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Abstract

In this thesis the critical behaviour at the quantum phase transition of a transverse
field random Ising chain is studied by mapping it to corresponding two-dimensional
classical model. Monte Carlo simulations using the Wolff algorithm are performed
in order to sample the system configurations. The critical point of the transition
is located by measuring the Binder cumulant. An analysis of finite size scaling
corrections is performed and it is demonstrated that a higher order correction to
scaling is visible. The dynamic scaling of the system is studied, and it is shown that
by taking proper account of scaling corrections the analytic prediction of activated
dynamic scaling is observed. Average and typical correlations are measured for
the system at the critical point and the scaling behaviour obtained is compared to
analytical results. A discrepancy between the numerical and analytical value for
the critical exponent of the average correlation is found. The scaling behaviour of
the typical correlation is found to align well with the analytic value.

Key words: Transverse field random Ising chain, Monte Carlo simulation, Wolff
algorithm, critical exponents, finite size scaling, quantum phase transition.
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Chapter 1

Introduction

The study of phase transitions is of particular interest in physics due to what is
known today as the universality hypothesis, the observation that systems vastly
different in the microscopic perspective shows asymptotically identical behaviour
near a phase transition[1].

The most studied model within the area of statistical physics is probably the
Ising model. Its main virtue is its simplicity and it has been an important source
of understanding for the concepts of phase transitions and universality. It was for
this model that Kadanoff presented his idea of block spins[2]. Kadanoff’s work in
turn lead Wilson to develop the method of the renormalization group, which has
provided insight into both the nature of the critical exponents of phase transitions,
and an explanation for the origin of universality through the fixed points of the
renormalization group flow[3].

In the realm of quantum physics there is a model aptly known as the quantum
Ising model, due to its similar shape to the classical model. It was shown by
Suzuki[4] that the statistics of the quantum Ising model can be studied in terms of
the classical Ising model through a mapping, which will be introduced in full detail
in Sec. 2.4. One particular property of the mapping is that it takes a d-dimensional
quantum system to a (d+ 1)-dimensional classical system.

Within the quantum framework a new type of phase transition appears, dis-
tinguished from the phase transitions of classical physics in that it occurs at zero
temperature. Classically zero temperature implies that no fluctuations are possible,
which prohibits phase transitions from taking place. A quantum system however
is subject to quantum fluctuations even at absolute zero temperature, and as such
phase transitions can occur. The quantum Ising model exhibits such a transition
when exposed to a magnetic field transverse to the Ising spin axis. At zero mag-
netic field the spins are all aligned in the same direction, but as the field is tuned
up quantum tunneling allows the individual spins to fluctuate between parallel and
antiparallel. At some point the system becomes completely paramagnetic[5].
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2 Chapter 1. Introduction

Quantum Ising magnets in a transverse field can be studied experimentally and
at low temperatures signs of the theoretically predicted zero temperature phase
transition is observable. This has for instance been done by Bitko, Rosenbaum and
Aeppli[6] for Ho atoms in LiHoF4 crystals, and more recently by Coldea et al.[7]
for Co atoms in CoNb2O6.

In 1992 D. Fisher presented results for a generalization of the transverse field
Ising model where both the field and the exchange couplings between spins are
random variables from two arbitrary distributions[8, 9]. Each pair of spins are cou-
pled with each other by a random coupling, and each site experiences a random
field. The analysis was performed for the one-dimensional model, which by the
aforementioned mapping corresponds to a two-dimensional classical system. This
system exhibits a quantum phase transition as the average of the random field vari-
ables is increased beyond a critical value. Fisher showed that the critical behaviour
of the system near the phase transition is rather unusual. In particular the average
correlation and the typical correlation diverge with differing critical exponents, and
the system undergoes what is known as activated dynamic scaling[5].

In a study by Pich and Young[10, 11] an incarnation of the random transverse
field Ising model was simulated numerically to test the predictions by Fisher. How-
ever, the data they presented shows substantial uncertainty and the scaling results
were not completely convincing.

In this thesis the same numerical analysis has been performed as in the study by
Pich and Young with the aim to reduce the uncertainty and investigate whether this
produces better estimates for the critical exponents due to Fisher. It is found that
some of the scaling results can be considerably improved by considering corrections
to scaling, which is the main result of this thesis. In Ch. 2 a review of some
theoretical concepts relevant to the work in this thesis is presented. Chapter 3
details the theory regarding the numerical methods used and the implementation.
In Ch. 4 the results of the numerical study is presented, and in Ch. 5 a summary
and discussion, followed by an outlook are given.



Chapter 2

Theoretical Background

In this chapter various theoretical aspects are introduced. First a brief overview of
statistical mechanics is given. The theory of critical phenomena, critical exponents
and finite size scaling is reviewed. Thereafter the random transverse field Ising
model is introduced. The mapping of the quantum Ising model to a corresponding
classical model is derived in detail, and specifics of the mapping are discussed.
Lastly the analytical results due to Fisher for the random transverse field Ising
model are presented.

2.1 Equilibrium Statistical Mechanics

The problem when attempting to study physical systems on a microscopic level is
that the sheer number of particles in a real world system is so large that treating
each of them using classical equations of motion becomes impossible. Statistical
mechanics is an area of physics which attempts to sidestep this problem by treating
systems with probabilistic methods rather than by directly studying the dynamics
of each particle. The central idea in statistical mechanics is that a system has a
probability of being in any one particular of its microscopic states ω. Each state
ω is defined by a specific configuration of the systems’ degrees of freedom. In the
study of equilibrium systems it can be shown that the probability of a state ω is
given by the Boltzmann distribution

P (ω) =
1

Z
e−βH(ω), (2.1)

where β = 1
kBT

is the inverse temperature and H (ω) is the Hamiltonian or energy
of the system in state ω. The prefactor Z is called the partition function of the

3



4 Chapter 2. Theoretical Background

system, and acts as a normalizing constant. For a discrete set of states it is defined
as

Z =
∑

ω∈Ω

e−βH(ω), (2.2)

where Ω denotes state space of the system. The partition function is a rather
important function as it turns out, since it is possible to extract essentially all
macroscopic information about the system from it. Macroscopic properties of the
system are given as expectation values. Given a quantity A (ω) which is a function
of the configuration of the system the expectation of A is given as

〈A〉 =
∑

ω∈Ω

A (ω)P (ω)

=
1

Z

∑

ω∈Ω

A (ω) e−βH(ω). (2.3)

Many such expectations can be computed directly from the partition function. For
instance the expectation of the energy of the system is related to the derivative of
Z with regards to β.

∂Z

∂β
= −

∑

ω∈Ω

H (ω) e−βH(ω)

= −Z 〈H〉 , (2.4)

and so the expectation of the energy is

〈H〉 = − 1

Z

∂Z

∂β
= −∂ logZ

∂β
. (2.5)

It is therefore desirable to be able to determine the partition function, but unfortu-
nately this happens to be rather difficult for most systems. More often expectations
are measured directly using numerical methods such as Monte Carlo simulations
instead.

2.2 Critical Phenomena

The subject of critical phenomena is the study of systems near a phase transition.
This has interested physicists due to its difficulty. Another reason for studying
critical behaviour is the universality hypothesis, which is the observation that the
behaviour of widely different systems on the microscopic scale can display identical
behaviour in the critical region. This hypothesis is supported by large amounts of
empirical evidence, and is also motivated further by Wilson’s theory of the renor-
malization group[12]. In the following subsections a brief review of some aspects of
critical phenomena will be given.
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2.2.1 Critical Exponents and Scaling

At a critical point the free energy f of a system becomes singular. For the d-
dimensional Ising model in an external field the free energy depends on two pa-
rameters, the temperature T and the external field strength H. It follows from
the renormalization group that the singular part of the free energy fs varies with
a change of scale λ as

fs (t, h) = λ−dfs (λytt, λyhh) , (2.6)

where t = T−Tc
Tc

and h = H − Hc. From this scaling relation the behavior of
various thermodynamic quantities, such as the magnetization m and specific heat
c, by appropriately differentiating the free energy. For instance setting h = 0 and

λ = |t|− 1
yt leads to

m (t, 0) = (−t)βm (−1, 0) , (2.7)

c (t, 0) = |t|−α C (±1, 0) , (2.8)

where α = 2yt−d
yt

and β = d−yh
yt

are referred to as critical exponents. Another
important scaling relation is for the correlation length ξ and is given by

ξ ∼ |t|−ν (2.9)

Critical behaviour of other thermodynamic quantities can be derived similarly and
will have their own critical exponents, but due to the scaling form (2.6) all the
exponents are related to each other through yt and yh in what is called scaling laws.
Historically it had already been noted from empirics that critical exponents seemed
to be related to each other even before the introduction of the renormalization
group.

