and j = 1, ..., ny) can be
written in matrix form as

Au(n+1) = Bu(n). (2.10)
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with A and B

A =


1 + 2αy + 2αx −αy 0 · · · 0 −αx 0 · · · · · · 0

−αy 1 + 2αy + 2αx −αy 0 · · · 0 −αx · · · · · · 0
0 −αy 1 + 2αy + 2αx −αy 0 · · · 0 −αx · · · 0

· · · · · · . . . . . . . . . · · · · · · · · · . . . · · ·

 ,

(2.11)

B =


1− 2αy − 2αx αy 0 · · · 0 αx 0 · · · · · · 0

αy 1− 2αy − 2αx αy 0 · · · 0 αx · · · · · · 0
0 αy 1− 2αy − 2αx αy 0 · · · 0 αx · · · 0

· · · · · · . . . . . . . . . · · · · · · · · · . . . · · ·

 ,

(2.12)
with αx = ∆tD

2(∆x)2 ,

The Crank-Nicolson’s method (and also the implicit method) gives in two
or more dimensions a matrix A that is banded with a large band width. The
structure of the matrix is shown in 2.2. The matrix A always has non-zero
elements on the diagonal. Unless the previous point in the y-direction is
outside (j = 0) there will be a non-zero element on the sub-diagonal. Unless
the next point in the y-direction is outside (j = N + 1) there are non-zero
elements on the super diagonal. These terms come from the discretized y-
derivative. Row inx + y will have non-zero elements also on position (i +
1)ny + j and (i − 1)ny + j coming from the discretized x-derivative, unless
the point i + 1 or i − 1 is outside the domain. The rest of the elements are
zeroes. The band width is therefore i+ 2ny elements.

The size of the matrix is nn
nd
d , with n being the number of points in each

direction and nd being the number of dimensions. Using 100 grid points in the
x- and y-direction gives a matrix with 108 elements. An effective algorithm
to solve the system of linear equations (2.10) will therefore be needed. This
will be discussed in section 2.3.1.

An advantage of the implicit method compared to the Crank-Nicolson’s
method is that it treats the small-scale features in a more physical way. In
one dimension, one can rewrite the difference equation using the implicit
method (2.5) as

− D

(∆x)2
u

(n+1)
i+1 +

(
2D

(∆x)2
− 1

2∆t

)
u

(n+1)
i − D

(∆x)2
u

(n+1)
i−1 =

1

2∆t
u

(n)
i . (2.13)

For large time steps (∆t→∞) the equation becomes the difference equation
for

∂2u

∂x2
= 0, (2.14)
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Figure 2.2: The structure of the matrix when using the Crank-Nicolson’s
method in two dimensions. Ten grid points have been used in the x- and
y-direction. The matrix is therefore of size 100×100. The non-zero elements
in the matrix are shown with blue dots. As can be seen, the matrix has a
banded structure.
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which is the stationary equation of the diffusion equation (2.1). The Crank-
Nicolson’s method on the other hand does not satisfy the stationary equation.
In the Crank-Nicolson’s method the small-scale features fluctuate, but do not
change. It is too inefficient to have time steps of the order of the small scale
fluctuations since the scales of interest are much larger. Therefore the Crank-
Nicolson’s method is preferred over the implicit method. To be sure that the
small-scale features are in the stationary form one can do a few steps using
the implicit method at the end of the simulation. [13]

2.2 Boundaries

2.2.1 Boundary Conditions

The boundary conditions can in the general case be written

a0
∂u(xΓ)

∂n
+ a1u(xΓ) + a2 = 0 (2.15)

where xΓ is a point at the boundary and n is the normal to the boundary. The
values of the parameters a0, a1 and a2 gives the type of boundary condition.

At the edges of the domain, the difference equations will need the solution
of the point outside the domain. As an example, consider the one dimensional
diffusion equation using the implicit method

u
(n+1)
i − u(n)

i

∆t
= D

(
u

(n+1)
i+1 − 2u

(n+1)
i + u

(n+1)
i−1

(∆x)2

)
, (2.16)

for i = 1, ...N . For i = 1

u
(n+1)
1 − u(n)

1

∆t
= D

(
u

(n+1)
2 − 2u

(n+1)
1 + u

(n+1)
0

(∆x)2

)
. (2.17)

The equation needs the solution at u0, which is outside the domain and
therefore unknown. The points outside the domain with a neighbouring point
inside are called ghost points. The boundary condition is set by replacing the
solution at the ghost points in the difference equations with the boundary
condition.

To get an absorbing boundary (equation (1.16)), set the solution at the
ghost points to zero.

Periodic boundary conditions in the x-direction are obtained by setting
u

(n)
0,j = u

(n)
N,j and u

(n)
N+1,j = u

(n)
1,j , if the domain is set so that xN − x0 is one

period.
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Reflective Boundary Condition

To get a reflective boundary condition (equation (1.15)), the derivative and
solution at the boundary is needed. To approximate the derivative normal
to the boundary at the boundary using points inside the domain and a ghost
point, the method described in [14] is used. Let the point (xi, yj) be a ghost
point, see figure 2.3. Calculate the normal n to the boundary Γ that goes
through that ghost point. Use Lagrangian interpolation to get a second order
approximation of the derivative

∂u
(
xΓ
i,j

)
∂n

= g0u
(n)
i,j + gIu

(n)
I + gIIu

(n)
II +O((∆x)2), (2.18)

where xΓ
i,j is the intersection point between the normal going through the

ghost point and the boundary. The coefficients are

g0 =
3ξI − 2ξΓ

2ξ2
I

, gI =
2ξΓ − 2ξI

ξ2
I

, gII =
ξI − 2ξΓ

2ξ2
I

, (2.19)

where ξΓ is the distance between the ghost point and the intersection point
between the normal and the boundary. The parameter ξI is the distance
between (xi, yj) and one of the four grid lines xi+1, xi−1, yj+1 or yj−1, de-
pending on the angle θ between the normal and the x-axis. Lets consider
the case when π/4 ≤ θ < 3π/4. Then the grid line yj+1 is used. In this case

the solution u
(n)
I is the solution at the intersection point (xI , yI) between

the normal and the yj+1 grid line and u
(n)
II is the solution at the intersec-

tion point (xII , yII) between the normal and the yj+2 grid line. The solution

u
(n)
I is calculated using interpolation of three grid points along the yj+1 grid

line. If π/4 ≤ θ < π/2 the grid points used are (xi, yj+1), (xi+1, yj+1) and

(xi+2, yj+1). The solution u
(n)
II is similarly calculated using interpolation of

three grid points along the yj+2 grid line.

