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Abstract

The main idea behind the work presented in this thesis is to investigate if it
is possible to find a mechanism that leads to surface magnetic field concentra-
tions and could operate under solar conditions without postulating the presence
of magnetic flux tubes rising from the bottom of the convection zone, a com-
monly used yet physically problematic approach.

In this context we study the ‘negative effective magnetic pressure effect’:
it was pointed out in earlier work (Kleeorin et al., 1989) that the presence of a
weak magnetic field can lead to a reduction of the mean turbulent pressure on
large length scales. This reduction is now indeed clearly observed in simula-
tions.

As magnetic fluctuations experience an unstable feedback through this ef-
fect, it leads, in a stratified medium, to the formation of magnetic structures,
first observed numerically in the fifth paper of this thesis. While our setup
is relatively simple, one wonders if this instability, as a mechanism able to
concentrate magnetic fields in the near surface layers, may play a role in the
formation of sunspots, starting from a weak dynamo-generated field through-
out the convection zone rather than from strong flux tubes stored at the bottom.
A generalisation of the studied case is ongoing.
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1. Introduction

You’re not the only one
Staring at the sun

Bono, 1997

1.1 Looking at the sun

Galilei published his telescopic observations of dark regions on the solar sur-
face already in the early 17th century (see figure 1.1). These were not the first
observations (Vaquero and Vázquez, 2009), but the first of such detail, with a
great impact on Western European astronomy. The deeper study of solar activ-
ity only started attracting attention in the second half of the 19th century with
the discovery of cyclic behaviour in the occurrence of these ‘sunspots’. It was
Schwabe (1844) who noted in his solar observations ‘a cycle with a period of
about 10 years’. This is illustrated in figure 1.2 (lower panel) for subsequent
observations extending into the present time. The popular response to this
discovery was a large quest for phenomena with the same frequency, ranging
from geophysical and atmospherical cycles to somewhat dubious demological
trends (see also Westwood Oliver, 1883). A more scientific consequence was
the discovery and confirmation by respectively Carrington (1858) and Spörer
(1883) that sunspot emergence locations move more equatorward as the cycle
progresses (‘Spörer’s law’), shown in figure 1.2 (upper panel).

With the invention of the spectroscope at the beginning of the 19th cen-
tury, and new insights on the origin of light at the end of the same century, new
observational methods became available to astronomers. It became possible to
investigate physical properties of faraway objects by analysing their light. One
can now measure velocities along the line of sight (Doppler shift), magnetic
fields (Zeeman splitting), constituent elements (absorption spectrum), temper-
ature and density. However, the information we can obtain from spectroscopy
is limited as we cannot look below the ‘surface’. The latter is defined by the
radius where the optical depth of the visible continuum spectrum reaches unity.
In other words, all information from light emitted below that surface is lost in
scattering or absorption, by hydrogen ions (visual) and atoms (UV and X-ray);
see e.g. Stix (1989).

Important for the further discussion is the surface velocity field derived
from these measurements. We can separate flow structures along different co-
ordinate directions: vertical and horizontal granular flows, polewards ‘merid-
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Figure 1.1: Optical observations of sunspots, by Galilei (1613) and more re-
cently with the Swedish 1 m Solar Telescope (Royal Swedish Academy of Sci-
ences).

Figure 1.2: Modern data on the number of sunspots (lower panel) and their
spread in latitude (upper panel). Taken from NASA/Marshall solar Physics.
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Figure 1.3: Modern observations of magnetic fields (along the line of sight) on
the sun: a disc view and an active region (Solar Dynamics Observatory /Helio-
seismic and Magnetic Imager, SDO/HMI).

ional circulation’ and solar rotation. The surface shows differential rotation
with a maximum velocity of about 2 km/s near the equator, for more detail see
section 1.3. Granulation, convective overturning flows in the photosphere, sets
the turbulent scales at the surface: typical values for radial velocities are on the
order of 1.5 km/s, cells are between 0.5 and 2 Mm and last for about 10 min-
utes. Larger supergranules have been detected which can be up to 30 Mm, have
a lifetime of about 1.8 days and have a randomly oriented horizontal velocity
component with an average of 360 m/s; a more detailed account can be found
in Rieutord and Rincon (2010). Meridional circulation is a weak (∼10 m/s)
poleward flow (Hathaway, 1996), which is often interpreted to be part of a su-
per cell overturning at the pole down to the tachocline (figure 1.8) and rising
up again near the equator. However, as the expected flow velocities are very
low, this return flow would be difficult to detect.

1.2 A magnetic sun

In 1896, Zeeman discovered atomic line splitting in a magnetic field (the de-
generacy of energy levels is broken by the interaction of the magnetic field
with the electron angular momentum), with the secondary lines (m =±1 tran-
sitions) that are circularly polarised in opposite directions. The combination
of a spectrometer and a polarimeter can be used to measure a magnetic field:
the wavelength separation of the lines gives a measure of the strength of the
magnetic field. This knowledge allowed Hale (1908) to discover the presence
of magnetic fields on the solar surface. Examples of modern observations are
shown in figure 1.3.
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Figure 1.4: Reversal of magnetic polarity of sunspot pairs across the equator
and in subsequent cycles, taken from Hale et al. (1919), note also the inclusion
of Spörer’s law. In the same paper it was also observed that the ‘leading’ spots
(along the direction of rotation) are located closer to the equator (‘Joy’s law’).

These fields come in different strengths and scales. In sunspots the mag-
netic fields are strong enough (∼3 kgauss) to locally suppress the convective
energy flux, making them darker than their environment and thus observable
with the naked eye; for an extended observational review see Solanki (2003).
Sunspots are relatively small (∼2-20 Mm) and short lived (days to months),
which is however much larger and longer than turbulent spatial (∼1 Mm) and
temporal (minutes) scales in the surface layers. As mentioned in the previous
section, the number and spatial distribution of sunspot occurrences varies with
an 11 year cycle. Also, their polarity orientation with respect to the direction of
the solar rotation is mirrored across the equator and flips every cycle, as shown
schematically in figure 1.4. Sunspots are typically embedded in larger areas
(∼100 Mm) of magnetic activity (∼100 gauss for several months). They are re-
ferred to as ‘active regions’ (Martinez Pillet et al., 1997; Yashiro and Shibata,
2001). Finally there is the weak (∼5 gauss) global (Rsun ∼700 Mm) solar dipole
field, observed only in the second half of the previous century (Babcock, 1959;
Babcock and Babcock, 1955). The dipole is aligned with the rotation axis of
the Sun and reverses its orientation approximately every 11 years, coinciding
with maxima in surface activity at low latitudes; see figure 1.5.

There are modulations in solar activity on even larger time scales, see fig-
ure 1.6, to the extent that there can be extended periods without any activity.
Ironically the latest ‘grand minimum’, the Maunder minimum (1650-1750),
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Figure 1.5: Evolution of the weak solar dipole field in the last decades (updated
version of a similar figure in Hathaway, 2010).

started a few decades after Galilei’s initial observations (Eddy, 1976).

1.3 A peek beneath the surface

As mentioned before, while on the surface we have nearly any information we
want with high spatial resolution (∼100 km) and reasonable accuracy (for most
properties), there are no direct measurements of what is going on below. This
is a major obstacle as we want to know where and how the magnetic fields
discussed in section 1.2 are formed.

It is, however, possible to obtain some sub-surface information. Helioseis-
mology (Christensen-Dalsgaard et al., 1985; Kosovichev, 1996) is a modern
science that studies surface patterns generated by acoustic (pressure) waves
in the mHz range propagating in the solar interior. These are the result of
the gradual refraction of waves as the sound speed increases (monotonically)
with depth, illustrated in figure 1.7. Through inversion of the global surface
flow pattern, the radial sound speed profile can be calculated. Combining this
profile with a hydrostatic model allows estimation of additional hydrostatic
quantities. In addition, advection of these sound waves can be observed as a
perturbation in the surface pattern, which gives information about mean flow
velocities in the solar interior, provided they are strong enough.

The structure of the sun can be understood in terms of energy transport. In
the interior temperatures are high (∼107K) and therefore the hydrogen opacity
(∝ T−7/2) is low, which means that heat can be transported through radia-
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Figure 1.6: Reconstruction of solar activity from observations and isotope abun-
dances in arctic ice (a large number of charged particles results in better shielding
of cosmic rays and thus fewer unstable isotopes) agrees well with sunspot counts
and shows a large timescale modulation, compared with 10 year averages of the
‘Group Sunspot Number’(Hoyt and Schatten, 1998). Figure taken from Usoskin
(2008).