2.2.2 Finite Size Scaling

A profound realization is that it is impossible in theory for a system of finite size to
undergo a phase transition[12, 13]. For sufficiently large systems as in experiments
we still do observe phase transitions for all intents and purposes. In simulations
systems are however very small in comparison to experiments, and thoroughly un-
derstanding the effects of finite sizes becomes important. A notable finite size effect
is the disappearance of divergences in thermodynamic quantities.

Considering the specific heat which has the infinite size scaling given by (2.8)
the finite size is accounted for by postulating a finite size scaling function c̃ as[12]

c (t, 0) = |t|−α c̃
(

L

ξ (t)

)
, (2.10)

where c̃ (x) has two particular limits. For x → ∞ the function c̃ (x) → const.,
while when x → 0 the function c̃ (x) → xα/ν . The first limit assures the original
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scaling behaviour for the infinite system, while the second limit removes the singular
behaviour for finite systems since the factor |t|−α is cancelled by c̃ (x). A further
remark is that for a quantity Q (t, L) that scales in the infinite size limit as |t|y the
quantity

Ly/νQ (t, L) =
(
L1/ν |t|

)y
ϕ
(
L1/ν |t|

)
(2.11)

where it may be noted that the right hand side is only dependent of L1/ν |t|. Plotting
the left hand side of (2.11) against L1/ν |t| produces the same curve independently
of the actual system size L, such that data from different system sizes collapses
onto each other.

One particular quantity relevant to this thesis is the so called Binder cumulant[14]
defined here as

g =
1

2

(
3−

〈
m4
〉

〈m2〉2

)
. (2.12)

The definition of the Binder cumulant varies somewhat between authors, but the
important part is the ratio of the fourth and second moments of m. Using the
definition (2.12) the Binder cumulant for an infinite Ising system follows

g =

{
1, T < Tc,

0, T > Tc.
(2.13)

Furthermore for finite systems the Binder cumulant typically scales as

g = g̃
(
L1/νt

)
, (2.14)

and as such only depends on L1/νt. In Sec. 2.6 the scaling form for the Binder
cumulant of a quantum Ising system is shown.

2.3 Random Transverse Field Quantum Ising
Model

The Ising model is a well studied system within statistical mechanics. It describes
a very simple magnetic system defined on the sites of a lattice. In its simplest form
its behaviour is determined by the Hamiltonian given by

H = −J
∑

〈ij〉

sisj , (2.15)

where J is the coupling strength and si are the spins in the lattice and may only
take values si = ±1. As is conventional 〈ij〉 denotes that the indices in the sum are
chosen such that only pairs of nearest neighbors contribute to H. The model can
be generalized in many ways, such as by adding longer ranged interactions or by
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adding many body interactions e.g. Jsisjsk. Another generalization to the model
is by having the coupling strength depend on the lattice index. Spin glasses are
an example of a class of systems belonging to this type of generalization. In a
spin glass the couplings are randomly assigned in the lattice, which under certain
circumstances result in what is known as frustation, i.e. the ground state of the
system (the state which minimizes H) is not unique.

Within quantum physics there is an analogy to the Ising model, and its dynamics
are governed by the Hamilton operator Ĥ given by

Ĥ = −J
∑

〈ij〉

σ̂zi σ̂
z
j , (2.16)

where σ̂zi is the z direction Pauli matrix acting on the i:th spin in the lattice.
This model may be generalized in the same ways as the classical model, but the
quantum nature also allows for additional generalizations. One notable example is
the addition of a transverse field, which produces a Hamiltonian in the form

Ĥ = −J
∑

〈ij〉

σ̂zi σ̂
z
j − h

∑

i

σ̂xi , (2.17)

where σ̂xi is the Pauli matrix in the x direction. The transverse field quantum
Ising model experiences a phase transition at T = 0 as a function of the transverse
field. Phase transitions of this kind are unique to quantum systems and arise due
to quantum fluctuations which occur even in the absence of thermal fluctuations,
i.e. when T = 0.

In this thesis a version of the one-dimensional quantum Ising model with random
couplings and random transverse field is studied. The Hamilton operator for this
model is

Ĥ = −
∑

i

Jiσ̂
z
i σ̂

z
i+1 −

∑

i

hiσ̂
x
i . (2.18)

The couplings and fields are random variables drawn from two distributions. Peri-
odic boundary condition is applied, such that for a system of N spins σ̂αN+1 = σ̂α1 .

2.4 Quantum to Classical Mapping of the Ising
Model

There are many efficient methods for numerically studying classical statistical me-
chanical systems. These methods are often not directly applicable to quantum
statistical mechanics, however as was shown by Suzuki[4] it is possible to map cer-
tain quantum systems onto classical systems. The advantage of this mapping is
that it allows the statistical mechanics of the quantum system to be studied with
the numerical schemes developed for classical systems. This is indeed possible for
the system described by (2.18). Readers familiar with the path integral formalism
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may recognize aspects of the mapping, and when applied for the purposes of Monte
Carlo simulations it is sometimes known as the path integral Monte Carlo method.
The derivation of this mapping will be discussed below. It will be performed for
a two spin system for simplicity, but the generalization is trivial, both for higher
dimension and more spins.

The Hamiltonian for the two spin quantum system is

Ĥ = −J1σ̂
z
1 σ̂

z
2 − h1σ̂

x
1 − J2σ̂

z
2 σ̂

z
1 − h2σ̂

x
2 , (2.19)

which gives the partition function as

Z =
∑

{s01}

∑

{s02}

〈
s0

1s
0
2

∣∣ e−βĤ
∣∣s0

1s
0
2

〉
. (2.20)

The sum
∑
{s01} denotes summation over all possible spin configurations for spin

s0
1. It can be argued that the second coupling term of (2.19) is unnecessary. While

true for the two spin system it has still been included as it makes the generalization
to more spins more directly apparent. Now introduce a shorthand notation for this
sum as

∑
{s0i} =

∑
{s01}

∑
{s02}. The reason for the superindex 0 becomes clear

below. The exponential function of a sum of operators
∑
i Âi can be decomposed

into a product of operator exponentials by the Trotter formula[15]

e
∑N
i=1 Âi = lim

M→∞

(
N∏

i=1

e
1
M Âi

)M
= lim
M→∞

M∏

k=1

N∏

i=1

e
1
M Âi . (2.21)

The partition function may thereby be approximated by

ZLτ =
∑

{si}

〈
s0

1s
0
2

∣∣
(
Lτ∏

k=1

eK1σ̂
z
1 σ̂
z
2 eK2σ̂

z
1 σ̂
z
2 eh̃1σ̂

x
1 eh̃2σ̂

x
2

)
∣∣s0

1s
0
2

〉
, (2.22)

where Ki = β
Lτ
Ji, and h̃i = β

Lτ
hi. In (2.22) the integer M has been relabeled as

Lτ . Next use the completeness relation given by

∑

{si}

|s1s2〉 〈s1s2| = I, (2.23)
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where the vectors |si〉 constitute an orthonormal basis for the operator σ̂z1 σ̂
z
2 . In-

serting Lτ − 1 completeness relations yields

ZLτ =
∑

{s0i}

〈
s0

1s
0
2

∣∣ eK1σ̂
z
1 σ̂
z
2 eK2σ̂

z
1 σ̂
z
2 eh̃1σ̂

x
1 eh̃2σ̂

x
2

×
∑

{s1i}

∣∣s1
1s

1
2

〉 〈
s1

1s
1
2

∣∣ eK1σ̂
z
1 σ̂
z
2 eK2σ̂

z
1 σ̂
z
2 eh̃1σ̂

x
1 eh̃2σ̂

x
2

× · · ·

×
∑

{sLτ−1
i }

∣∣∣sLτ−1
1 sLτ−1

2

〉〈
sLτ−1

1 sLτ−1
2

∣∣∣ eK1σ̂
z
1 σ̂
z
2 eK2σ̂

z
1 σ̂
z
2 eh̃1σ̂

x
1 eh̃2σ̂

x
2

∣∣s0
1s

0
2

〉

(2.24)