Depending on θ there are eight different expressions for u
(n)
I and u

(n)
II .

If π/4 ≤ θ < π/2

{
u

(n)
I = c0u

(n)
i,j+1 + c1u

(n)
i+1,j+1 + c2u

(n)
i+2,j+1

u
(n)
II = c3u

(n)
i,j+2 + c4u

(n)
i+1,j+2 + c5u

(n)
i+2,j+2

(2.20)

with the coefficients

c0 =
(∆x− ηI)(2∆x− ηI)

2(∆x)2
, c1 =

ηI(2∆x− ηI)
(∆x)2

, c2 =
−ηI(∆x− ηI)

2(∆x)2
.

(2.21)
with ∆x being the step size and ηI being the distance between xI and xi. The
coefficients in the expression for u

(n)
II are the same as the coefficients in the
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x

Grid points inside
Interpolation points

(xI,yI),(xII,yII)(xi,yj)Boundary

Figure 2.3: Picture explaining the interpolation of the derivative normal to
the boundary at the boundary, for the case when the angle θ between the
normal to the boundary and the x-axis is π/4 ≤ θ ≤ π/2. The solution at
the grid points called ”Interpolation points” are used to get the solutions at
(xI , yI) and (xII , yII). Thereafter the solutions at the ghost point ((xi, yj)),
(xI , yI) and (xII , yII) are used to get the derivative. The arrow is the normal
to the boundary going through the ghost point (xi, yj).
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Figure 2.4: Which points to use when 0 ≤ θ ≤ π/4. The grey dot is the

ghost point and the solutions at the black points are used to get u
(n)
I and

u
(n)
II .

expression for u
(n)
I but with ηI being replaced by ηII , the distance between

xII and xi. From trigonometry one get that ηII = 2ηI , so

c3 =
(∆x− 2ηI)(2∆x− 2ηI)

2(∆x)2
, c4 =

2ηI(2∆x− 2ηI)

(∆x)2
, c5 =

−2ηI(∆x− 2ηI)

2(∆x)2
.

(2.22)
See appendix A for the calculation of the coefficients (2.19) and (2.21).

In figure 2.4 the case when 0 ≤ θ < π/4 is shown. In this case ξI is the
distance between (xi, yj) and the xi+1 grid line. The coefficients in (2.21)
are the same but with ∆x being replaced by ∆y and ηI being the distance
between yI and yi. The other cases can be obtained by mirroring these results
in the xi and yi grid lines.

If one or several of the interpolation grid points are outside of the bound-
ary, one would still want the algorithm to work. Three other grid points can
therefore be used in such a case. Preferably the points (xI , yI) and (xII , yII)
should lie between two interpolation points. Consider the case shown in fig-
ure 2.3. If the point (xi+2, yi+1) would be outside, one can equally well use

the solutions at the points (xi−1, yj+1), (xi, yj+1) and (xi+1, yj+1) to get u
(n)
I .

If on the other hand the point (xi, yi+1) is outside, one can use the points
(xi+1, yj+1), (xi+2, yj+1) and (xi+3, yj+1). This gives a less accurate result
since all interpolation points are to the left of (xI , yI). If one of these points
are outsider set (xI , yI) to the intersection between the normal and the xi+1

line and use the points (xi+1, yj+1), (xi+1, yj+2) and (xi+1, yj+3). This gives a

15



less accurate result since the distance between (xI , yI) and the boundary is
larger.

The boundary condition equation (1.15) also needs the solution at the

boundary. One can get the solution at the boundary using u
(n)
i,j , u

(n)
I and u

(n)
II

as
u
(
xΓ
i,j

)(n)
= l0u

(n)
i,j + lIu

(n)
I + lIIu

(n)
II +O((∆x)2), (2.23)

where the coefficients are obtained in a similar way as the coefficients (2.21),
but with the distance between the points ∆x replaced with ξI and ηI being
replaced with ξΓ,

l0 =
(ξI − ξΓ)(2ξI − ξΓ)

2(ξI)2
, l1 =

ξΓ(2ξI − ξΓ)

(ξI)2
, l2 =

−ξΓ(ξI − ξΓ)

2(ξI)2
. (2.24)

Equation (2.15), (2.18) and (2.23) gives the expression for the discretized
reflective boundary condition

−D
(
g0u

(n)
i,j + gIu

(n)
I + gIIu

(n)
II

)
+ vỹ

(
l0u

(n)
i,j + lIu

(n)
I + lIIu

(n)
II

)
= 0. (2.25)

From this expression one can get the solution at the ghost point,

u
(n)
i,j =

1

−Dg0 + vỹl0

(
(DgI − vỹlI)u(n)

I + (DgII − vỹlII)u(n)
II

)
. (2.26)

Setting up the matrices

The left and right hand side matrices are first set up without taking the
boundary condition into account. These matrices are the same as for free
diffusion. The system of linear equations becomes

Ãu(n+1) = B̃u(n). (2.27)

Without a force term, Ã and B̃ are the same as in 2.11 and 2.12.
From the boundary condition one get an expression for the solution at

the ghost point u
(n)
i,j that can be written as

u
(n)
inx+j = Cinx+ju. (2.28)
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For a reflective boundary the vector Cinx+j is, using equation (2.25),

Cinx+j =



0
...
0
−1
0
...
0

1
−Dg0+vỹl0

(DgI − vỹlI)c0

1
−Dg0+vỹl0

(DgI − vỹlI)c1

1
−Dg0+vỹl0

(DgI − vỹlI)c2

0
...
0

1
−Dg0+vỹl0

(DgII − vỹlII)c3

1
−Dg0+vỹl0

(DgII − vỹlII)c4

1
−Dg0+vỹl0

(DgII − vỹlII)c5

0
...
0



(2.29)

where the element −1 is in row inx + j. Solutions u
(n)
i,j that aren’t solutions

at a ghost point can also be written in the form (2.28) with Cinx+j being a
vector of zeros. Then one can construct a matrix ABC ,