Figure 1.7: The principle behind helioseismology: refraction of waves due to a
sound speed gradient (Christensen-Dalsgaard, 2003); the volume reconstruction
of a surface pressure wave mode.
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Figure 1.8: Hydrostatic structure of the sun: the core where energy is produced
through hydrogen (proton-proton) fusion, the radiation and convection zones in
which respectively radiative and convective energy transport dominates and the
atmosphere. The latter separates into the photosphere, the thin (∼500 km) layer
that emits the light we observe in the visible range, the chromosphere, a thicker
layer (∼2000 km) where the density decreases rapidly while the temperature in-
creases, and the corona, the outer region with very low density and high temper-
ature (Stix, 1989).

tion. As the sun is cooler toward the outer layers, there is a point (∼0.7Rsun;
see Christensen-Dalsgaard et al., 1991) where the opacity becomes high and
radiative transport is no longer efficient. In the outer layers of the sun the dom-
inant transport mechanism is convection. Convection yields energy transport
through motions without net particle transport: heated dense plasma becomes
buoyant (to maintain horizontal pressure balance the density has to decrease)
and rises to colder, less dense, layers where it deposits its energy and sinks
down again, resulting in laminar cellular flows. The efficiency of this mecha-
nism thus depends on the energy input and the density stratification, requiring
a negative entropy gradient.

In the Sun such convective cells, with their size set by the radially de-
creasing density scale height, can be observed as the granulation pattern at
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Figure 1.9: Solar rotation profile derived from helioseismology: rigid rotation of
the solar radiative zone, spoke-like differential rotation profile in the convection
zone with faster rotation near the equator. Taken from Howe (2009).

the surface. Note that, as the viscosity is low, the flows are no longer purely
laminar, especially the downflows are expected to be strongly turbulent (Nord-
lund et al., 2009). The stably stratified regions into which convective motions
penetrate at the interface of the convection zone with the radiative interior and
the photosphere (again optically thin), are called overshoot layers. The global
hydrostatic structure of the sun is illustrated in figure 1.8.

As I will explain later, the important quantity for the generation of mag-
netic fields is the velocity field. Beside the indication of the presence of turbu-
lence, helioseismology also shows us the large-scale flows (with a net particle
transport) in the solar interior. While the radiative interior rotates rigidly, the
convection zone rotates differentially in a spoke-like pattern: increasing an-
gular velocity outwards and towards the equator, shown in figure 1.9. Steeper
velocity gradients occur near the surface and at the transition between radiative
interior and the convection zone, the latter shear layer is named ‘tachocline’,
while the former one is called the ‘near-surface shear layer’.

In local helioseismology, rather than using global patterns, one looks at a
specific area to determine the flow field directly below the surface. Such mea-
surements indicate that the flow disturbances due to sunspots are relatively
shallow; see figure 1.10. To conclude this section I would like to stress that
there are no direct or indirect measurements of magnetic fields below the sur-
face.
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Figure 1.10: Reconstruction of the flow around a sunspot from local helioseis-
mology data. Taken from Zhao et al. (2001).

1.4 Where do those fields come from?

To answer this question we need an understanding of the interaction between
magnetic fields and turbulence. We studied, on one hand, the effect of turbu-
lence on the evolution of magnetic fields (Chapter 2), applied to astrophysics
(Paper I) and lab plasmas (Paper II) and, on the other hand, the effect of
a mean magnetic field on turbulence (Chapter 5). This study was performed
mostly through numerical simulations, described in Chapter 3.

It is clear that the global solar field, oscillating with a period of about 22
years, is generated through a dynamo mechanism (the conversion of kinetic to
magnetic energy). The ‘standard model’ (Fan, 2009) assumes a strong mag-
netic field stored at the bottom of the convection zone, amplified through shear-
ing in the tachocline. This field rises to the surface in the form of magnetic flux
tubes, forming the observed bipolar magnetic structures as they pierce the sur-
face. Residual poloidal magnetic fields (the leading spot tends to lie closer to
the equator (‘Joy’s law’), thus giving a small poloidal component) are trans-
ported polewards by the meridional flow, contributing to the dipole field. While
elegant, this model does make a number of strong assumptions and does not
always agree with observations (see Chapter 4).

The main idea behind the work presented in this thesis is to investigate if
it is possible to find a different mechanism that leads to surface magnetic field
concentrations that could operate under solar conditions and which does not
postulate the presence of flux tubes rising from the bottom of the convection
zone. In this context we study in Chapter 5 the ‘negative effective magnetic
pressure effect’: it was pointed out in earlier work (Kleeorin, Rogachevskii,
and Ruzmaikin, 1989) that the presence of a weak magnetic field can lead to a
reduction of the total turbulent pressure. This reduction is now indeed clearly
observed in simulations (Paper III). As magnetic fluctuations experience an
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unstable feedback through this effect, this leads, in a stratified medium, to
the formation of magnetic structures, first observed numerically in Paper V.
While our study setup is relatively simplified, one wonders if this instability,
as a mechanism able to concentrate magnetic fields in the near surface layers,
may play a role in the formation of sunspots, starting from a weak dynamo-
generated field throughout the convection zone rather than from strong tubes
stored at the bottom. The properties of the turbulent pressure reduction and the
instability were studied more thoroughly in the remaining papers. In particu-
lar, in Paper IV we show that three-dimensional instabilities only need to be
considered if the negative effective magnetic stress is also negative, which is
however not the case in the models studied so far. In Paper VI we compute
the convergence of the parameters describing the negative effective magnetic
pressure as a function of magnetic Reynolds number, and in Paper VII we
discuss the possible application to the formation of active regions in the sun.
Finally, in Paper VIII the possibility of additional effects that emerge once
the resulting magnetic field becomes strongly nonuniform and terms involving
the mean current density introduce new effects.
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2. Turbulence and magnetic fields

Big whirls have little whirls
that feed on their velocity,

and little whirls have lesser whirls
and so on to viscosity.

Lewis F. Richardson, 1922

2.1 The basic equations

As all the relevant length and time scales are much larger than the ones associ-
ated with collisions and plasma relaxation, we are safe in assuming ourselves
in a fluid regime. The main equations used throughout this thesis, namely those
of magneto-hydrodynamics (MHD), are the continuity equation (conservation
of mass)

∂tρ =−∇∇∇ · (ρUUU) , (2.1)

the momentum equation

ρ∂tUUU +ρUUU ·∇∇∇UUU =−∇∇∇p+ JJJ×BBB+ρggg+ρν
(
∇

2UUU + 1
3 ∇∇∇∇∇∇ ·UUU +SSS ·∇∇∇ lnρ

)
,

(2.2)
with Si j =

1
2 (∂iU j +∂ jUi)− 1

3 δi j∇∇∇ ·UUU and the induction equation

∂tBBB = ∇∇∇× (UUU×BBB−ηµ0JJJ) , (2.3)

where the electric field has been eliminated from the Faraday equation by us-
ing Ohm’s law, and where η is the magnetic diffusivity. The magnetic field is
divergence free. We use a standard notation with density ρ , velocity UUU , gravity
ggg, gas pressure p, magnetic field BBB, current density JJJ = ∇∇∇×BBB/µ0, kinematic
viscosity ν (assumed constant here). Generally, one also includes the conser-
vation of energy, however, throughout most of this work we replace the energy
equation by an isothermality assumption. Note that this also implies the ab-
sence of convection, requiring a different source of turbulence, fff . Working in
units where the vacuum magnetic permeability is unity, µ0 = 1, we can rewrite
the momentum equation as

∂tUUU =− 1
ρ

∇∇∇ ·
(

pIII +UUUUUU +
1
2

B2III−BBBBBB
)
+ggg+ν

(
∇

2UUU + 1
3 ∇∇∇∇∇∇ ·UUU +SSS ·∇∇∇ lnρ

)
(2.4)
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Figure 2.1: Energy cascade for isotropic turbulence, the −5/3 scaling of spec-
tral energy E contained in the scale 1/k in the inertial range can be found from
dimensional analysis (Kolmogorov, 1941) (right). Sketch of self-similar decay
of turbulent motions (‘eddies’) (left).

where fff is a volume velocity forcing, and III is the unity tensor. Note that the
Lorentz force has been reformulated as the divergence of the Maxwell stress.
By adding the latter to the stress tensor UUUUUU and the isotropic pressure tensor
pIII, we can define a total pressure tensor ΠΠΠ

ΠΠΠ = pIII +UUUUUU +
1
2

B2III−BBBBBB. (2.5)

It is this tensor which is modeled in Chapter 5.

2.2 Turbulence

2.2.1 Cascade

In a fluid, viscous dissipation of energy occurs on small scales. However, this
energy is usually injected on much larger scales, typical energy sources can
be divided into: direct mechanical forcing (stirring a cup of tea, supernova
explosions in the interstellar medium), boundary layers (flow over a wing) and
gradient instabilities (interface between 2 fluids with different velocities).