which can be rewritten as

ZLτ =
∑

{s0i}
· · ·

∑

{sLτ−1
i }

(
Lτ−1∏

k=0

〈
sk1s

k
2

∣∣ eK1σ̂
z
1 σ̂
z
2 eK2σ̂

z
2 σ̂
z
1 eh̃1σ̂

x
1 eh̃2σ̂

x
2

∣∣sk+1
1 sk+1

2

〉
)
,

(2.25)

where the last factor
∣∣∣sLτ1 sLτ2

〉
=
∣∣s0

1s
0
2

〉
. Now introduce another shorthand for

the sums
∑
{ski } =

∑
{s0i} · · ·

∑
{sLτ−1
i }. Furthermore the operators eKiσ̂

z
i σ̂
z
i+1 are

diagonal in the basis
∣∣sk1sk2

〉
, and thus it is possible to write

ZLτ =
∑

{ski }

(
Lτ−1∏

k=0

eK1s
k
1s
k
2 eK2s

k
1s
k
2
〈
sk1s

k
2

∣∣ eh̃1σ̂
x
1 eh̃2σ̂

x
2

∣∣sk+1
1 sk+1

2

〉
)
. (2.26)

The operator eh̃iσ̂
x
i only operates on the

∣∣ski
〉

part of
∣∣sk1sk2

〉
and so

ZLτ =
∑

{ski }

(
Lτ−1∏

k=0

eK1s
k
1s
k
2 eK2s

k
1s
k
2
〈
sk1
∣∣ eh̃1σ̂

x
1

∣∣sk+1
1

〉 〈
sk2
∣∣ eh̃2σ̂

x
2

∣∣sk+1
2

〉
)
. (2.27)

The matrix elements
T
(
ski , s

k+1
i

)
=
〈
ski
∣∣ eh̃iσ̂xi

∣∣sk+1
i

〉
(2.28)

can be rewritten into a more convenient form. First it should be noted that the
exponential operator is diagonal when expressed in |sxi 〉, the eigenstates of σ̂xi , that
is to say

eh̃iσ̂
x
i =

∑

sxi =±1

|sxi 〉 eh̃is
x
i 〈sxi | . (2.29)
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Next the various inner products between the eigenstates of σ̂xi and σ̂zi are given by

〈
ski = +1|sxi = +1

〉
=

1√
2

〈
ski = +1|sxi = −1

〉
=

1√
2

〈
ski = −1|sxi = +1

〉
=

1√
2

〈
ski = −1|sxi = −1

〉
= − 1√

2

Thus the matrix elements become

T
(
ski , s

k+1
i

)
=
〈
ski |sxi = +1

〉
eh̃i
〈
sxi = +1|sk+1

i

〉
+
〈
ski |sxi = −1

〉
e−h̃i

〈
sxi = −1|sk+1

i

〉
.

(2.30)
Particularly

〈
ski |sxi = +1

〉
eh̃i
〈
sxi = +1|sk+1

i

〉
=

1

2
eh̃i (2.31)

independently of the values ski and sk+1
i , while

〈
ski |sxi = −1

〉
e−h̃i

〈
sxi = −1|sk+1

i

〉
=

{
+ 1

2e
−h̃i , ski = sk+1

i

− 1
2e
−h̃i , ski = −sk+1

i

(2.32)

and thus

T
(
ski , s

k+1
i

)
=

{
cosh(h̃i), ski = sk+1

i

sinh(h̃i), ski = −sk+1
i

(2.33)

It would be more practical if T
(
ski , s

k+1
i

)
could be written without distinguishing

the two cases explicitly. One such way would be to write T
(
ski , s

k+1
i

)
instead as

T
(
ski , s

k+1
i

)
=

1

2

(
eh̃i + ski s

k+1
i e−h̃i

)
. (2.34)

This form is not very useful in practice however. Instead a different form is proposed
as

T
(
ski , s

k+1
i

)
= eAi+His

k
i s
k+1
i , (2.35)

where Ai and Hi are constants. Comparison with (2.33) gives

eAi+Hi = cosh(h̃i),

eAi−Hi = sinh(h̃i), (2.36)

or

Ai +Hi = ln
(

cosh(h̃i)
)
, (2.37)

Ai −Hi = ln
(

sinh(h̃i)
)
. (2.38)
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Solving for Hi and Ai we get

Hi =
1

2
ln

(
cosh(h̃i)

sinh(h̃i)

)
=

1

2
ln
(

coth(h̃i)
)

(2.39)

Ai =
1

2
ln
(

cosh(h̃i) sinh(h̃i)
)

=
1

2
ln

(
1

2
sinh(2h̃i)

)
(2.40)

Thus if Hi and Ai are chosen according to (2.39) and (2.40) the form of T
(
ski , s

k+1
i

)

given by (2.35) holds. Inserting this form of T
(
ski , s

k+1
i

)
into (2.27) yields

ZLτ =
∑

{ski }

(
Lτ−1∏

k=0

eA1+A2eK1s
k
1s
k
2 eK2s

k
1s
k
2 eH1s

k
1s
k+1
1 eH2s

k
2s
k+1
2

)
, (2.41)

which ultimately can be rewritten by combining all the exponential functions

ZLτ =
∑

{ski }
C exp


∑

i,k

(
Kis

k
i s
k
i+1 +His

k
i s
k+1
i

)

 , (2.42)

where C = exp (
∑
iAi) is a effectively irrelevant constant. The sums over i goes

over all the spins, for this example i = 1, 2, while k takes values k = 0, 1, . . . , Lτ −1.
This partition function for the one dimensional quantum Ising system is equivalent
to the partition function of the two dimensional classical Ising system.

It should be noted that while the derivation presented here was done for a two
spin extending the derivation to the general case of N spins is trivial, and (2.42)
has the same form, except that i = 1, 2, . . . , N . This derivation can also be done
for quantum systems in higher dimension and in general a quantum system in d
dimensions maps to a classical system in d + 1 dimensions. In the following the
introduced dimension will be referred to as the Trotter direction or the τ direction,
while the original dimension of the system will be referred to as the x direction, or
the spatial direction.

2.5 Aspects of the Quantum to Classical
Mapping

From the partition function (2.42) it is possible to identify an effective Hamiltonian
of the two-dimensional model as

βeffHeff =
∑

i,k

(
Kis

k
i s
k
i+1 +His

k
i s
k+1
i

)
. (2.43)

Here an effective classical temperature Teff and inverse temperature βeff = 1/Teff

have been introduced to mimic the classical partition funciton of a two-dimensional
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Ising model, but it should not be confused with the actual temperature of the
quantum system. The quantum phase transition of an N spin system is probed
by adjusting the ratio of the average of the couplings J̄ = 1

N

∑N
i=1 Ji to the fields

h̄ = 1
N

∑N
i=1 hi of the quantum system to some critical value. When the ratio

h̄

J̄
(2.44)

is large the system is in a disordered, paramagnetic state, while when it is small
the system is in an ordered, ferromagnetic state. This ratio can be adjusted by
adjusting the distributions of the parameters Ji and hi of the quantum system.

However, in practice it is more convenient to work directly with the effective
parameters. The ratio (2.44) can be adjusted by letting the Ki and Hi be drawn
from two fixed distributions and varying the effective temperature Teff instead.
Thereby the effective temperature acts in a sense as the field and in the following
sections Teff will be denoted simply by T and referred to as the field unless otherwise
stated. In Fig. 2.1 the behaviour of the parameters J and h of the non-disordered
quantum system is illustrated to show how the ratio of the fields and couplings are
varied by varying T . By introducing this effective temperature simulations can be
done completely analogously with the numerical simulations of the classical Ising
model, although the physical interpretation of T is more abstract.