ABC =


∑nxny

k=0 Ã0,kC
T
j∑nxny

k=0 Ã1,kC
T
j

...∑nxny

k=0 Ãnxny ,kC
T
j

 , (2.30)

where Ãm,k is the element on row m and column k in the matrix Ã. Similarly
a matrix BBC can be constructed,

BBC =


∑nxny

k=0 B̃0,kC
T
j∑nxny

k=0 B̃1,kC
T
j

...∑nxny

k=0 B̃nxny ,kC
T
j

 . (2.31)
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Adding these matrices to the ones in equation (2.27) gives

A = Ã+ ABC (2.32)

and
B = B̃ +BBC (2.33)

One then gets the system of linear equations including the boundary condi-
tion,

Au(n+1) = Bu(n). (2.34)

Since the previous solution u(n) is known, one can introduce the vector b =
Bu(n),

Au(n+1) = b. (2.35)

An example of the structure of the matrix A is shown in figure 2.5. Ten
grid points are used in the x- and y-direction which gives a matrix of size
100×100. The boundary is the same as in figure 3.25. Without the boundary
conditions, the structure would be the same as in figure 2.2. The boundary
condition changes the structure of the matrix. It is still banded, since the
discretized equation for the solution at a point is still only depending on
points close by. The solution u

(n+1)
i,j can depend on the solution at u

(n+1)
i+2,j+2 or

u
(n+1)
i−2,j−2. The matrix elements at column (i+2)ny+j+2 or (i−2)ny+j−2 in

line iny + j might therefore be non-zero. The solution u
(n+1)
i,j cannot depend

on solutions at points further away than this. The band width is therefore
4nx + 4.

2.2.2 Corners

All points need to have at least one neighbour in the x- and y-direction inside
the domain to make it possible to write the discretized equations for those
points. To be sure the boundary condition equations (2.18) can be written
for all points inside the domain, all points need to have two neighbours in
the x- and y-direction inside the domain. This can be seen as the smallest
resolution possible. If there is an corner where the resolution is less than the
needed resolution, an extra boundary segment is constructed so that those
points are not included, see figure 2.6.

If one point has several neighbouring edges, there is one boundary con-
dition equation for each neighbouring boundary for that point. If the points
with not enough resolution are excluded, a grid point with two neighbour-
ing points will have one boundary in the x-direction and the other in the
y-direction. The solution at the grid point can then be replaced in the x-
derivatives by the boundary condition for the boundary in the x-direction
and similarly in the y-direction.
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Figure 2.5: An example of the structure of the matrix A in equation 2.35
with nx = ny = 10, which gives a matrix of size 100× 100. The boundary is
the same as in figure 3.25. Without the boundary conditions, it would look
like figure 2.2. The boundary condition changes the structure of the matrix.
It is still banded, but with a larger band width.

y

x

y

x

Boundary
Grid Points

Figure 2.6: The point in the bottom corner have no neighbours in the x-
direction and therefore the discretized equations can’t be written for that
point. A boundary segment is therefore added to remove the point.
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2.3 The Algorithm

The algorithm works as follows: First construct the initial solution. The ini-
tial solution is taken to be a delta function that has had time to spread out
a little bit to a Gaussian. Then construct the right and left hand side free
diffusion matrices Ã and B̃ in equation (2.27). These matrices are constant
since the parameters are time-independent. After that, the boundary condi-
tions (2.29) are calculated and stored. The matrices ABC (equation (2.30))
and BBC (equation (2.31)) are constructed. These matrices are added to the
free diffusion matrices to get A (equation (2.32)) and B (equation (2.33)).

Iterate the time:

• Construct the right hand side vector b in 2.35.

• Solve the system of linear equations (2.35).

2.3.1 Design of the Program

The program was written in C++, which is an object oriented programming
language, unlike e.g. C. Object oriented design is a way of designing the code
using encapsulation. This makes it easier to improve the code since it limits
the amount of changes that need to be done if one part is changed, which
reduces the number of errors made and therefore the debugging time. It also
makes it easier to reuse parts of the program.

Object oriented programming languages focus on objects instead of func-
tions. The code is divided into modules called classes. Functions associated
with an object are put together in a class. A class can be seen as a blueprint
for an object.

Routines from the GNU Scientific Library (GSL) were used for the sparse
matrices and the vectors. It is better to use already existing code as much
as possible since it tends to be well tested, reliable and efficient.

Figure 2.7 shows a class diagram for the program for all classes that were
constructed. The dark grey box is the algorithm. The arrows indicate which
other classes a certain class uses. The arrow points to the class used.

The System Class

The System class contains everything that defines the system, like the pa-
rameters in the equation and the size of the domain.

The domain size is set by calculating the space needed using the simu-
lation time t, the diffusion coefficient and the drift. The initial condition is
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a delta function that has had time to spread out a little bit. The minimum
point for the domain in the x-direction is

xmin = x0 − dx, (2.36)

where x0 is the starting position and dx is half the total space needed in the
x-direction,

dx = xinit − xadv − xdiff , (2.37)

where xinit is the length needed for the initial solution, xadv is the length
needed for the advection and xdiff if the length needed for the diffusion. The
space needed for the initial solution is computed by finding the points xinit
where the absolute value of the flux (1.14) normal to the boundary at the
boundary is smaller than a given tolerance ε,∣∣∣∣−D∂p(xinit, y)

∂x
+ vxp(xinit, y)

∣∣∣∣ < ε. (2.38)

The witdh of the Gaussian at time t is

σ =
√

2Dt (2.39)

The length of the domain should be large enough to avoid a noticeable proba-
bility leak, but not larger than that because of efficiency reasons. The length
needed for the diffusion is then

xdiff = aσ (2.40)

where a is a number larger than 3. In the program a was chosen to be a = 4.
The advection length is

xadv = vxt (2.41)

The minimum and maximum points in the y-direction can be found in a
corresponding way.

The Grid Class

The Grid class uses the System class since it needs the size of the domain
to construct the grid. The grid was chosen to always be rectangular, for
the cause of simplicity. Only including the points inside the domain would
make the matrices smaller and the algorithm faster, but would be much more
difficult to implement. The reason is that if for example one have a point
(xi, yj) and wants its neighbour to the right in the x-direction (xi + 1, yj),
its index with a rectangular grid is (i + 1)nx + j. With a grid that is not
rectangular the number of x points vary from row to row, so one would need
to keep track of the number of points there are both to the right of (xi, yj)
in the row and to the left of (xi + 1, yj) in the row above to be able to get
the index of (xi + 1, yj).
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The InitialSolution Class

The InitialSolution class represents the discretized initial solution. It uses
the System class, but that is not shown in figure 2.7 since it uses a class
that uses System. The initial solution is either read from a file or computed
from an analytical expression. Either the initial probability distribution is
placed far away from the boundaries so that the analytical expression for
free diffusion can be used, or a previously obtained solution stored in a file
is used as an initial solution. The stored solution needs to have a grid with
the same step size as before.