We need a way to transfer energy from the injection scale to the dissipa-
tion scale, this happens through a turbulent cascade. The simplest picture is
that of fluid turbulence (Richardson, 1922), where isotropic eddies, break up
into smaller ones until dissipation sets in, a schematic illustration is given in
figure 2.1. This picture becomes more complicated when there are anisotropies
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Figure 2.2: Flow around a cylinder for different values of the Reynolds number,
from laminar to fully turbulent (Lienhard, 1966).

in the system (like gravity or strong magnetic fields) or when there are multi-
ple dissipation paths (for example a combination of diffusion and excitation of
Alfvén waves).

The scale range between injection and dissipation where energy transfer is
dominated by a self similar transfer of kinetic energy to smaller scales, is the
‘inertial range’. In most astrophysical applications it can be quite large.

2.2.2 Stochasticity

The energy transfer from large scale motions to smaller scales is a non-linear
interaction. Due to this non-linearity, the dynamical behaviour of fluids strongly
depends on small perturbations, for example caused by initial or boundary
conditions (or round off errors in the case of computer simulations). In many
circumstances these effects are so pronounced, that statements about the long
term evolution of a flow are, in general, true only in a statistical sense.

The relative importance of the non-linear term in the momentum equa-
tion with respect to viscous dissipation is estimated by the Reynolds number,
Re = ul/ν , where l and u are turbulence associated velocity and length scales.
As the Reynolds number increases, a steady flow turns unsteady and eventually
becomes turbulent. A very well studied example of such a scenario is given
in figure 2.2. A corresponding quantity can be defined for the induction equa-
tion: ReM ≈ ul/η . The ratio of the two, PrM = ReM/Re = ν/η is called the

13



magnetic Prandtl number.

2.3 Dealing with turbulence

2.3.1 Modelling turbulence

Physical phenomena observed on large spatial and temporal scales can be man-
ifestations of processes happening on much smaller scales, for example turbu-
lent transport across a confining magnetic field. Unfortunately the ‘easy’ way
out, just using brute force, resolving the dynamics on all relevant scales, re-
ferred to as ‘direct numerical simulations’ (DNS), while in itself not really
adding any understanding, is also computationally costly and usually, like in
the case of the Sun, virtually impossible. To realise global scale simulations,
it is necessary to model the effects due to the physics occurring on scales that
are not resolved.

Two general formalisms are commonly used: large eddy simulations (LES),
where spectral filtering is applied to distinguish between resolved and mod-
elled scales, and mean field theory (in fluid dynamics also known as Reynolds
averaged Navier-Stokes or RANS) where the distinction is made between quan-
tities with finite and vanishing averages. While the latter involves more phys-
ical input, it also has applicability limitations due to the averaging procedure
over broader spatial scales. LES, on the other hand, tend to ignore anisotropies
and are aimed at truncating the turbulent cascade to be computationally man-
ageable.

For both methods we should keep in mind that they are models, and as
such always have uncertainties and a finite validity domain (as do the fluid
equations they are based on). Exploring the boundaries of that domain should
be done while carefully evaluating correctness and completeness of the model
in comparison with (numerical) experiments.

2.3.2 Mean-field theory

In the mean-field approach we distinguish between averaged (F) and fluctuat-
ing ( f ) quantities,

F = F + f . (2.6)

Despite the resemblance of equation (2.6) to a perturbation equation, mean-
field theory does not make any assumption about the relative strength of the
fluctuations. On the other hand the averaging procedure is constrained by the
Reynolds averaging rules, requiring that the average of the fluctuating com-
ponent is zero and that the averaging operator must commute with respect to
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summation, derivation and multiplication with an averaged quantity:

f = 0, (2.7)

F +G = F +G, (2.8)

∂sF = ∂sF , (2.9)

FG = F G = FG. (2.10)

While these rules seem natural, in practice they are not obeyed by many av-
eraging procedures. An important exception are averages over periodic coor-
dinate directions. Yet, for example, in spatial or time averaging, errors intro-
duced by violations of the Reynolds rules become negligible if the separation
between the averaging scale and the scale over which the mean fields vary is
large enough: integrating F = F + f over a dimension with length L only re-
turns F when variations in f average out to 0 over this scale L and deviations
of F over scale L are still small,

1
L

∫
L

F dx =
1
L

∫
L

F dx+
1
L

∫
L

f dx≈ F , (2.11)

if the scale of variation of f , namely |∇∇∇ ln f |−1, is much shorter than the scale
of variation of F , namely |∇∇∇ lnF |−1, i.e.,

|∇∇∇ ln f |−1� L� |∇∇∇ lnF |−1. (2.12)

Unfortunately, this limits the applicability of mean-field theory to situations
where such a scale separation can be found.

Example: turbulent dynamo

Let us now look at the effect of turbulence on the evolution of a magnetic field
from a mean-field perspective. For a setup where the velocity field is a simple
shear flow (0,Sx,0) (the flow direction is orthogonal to its gradient) and the
magnetic field is given by (Bx(z),By(z),0), equation (2.3) reduces to

∂tBy = BxS+η∇
2By, (2.13)

∂tBx = η∇
2Bx. (2.14)

It is evident that By can be generated by shearing of the Bx component. How-
ever, as no source seems available for the latter, the system will eventually just
decay on a resistive timescale. This field generation by shear is referred to as
the Ω-effect. The reason being that in rotating bodies (i.e. the solar interior),
the shear generally corresponds to differential rotation and commonly denoted
by Ω.
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Let us now include the effects of velocity fluctuations; i.e. we take UUU =
(0,Sx,0)+(ux,uy,uz), where u = 0. After performing an averaging operation
according to the rule of Reynolds averages, we split the involved quantities of
equation (2.14) into their mean and fluctuating parts. We can now separately
consider the evolution of the mean components:

∂tBy = (∇×u×b)y +BxS+η∇
2By, (2.15)

∂tBx = (∇×u×b)x +η∇
2Bx, (2.16)

with BBB = BBB+bbb, where an additional term compared to the total field equations,
now emerges. This term is an average that depends on the correlation between
magnetic and velocity fluctuations, and is called the mean electro-motive force
(EMF).

Rather than computing this term from the evolution equations for the fluc-
tuating quantities, we can close the equations by modelling these fluctuation
correlations in terms of mean fields. The simplest assumption one can make
is that the EMF depends only on the local value of the mean quantities, and in
particular on the local value of the mean magnetic field and its spatial deriva-
tives:

(u×b)i = αi jB j +ηi jk∂kB j = Ei, (2.17)

where the turbulent transport coefficient tensors α and η themselves may de-
pend on mean field quantities. If there is a non-zero α , it is possible to gen-
erate a Bx starting from a finite field in the y direction. This is the α-effect,
described by Steenbeck, Krause, and Rädler (1966). The resulting generation
of magnetic energy from kinetic energy is indicated by the term ‘dynamo’ (see
also Moffatt, 1978). Note that in a similar fashion also the fluctuating com-
ponent of the magnetic field can be amplified by the interaction with turbulent
motions, resulting in an increase in magnetic energy even in the absence of a
mean field. This phenomenon is referred to as a fluctuation dynamo (Kazant-
sev, 1968; Kazantsev et al., 1985; Schekochihin et al., 2004; Zeldovich et al.,
1990).

In the isotropic case the EMF expression reduces to

EEE= αBBB−ηtJJJ, (2.18)

where ηt can be interpreted as a turbulent diffusivity. Later in this work we
will approximate the latter by

ηt =
1
3 urms/kf, (2.19)

where 1/kf is the forcing scale and urms the mean turbulent velocity. This ex-
pression is based on the first order smoothing approximation; see also Krause
and Rädler (1980).
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Dynamos are believed to be responsible for a major fraction of the large-
scale magnetic fields observed in the universe (Zeldovich et al., 1983), from
galaxies to the field of our own little planet. The need for dynamos is not
always obvious. In galaxies, the Ohmic decay times exceed the age of the
universe (14 billion years). However, the gas is turbulent (driven by supernova
explosions) and the turbulent decay time is only about a hundred million years.
Therefore, the field must be supplied by a dynamo. By contrast, in the Earth’s
core, the Ohmic decay time is only of the order of ten thousand years, so the
need for a dynamo is very obvious. In the Sun, the Ohmic decay time is again
quite long, so a large scale magnetic field could survive in the radiative interior
for long times, but it would be difficult to explain reversals on an 11 year time
scale.

2.3.3 Closure models

The turbulent transport coefficients in the case of the dynamo discussed above
are an example of a closure model. The coefficients can be obtained from mea-
surements or analytical estimates or they can be calculated from equations for
the fluctuation correlations, which eventually will introduce further unknowns
(which have to be modelled). These models generally have a certain param-
eter range for which they are valid. Extrapolation to a different regime is not
necessarily possible and should always be compared with measurements (ex-
perimental or DNS).