0
T

0

h(T ) = 1
∆τ coth−1

(
e2TH

)

J(T ) = 1
∆τTK

Figure 2.1. Illustration of the coupling J and field h of the quantum system behaves
as the effective temperature T is increased for some conveniently chosen values of
H, K and ∆τ = β/Lτ .
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The for this thesis the distributions for the two types of couplings Ki and Hi

in the effective model are

ρ (K) =

{
1, 1 ≥ K ≥ 0,

0, otherwise,
(2.45)

π (H) =

{
2e−2H , H ≥ 0,

0, otherwise.
(2.46)

Another consequence of the quantum to classical mapping is the ratio

∆τ =
β

Lτ
, (2.47)

where ∆τ is determined, by the system size Lτ in the τ direction and β. By fixing
the ∆τ a relation between the inverse temperature of the quantum system and the
size of the classical system in the τ direction is established. In this thesis ∆τ = 1
has been used such that

Lτ = β. (2.48)

Hence the Lτ will be referred to in the following as inverse temperature.

2.6 Analytical Results

Disordered systems are complicated to study. Analytical solutions in statistical
mechanics are rare, and when the system involves disorder even numerical study
becomes difficult, since in order to understand the overall properties of the disor-
dered system many different realizations of the system must be observed. It is not
enough to simply perform one in thorough simulatin of a single realization. In 1992
D. Fisher[8, 9] demonstrated how various analytical results could be determined
for the system described by (2.18) using a renormalization group approach. The
results are independent of the distributions of Ji and hi.

Among the predictions were that the system experiences what is known as
activated dynamic scaling. This activated dynamic scaling can be observed for
instance in the Binder cumulant g as its scaling function becomes

g = g̃

(
L1/νt,

Lτ
ekLz

)
, (2.49)

where k is a constant. The term activated dynamic scaling refers to the ratio
between Lτ and ekL

z

, which stands in contrast to e.g. the ordered model where the
scaling function is instead[5]

g = g̃

(
L1/νt,

Lτ
Lz

)
. (2.50)

The exponent z of (2.49) was determined by Fisher to be z = 1/2.



14 Chapter 2. Theoretical Background

Another prediction was the differing behaviour in the scaling of the typical and
average correlation functions. The typical correlation function scales as

Ctyp (r) ∼ e−kr1/2 , (2.51)

where k is a constant. On the other hand the average correlation scales as

Cav (r) ∼ rϕ−2, (2.52)

where ϕ = 1+
√

5
2 is the golden ratio.



Chapter 3

Numerical Analysis Methods

In the following chapter the numerical aspects of the thesis are described. First
an introduction is given to the theory of Markov chain Monte Carlo methods for
simulating physics in statistical mechanics. Two specific algorithms which have
been used during the work of this thesis, the Metropolis and the Wolff algorithms,
are described. Furthermore the method of histogram extrapolation is detailed. Next
some methods for estimating the statistical errors which always accompany Monte
Carlo methods are reviewed. This is followed by a brief discussion of pseudorandom
numbers. Finally some implementation details are given.

3.1 Markov Chain Monte Carlo Methods

In this section the basics of Markov chain Monte Carlo simulations will be briefly
presented. For a more detailed review of the subject see for instance Newman and
Barkema[16].

As was argued in Sec. 2.1, knowing the partition function one has access to many
properties of the system. In practice it is often very difficult to find an analytic
expression for the partition function.

A different approach to the problem of determining the macroscopic properties
is by computing the expectations directly. The expectation of some quantity X (ω)
can be estimated from a set of N sample states {ωn}, where each state is drawn
with a corresponding probability pn. The best estimate of the expectation is given
by

〈X〉 ≈
∑N
n=1X (ωn) p−1

n e−βH(ωn)

∑N
n=1 p

−1
n e−βH(ωn)

. (3.1)

15



16 Chapter 3. Numerical Analysis Methods

If the states can be drawn directly from the Boltzmann distribution then the esti-
mator (3.1) becomes

〈X〉 ≈ X̄ =
1

N

N∑

n=1

X (ωn) , (3.2)

i.e. the arithmetic mean.

Markov chain Monte Carlo methods utilize Markov chains to produce sample
states according to a desired target distribution. A Markov chain in the context
of Monte Carlo simulations in statistical physics is a sequence of states where each
subsequent state is generated solely from its immediate predecessor. The way in
which a new state is generated from the previous is what defines a specific Monte
Carlo method.

A way of measuring time in Monte Carlo simulations of spin systems is by count-
ing the number of attempts at flipping spins. Most commonly time is measured in
sweeps, which corresponds to a number of attempts equal to the system size. For
a 4× 4 lattice of spins a sweep is equal to 16 attempts. Whenever the word sweep
is used in this thesis this is what is meant.

If a proper method is used the system may be initialized to an arbitrary state.
Then the system is evolved using the method from the arbitrary state for a num-
ber of sweeps without taking any measurement. This is done because the intially
generated states will not necessarily be correctly distributed, due to correlations to
the arbitrary initial state. This procedure is called the warmup, burn-in or equi-
libration phase. It is often necessary to study the time it takes for the system to
equilibrate, so that systematic errors due to initial configuration are avoided.

In order for the states generated to be Boltzmann distributed the generating
method should obey two conditions. The transitions between states should obey
detailed balance, and it should be ergodic.

3.1.1 Detailed Balance

Detailed balance is defined by

R (ωn → ωm)P (ωm) = R (ωm → ωn)P (ωn) , (3.3)

where R (ωn → ωm) is the probability of transition from state ωn to state ωm,
and P (ωn) is the probability of the system being in state ωn, which here is the
Boltzmann distribution. Rearranging this condition produces

R (ωn → ωm)

R (ωm → ωn)
=
P (ωm)

P (ωn)
= e−β(H(ωm)−H(ωn)), (3.4)

which is the condition for transitions between states in order to generate the Boltz-
mann distribution.
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3.1.2 Ergodicity

A system in statistical mechanics is said to be ergodic if it will traverse its entire
state space given sufficient time. In other words this means that it should not be
completely locked into a subregion of the state space. For a Markov chain to be
ergodic it should be possible for it to reach each of the states in a finite number of
steps. If the transition rate to and from a certain state ωn is 0 for all states expect
ωn itself, then the algorithm would not be ergodic.

Thus as long as condition (3.4) is satisfied and the algorithm is sure to be ergodic
it will sample states with proper distribution. These conditions are sufficiently loose
that they allow for many ways of generating Boltzmann distributed states.

3.1.3 Selection and Acceptance Ratios

The ratio (3.4) is what restricts the transition probabilities for each pair of states,
but it allows for a lot of freedom in how the probabilities are chosen. An important
note is that the transition from one state to itself

R (ωn → ωn) 6= 0 (3.5)

in general. Thereby it is possible to decompose the transition probabilities into

R (ωn → ωm) = S (ωn → ωm)A (ωn → ωm) , (3.6)

where we call S (ωn → ωm) the selection probability, and A (ωn → ωm) the accep-
tance probability. The selection probability serves to select a state ωm to be the
next state given a current state ωn. The acceptance probability then represents the
probability of actually performing the transition to ωm rather than just remaining
in the current state ωn. The original ratio (3.4) then becomes

S (ωn → ωm)

S (ωm → ωn)
· A (ωn → ωm)

A (ωm → ωn)
= e−β(H(ωm)−H(ωn)). (3.7)

The decomposition (3.6) leaves the method for selecting new states rather unre-
stricted, as long as ergodicity is respected and the rates of accepting the generated
states are adjusted to maintain detailed balance.

However it should be noted that if the acceptance probabilities are low the
same state will be sampled many times, and the state space will be explored very
slowly. A good Markov chain Monte Carlo method is therefore usually one with
high probabilities of acceptance.

3.2 Metropolis algorithm

One of the more ubiquitous Markov chain Monte Carlo methods is the Metropolis-
Hastings algorithm[17]. A special case of the Metropolis-Hastings algorithm is
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known simply as the Metropolis algorithm and it is defined by that the selection
probabilities are symmetric, i.e.

S (ωn → ωm) = S (ωm → ωn) . (3.8)

This leads to an acceptance ratio of

A (ωn → ωm)

A (ωm → ωn)
= e−β(H(ωm)−H(ωn)). (3.9)

In order to maximize the acceptance probabilities we may set one of the probabilities
to 1, which maximizes both probabilities. This gives acceptance probabilities as

A (ωn → ωm) =

{
1 if H (ωn) > H (ωm) ,

e−β(H(ωm)−H(ωn)) otherwise.
(3.10)

This way the ratio of acceptance rates is correct simultaneously as the acceptance
probabilities are maximized. A common choice of selection probabilities for spin
systems such as the Ising model is to set uniform probability for all states that
differ from the previous state only in the value of one of the spins.