The Solution Class

The Solution class represents the solution at the current time. It uses the
solution vector from the InitialSolution class as the starting value.

The LinEqMatrix Class

The LinEqMatrix class represents the left or right hand side matrices in the
system of linear equations (2.27) or (2.34). The LinEqSparseMatrix is a
derived class from LinEqMatrix, that is, it has the functions in the base class
(LinEqMatrix) plus additional functions and data members. It stores the
matrix as a sparse matrix using GSL compressed row storage. The CnMatrix
class is a derived class from LinEqSparseMatrix that represents the matrix
obtained from the Crank-Nicolson’s method, that is the matrices Ã and B̃ in
equation (2.27). The matrices Ã and B̃ are represented by different objects,
but are constructed from the same class. The boundary condition matrices
ABC and BBC (equations (2.30) and (2.31)) are added to Ã and B̃ and the
solutions A and B (equations (2.32) and (2.33)) are stored in the CnMatrix
objects.

The BoundaryMatrix Class

The BoundaryMatrix class represents the matrices ABC (equation (2.30))
and BBC (equation (2.31)). There is one matrix ABC and one matrix BBC

for each boundary segment, so that each matrix can be tested separately.

The BcCoeff Class

This class represents the vectors C (equation (2.29)). The vectors C for the
ghost points are calculated and stored in a matrix.
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The Interpolation Class

The interpolation class represents the Lagrange interpolation. It was put
in a separate class since it was used both by the BcCoeff class and when
calculating the probability current.

The Boundary Class

The boundary is one object. The boundary has one or more boundary seg-
ments. The boundary segment can be of different types, e.g. a line or
parabola. This is done by having derived classes such as LineSegment and
ParabolicSegment.

The program was designed so that one only needs to add a new class
with functions returning the function of the boundary segment y = f(x) and
the derivative y = f ′(x) to be able to use a new type of boundary segment.
Each boundary segment has a boundary condition that can be either open
or reflective.

The Rotation Class

The rotation class represents the rotation (1.24). It was put in a separate
class since it was used both to calculate the boundary condition and to
calculate the analytical solution.

The SolveSparse Class

The SolveSparse class represents the solver that solves the system of lin-
ear equations. To solve equation (2.35), a sparse iterative solver was used,
namely the Generalized Minimum Residual Method (GMRES) from the GNU
Scientific Library.

To use an effective exact solver, one needs to make use of the structure of
the matrix. The structure of the matrix A is shown in figure 2.5. It depends
on the boundary used, but is always very sparse and has a banded structure
with a large band width. If one would store only the elements in the band
and use an exact solver for banded matrices one would need to store on the
order of n2

xny elements. The order of non-zero elements are nxny. Most of
the stored elements would thus be zero, which would be very inefficient. An
iterative solver is therefore much faster to use.

The RhsVector Class

The RhsVector class represents the vector b in equation (2.35).
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cn_algorithm.cpp

SolveSparse.hpp

LineSegment.hpp

BoundaryMatrix.hppCnMatrix.hpp

RhsVector.hpp

LinEqSparseMatrix.hppSolution.hpp

LinEqMatrix.hpp

Grid.hpp

System.hpp

InitSolution.hpp BoundarySegment.hpp

BoundaryCondition.hpp

Rotation.hpp

BcCoeff.hpp

Boundary.hppInterpolation.hpp

Figure 2.7: Class diagram for the algorithm. The diagram contains all the
classes used by the algorithm (except the C++ standard library classes and
the GSL classes). The arrows points towards the classes a certain class uses.
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Chapter 3

Results

3.1 Boundary at y = 0

The program were first checked for the simplest case, a straight line at y = 0.
The set up is shown in figure 3.1, with the starting point slightly above the
boundary, x0 = 2.0, y0 = 1.8 and with vx = 0 and vy = −1. The domain
is from xmin = −10.6 to xmax = 14.6 in the x-direction and ymin = 0 to
ymax = 14.4 in the y-direction.

The initial solution was set to the free diffusion equation (1.19) with
t = 0.004. The time step size were taken to be min(∆x,∆y)/20. A smaller
time step size was tried, min(∆x,∆y)/200, but that did not change the
results. This time step size and initial solution were used in all simulations.

The numerical probability distribution along x = 2.0 at t = 2.0 is shown
in figure 3.2 together with the analytical solution calculated from (1.18). The
difference between the numerical and analytical solution is not visible. The
probability current together with the analytical solution for the current (1.14)
is shown in figure 3.3. The current is zero at y = 0 as expected because of
the boundary condition. The difference between the numerical and analytical
solution is very small also in this case.

Several tests were made to check that the solution is correct. The total
probability (equation (1.9)) as a function of time is shown in figure 3.4.
Since there should be no flux at the boundary, the total probability should
be conserved. The discretization of the boundary condition introduces a
small current, which leads to the norm changing over time. This probability
leak should decrease with a finer grid, which it does.