Below I give two examples of closure models for the induction equation as
presented in the first two papers. Later on, in the final chapter, we will look at
a closure model for the momentum equation in order to describe the change in
the Reynolds stress and the fluctuation component of the mean Maxwell stress
in the presence of a mean magnetic field.

Kinematic mean-field induction (Paper I)

In the following we look at the measurement of turbulent transport coefficients
from direct numerical simulations. A recently developed approach for do-
ing this is the test-field method (Schrinner et al., 2005, 2007). The original
method was derived for the kinematic regime, where the flow is unaffected
by the magnetic field, and where consequently the induction equation is lin-
ear in the magnetic field. The idea is to measure the response of the system
to a mean magnetic field by solving numerically the equations for the fluctu-
ations that arise from the interaction between a given ‘test-field’ BBB

(q) and the
turbulent motions. Unlike commonly used analytical approaches to solving
this equation, we do not omit the terms that are nonlinear in the fluctuations.
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If we look at the equation for the fluctuating component of the magnetic field
bbb(q) (obtained by subtracting the terms with a finite average from the induction
equation, equation (2.3)) generated by the presence of this test-field

∂tbbb(q)=∇× [UUU×bbb(q)+uuu×BBB
(q)
]+η∇

2bbb(q)+∇× [uuu×bbb(q)−uuu×bbb(q)], (2.20)

we find a linear equation in bbb(q) with coefficients UUU and uuu taken from an actual
flow field). We can then use this quantity to compute the fluctuation correla-
tions uuu×bbb(q) as a function of the magnetic field.

In this case the coefficients will depend only on the flow. One can relax the
kinematic condition to having the velocity depend on a mean magnetic field.
This requires solving the usual induction equation along with the test-field
equations. The crucial assumption here is that the magnetic fluctuations are
due to tangling of the mean magnetic field and that fluctuation dynamo gener-
ated fields (see section 2.3.2) do not produce systematic correlations with the
velocity field and consequently equation (2.20) remains linear in bbb(q). When
these conditions are not met, a fully nonlinear test-field method, e.g. that of
Rheinhardt and Brandenburg (2010) must be employed. So far, however, the
quasi-kinematic method proved sufficient in all cases of practical interest, with
the exception of artificially constructed counter examples with magnetic forc-
ing.

In Paper I we develop a method to measure the turbulent transport coeffi-
cients (the tensors αi j and ηi j) in the expression for the EMF, given by equa-
tion (2.17), in the case where the turbulence has one preferred direction. The
latter could be for example a rotation axis, the orientation of gravity or a strong
magnetic field. This axisymmetry reduces the number of possible non-zero co-
efficients, from 9+ 27 = 36 to 9. For this smaller number of coefficients we
can analyse their physical origins (for example their dependence on the pres-
ence and strength of rotation) and the contribution of the associated terms to
the behaviour of the magnetic field (such as pumping effects, diffusion or field
generation). In addition, to study the dependence of these transport coefficients
on rotation and gravity, and to compare these results with earlier analytical cal-
culations, we also estimate the effect of scale separation (defined as the ratio
of the wavelength of the spatially sinusoidal test fields to the turbulent forcing
scale). We find that some coefficients show an extremum at intermediate sep-
aration values, which indicates that at these scale ratios the coefficients can no
longer be defined locally and one needs to define averages in terms of convo-
lutions; see Brandenburg et al. (2008); Rheinhardt and Brandenburg (2012).
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Non-linear mean-field induction (Paper II)

In plasma experiments, contrary to most astrophysical environments, the dy-
namics are often dominated by the magnetic fields (applied for confinement
purposes). Therefore, in this case the induction equation is strongly nonlinear.

In Paper II we address the question to what extent the astrophysical EMF
model can be applied in this context. We base our setup on the reversed field
pinch (RFP). In this experiment a current is driven in a toroidal plasma through
a transformer with the plasma as the passive circuit. This plasma current then
induces (poloidal) magnetic fields winding around the plasma. The combi-
nation of this induced field and an externally applied toroidal field (current
rings around the vessel), of approximately the same magnitude, is then used
to confine the plasma. The RFP is mostly used to study MHD instabilities in
magnetically confined plasmas (Ortolani and Schnack, 1993), as, due to these
instabilities, its energy confinement is too poor to be considered as a fusion
reactor. The motivation for this setup choice was the importance of the EMF
in terms of stability and earlier work on the α–effect in plasma experiments by
Ji and Prager (2002).

We know from Pouquet et al. (1976) that we can approximate

α ≈−τ

3
uuu ·ωωω +

τ

3
jjj ·bbb/ρ = αK +αM, (2.21)

with τ the turbulent correlation time. Here, we are mostly interested in the
second term. For weakly inhomogeneous turbulence we can relate the current
helicity (in the fluctuations) to the magnetic helicity

jjj ·bbb≈ k2
f aaa ·bbb. (2.22)

Hence, to understand how αM behaves, we have to look at the time evolution
of the magnetic helicity in the fluctuations,

∂tαM ≈
τk2

f

3ρ
∂taaa ·bbb =

τk2
f

3ρ

(
−2EEE ·BBB−2η jjj ·bbb−∇∇∇ ·FFF

)
. (2.23)

Here, FFF is the mean flux of magnetic helicity in the fluctuations. An equation
of this form, was first proposed by Kleeorin and Ruzmaikin (1982). The role
of the magnetic helicity fluxes was understood later (see also Blackman and
Field, 2000; Brandenburg and Subramanian, 2005; Kleeorin et al., 2000). In
our paper we solve the equation above along with the mean induction equation
for a cylindrical geometry where the variables depend only on radius.

As this is a very simplified setup, we can reproduce only a few features
of the actual experiment. We find a decay of the field which, above a mini-
mal value, is slower than would be anticipated by just taking into account the
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diffusive effect of turbulence: turbulent diffusion and field generation approx-
imately balance.

The second focus of the paper revolves around the reproduction of the pe-
culiar RFP magnetic field profile, which we can approximate by Bessel func-
tions Bz ≈ J0(kr) and Bφ ≈ J1(kr), where Bz reverses sign at an intermediate
radius r with kr ≈ 2.40 and a coefficient k.

We find that this reversal occurs to a reasonable degree only when we have
helicity fluxes within the domain. An even stronger effect occurs when we have
a finite αK. However, as our setup is only one dimensional and the turbulence
assumed to be isotropic, a more advanced study would be needed to confirm
and perhaps improve these results.
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3. Numerical simulations

"I don’t actually think," he said, gloomily,
"that I want to tell the Archchancellor that this machine stops working if we

take its fluffy teddy bear away.
I just don’t think I want to live in that kind of world."

"Er," said Mad Drongo, "you could always, you know, sort of say it needs to
work with the FTB enabled...?"

Sir Terry Pratchett, 1997

3.1 Solving PDEs numerically

This section mainly focuses on the methods applied in the PENCIL CODE,
which was used in the simulations presented in this thesis.

3.1.1 Spatial derivatives: ‘finite difference code’

In our numerical approach we solve partial differential equations through a fi-
nite difference scheme. This means that we compute derivatives through poly-
nomial interpolation on a grid. In this sense, a high order code means we use a
higher order polynomial, and a larger number of points. When we say that the
PENCIL CODE is 6th order in space, using a central finite difference scheme,
we mean that we use 3 points on either side of a given point to compute its
derivative. This has implications for boundaries and parallelisation where one
will need, respectively, 3 ghost points outside the domain or 3 points from the
neighbouring processor. For an overview of other approaches to the numerical
calculation of spatial derivatives, see Peiró and Sherwin (2005).

3.1.2 Time evolution

The Runge Kutta method (Press et al., 1992) is a reasonably simple yet robust
integration scheme and quite commonly used in fluid codes. The method relies
on an intermediate step to cancel out lower order corrections in terms of Taylor
expansions, as an example I give here the general third order scheme for a
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Figure 3.1: Illustration of the CFL condition in analogy with the light cone con-
cept. For the black grid the latter is met and all physical communication (white
area) can be resolved, in the red grid the time step is too large, setting a numerical
upper boundary to propagation of information.

dependent variable y:

k1 = f (tn,yn) , (3.1)

k2 = f (tn +α2∆t,yn +β12k1∆t) , (3.2)

k3 = f (tn +α3∆t,yn +(β13k1 +β23k2)∆t) , (3.3)

yn+1 = yn +∆t (b1k1 +b2k2 +b3k3)+O
(
∆t4) . (3.4)

The coefficients are constrained by ∑
i

βi j = α j and ∑
i

bi = 1, and 3 coupling

equations to make the lower order terms drop out. The remaining degrees of
freedom can be used to for example minimise data storage (Williamson, 1980).