While the Metropolis algorithm is elegant in its simplicity it has issues. The
algorithm tends to struggle near the temperature of a phase transition, where the
generated states become highly correlated. This effect is known as critical slowing
down, and is a result of the fact that the system fluctuates on all scales. Single spin
flip algorithms generally give long correlation times that makes convergence slow,
typically at tcorr ∼ L2 where L is the system size.

3.3 Wolff Cluster Algorithm

The problem of critical slowing down of the Metropolis algorithm can be avoided
by a change of algorithm. Another Markov chain Monte Carlo method is the Wolff
cluster algorithm[18], which is significantly less affected by the critical slowing down.
Rather than changing the system state one spin at a time the algorithm starts by
selecting a seed spin, generates a cluster of spins, and flips them simultaneously.

Consider a two-dimensional Ising model with site dependent couplings Jij be-
tween neighboring spins at sites i and j. The Wolff algorithm goes as follows:

1. Pick the seed spin at random from the lattice. This is added to a list repre-
senting the cluster to be flipped.

2. For each neighbor of the spin just added to the cluster compare the spin
values. If the neighbor has the same spin value, add it to a list of neighbors,
otherwise do nothing.
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3. If the neighbor list is empty advance to step 6. Otherwise remove the first
spin of the neighbor list from the list, and perform a test for if it should be
added to the cluster. The test should be performed such that the probability
of accepting the spin into the cluster is pij = 1− e−2βJij .

4. If the spin is added to the cluster, repeat from step 2.

5. If the spin is not added, repeat from step 3.

6. Flip the cluster. Repeat from step 1.

The algorithm is ergodic, it is always possible for all neighbors to be rejected to the
cluster such that the algorithm may flip just a single spin. By performing at most
as many flips as there are spins in the system any state can be reached.

For the condition of detailed balance we consider an arbitrary cluster containing
some number of spins. We recall the detailed balance equation as

S (ωn → ωm)A (ωn → ωm)

S (ωm → ωn)A (ωm → ωn)
= e−β(H(ωm)−H(ωn)) (3.11)

The change in energy from state ωn to state ωm is given by the difference in number
of bonds that are changed from antiparallel to parallel (contributing to lower the
energy) and the number of bonds which are changed from parallel to antiparallel
(contributing to a higher energy). The only bonds that change are the bonds along
the border of the cluster. Inside the cluster the spins are aligned as they were before
the flip relative to each other, and the same goes for the spins outside the cluster.
The contribution to the energy change from an antiparallel-to-parallel bond flip
corresponds to −2Jij and for parallel-to-antiparallel corresponds to 2Jij , where i
and j denote between which two spins the bond is. Thus the change in energy

∆Hωn→ωm ≡ H (ωm)−H (ωn) = −2


 ∑

ij∈Λ−

Jij −
∑

kl∈Λ+

Jkl


 (3.12)

where Λ+ denotes the indices of pairs of spins where the bond changes from parallel
to antiparallel resulting in an increased energy, and Λ− denotes indices of spins
where the bond changes from parallel to antiparallel, thus contributing to lower the
energy. The right hand side is thus

e−β∆Hωn→ωm =

∏
ij∈Λ−

e2βJij

∏
kl∈Λ+

e2βJkl
. (3.13)

Next we turn to the ratio between the selection probabilities. The probability of
selecting a particular cluster is given by the product of the probabilities of adding
each spin in the cluster to it, and the probabilities of not adding the spins parallel
with the cluster along the border of the cluster.
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The probability of adding each spin in the cluster to the cluster is the same irre-
gardles of which direction the transition occurs. Each spin in the cluster is equally
likely to be chosen as seed, and all the subsequent spins added are added with the
same probability both ways. This factor thereby cancel out in the numerator and
the denominator of (3.11). The only difference in the selection rates of the two di-
rections is due to the difference in which spins are parallel to the cluster along the
perimeter of the cluster. Incidentally, the spins which are parallel with the cluster
before the flips are exactly the spins indicated by Λ+. The full probability of not
adding every parallel spin along the perimeter of a given cluster in the transition
ωn → ωm is

S (ωn → ωm) ∝
∏

ij∈Λ+

(
1−

(
1− e−2βJij

))
=
∏

ij∈Λ+

e−2βJij (3.14)

For the inverse transition ωm → ωn the parallel perimeter spins are the spins which
where antiparallel to the cluster for the transition ωn → ωm, and are indicated by
Λ− from before, and so

S (ωm → ωn) ∝
∏

ij∈Λ−

e−2βJij . (3.15)

The ratio of the selection rates are now given by

S (ωn → ωm)

S (ωm → ωn)
=

∏
ij∈Λ−

e2βJij

∏
ij∈Λ+

e2βJij
= e−β∆Hωn→ωm . (3.16)

With these selection rates the ratio between acceptance probabilities must be set
to unity, and so the acceptance probabilities may be set to 1 both ways.

3.3.1 Improved Estimators

An additional advantage of using cluster algorithms such as the Wolff algorithm
is that they offer efficient methods, so called improved estimators, for calculating
various quantities of the system[16]. Here an improved estimator is used for the
equal time spin-spin correlation function. Equal time implies that the two spins
that are correlated share the same coordinate in the Trotter direction. In other
words the separation of the spins is entirely along the x direction.

The improved estimator for a system of spatial size L is computed through the
following steps:

• At the start of the measurement phase of a simulation a list with L entries,
all set to 0 is created.

• When a seed spin is selected the zeroth element is incremented 1.
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• Every time a spin is added to the cluster with the same coordinate value along
the Trotter direction as the seed the nth element of the list is incremented,
where the index n is defined as

n =

{
ispin − iseed, ispin > iseed,

ispin − iseed + L, ispin < iseed,
(3.17)

The indices ispin and iseed denote the spatial coordinates of the newly added
spin and the seed spin respectively.

• At the end of the simulation each entry in the list is normalized by division by
the number of clusters flipped in during the measurement of the correlation.
By doing this the zeroth element always becomes 1.

Improved estimators generally are subject to less variance than direct estimators.

3.4 Histogram Extrapolation

A common tool in magnifying the amounts of data obtained from a single Monte
Carlo simulation today is a technique called histogram extrapolation. It can for
instance be used to extrapolate information about the system at a different tem-
perature than the one at which the simulation runs.

The name is derived from the theoretical background where a two-dimensional
histogram is constructed for the quantity being measured along with correspond-
ing energies. This histogram is used to estimate the underlying (simultaneous)
probability distribution, and subsequently the distribution at other temperatures
is estimated by application of a transformation on the original distribution. In
fact the transformation from the original distribution to another at a different tem-
perature is exact. However, since the original distribution is only estimated by
the histogram the method is plagued by statistical error. For temperatures where
the two distributions overlap the statistical errors are small, but as the overlap
decreases the error grows large.

In practice storing the full histogram is not often viable, however it is possible
to perform the extrapolation directly without saving the histogram. The method is
outlined in the following. Let ω denote one configuration of the system, and let Ω be
the set of all possible configurations ω. Assume that the expectation of a quantity
A, which is a function of the system configuration A (ω), is to be determined for
the system at temperature β. First recalling that the defintion of the expectation
〈A〉 is

〈A〉β =

∑
ω∈ΩA (ω) e−βH(ω)

∑
ω∈Ω e

−βH(ω)
. (3.18)
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Now let β′ be a temperature different from β and we have

〈A〉β =

∑
ω∈ΩA (ω) e−βH(ω)e−β

′H(ω)eβ
′H(ω)

∑
ω∈Ω e

−βH(ω)e−β′H(ω)eβ′H(ω)
·
∑
ω∈Ω e

−β′H(ω)

∑
ω∈Ω e

−β′H(ω)

=

∑
ω∈ΩA (ω) e−(β−β′)H(ω)e−β

′H(ω)

∑
ω∈Ω e

−β′H(ω)
/

∑
ω∈Ω e

−(β−β′)H(ω)e−(β−β′)H(ω)

∑
ω∈Ω e

−β′H(ω)

=
〈Ae−(β−β′)H〉β′
〈e−(β−β′)H〉β′

. (3.19)

In practice the numerator and denominator of (3.19) are estimated by their cor-
responding arithmetic means during a simulation run for a large set of different
temperature values β.