The integrated boundary current

jΓ(t) =

∫ x=xmax

x=xmin

jy(x, y = yΓ, t)dx (3.1)
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Figure 3.1: The system with a boundary at y = 0. The starting position is
x0 = 2.0, y0 = 1.8. The red arrow shows the drift, vx = 0, vy = −1. The
area in the plot is the domain included in the calculations.
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Figure 3.2: The numerical probability distribution along x = 2.0 for the set
up in figure 3.1 at time t = 2.0 together with the analytical. The difference
between the numerical and analytical solutions is not visible.
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Figure 3.3: The numerical result for the probability current along x = 2.0
for the set up in figure 3.1 at t = 2.0 together with the analytical result. The
numerical and analytical results are indistinguishable.
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Figure 3.4: The total probability (equation (1.9)) for the set up in figure
3.1. The norm is not conserved, but the error gets smaller with a smaller
step size
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as a function of time is shown in figure 3.5. Because of the boundary condition
the current at the boundary should be zero. It will not be exactly zero
(to machine precision) since another (one-direction) discretization is used to
calculate it compared to the discretization used to impose the condition in
the equations. To impose the boundary condition in the system of linear
equations (2.35), equation (2.25) is used. For a boundary at y = 0, ξI = ∆y,
and ηI = 0. Equation (2.25) then becomes

jỹ(x
Γ
i,j) = −D

(
g0u

(n)
i,j + gIu

(n)
i,j+1 + gIIu

(n)
i,j+2

)
+

vỹ

(
l0u

(n)
i,j + lIu

(n)
i,j+1 + lIIu

(n)
i,j+2

)
= 0, (3.2)

with u
(n)
i,j being the ghost point. Since the ghost point is not included in the

domain, the solution at this point is not known. To calculated the current at
the boundary from the obtained solution a point inside with a neighbouring
point outside (xiE , yjE) is used instead of the ghost point. A similar interpo-
lation as the one in section 2.2.1 is used, only replacing the ghost point with
(xiE , yjE). The result is the same as in equation (2.18) but with ξΓ replaced
with −ξΓ. For a boundary at y = 0 the expression becomes

jỹ = −D
(
d0u

(n)
i,j+1 + dIu

(n)
i,j+2 + dIIu

(n)
i,j+3

)
+

vỹ

(
b0u

(n)
i,j+1 + bIu

(n)
i,j+2 + bIIu

(n)
i,j+3

)
(3.3)

The coefficients d0, dI and dII are

d0 =
3ξI + 2ξE

2ξ2
I

, dI =
−2ξE + 2ξI

ξ2
I

, dII =
ξI + 2ξE

2ξ2
I

, (3.4)

where ξE is the distance between (xiE , yjE) and the boundary along the nor-
mal. The coefficients b0, bI and bII are

b0 =
(ξI + ξE)(2ξI + ξE)

2(ξI)2
, b1 =

−ξE(2ξI + ξE)

(ξI)2
, b2 =

ξE(ξI + ξE)

2(ξI)2
. (3.5)

Since the expressions (3.2) and (3.3) are different they will have different
discretization errors and therefore the results obtained from one of them will
be slightly different from the result obtained with the other.

A finer grid makes the boundary current smaller. To check the conver-
gence the boundary current 3.1 is integrated over time for different step size.
One expects that the boundary current would decrease quadratically with
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Figure 3.5: The integrated boundary current calculated from (3.1) at t = 2.0.
The initial set up is shown in figure 3.1. The boundary current is not zero,
but decreases with a smaller step size.

the step size since the Crank-Nicolson’s method has quadratic convergence.
If the convergence is quadratic one should have that

log

(∫ tmax

0

jΓ(t)dt

)
= 2 log(∆y). (3.6)

Figure 3.6 shows that this is indeed the case.
Another test that was made was to start with a stationary solution

exp(vy) in the y-direction, see figure 3.7. The boundary current is shown
in figure 3.8. The solution should be stable, which is not the case. The
current at the boundary is a non-zero constant, so the solution will blow up
after a long time. The size of the boundary current decreases with the space
step size.

3.2 Tilted Boundary

The second case that was studied is a ”tilted” line boundary, that is there
is a non-zero angle between the boundary and the x-axis. The system with
a boundary at y = 0.8x, starting position at x0 = 2.0, y0 = 3.4 and drift
vx = 0, vy = −1 is shown in figure 3.9. The angle between the x-axis and the
boundary is about 0.7. The domain is from −10.6 to 14.6 in the x-direction
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Figure 3.6: The time integrated boundary current with tmax = 2.0 computed
using (3.6) as a function of the step size in the y-direction. The initial set
up is shown in figure 3.1. The line has a slope of approximately 2. The
boundary current therefore decreases quadratically with the step size. The
axis scales are equal.
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Figure 3.7: The solution along x = 2.0 with the same system as in figure
3.1 but starting with a stationary distribution.
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Figure 3.8: The probability current integrated along the boundary for the
same system as in figure 3.1 but starting with a stationary distribution. The
current is not zero as wanted so the solution will be inaccurate after a long
time. A finer grid makes the error smaller.

and −8.5 to 16.0 in the y-direction. The numerical probability distribution
along x = 2.0 at t = 2.0 is compared to the analytical probability distribution
along in figure 3.10. The difference between the numerical and the analytical
solution is not visible.

The probability current along x = 2.0 is shown in figure 3.11 together
with the analytical result from (1.27). The difference is very small also in
this case. The current normal to the boundary at x̃ = 2.6 is shown in figure
3.12. At the boundary (y = 1.6, ỹ = 0), x̃ = 2.6 corresponds to x = 2.0.
The error is much larger at the boundary than at points further away. The
result improves with a finer grid.

The integrated boundary current (figure 3.13) decreases when the step
size decreases, as wanted.

Since the agreement between the results improve with a decreasing step
size one can conclude that the algorithm is working also for a tilted boundary.

3.3 Two Lines

A system consisting of two boundaries with angle π/2 between them can
be compared with an analytical solution, since the solution in the x- and
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Figure 3.9: The system with boundaries at y = 0.8x. The starting position
is x0 = 2.0, y0 = 3.4. The angle between the x-axis and the boundary is
about 0.7. The red arrow shows the drift, vx = 0, vy = −1. The area in the
plot is the domain included in the calculations.
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Figure 3.10: The probability distribution along x = 2.0 for the system in
figure 3.9 at time t = 2.0. The number of points are nx = ny = n. The
difference between the analytical solution and the numerical is not visible.
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Figure 3.11: The probability current along x = 2.0 for the system in figure
3.9 at time t = 2.0. The number of points are nx = ny = n. The difference
between the analytical solution and the numerical is not visible.

y-direction separate. One can use the one dimensional solution for a half
plane (1.20) in both the x- and y-direction. Figure 3.14 shows the case
with boundaries at y = 0 and x = 0, vx = vy = −1 and x0 = y0 = 1.0. The
domain size is 0 to 14.6 in the x- and y-direction. The probability distribution
after t = 2.0 is shown in figure 3.15. The number of grid points used were
nx = ny = 1000 which gives the step size ∆x = ∆y = 0.015. Figure 3.16
shows a comparison with the analytical solution. The numerical solution
is almost indistinguishable from the analytical solution, except close to the
boundaries.