From figure 3.1 we see that if the time step is chosen too large, the maximal
resolvable propagation speed is less than the physical one, therefore the step
size is constrained by

∆t < ∆x/vmax. (3.5)

This is also known as the CFL condition (Courant, Friedrichs, and Lewy,
1928); it is a necessary (but not sufficient) condition for stability. Note that
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from this requirement it follows that increasing the resolution of a simulation
will decrease the length of the time step.

3.2 Numerical ‘experiment’

To some people the word ‘experiment’ sounds strange in a simulation context,
after all we are solving a set of equations, which are by definition models.

Indeed, a first concern is the question whether the model is valid under
the tested conditions. For example, the fluid equations are not general enough
to take into account effects caused by non-Maxwellian velocity distributions,
like Landau damping, and will give unrealistic results when such phenomena
do occur. On the other hand including more physics will require more, perhaps
unnecessary, computations: anything you add you have to solve and resolve.
It is therefore important to know approximately what to expect and to test
assumptions you make. In short, it is time to start thinking ‘laboratory’ when
the physics gets too complex or is fairly unknown.

A second major issue is one of resolution. For example when calculating
the behaviour of turbulent flows in direct numerical simulations, i.e. without
any subgrid scale modelling, it is necessary to resolve all the energy containing
scales, from the domain size that you are interested in, over the turbulent injec-
tion scale, down to the scale where energy is dissipated. This makes it hard to
achieve high Reynolds numbers (which scales with the ratio between the tur-
bulent injection and the dissipation scale) in simulations. Resolution issues are
not limited to turbulence. Also, for example, dealing with shocks, resonance
related physics and high curvature surfaces, are very resolution demanding.

While the question ‘is it real?’ is of course an important one, in return there
are also several advantages over laboratory experiments, which in a sense stem
from the distance to reality. The computer scientist is omnipresent: diagnostics
can measure any variable in any location. He is omnipotent: initial and bound-
ary conditions are perfectly controllable, even physical laws can be altered (to
verify the effect of different terms, enforcing isothermality rather than build-
ing a complex cooling mechanism), there is no restriction to existing material
properties (and no safety issues due to for example explosion hazards in case
of water contact).

3.3 PENCIL CODE: open, modular, parallel

The PENCIL CODE is an open code: it is freely available and adaptable, daily
testing ensures that those adaptations are beneficial. In combination with its
very modular structure, equations can be solved or omitted depending on the
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problem, this has lead to a very broad spectrum of applications. Originally
addressing astrophysical MHD, it has branched out into the domain of planet
formation with particles (Johansen et al., 2007), radiative transfer (Heinemann
et al., 2006), as well as chemistry and combustion physics (Babkovskaia et al.,
2011). More extensive information can be found in the manual.

To tackle current day questions, large scale computations are required. The
PENCIL CODE is a parallel code and has shown approximately linear scaling
for up to 4096 processors.

3.4 Runs and their analysis

This section is mostly to illustrate how the more general principles, described
above, affect our simulations.

What sets our resolution and timestep? Both in DNS and mean-field simu-
lations we are limited by the density contrast (in our simulations ρmax/ρmin ≈
500− 1000): too low resolution would cause the density gradient to become
under-resolved. In DNS there are two more restrictions from the turbulence,
the combination of which sets severe restrictions on the resolvable Reynolds
number. Our largest scale is set by the turbulent energy injection scale: in or-
der to be able to have sufficient scale separation, the ratio of the domain size
to the turbulence forcing scale is chosen to be between 15 and 30 for most of
the runs. The smallest scale we need to resolve is set by dissipation. The ratio
between inertial scale (1/15 to 1/30 of the box size) and dissipation scale (say
1/256 for a simulation with 5123 mesh points) restricts the largest value of ReM
to be between 10 and 20 (for this setup).

Note that in a convection setup the stratification is locally even stronger.
At the same time turbulent scales are height dependent, such that the turbulent
scales near the top are much smaller than deeper down in the domain. Conse-
quently the associated Reynolds number will be quite low, even for a very high
resolution.

How strongly do we alter reality? We have made a strong simplification by
considering a stably stratified medium with random forcing rather than study-
ing the convective setup. Doing this we also lost the possibility to generate a
magnetic field through a mean-field dynamo; hence we imposed a magnetic
field, with a simple geometry. These simplifications were made both to limit
the numerical cost and to isolate and first understand a minimal problem, with
the intention to incorporate complications one step at a time. The implications
of these assumptions are addressed in section 5.5.

For the magnetic field we have perfect conductor boundary conditions,
which seems reasonable given the high plasma conductivity, and for veloc-
ity stress free conditions at top and bottom, making them material surfaces. A
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Figure 3.2: Comparison of DNS calculation of the negative effective magnetic
pressure effect for the same setup at two different resolutions, showing the 2563

curve well within the error bars (dashed lines) of the 1283 result. Adapted from
figure 7 of Paper III.

comparison of different resolutions in figure 3.2 indicate that resolution cor-
rections are well within the error margins.

In Paper VIII it was only possible to give a qualitative indication of the
effect of currents on the instability as the calculation of higher order deriva-
tives, currents are the second order spatial derivative of the calculated vector
potential, in a turbulent environment comes with rather large error bars.

To finalise this chapter some numbers to give an idea of the size of the
calculations. The extraction of the effective pressure curve from DNS requires
two separate simulations per setup: one with and one without an imposed mag-
netic field. This brings the typical computation cost to easily 20000 CPU hours
for a 2563 simulation. Two-dimensional mean field calculations, 2562, only re-
quire about 30 CPU hours.
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4. Magnetic fields on the solar
surface

Sunspots are the classic example of long standing ignorance,
well known to observation for centuries,

possessing fascinating internal fine structure,
and still not understood from the basic laws of physics.

E.N. Parker, 2009

4.1 Sunspots as a part of the solar dynamo

The current standard idea about sunspot formation stems from a paper by
Parker (1955), where he suggests the buoyant rise of magnetic flux tubes to
the surface. As the magnetic field contributes to the pressure inside a magnetic
flux tube we see from horizontal pressure balance that the gas pressure and
thus the density (ρi) inside must be lower than outside (ρe) (assuming thermal
adjustment is fast).

ρiRT +B2/2 = ρeRT. (4.1)

As the density is lower inside the tube, it becomes buoyant and rises. The ris-
ing flux tube expands because the pressure higher up is lower than the total
pressure inside a tube of unchanged thickness. Given that the field is frozen
in, this density reduction also causes a dilution of the magnetic field. As the
density contrast between the top and bottom of the convection zone is approxi-
mately 4 orders of magnitude (not counting the upper 6Mm) and sunspots have
kgauss fields, this would require very strong initial fields at the bottom. To rise
somewhat coherently, in a turbulent medium like the convection zone, the flux
tube needs to be twisted (Parker, 1979). This was also verified in simulations
by Longcope et al. (1996) and Fan et al. (2003). Note, however, that there is
also an upper limit to the amount of twist, set by the onset of kink instabilities
(Linton et al., 1996).

This raises questions where these tubes come from, how strong they should
be to match surface observations and to remain intact, and how they form in
that environment to match these conditions. In the picture sketched by Bab-
cock (1961), see figure 4.1, flux tubes are formed from a toroidal magnetic
field in the convection zone. This field in turn would be the result of shearing
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Figure 4.1: Flux transport model for the solar dynamo cycle, i.e. similar to the
mechanism proposed by Babcock (1961), but with the toroidal field confined near
the tachocline

of the global (poloidal) dipole field by differential rotation. As a result of the
Coriolis force, flux tubes twist as they rise to the surface, generating a poloidal
field component to reinforce the dipole.

Given that magnetic fields above 100 gauss would rise due to magnetic
buoyancy, Parker (1975) argued that it would be hard to keep fields long enough
for them to be amplified by shearing. Storage in the stably stratified region
below would be feasible for very long times, but there needs to be some inter-
action with the convection zone for the dynamo to operate. This restricts the
location of such a toroidal field to a narrow region at the base of or just below
the convection zone.

Choudhuri and Gilman (1987) calculated that, if flux tubes are to rise from
the base of the convection zone to near equator latitudes, their field strength
should be on the order of 105 gauss. For weaker fields the flux tubes would
be deflected polewards by the Coriolis force: the interaction of radial rise and
rotation generates a toroidal motion, which in turn is directed towards the axis
by the rotation, giving the tube a poleward velocity. It is then assumed that
either a homogeneous or a fibril magnetic field of this strength is stored in
the overshoot layer. Ruzmaikin (1998) proposed that the stored field need not
be that high, as the 105 gauss threshold value, in this case more thought of as
a minimal survival field strength, can also be reached by the interaction of a
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Figure 4.2: Rising magnetic structures in convective simulations by Guerrero
and Käpylä (2011).

weaker mean field (104 gauss) and a fluctuating field with a high energy tail in
its distribution function.