3.5 Error estimation

Monte Carlo methods are statistical methods and are inherently affected by statis-
tical errors. In order for the results obtained from such methods it is important to
assess the magnitude of these errors. The methods used in this thesis are introduced
here.

3.5.1 Standard Error of the Mean

A simple way of estimating the error in an average is by using the standard error
of the mean formula. Given a sample {xi} of N data points drawn independently
from the same distribution the average of the data points x̄ has a distribution with
standard deviation of

σx̄ =
σ√
N
, (3.20)

where σ is the standard deviation of the distribution of the xi. The error of the the
observed average is estimated by this standard deviation σx̄. Most often the exact
standard deviation σ is not known for the distribution of xi. In such cases it may
be estimated by the sample standard deviation s given by

s =

√√√√ 1

N − 1

N∑

i=1

(xi − x̄)
2
, (3.21)

and the error of the average is estimated by

σx̄ ≈
s√
N
. (3.22)
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3.5.2 Propagation of Error Formula

In cases where a quantity x has an error σx which is known it is possible to estimate
the error in a derived quantity y by the propagation of error formula. If y is derived
from x by a differentiable mapping f (x) the error in y is estimated by

σy =
∂f

∂x
σx. (3.23)

3.5.3 Bootstrap Error Estimation

While (3.22) and (3.23) offer simple and practical error estimate for averages and
differentiable functions, they are not applicable generally. In this thesis some quan-
tities are determined by involved computations that are not easily analyzed for
error. For instance maxima are computed for polynomials which are fitted from
Monte Carlo averages. The averages carry with them errors which propagate to
the locations of the maxima. A very general method for estimating error is the
bootstrap method[19], which will be outlined in the following.

Suppose there is a sample {xi} of N data points and a quantity θ ({xi}) which is
calculated from the sample. Now from the full set of data {xi} a new set {x′i} of N
points are picked out at random. Some points of {xi} are selected multiple times,
while others are not selected at all. From this new sample θ ({x′i}) is computed and
stored. This procedure is repeated M times. When this is done the error in θ ({xi})
is estimated by the sample standard deviation of the set of generated θ ({x′i})

σθ =

√√√√ 1

M − 1

M∑

j=1

(
θj − θ̄

)2
, (3.24)

where θj denote the M generated samples, and θ̄ is the average of these generated
samples.

3.6 Pseudorandom Number Generation

The Monte Carlo algorithms are heavily reliant on random numbers. Nature pro-
vides few easily accessible sources of true randomness, but fortunately it is still
possible to generate deterministic, but unpredictable sequences of uniformly dis-
tributed integers from a single input number, or seed. These seemingly random
numbers are called pseudorandom numbers. Throughout this thesis the terms ran-
dom and pseudorandom are used interchangably. One common algorithm for gen-
erating pseudorandom numbers is the Mersenne twister[20]. It produces integers
from 0 to 264 − 1.

From the uniformly distributed integers it is possible to generate uniformly
distributed floating points numbers on the interval [0, 1]. Let X represent the
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random integers produced by the Mersenne Twister, then the random variable Y
given by

Y =
X

264 − 1
, (3.25)

is a random real number continuously (for all intents and purposes) distributed on
the interval [0, 1].
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x
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0.16
ρ(x) = 1/10, 10 > x > 0

Generated data

Figure 3.1. A histogram of 100, 000 uniformly distributed real numbers on the
interval [0, 10]. The observed mean and standard deviation are µ∗ = 5.008 and
σ∗ = 2.886. The density expectation and standard deviation are µ = 0.5 and
σ = 10/

√
12 ≈ 2.886.

3.6.1 General Probability Distributions

Once a continuously and uniformly distributed random variable is achieved it is
possible to generate many other continuous distributions by use of the inverse trans-
form method[21]. For a desired random variable Y with the cumulative distribution
function FY (y) the formula is given by

Y = F−1
Y (X) , (3.26)

where F−1
Y is the inverse function of FY and X is a real random number on the

interval [0, 1].

In particular for this thesis exponentially distributed random numbers are re-
quired. The cumulative distribution function of the exponential function with a
parameter λ is

FY (y) = 1− e−λy, (3.27)
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Figure 3.2. A histogram of 100, 000 exponentially distributed real numbers with
parameter value λ = 2. The observed mean and standard deviation are µ∗ = 5.007
and σ∗ = 0.5013. The density expectation and standard deviation are µ = 1/2 and
σ = 1/2.

so the inverse sampling formula gives

Y = − 1

λ
ln (1−X) . (3.28)

Once a formula for a certain distribution is implemented in code it is reasonable
to test if the random numbers are distributed as desired. This can be done by
generating a large set of numbers {xi} and generate a histogram from them. The
histogram should have the same shape as the functional form of the distribution.
For further validation one may also calculate the sample mean µ∗ and standard
deviation σ∗ of the generated data and compare to the expectation µ and standard
deviation σ of the corresponding probability density of function. In Fig. 3.1 and
Fig. 3.2 tests of two of the implemented distributions are shown in the form of
normalized histograms.

3.7 Implementation

The simulation program for this thesis implements both the Metropolis and the
Wolff algorithms described in sections 3.2 and 3.3, and is written in C++. The
program is capable of simulating both the classical two-dimensional Ising model
and the disordered variant corresponding to the quantum Ising model (2.18).

The validity of the implementations of the two algorithms has been tested by
simulating the classical ordered two-dimensional Ising model and comparing data to
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analytical solutions. As a further consistency check results from the two algorithms
was compared for a small size of the disordered system and were found to produce
mutually consistent data. All data was produced using the Wolff algorithm during
the production runs.

Another test that was performed was comparing the improved estimator with a
non-improved estimator for the correlation for a smaller system. The two estimators
were found to produce consistent results.

For random number generation the GCC implementation of the Mersenne twister,
mt19937 64, has been used, which produces unsigned 64 bit integers uniformly on
the interval from 0 to 264 − 1. The seeds have been produced by reading 64 bits
from /dev/urandom, a special file available on Unix-like operating systems with
the specific purpose of providing sufficiently random seeds by reading noise from
various source in the computer.

Simulations have been run on a personal laptop equipped with an Intel i7-3667U
CPU, and on the Octopus cluster provided by the Department of Physics at KTH,
and which is equipped with Intel Xeon E5-2620 CPUs. Multiple simulations have
been run in parallel, which significantly reduces the physical time to obtain the
data for the thesis.

Data analysis and graphical representation was performed in Python using the
packages NumPy and Matplotlib.



Chapter 4

Results

4.1 Equilibration time

At the start of each production run the system is initialized to some arbitrary
state. The system is then propagated from this starting state using the Monte
Carlo algorithm, and after some time the system reaches a distribution of states
that obeys the Boltzmann distribution. However, there is a transient period in the
beginning during which the generated states are not distributed properly. In order
to avoid systematic errors no measurements are made for a number of sweeps. This
is known as the equilibration of the system. The length of this transient depends
on several aspects, such as system and algorithm.

Naturally the question arises as to how many sweeps should be discarded. The
most practical approach to evaluating this is to observe some measurable as a
function of simulation time. One way to do this is to set up two systems with
the same realization of couplings Ki and fields Hi in two distinguishable initial
configuration, such as the completely ordered configuration where all spins are
aligned, and the completely disordered configuration, where the direction of each
spin is chosen at random. These two initial configurations are distinguished by
their magnetization, the ordered phase with |m| = 1 and the disordered phase with
|m| = 0 on average. Then the magnetization is measured over the intervals of
0 − 1, 1 − 2, . . . , 212 − 213 sweeps for the two initial configurations. By plotting
the magnetizations for the two configurations against upper limit of the intervals
it is possible to estimate the equilibration time as the time where the two initial
configurations agree on the value of the average magnetization. In Fig. 4.1 the
results of this scheme is shown. For the production runs of this thesis 4000 sweeps
of equilibration was performed.
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Figure 4.1. The magnetizations of the initially disordered state and the initially
ordered state for the system sizes considered in this work. The x-coordinate repre-
sents the upper limit of the interval over which the corresponding magnetizations
have been measured. In other words N = 128 represents data collected between
sweep 64 and 128. The perforated lines are the final value of the initially disordered
system for each corresponding L.