The same set up as in figure 3.14 but a slightly different drift, vx = −0.5,
vy = −1, is shown in figure 3.17. The comparison between the analytical
and numerical probability distributions is shown in figure 3.18. The domain
size and step sizes are the same as in the previous case. Also in this case the
difference between the numerical and analytical solution is very small.

When the angle between the lines is not π/2 there is no analytical solution.
The case with boundaries at y = 0 and y = 0.8x, vx = −1.0, vy = 0, x0 = 2.5,
y0 = 1.0 is shown in figure 3.19. The probability distribution at t = 2 is
shown in figure 3.20. The domain is from 0 to 15.1 in the x-direction and 0
to 13.6 in the y-direction. The number of points used were nx = ny = 1000
which gives the step size ∆x = 0.015 and ∆y = 0.014. The corner has been
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Figure 3.12: The current normal to the boundary along x̃ = 2.6 for the
system in figure 3.9 at time t = 2.0 compared to the analytical solution. At
the boundary (y = 1.6), x̃ = 2.6 corresponds to x = 2.0. The number of
points are nx = ny = n. The difference between the numerical solutions and
analytical solution is clearly visible. The error decreases with a smaller step
size.
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Figure 3.13: The integrated probability current along the reflective for the
system in figure 3.9. The number of points are nx = ny = n. The current
becomes smaller with a smaller steps size, as wanted.

removed because of lack of resolution.

3.4 Other Segment Shapes

Two other forms of boundary segments were tried, a parabola and a sine
function. Figure 3.21 shows the set up for a boundary at y = 0.1x2 and with
x0 = 0, y0 = 0.7, t = 2 and vx = 0, vy = −1. The domain is from −12.6
to 12.6 in the x-direction and 0 to 14.1 in the y-direction. The number of
points used were nx = ny = 1000 which gives ∆x = 0.025 and ∆y = 0.013.
The probability distribution is shown in figure 3.22. The result is symmetric
as expected.

Figure 3.23 shows the set up with x0 = −3 and y0 = 2. The domain
is from −15.6 to 9.6 in the x-direction and 0 to 14.6 in the y-direction.
The number of points used were nx = ny = 1000 which gives ∆x = 0.025
and ∆y = 0.015. The probability distribution is shown in figure 3.24. The
distribution slides down the boundary towards the bottom.

The set up with a boundary at y = sin(x) with x0 = 2.2, y0 = 1.5, vx = 0,
vy = −1, is shown in figure 3.25. The domain is from −10.4 to 14.8 in the
x-direction and −1 to 14.2 in the y-direction. The probability distribution
at t = 2 and nx = ny = 1000 which gives ∆x = 0.025 and ∆y = 0.015 is
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Figure 3.14: The system with boundaries at y = 0 and x = 0. The starting
position is x0 = y0 = 1.0. The red arrow shows the drift, vx = vy = −1.

Figure 3.15: The probability distribution at t = 2.0 for the system in figure
3.14. The step size is ∆x = ∆y = 0.015. The black dot is the starting point.
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Figure 3.16: Contour plot of the same probability distribution as in figure
3.15 (red) together with the analytical solution (black). The solutions are
almost indistinguishable. The contour lines shows the probability at p =
0.1, 0.2, .... The blue dot is the starting point.
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Figure 3.17: The system with boundaries at y = 0 and x = 0. The starting
position is x0 = y0 = 2.0. The red arrow shows the drift, vx = −0.5, vy = −1.
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Figure 3.18: Contour plot of the probability distribution at time t = 2.0
for the same system as in figure 3.17. The step size is ∆x = ∆y = 0.015.
The numerical solution (red) together with the analytical solution (black).
The solutions are almost indistinguishable. The contour lines shows the
probability at p = 0.1, 0.2, .... The blue dot is the starting point.
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Figure 3.19: The system with boundaries at y = 0.8x and x = 0. The
starting position is x0 = 2.5, y0 = 1.0. The red arrow shows the drift,
vx = −1, vy = 0.
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Figure 3.20: Probability distribution at t = 2.0 for the system in figure
3.19. The domain is from 0 to 15.1 in the x-direction and 0 to 13.6 in the
y-direction. The number of grid points used were nx = ny = 1000 which
gives and ∆x = ∆y = 0.014. The black dot is the starting point.

shown in figure 3.26. Also this picture looks as expected. The starting point
is to the right of the peak in the middle. Most of the distribution ends up to
the right. Because of diffusion some parts ends up to the left.

3.5 Periodic Channel

The system of main interest in this thesis is a channel with a periodically
varying cross section. The channel was constructed by having a lower bound-
ary y = 0 and a upper boundary y = A sin(cx) + b. Periodic boundary
conditions were implemented in the x-direction. The opening b−A is much
smaller than the width of the period. The force is along the x-axis. In figure
3.27 the system with y = sin(0.2x) + 1.1 and x0 = 7.9, y0 = 0.7 is shown.
The solution after a long time when the system has reach stationary, t = 100,
is shown in figure 3.28.

The probability distribution as a function of x was calculated from

p(x) =

∫ ymax

ymin

p(x, y)dy. (3.7)

The distributions calculated from 3.7 at different times is shown in figure
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Figure 3.21: The system with a boundary at y = 0.1x2. The starting position
is x0 = 0, y0 = 0.7. The red arrow shows the drift, vx = 0, vy = −1.

Figure 3.22: y = 0.1x2, x0 = 0, y0 = 0.7, t = 2, vx = 0, vy = −1, ∆x = 0.025
and ∆y = 0.013. The black dot is the starting point.
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Figure 3.23: The system with a boundary at y = 0.1x2. The starting position
is x0 = −3, y0 = 2. The red arrow shows the drift, vx = 0, vy = −1.

Figure 3.24: y = 0.1x2, x0 = −3, y0 = 2, t = 2, vx = 0, vy = −1, ∆x = 0.025
and ∆y = 0.015. The black dot is the starting point.
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Figure 3.25: The system with a boundary at y = sin(x). The starting
position is x0 = 2.2, y0 = 1.5. The red arrow shows the drift vx = 0,
vy = −1.