4.2 Assumptions in the standard sunspot model

The question of the formation of flux tubes has yet to be answered. Several
mechanisms have been proposed to break magnetic fields free from a mag-
netic storage layer. But until now none has been able to produce strong (about
100 times the equipartition field) twisted thin flux tubes. A recent result in this
context are the convection simulations by Guerrero and Käpylä (2011). These
show the formation of large scale elongated field structures from a shear layer,
twisted as a result of Kelvin-Helmholtz instabilities, and their rise to the sur-
face. However, upon arrival these magnetic structures are strongly deformed
and expanded even though the turbulence and density contrast are still well
below solar values.

The pressure balance in equation (4.1) does not take into account the pres-
ence of inhomogeneous turbulent convection. It has been shown in simulations
that the latter strongly affects the transport of magnetic fields. Starting from
respectively a random field distribution and a thin magnetic layer, both Nord-
lund et al. (1992) and Tobias et al. (1998) found strong downward pumping of
the magnetic fields. On the other hand, Guerrero and Käpylä (2011) measured
in their simulations, using the test-field method, the downward pumping ve-
locity to be only about half the buoyant rise velocity, resulting in a net upward
transport of magnetic field.

A number of near surface simulations have yielded quite good agreement
with observations using a flux tube as either boundary or initial conditions,
see for example figure 4.3. However, the acceptable realisation at the surface
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Figure 4.3: Emergence of a sunspot, simulated by Cheung et al. (2010).

does not provide sufficient justification for the magnetic configuration assumed
deeper down as a unique solution.

4.3 Incompleteness in the standard sunspot model

Several observed properties of solar surface fields are not correctly reproduced
by the rising flux tube paradigm. It has long been known that bipolar structures
are systematically tilted with respect to the rotation direction (Joy’s law). Cal-
culations in the thin flux tube approximation by D’Silva and Choudhuri (1993)
show that the action of the Coriolis force can give emerging tubes such a tilt.
However, recent observational analyses by Kosovichev and Stenflo (2008) as
well as Stenflo and Kosovichev (2012) have shown that actually this tilt is ran-
dom upon emergence and then relaxes to a certain angle in a few hours, with a
non-negligible fraction of bipolar regions violating Hale’s polarity law. They
also do not find the correlation between the tilt and the magnetic flux in a spot
which would be expected for rising flux tubes. Weber et al. (2012) attribute
these differences to convection, which was not present in the earlier model.

Sunspots have a higher azimuthal velocity than the quiet solar surface
(Balthasar et al., 1986), coinciding with rotational velocities found in the near-
surface shear layer (Thompson et al., 2003) at a depth of about 35 Mm. It is
unclear why a rising tube would adopt this velocity.

30



Figure 4.4: DNS showing the emergence of a sunspot as the result of the inter-
action of turbulent convection and a shallow uniform horizontal field layer (Stein
and Nordlund, 2012)

4.4 Alternative suggestions

4.4.1 Convection zone dynamo

Abandoning the idea of a tachoclinic toroidal field would require a dynamo
to operate in the convection zone, possibly with an important role for the
near surface shear layer (Brandenburg, 2005). The main argument behind the
tachocline assumption is that fields should be stored long enough to be am-
plified by shear, i.e. not buoyantly transported upward and not destroyed by
turbulent convection. However, as mentioned earlier, buoyant rise is reduced
by downward pumping and their exact balance is unclear.

The typical turbulent time scale, on the order of several days (at 35 Mm
depth), is short, but sufficient for amplification purposes. This short scale com-
pared to the cycle length is one of the main arguments against a convection
zone dynamo.

Keeping only in mind the picture of turbulent diffusion, it is indeed hard
to imagine that these amplified fields can survive in a turbulent environment.
However, turbulence is also a source for instabilities that can overcome this
turbulent decay.

4.4.2 Sunspots without rising flux tubes

There are now several simulation results indicating possible structure forma-
tion near the surface, without assuming rising flux tubes.

Recently, Stein and Nordlund (2012) showed in numerical simulations the
formation of rather realistic looking bipolar regions from a uniform horizontal
field layer in a convective setup; see figure 4.4. These are the result of the
interplay between magnetic buoyancy and advection by convective motions.
The exact mechanism responsible for concentrating the rising fields into the
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Figure 4.5: Mean field simulation of magnetic structure formation at the sur-
face as a result of magnetically quenched heat transport (Kitchatinov and Mazur,
2000), with magnetic field lines in black, velocity in red.

observed structures remains to be further explored. The lower domain bound-
ary (and the horizontal field layer) in these simulations is located at a depth of
about 20 Mm.

In mean-field simulations Kitchatinov and Mazur (2000) find magnetic
field concentrations near the surface when turbulent heat transport is magnet-
ically quenched; see figure 4.5. As radiative losses can no longer be compen-
sated by the reduced heat flow, the plasma cools down and, in a compressional
downflow, enhances the magnetic field. Smaller scale surface magnetic field
concentration, possibly related to, for example, pore formation, are amplifi-
cation in vortical downdrafts (Kitiashvili et al., 2010) and convective collapse
(Spruit, 1976). An other mechanism, originally proposed by Kleeorin et al.
(1989) predicts structure formation as the result of suppression of the turbu-
lent pressure by a mean magnetic field. The coefficients in its mean-field de-
scription were first analytically estimated in Kleeorin et al. (1990), using the
spectral tau approach, and later, in different approximations, in Kleeorin and
Rogachevskii (1994); Rogachevskii and Kleeorin (2007). This mechanism is
the subject of the next chapter.
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5. Turbulent stress and magnetic
fields

Eppur si muove.

G. Galilei, 1633

5.1 Effective magnetic pressure

As pointed out earlier, in the mean field formalism we would like to model
turbulent correlations in terms of mean fields and their gradients. This means
that the mean turbulent stress tensors uiu j, the ‘Reynolds stress’, and δi jb2/2−
bib j, the contribution of fluctuations to the mean Maxwell stress, can be mod-
elled as a function of the mean magnetic field BBB and its derivative, as well as
the derivative of the mean velocity field UUU .

In the following we study the effect of a magnetic field on the turbulent
stresses and its impact on the total pressure tensor, defined in equation (2.4) as
the sum of gas and magnetic pressure. The turbulent component of this tensor
can be written as

Π
B
i j = ρuiu j +

b2

2
δi j−bib j. (5.1)

Like before, units are defined such that µ0 = 1, the superscript B refers to
the presence of a magnetic field. For isotropic turbulence we can define the
turbulent pressure Pturb as the trace of this tensor, we find that

Pturb =
ρu2

3
+

b2

6
. (5.2)

Taking into account the fact that turbulent energy is approximately conserved
in the presence of uniform weak magnetic fields (Brandenburg et al., 2010):

Eturb =
ρu2

2
+

b2

2
≈ const, (5.3)

we can see that an increase of magnetic fluctuations (conversion of turbulent
kinetic energy into turbulent magnetic energy) reduces the turbulent pressure:

Pturb ≈
2
3

Eturb−
b2

6
∆Pturb ≈−

1
3

∆EM
turb. (5.4)
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These magnetic fluctuations can be generated by a fluctuation dynamo or by
tangling a mean magnetic field: as the fluid motions drag along the field, tur-
bulent motions generate magnetic fluctuations. This raises the question if it
is possible to reduce the total pressure by adding a mean magnetic field. We
define the ‘effective magnetic pressure tensor’ PM

i j as this difference:

PM
i j =

B2

2
δi j−BiB j︸ ︷︷ ︸

direct effect

+ Π
B
i j−Π

0
i j︸ ︷︷ ︸

turbulence

=
B2

2
δi j−BiB j +∆Π

B
i j (5.5)

From the latter we can define an effective magnetic pressure perpendicular to
the magnetic field, which from now on we define to be along the y direction.
In that case we have

PM
eff =

B2

2
+

1
2

(
∆Π

B
xx +∆Π

B
zz

)
(5.6)

5.2 Experiment and model

The model describing ∆Π
B
i j, ‘the effective turbulent magnetic pressure tensor’,

includes a number of simplifications related to the symmetries in the setup
used for most of our numerical experiments. Therefore we take a quick look
at this setup before continuing.

The initial configuration is that of an isothermally stratified medium with
an imposed uniform magnetic field B0y perpendicular to the direction of gravity
gz. This means that the system is stable to convection. Turbulence is instead
generated through random forcing with plane waves. In most cases this forcing
is non-helical, which implies that there is no α effect and there is no mean-field
dynamo.