4.2 Main results

In this section the main results of this thesis are presented. In order to study
the correlation function of the system at the critical point the critical point has
to be determined first. This involves determining a specific value of the inverse
temperature Lτ as well as finding the critical field Tc. This is done by studying the
Binder cumulant

g =
1

2

[
3−

〈
m4
〉

〈m2〉2

]

av

, (4.1)

where the square brackets denote average over different disorder realizations of the
system and angular brackets denote thermal average within one simulation.

A total of 7 system sizes have been studied starting from L = 4 up to L = 16
in increments of 2. For each disorder realization of the system a warmup of 4000
sweeps were performed, followed by a measurement phase of 40, 000 sweeps. In
order to find the critical point Tc several values of Lτ have been simulated for each
L. The details regarding the method for determining the critical point is discussed
next section. The number of disorders which have been simulated for each value
of Lτ varies between 104 and 106, with efforts focused towards the points near the
maxima of g. Based on the work by Pich and Young[10, 11] the critical point was
expected to be located near T = 0.98. Using the histogram method detailed in
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Sec. 3.4 a number of 141 linearly separated values of T was extrapolated to on the
interval from T = 0.9 up to T = 1.04.
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Figure 4.2. The values of g is plotted against the inverse temperature Lτ for various
system sizes, with field strength T = 0.9. An indication of the presence of finite size
scaling corrections can be seen in that the peak of the smallest size is larger than
the peak of the following size. Errors are estimated using the standard error of the
mean.

4.2.1 Critical Point and Corrections to Scaling

The method for localizing the critical point is described in many sources, for in-
stance see Refs. [22, 23]. It consists in simulating the system at a number of values
for the inverse temperature Lτ and fields T . As was described in Sec. 2.2.2 the
Binder cumulant vanishes for the disordered phase, while it takes a finite value in
the ordered phase. When the Lτ is small compared to L the system is a classical
one-dimensional system. The one-dimensional classical Ising model does not exhibit
a phase transition, and only exists in a disordered state for finite temperatures. For
Lτ � L the system also becomes effectively one-dimensional and thus disordered.
Between these two limits there is a region where the system is two-dimensional,
and well below its critical point. Thus it is expected that that the Binder cumulant
is a peaked curve as a function of Lτ , with a maximum g = gmax at some point
Lτ = Lmax

τ , which depends on L.

The value of gmax depends on the value of T . For T < Tc the maximum gmax

increases as L increases, while for T > Tc it decreases with increasing L, as can be
seen in Figs. 4.2 and 4.3. At the critical point T = Tc the maximum is expected to
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Figure 4.3. The values of g is plotted against the inverse temperature Lτ for various
system sizes, with field strength T = 1.04. Errors are estimated using the standard
error of the mean.

be independent of L. Additionally, from the work of Fisher[8, 9] it is expected that
Lmax
τ scales according to

lnLmax
τ ∼ Lz (4.2)

with z = 1/2. This type of scaling behavior is known as activated dynamic scaling.

The expectation that gmax at the critical point is independent of the system size
L does not take into account the effects of finite size scaling corrections. Including
such effects gmax is instead expected to scale with L as

gmax = g0 + g1L
−ω, (4.3)

where g1 and ω are correction parameters, and g0 a constant. In Fig. 4.2 a clear
indication of the existence of corrections in the form of (4.3) can be seen. In order
to determine the critical point the four parameters Tc, g0, g1 and ω need to be
determined simultaneously.

The first step in order to optimize these four parameters is to determine the
value of gmax closely for each size L. In Fig. 4.4 it can be seen that the curves
of g behave smoothly when plotted against lnLτ , indicating that it is possible to
obtain estimates of gmax by fitting the data to a second order polynomial in powers
of lnLτ . This gives a functional form of g around the maximum as

gfit (Lτ ) = c2 (lnLτ )
2

+ c1 lnLτ + c0. (4.4)
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Figure 4.4. The values of g is plotted against lnLτ for various system sizes, with
field strength T = 1.013. Errors are estimated using the standard error of the mean.

From this fit Lmax
τ and gmax are given by

gmax = − c21
4c2

+ c0, (4.5)

Lmax
τ = e−

c1
2c2 . (4.6)

For each fit five points were used and the points chosen were the point with the
maximum numerical value and the 4 points closest to it.

Next it is noted that Eq. (4.3) can be rewritten as

ln (gmax − g0) = −ω lnL+ ln g1. (4.7)

Given a value of g0 the left hand side can be fitted to lnL in order to determine
optimal values for g1 and ω.

To determine an optimal value for g0 the straightforward approach has been
taken of setting up an interval of linearly separated values for g0 for which g1 and ω
has been computed. Given these three parameter values the fit of gmax was assessed
by computing

χ2 =
N∑

i=1

(
gmax
Li
− gmax (Li)

)2

σ2
i

, (4.8)

where gmax
Li

are the observed maxima, gmax (L) is the fit given by (4.3), and σi are
the estimated errors of the maxima gmax

Li
. The value of g0 which gives the lowest

value of χ2 was stored for each value of T . In Fig. 4.5 the values of χ2 for the stored
g0 of each T are shown. The curve has a minimum at approximately T = 1.013.
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Figure 4.5. The values of χ2 for the best value of g0 plotted against corresponding
field T . A clear minimum can be identified for values around T = 1.013.
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Figure 4.6. The logarithm of the difference gmax − g0 plotted against lnL, at field
T = 1.013. The error bars have been calculated from the bootstrap errors of gmax

using the propagation of error formula.
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Figure 4.7. The interpolated maximum values of g plotted over the corresponding
system sizes L at the critical field T = Tc. The fit given by determining the parame-
ters for the correction to scaling is also shown and supports the suggested correction
form of (4.3). The error bars are produced using bootstrap estimation.

param value

Tc 1.013
g0 0.777
g1 0.3166
ω 1.3907

Table 4.1. Best values obtained from the finite size scaling correction analysis. No
formal estimation of errors has been performed.

This value is taken as the critical point Tc = 1.013. The corresponding values of
g0, g1 and ω constitute the best estimates for the finite size scaling corrections, and
the numerical values are displayed in along with Tc in Tab. 4.1.

In Fig. 4.6 the values of ln (gmax − g0) are shown against lnL for T = Tc and
corresponding g0 along with the linear fit to the data, while in Fig. 4.7 the values
of gmax against L are shown together with the fit given by (4.3) using the values of
Tab. 4.1. From these figures it can be concluded that the hypothesis of the scaling
corrections of the form (4.3) is well supported by the data.
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Figure 4.8. The interpolated maximum values of Lτ plotted over the corresponding
system sizes L. The curvature of the data indicates that the scaling of the disordered
system deviates from the ordered system, for which the same plot would yield a
straight line. The error bars are produced using bootstrap estimation.

4.3 Comparison with Analytical Results

Once the location of the critical point has been located the numerical results can
be compared with the analytic predictions discussed in Sec. 2.6. For the ordered
quantum Ising model the Lmax

τ is known to scale as Lz with z = 1 at the critical
point J = h. For the disordered system it is predicted that the location of the Lmax

τ

should scale as

lnLmax
τ ∼ Lz, (4.9)

and if the Binder cumulant is plotted against lnLmax
τ /Lz with z = 1/2 the data

should collapse to the universal scaling function. In Figs. 4.8 - 4.10 various scaling
tests are shown for Lτ .
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Figure 4.9. The logarithm of the interpolated maximum values of Lτ plotted over
the logarithm of corresponding system sizes L. The deviation from the linear fit
of the larger sizes seem to indicate that the the scaling of Lmax

τ is not of the form
Lmax
τ ∼ Lz . The error bars are calculated using the propagation of error formula.
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Figure 4.10. The values of ln (lnLmax
τ ) plotted against lnL. The red line represents

a linear fit to the rightmost four data points, which closest resembles a line. The green
line is added for reference to show the slope expected due to analytic predictions.
The deviation of the fit from the analytic slope may be explained by the existence
of scaling corrections. The error bars are calculated using the propagation of error
formula.
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Figure 4.11. The rescaled quantity L−z lnLmax
τ is plotted against L−ω , where

z = 1/2 and ω = 1.3907. The data is consistent with the corrected scaling form of
Eq. (4.10). The error bars are calculated using the propagation of error formula.