Figure 3.26: The probability distribution at t = 2 for the system in figure
3.25. The number of grid points used where nx = ny = 1000 which gives
∆x = 0.025 and ∆y = 0.015. The black dot is the starting point.
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3.29. The stationary distribution is almost flat. It would be completely flat
without the channel, so the channel doesn’t affect the solution so much in
this case. The distribution starts at x0 = 7.9 and y0 = 0.7. The domain is
from −7.9 to 23.5 in the x-direction (one period) and from 0 to 2.1 in the
y-direction. Using nx = 500 and ny = 250 gives the step size ∆x = 0.063
and ∆y = 0.0084. At t = 20 parts of the distribution have passed the first
opening. At t = 40 parts of the distribution have reached the second opening.
The solution is almost in stationary at t = 80.

The numerical inaccuracy is visible near the openings. It comes from the
positioning of the grid point near the boundary. The distribution at t = 20
with different step sizes ∆x and ∆y is shown in figure 3.30. The step size
in the y-direction affects the solution a lot, while decreasing the step size in
the x-direction makes a very small difference. Reducing the step size in y by
half makes a the boundary much smoother, see figure 3.32, while reducing
the step size in x makes almost no difference, see figure 3.31. The step size
in the x-direction was therefore taken to be larger than the step size in the
y-direction.

With a smaller drift vx = 0.3 the stationary distribution is less flat see
figure 3.33. The distributions for t = 80, t = 100 and t = 120 are almost iden-
tical. Figure 3.34 shows the stationary distribution for different velocities.
The smaller the drift the more the distribution is affected by the boundary
above. The place where it is the most likely to find the particle is just before
an opening. The narrowing gap slows the particle down. The smaller the
force the longer the time it will on average take for the particle to get through
the opening.

The system with a larger channel opening is shown in figure 3.35. The
stationary distributions for the two different sizes of the channel opening A−b
is shown in figure 3.36. The larger the opening, the flatter the distribution,
as expected since a larger opening makes the distribution less affected by the
upper boundary.

The system with a smaller period is shown in figure 3.37. The upper
boundary is at y = sin(0.3x) + 1.1. The probability distributions calculated
from (3.7) at different times is shown in figure 3.38. The step size used is
∆x = 0.042 and ∆y = 0.023. The system is almost at stationary at t = 60.
The distribution thus approaches stationary faster than when c = 0.2, as
expected since there is less space to diffuse over.
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Figure 3.27: The system with a periodic channel with a boundary at y =
sin(0.2x) + 1.1. The starting position is x0 = 7.9, y0 = 0.7. The red arrow
shows the drift, vx = 1, vy = 0. The picture on top shows the system with
the scale in the x-axis equal to the scale in the y-axis.
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Figure 3.28: The probability distribution at t = 100 for the system shown
in figure 3.27. The step size is ∆x = 0.063 and ∆y = 0.0084.
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Figure 3.29: The probability as a function of x calculated from (3.7) for the
system shown in 3.27 for different times. The step size is ∆x = 0.063 and
∆y = 0.0084. The system is close to stationary at t = 80. After that it
changes very little.
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Figure 3.30: The distribution calculated from (3.7) at t = 20 with different
step sizes ∆x and ∆y. Decreasing the step size in the y-direction changes
the solution more than if one decreases the step size in the x-direction.

Figure 3.31: Probability distributions at t = 20 with ∆y = 0.03. The plot
to the left has ∆x = 0.06 and the plot to the right has ∆x = 0.03. There is
no visible difference between the pictures.
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Figure 3.32: Probability distributions at t = 20 with ∆x = 0.06 . The plot
to the left has ∆y = 0.03 and the plot to the right has ∆y = 0.014. The
upper boundary becomes much smother with a smaller ∆y.
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Figure 3.33: The same system as in 3.27 but with vx = 0.3 instead of 1.
The smaller force makes the stationary distribution much larger at the right
opening. The step size is ∆x = 0.063 and ∆y = 0.0084.
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Figure 3.34: The stationary distributions (t = 120) calculated from (3.7) for
three different velocities for the same system as in 3.27. The larger the force,
the flatter the stationary distribution is.
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Figure 3.35: The system with a periodic channel with an upper boundary
at y = sin(0.3x) + 1.2. The starting position is x0 = 7.9, y0 = 0.7. The red
arrow shows the drift, vx = 1, vy = 0. The picture on top shows the system
to scale.
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Figure 3.36: The stationary distributions (t = 120) for different sizes of
the channel openings. The system for A − b = 0.1 is shown in 3.27 and the
system for A− b = 0.2 is shown in 3.35. The stationary distributions become
flatter with a larger channel opening.

50



 0

 0.5

 1

 1.5

 2

-5  0  5  10  15

y
 

x 

Boundary
Starting point

Figure 3.37: The system with a periodic channel with an upper boundary
at y = (sin(0.3x) + 1.1). The starting position is x0 = 5.2, y0 = 0.7. The red
arrow shows the drift, vx = 0.3, vy = 0. The period is shorter and the drift
smaller than in figure 3.27. The picture on top shows the system to scale.
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Figure 3.38: The probability distributions integrated over y calculated from
(3.7) at different times for the system shown in 3.37. A shorter period makes
the system reach stationary faster.
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Chapter 4

Conclusions and Outlook

In this thesis a program has been developed to study the diffusive motion of
a Brownian particle with a driving force in the presence of reflecting walls.
For one and two line boundaries there were a perfect agreement between
the numerical and analytical result. The stationary solution was unstable,
although very weakly, which probably is a result of the Crank-Nicolson’s
method. This instability will only affect the solution if the spatial step sizes
are too small, so the numerical results are still useful.

In section 3.4 it was shown that the program works for boundaries made
up of parabolic functions and sine functions. The solution of a few different
channels with periodically varying cross section were shown in section 3.5.
The result looked reasonable. The code is suited to compare to the Fick-
Jacobs equation and similar approximations to test their validity.

The program can be extended in many ways. It would be useful to be
able to change the resolution of the initial solution using interpolation. Then
one could run first a simulation with a fine grid and then, when the solution
has spread out, do another simulation with a larger step size.

More complicated boundary shapes can be made possible. The program
can easily be extended to work for boundary shapes that can’t be written as
y = f(x), for example a sphere.

One way to extend the program is to allow for space dependent coef-
ficients, that is allowing for the diffusion coefficient and drift to be space
dependent. This would make the difference equations slightly more compli-
cated, but would otherwise not change the algorithm.