We would like to model the change in the turbulent pressure tensor in terms
of the mean field. We know that this tensor is symmetric and invariant under
inversion of the sign of BBB. A first order model would be a linear combination
of tensors constructed from mean vector quantities ggg, BBB, UUU and their deriva-
tives. Note that BBB is a pseudo-vector (not invariant under parity inversion). In
our setup, in the absence of structure formation, the vectors above are constant
and the mean velocity is zero, leaving only ggg and BBB as building blocks. Fur-
thermore, the coefficient for a pseudo-tensor should be related to pseudo-scalar
fluctuation correlations. In this setup cross-helicity, uuu ·bbb, is the only such cor-
relation, however, without source (as ggg is perpendicular to BBB) it is zero and
thus giB j +g jBi terms drop out. This leaves us with gig j, BiB j as well as ggg2δi j

34



Figure 5.1: Effective magnetic pressure perpendicular to the magnetic field, nor-
malised by equipartition pressure, as a function of the the mean magnetic field,
normalised by equipartition field (Rm = 18, Prm = 0.5). The dashed blue lines
indicate error bars, the yellow line is the corresponding fit from equation (5.8).

and BBB2
δi j. We can now model the pressure difference as

∆Π
B
i j =−qp

B2

2
δi j +qsBiB j +qg

gig j

ggg2 B2
. (5.7)

where we subsumed all the isotropic contributions into qpB2
δi j. Also, as in

the absence of a mean magnetic field the difference should become zero, we
extracted an explicit BBB2 dependence from the coefficients. The coefficients
can depend on the turbulence (Reynolds number, Prandtl number) as well as ggg
and B2. This model becomes less complete as a mean velocity field and mean
currents develop in the simulation. This is addressed in Paper VIII; see also
section 5.4.5.

5.3 Negative effective magnetic pressure (Papers III, IV,
VI)

The existence of a reduction of the total turbulent pressure perpendicular to the
field (−∆Π

B
xx > BBB

2
/2) was demonstrated numerically by Brandenburg et al.

(2010) for non-stratified forced turbulence and in Paper III for the stratified
case, see also figure 5.1, and Käpylä et al. (2012), who observe its presence in
convective simulations.

We find that qs, the reduction of magnetic tension, and qg, the anisotropy
correction due to gravity, are relatively small in the parameter regime that we
are studying. In this simple model the qs term is the only one counteracting the
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Figure 5.2: When, in mean-field simulations, qs is small, the mean magnetic
field By does not vary along the direction of the imposed field, adapted from
Paper IV.

mean field pressure along the field and thus the only one able to affect the ge-
ometry in this direction. This was also demonstrated in mean field simulations
in Paper IV; see figure 5.2. The smallness of this coefficient results in and
is confirmed by the observation of the independence of the found solutions on
the coordinate along the field. Furthermore, this knowledge allows us to av-
erage along the direction of the field to obtain mean fields from DNS, and so
in mean field simulations we can limit ourselves to a two-dimensional setup,
perpendicular to the field.

The qp coefficient is a function of the ratio of the magnetic field strength
to the equipartition field (indicated by β , not to be confused with its plasma
physics namesake, which is the ratio of the gas pressure to the magnetic pres-
sure), the dependency is a function of the magnetic Reynolds and Prandtl num-
bers. We proposed a phenomenological fit, based on the DNS results:

qp =
qp0β 2

p

β 2
p +β 2 (5.8)

For large Reynolds numbers the fit parameters seem to converge to a finite
value (Paper VI), although the spread in the data as well as the errors of the
fits are relatively large. An increase in Prandtl number seems to decrease the
pressure reduction. This may be related to the production of magnetic fluctua-
tions even in the absence of a mean field, through a fluctuation dynamo.

5.4 Negative effective magnetic pressure instability

5.4.1 Observation in direct simulations (Papers V & VI)

While not chronological, it is perhaps best to start with the observation of a
large-scale instability in direct numerical simulations as a result of the pres-
sure reduction by a mean field. In the linear stage, where the original field
configuration is not significantly modified by the instability, we see the expo-
nential growth of magnetic structures along the direction of the imposed field
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Figure 5.3: Dependency of (normalised) effective magnetic pressure on mag-
netic Prandtl number and estimate of fitting coefficients for a range of values for
the magnetic Reynolds number.

Figure 5.4: Observation of NEMPI in DNS without averaging; the horizontal
magnetic field normalised to the equipartition field in the middle of the box,
taken from Paper VI.

37



Figure 5.5: Left: Time evolution of the mean (y-averaged) magnetic field and ef-
fective magnetic pressure in direct numerical simulations. Right: Time evolution
of the magnetic field and effective magnetic pressure in mean-field simulations.
Taken from Paper VII.

on scales that are large compared to the forcing scale, shown without averaging
in figure 5.4 and after taking the average along the field in figure 5.5 (left).

Key to these observations were, on one hand, the conclusion from mean
field simulations that it was meaningful to average along the direction of the
field and, on the other hand, an increase of scale separation (which reduces
turbulent diffusion as ηt ≈ urms/3kf) compared to the initial simulations where
we did find a turbulent pressure reduction, but no instability.

5.4.2 Reproduction of DNS results in mean-field simulations (Paper
VII)

In figure 5.5 (right) we see that the results from two-dimensional mean field
models, where we only take the qp term of the model into account, reproduce
the structures found in DNS very well. This agreement shows that the mean-
field approach is justified and that our model is quite reasonable for the current
setup.

Since these calculations are computationally much cheaper than the direct
simulations, they were used for further exploring the behaviour of the instabil-
ity as a function of different simulation parameters. The results of this search

38



can be found in Paper IV.

5.4.3 Linear instability

When we are below the effective magnetic pressure minimum βmin, a local
increase of the magnetic field causes a decrease of the pressure. This pres-
sure difference with the environment is then compensated by inflows. These
drag along magnetic field, which is approximately frozen into the fluid, thus
enhancing the initial field perturbation. From this argument it is clear that
the maximal field strength that can be reached by this instability is limited to
a fraction βmin of the equipartition field. Note that, conversely, a local field
reduction will result in buoyancy.

If we now add stratification to the picture, we get, on the one hand, an up-
ward negative gradient in effective pressure (the imposed field is constant but
density decreases with z) and, on the other hand, a density increase associated
with inflows. The balance of these was calculated in a linear stability analysis
of the mean field model (without dissipation); for detail see the appendix of
Paper V. While inflows are expected to be strongest near the location with the
strongest vertical effective magnetic pressure gradient, the structures form a
bit below that point, which agrees with the observations in the DNS.

A linear stability analysis predicts with reasonable accuracy both the loca-
tion, see figure 5.6, and growth rate of the instability. The calculated growth
rate λ was found to approximately obey the following relation

λ
2 ≈ C2

A
H2

ρ

(
1−qp−

∂qp

∂β 2 β
2
)
− k2

ηt, (5.9)

with CA the Alfvén speed and Hρ the density scale height, omitted in the anal-
ysis, the diffusion term was added manually. This result agrees well with the
values and trends we found in our mean-field parameter search and is of the
same order of magnitude as the DNS measurements.

Taking the derivative of the growth rate above with respect to B we find
an expression for the value of β associated with the height of the instability,
independent of the imposed magnetic field. Hence the only effect of varying
the magnitude of the imposed field in the linear stage is a change of the physical
height where the instability starts. The growth rate is independent of the mean
magnetic field as long as the predicted instability height falls well within the
simulation domain. This result was also confirmed in DNS; see figure 5.7.

5.4.4 Nonlinear evolution

At later times, we see that the imposed field gets depleted as the formed struc-
ture grows, both in terms of field and density, although the latter is only a
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Figure 5.6: Above: fitted effective magnetic pressure curves with indication of
the strongest negative gradient in effective magnetic pressure. Below: location
of the growing structures (DNS) and eigenmode of the linear instability analysis
for the same parameters. Adapted from Paper VII.

Figure 5.7: Effect of imposed field strength: instability starts at the same β

value, hence at larger depth for larger field, the growth rate is field independent.
Taken from Paper VII.
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Figure 5.8: Effective magnetic pressure along the perpendicular directions at
different times. Taken from Paper VIII.

change on the order of a few percent, much smaller than the turbulent pertur-
bations and thus only discernible in mean-field simulations.

We see in figure 5.8 that the structures become progressively narrower and
with β inside increasing towards βmin. As the density is higher deeper down,
the field becomes larger than the originally imposed one.

As the background magnetic field gets depleted, no fields remain to be
dragged along in the feedback mechanism. Thus inflows now only add density,
reducing β and as such the pressure difference with the background. Without
source the existing over-dense structure starts to sink.