In particular it is expected in Fig. 4.10 to see a linear dependence of ln (lnLmax
τ ).

This does not occur, but the curvature seems to decrease for larger L, and it seems
plausible that the correct scaling may be observed for even larger systems. This
suggests that also Lmax

τ exhibits scaling corrections. To lowest order the corrected
scaling form for lnLτ is expected to be in the form

lnLmax
τ ∼ Lz

(
1 + kL−ω

)
, (4.10)

where k is a constant, z = 1/2 is the uncorrected scaling exponent, and ω is the
correction exponent determined in previous section. From (4.10) it stands clear that
plotting L−z lnLmax

τ against L−ω should produce a linear graph. This behavior is
quite convincingly confirmed in Fig. 4.11.

In Fig. 4.12 the values of g have been modified by subtraction of the scaling
corrections, and are plotted against the logarithm of Lτ/L

max
τ . There seems to be

a tendency for the curves to broaden away from Lmax
τ , which is expected according

to the activated dynamic scaling, however due to the large error bars predictions
are unreliable. In Fig. 4.13 the same corrected values of g from Fig. 4.12 are
plotted against lnLτ/ lnLmax

τ , which is expected to be the correct scaling. Smaller
sizes significantly deviate from this scaling and have been omitted. For the larger
sizes the scaling is not disproved, but there are too few data points away from the
maximum and too large error bars to make a claim either way.
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Figure 4.12. The values of g − g1 · L−ω is plotted against ln (Lτ/Lmax
τ ).
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Figure 4.13. The values of g − g1 · L−ω is plotted against lnLτ/ lnLmax
τ . The

three smallest sizes have been excluded as they do not scale very well, suggesting
the presence of higher order corrections to scaling.
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Figure 4.14. Values of lnCav (L/2) against lnL. The slope of the linear fit is
inconsistent with the corresponding analytic value.
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Figure 4.15. The average correlation Cav (r) for each system size at the critical
field T = 1.013.

Another result due to Fisher is the scaling of the typical correlation Ctyp and
that of the average correlation Cav. The average correlation Cav (r) at the critical
point Tc is expected to scale as

Cav (r) ∼ r−λ. (4.11)
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Figure 4.16. The average correlation Cav (r) rescaled by a size dependent factor
Lλnum , with λnum = 0.58.

Analytically the exponent was found to be λ = 2 − ϕ, where ϕ is the golden

ratio ϕ = 1−
√

5
2 , which gives a value of λ ≈ 0.38. From (4.11) follows that

L−λCav (r) ∼ x−λ, (4.12)

where x = r/L. Thereby the shape of L−λCav (r) should be independent of the
system size. Another observation that can be made is that

lnCav (L/2) = −λ lnL+ const. (4.13)

Thereby it should be possible to obtain the critical exponent by plotting lnCav (L/2)
against lnL and fitting the data to a straight line. This is done in Fig. 4.14, however
the data suggests an exponent of λnum = 0.58, which substantially deviates from
the prediction. This deviation could not be compensated for by corrections to
scaling as it could for Lmax

τ . In Fig. 4.15 the average correlation is plotted against
x, while in Fig. 4.16 the rescaled correlation LλCav is shown against x. The rescaled
correlation does not collapse very well away from L/2 when using λnum obtained
from the slope of the linear fit of Fig. 4.14. For comparison the numerical value for
λ as was obtained by Pich and Young was λPY = 0.5, a value comparable to the
value obtained here. As to why the numerical values differ from the analytic no
answer has been found during the work of this thesis.
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Figure 4.17. Values of the typical correlation Ctyp(L/2) plotted against L1/2.
There are small deviations from the linear fit, which are expected to be due to
scaling corrections.

For the typical correlation Ctyp (r) it is expected that

lnCtyp (r) ∼ r−1/2. (4.14)

Plotting lnCtyp (r) against L−1/2 should therefore produce a linear graph. Follow-
ing the example set by Pich and Young the typical value has been estimated by the
median. In Fig. 4.17 the values of Ctyp (L/2) are plotted against lnL, and the data
seem to fit well to the linear relation. The small deviations from the linear relation
is most likely attributable to scaling corrections.

In Figs. 4.18 and 4.19 histograms of the correlation function is provided to illus-
trate qualitatively the shape of the distribution of C (r). Notably the distributions
are very wide, which is what induces the difference in behaviour between the average
and typical correlations.
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Figure 4.18. Histogram of the correlation function C (5) for system size L = 10.
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Figure 4.19. Histogram of the correlation function C (8) for system size L = 16.
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Chapter 5

Summary, Discussion and
Outlook

5.1 Summary

In this thesis the quantum phase transition of the one-dimensional transverse field
random Ising model has been studied numerically by mapping the system to the
corresponding two-dimensional classical Ising model. To this end an implementa-
tion of the Wolff algorithm in C++ written specifically for this thesis has been
used.

The data obtained has smaller error bars than previous work by Pich and
Young[10, 11], partly due to the availablility of more powerful computers today,
but also due to the simulations being restricted to smaller system sizes. Addi-
tionally by including even smaller systems than the previous work the effects of
finite size scaling corrections can be observed and analyzed. When the finite size
scaling corrections are accounted for a modified value of the critical point for the
parametrizing variable for the field Tc = 1.013 is found, as compared to previous
value of Tc = 0.98.

Analytical predictions due to Fisher[8, 9] are tested. The scaling of the Binder
cumulant g is investigated and it seems that the data does not collapse well when
plotted against Lτ/L

max
τ , but rather seems to widen as L is increased, which should

indicate activated dynamic scaling. It is further shown that the scaling behavior of
lnLmax

τ is consistent with activated dynamic scaling, provided that corrections to
scaling are accounted for.

Additionally, analytic predictions regarding the correlation function have been
tested. The average correlation Cav is expected to scale as Cav ∼ r−λ with λ ≈ 0.38.
This is not reproduced in the numerics, where instead the best estimate is found
to be λnum = 0.58, which is comparable to previous result of λPY = 0.5 obtained
by Pich and Young. This value of λnum does not collapse the average correlation
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very well. Simultaneously the typical correlation Ctyp is expected to show the

scaling behaviour Ctyp ∼ e−kr
1/2

. Following the example of Pich and Young the
typical correlation has been estimated using the median over the set of realizations
of disorders. By plotting lnCtyp(L/2) against L1/2 it is shown that the typical
correlation scales just as predicted by analytical work.

Overall all data obtained in this thesis has been found to be largely consistent
with the data from Pich and Young. The main new result is the measurement of the
exponent ω = 1.39 of the correction to scaling, which enables performing a more
accurate finite size scaling analysis than was obtained by Pich and Young. The
discrepancy between the numerical and analytical value of the critical exponent of
Cav remains unresolved.

5.2 Outlook

In this thesis the focus was put on smaller system sizes in order to obtain accurate
data with small statistical error. The most direct extension to this thesis would
be to go beyond the smaller system sizes in order to obtain better estimates for
the exponent ω of the correction to scaling. Additionally, it may be of interest to
explore larger and smaller values of Lτ more extensively than was done here. This
may allow the activated dynamic scaling to be seen more clearly when rescaling the
Binder cumulant.

Another point of interest would be to study if a system subject to frustration
would also display the peculiar behaviour of differing typical and average behaviour
of thermodynamic quantities as the nonfrustrated system. It is not possible to
introduce frustration directly to the one-dimensional chain system studied here, so
the geometry must be modified in some way. An issue that arises when dealing
with frustrated systems is that the Binder cumulant can no longer be used. A
different parameter is required in order to locate the critical point of the system.
During the work of this thesis one quantity that may work was tried out briefly,
defined by δE ≡ (〈Epbc〉 − 〈Eapbc〉)2

, where Epbc denotes the energy of the system
with periodic boundary condition and Eapbc the same disorder realization, but with
antiperiodic boundary condition. This requires each system to be simulated twice,
increasing the computational cost by a factor 2. Pursuing this direction remains a
challenge for future work.
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