One other way to extend the program is to make it work for time de-
pendent coefficients. Then the matrices Ã and B̃ in equation (2.27) would
need be to changed at every time step, which would increase the computation
time.

Allowing for time dependent boundaries would be even more computa-
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tionally expensive. One would then need to calculate the boundary condition
at each time step, which would increase the computation time a lot.

One important extension would be to allow for ellipsoidal particles in-
stead of only spherical ones. Many particles of interest in biological systems
have non-spherical shapes like proteins [15], DNA fragments and cells. With
ellipsoidal particles the rotation of the particle has to be taken into account.
The rotation makes the problem (2+1) dimensional. One needs to solve the
time dependent joint probability density of the combined particle rotation
and translation. The grid and the matrices will be then three dimensional.
The Grid class already works for three dimensions and changing the ma-
trix classes to work with one more dimension would be easy. The boundary
conditions would be much more difficult to implement.
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Appendix A

Calculation of Boundary
Condition Coefficients

With a set of points (x0, y0), ..., (xk, yk) the Lagrangian interpolation polyno-
mial can be written

L(x) :=
k∑
j=0

yjlj(x), (A.1)

with the basis polynomials

lj(x) :=
∏

0≤m≤k,m 6=j

x− xm
xj − xm

(A.2)

With the points (xi,j+1, ui,j+1)(n), (xi+1,j+1, ui+1,j+1)(n) and (xi+2,j+1, ui+2,j+1)(n)

the interpolation polynomial becomes

LI(x) = u
(n)
i,j+1

(x− xi+1,j+1)

(xi,j+1 − xi+1,j+1)

(x− xi+2,j+1)

(xi,j+1 − xi+2,j+1)
+

+u
(n)
i+1,j+1

(x− xi,j+1)

(xi+1,j+1 − xi,j+1)

(x− xi+2,j+1)

(xi+1,j+1 − xi+2,j+1)
+

+u
(n)
i+2,j+1

(x− xi,j+1)

(xi+2,j+1 − xi,j+1)

(x− xi+1,j+1)

(xi+2,j+1 − xi+1,j+1)
(A.3)

With x = xI

LI(xI) = u
(n)
i,j+1

(xI − xi+1,j+1)

(xi,j+1 − xi+1,j+1)

(xI − xi+2,j+1)

(xi,j+1 − xi+2,j+1)
+

+u
(n)
i+1,j+1

(xI − xi,j+1)

(xi+1,j+1 − xi,j+1)

(xI − xi+2,j+1)

(xi+1,j+1 − xi+2,j+1)
+
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+u
(n)
i+2,j+1

(xI − xi,j+1)

(xi+2,j+1 − xi,j+1)

(xI − xi+1,j+1)

(xi+2,j+1 − xi+1,j+1)
(A.4)

Using LI(xI) = u
(n)
I and that the distance between the grid points is ∆x

u
(n)
I = u

(n)
i,j+1

(xI − xi+1,j+1)

(−∆x)

(xI − xi+2,j+1)

(−2∆x)
+

+u
(n)
i+1,j+1

(xI − xi,j+1)

∆x

(xI − xi+2,j+1)

(−∆x)
+

+u
(n)
i+2,j+1

(xI − xi,j+1)

2∆x

(xI − xi+1,j+1)

∆x
(A.5)

With xI − xi,j+1 = ηI

u
(n)
I = u

(n)
i,j+1

(∆x− ηI)(2∆x− ηI)
2(∆x)2

+

+u
(n)
i+1,j+1

ηI(2∆x− ηI)
(∆x)2

+ u
(n)
i+2,j+1

−ηI(∆x− ηI)
2(∆x)2

(A.6)

This gives the first three coefficients in equation (2.20):

c0 =
(∆x− ηI)(2∆x− ηI)

2(∆x)2
, c1 =

ηI(2∆x− ηI)
(∆x)2

, c2 =
−ηI(∆x− ηI)

2(∆x)2

(A.7)

To approximate the normal derivative, use the points (0, u
(n)
i,j ), (ξI , u

(n)
I )

and (ξII , u
(n)
II )

L(ξ) = u
(n)
i,j

(ξ − ξI)
(0− ξI)

(ξ − ξII)
(0− ξII)

+u
(n)
I

(ξ − 0)

(ξI − 0)

(ξ − ξII)
(ξI − ξII)

+u
(n)
II

(ξ − 0)

(ξII − 0)

(ξ − ξI)
(ξII − ξI)

(A.8)
Calculate the derivative at the boundary,

∂L

∂ξ

∣∣∣∣
ξ=ξΓ

= u
(n)
i,j

1

(−ξI)
(ξΓ − ξII)

(−ξII)
+ u

(n)
i,j

(ξΓ − ξI)
(−ξI)

1

(−ξII)
+

+u
(n)
I

1

ξI

(ξΓ − ξII)
(ξI − ξII)

+ u
(n)
I

ξΓ

ξI

1

(ξI − ξII)
+

+u
(n)
II

1

ξII

(ξΓ − ξI)
(ξII − ξI)

+ u
(n)
II

ξΓ

ξII

1

(ξII − ξI)
(A.9)

With ξII = 2ξI

∂L

∂ξ

∣∣∣∣
ξ=ξΓ

= u
(n)
i,j

1

ξI

(ξΓ − 2ξI)

(2ξI)
+ u

(n)
i,j

(ξΓ − ξI)
ξI

1

(2ξI)
+

57



+u
(n)
I

1

ξI

(ξΓ − 2ξI)

(ξI − 2ξI)
+ u

(n)
I

ξΓ

ξI

1

(ξI − 2ξI)
+

+u
(n)
II

1

2ξI

(ξΓ − ξI)
(2ξI − ξI)

+ u
(n)
II

ξΓ

2ξI

1

(2ξI − ξI)
(A.10)

Collecting the terms

∂L

∂ξ

∣∣∣∣
ξ=ξΓ

= u
(n)
i,j

(2ξΓ − 3ξI)

2ξ2
I

+ u
(n)
I

(2ξI − 2ξΓ)

ξ2
I

+ u
(n)
II

(2ξΓ − ξI)
2ξ2
I

(A.11)

This gives the coefficients in equation (2.18)

g0 =
(2ξΓ − 3ξI)

2ξ2
I

, gI =
(2ξI − 2ξΓ)

ξ2
I

, gII =
(2ξΓ − ξI)

2ξ2
I

(A.12)
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