5.4.5 Model extension (Paper VIII)

Our model reproduces the direct simulations rather well for the current setup.
However, as we have structure formation the field is no longer constant. The
effect of the presence of gradient terms of the magnetic field is assessed by
including JJJ as a building block in the model (other magnetic gradient compo-
nents are still zero). Thus we have to extend equation (5.7) to an expression of
the form

∆Π
B
i j =−

1
2

(
q̃BBBB

2
+ q̃JJJJ

2
+ q̃gggg2

)
δi j + q̃BsBiB j + q̃JsJiJ j + q̃gsgig j, (5.10)
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Figure 5.9: Flows in the nonlinear stage. High B: inflows and sinking, low B:
outflows and buoyancy. Taken from Paper VII.

where the isotropic component is now in a more explicit form, and where q̃Bs

and q̃gs map to qs and qg in equation (5.7); the coefficients themselves depend
on the mean fields. A first impression from figure 5.10 is that the presence of
currents increases the negative magnetic pressure effect.

If, in addition, we also allow some net helicity, combinations of JJJ and BBB
may have non-zero (pseudo-scalar) coefficients. If there is sufficient helicity
there will also be an α effect generating a dynamo field. The interaction of
NEMPI with such a field will be addressed in subsequent works. Also the ef-
fect of gravity, see figure 5.10, on the pressure reduction (qg) is still to be prop-
erly investigated. Once these questions have been addressed and understood
we can consider the energy equation. Note that the latter is already included in
mean-field simulations by Käpylä et al. (2012).

5.5 NEMPI in the sun?

So how are we doing in terms of solar surface fields? We observe magnetic
structures that are larger than the turbulent injection scale and that last longer
than a turbulent turnover time. In the sun such a separation of scales between
small granules and large magnetic structures is indeed observed. However,
the length scales found in the simulations are of the order of the density scale
height. The latter increases strongly with depth, hence ‘getting it right’ de-
pends strongly on where the structures are formed. Likewise for the magnetic
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Figure 5.10: Changes in the diagonal components in the presence of currents
(data was binned in points with no current (black), low current (blue) and high
current (red). Reduction of the effect for increased gravity strengths. Taken from
Paper VIII.

field, as this mechanism is limited to a fraction of the equipartition field, the
maximal field strength (in absolute units) which can be reached increases with
the depth of formation.

The growth rate during the linear stage, calculated for an isothermally strat-
ified atmosphere, for velocities and length scales of the order of the ones ob-
served at the solar surface, gives growth timescales of the order of days (Paper
VII). How exactly the growth rate expression is translated to a convective at-
mosphere is unclear, and, as pointed out earlier, these input parameters vary
quite strongly with depth. The timescales in the non-linear stage are mostly
limited by the sinking of the structure. This sinking is indeed something we
have to overcome to be able to produce any surface phenomena. It may be
possible that this effect is reduced through interaction with the surface as a
boundary or through the interaction with an instability originating in the en-
ergy equation (for example the one presented in Kitchatinov and Mazur, 2000).

Sinking might be avoided if the original field is regenerated through dy-
namo action, although, as mentioned before, the effect of helicity on the nega-
tive effective magnetic pressure effect is still to be properly investigated. This
last point also ties to our somewhat artificial initial condition of a constant
field, an assumption we would like to drop in the near future.
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Epilogue

I would like to steal this last page to again point out the merits and limita-
tions of the results presented in the included papers in terms of the quest for
understanding the formation of sunspots.

It is clear that our current setup, isothermal stratification with forced tur-
bulence rather than turbulent convection, and consequently an imposed field
rather than a dynamo generated one, is too simplified to be compared directly
with the solar convection zone.

However, we have now clearly demonstrated that the predicted turbulent
pressure reduction in the presence of a weak magnetic field exists and may
well persist for more solar like turbulence.

We have, for the first time, observed the instability due to this effect in
direct numerical simulations. This instability is able to concentrate energy
from a uniform background magnetic field into localised structures on spatial
and temporal scales that are much larger than the ones associated with the
(forced) turbulence. The behaviour of the instability (in the studied setup),
found in direct simulations, agrees very well with the results from our current
mean-field model.

The continuation of this work will first require a more detailed numerical
and analytical study of higher order effects related to structure formation as
we started in the last paper, as well as the effect of inclusion of forcing with a
finite degree of helicity. When these are well understood, only more numeri-
cally expensive simulations with realistic (convective) forcing and (radiative)
boundary conditions, will be able to provide further answers.

45



46



References

H. D. Babcock. The Sun’s polar magnetic field. Astrophys. J., 130:364, 1959. 4

H. W. Babcock. The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J., 133:572,
1961. 27, 28

H. W. Babcock and H. D. Babcock. The Sun’s magnetic field, 1952-1954. Astrophys. J., 121:349, 1955. 4

N. Babkovskaia, N. E. L. Haugen, and A. Brandenburg. A high-order public domain code for direct numer-
ical simulations of turbulent combustion. Journal of Computational Physics, 230:1–12, 2011. 24

H. Balthasar, M. Vazquez, and H. Wöhl. Differential rotation of sunspot groups in the period from 1874
through 1976 and changes of the rotation velocity within the solar cycle. Astron. Astrophys., 155:87–98,
1986. 30

E. G. Blackman and G. B. Field. Constraints on the magnitude of α in dynamo theory. Astrophys. J., 534:
984–988, 2000. 19

A. Brandenburg. The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J., 625:
539–547, 2005. 31

A. Brandenburg and K. Subramanian. Strong mean field dynamos require supercritical helicity fluxes.
Astron. Nachr., 326:400–408, 2005. 19

A. Brandenburg, K.-H. Rädler, and M. Schrinner. Scale dependence of alpha effect and turbulent diffusivity.
Astron. Astrophys., 482:739–746, 2008. 18

A. Brandenburg, N. Kleeorin, and I. Rogachevskii. Large-scale magnetic flux concentrations from turbulent
stresses. Astron. Nachr., 331:5, 2010. 33, 35

R. C. Carrington. On the distribution of the solar spots in latitudes since the beginning of the year 1854,
with a map. Month. Not. Roy. Astron. Soc., 19:1–3, 1858. 1

M. C. M. Cheung, M. Rempel, A. M. Title, and M. Schüssler. Simulation of the Formation of a Solar Active
Region. Astrophys. J., 720:233–244, 2010. 30

A. R. Choudhuri and P. A. Gilman. The influence of the Coriolis force on flux tubes rising through the solar
convection zone. Astrophys. J., 316:788–800, 1987. 28

J. Christensen-Dalsgaard. Lecture notes on stellar oscillations. 2003. 6

J. Christensen-Dalsgaard, D. Gough, and J. Toomre. Seismology of the Sun. Science, 229:923–931, 1985.
5

J. Christensen-Dalsgaard, D. O. Gough, and M. J. Thompson. The depth of the solar convection zone.
Astrophys. J., 378:413–437, 1991. 7

R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der mathematischen
Physik. Mathematische Annalen, 100:32–74, 1928. 22

S. D’Silva and A. R. Choudhuri. A theoretical model for tilts of bipolar magnetic regions. Astron. Astro-
phys., 272:621, 1993. 30



J. A. Eddy. The Maunder minimum. Science, 192:1189–1202, 1976. 5

Y. Fan. Magnetic fields in the solar convection zone. Living Reviews in Solar Physics, 6:4, 2009. 9

Y. Fan, W. P. Abbett, and G. H. Fisher. The dynamic evolution of twisted magnetic flux tubes in a three-
dimensional convecting flow. I. Uniformly buoyant horizontal tubes. Astrophys. J., 582:1206–1219,
2003. 27

G. Galilei. Istoria e dimostrazioni intorno alle macchie solari. 1613. 2

G. Guerrero and P. J. Käpylä. Dynamo action and magnetic buoyancy in convection simulations with
vertical shear. Astron. Astrophys., 533:A40, 2011. 29

G. E. Hale. On the probable existence of a magnetic field in sun-spots. Astrophys. J., 28:315, 1908. 3

G. E. Hale, F. Ellerman, S. B. Nicholson, and A. H. Joy. The magnetic solarity of sun-spots. Astrophys. J.,
49:153, 1919. 4

D. H. Hathaway. Doppler measurements of the Sun’s meridional flow. Astrophys. J., 460:1027, 1996. 3

D. H. Hathaway. The solar cycle. Living Reviews in Solar Physics, 7, 2010. 5

T. Heinemann, W. Dobler, Å. Nordlund, and A. Brandenburg. Radiative transfer in decomposed domains.
Astron. Astrophys., 448:731–737, 2006. 24

R. Howe. Solar interior rotation and its variation. Living Reviews in Solar Physics, 6:1, 2009. 8

D. V. Hoyt and K. H. Schatten. Group sunspot numbers: a new solar activity reconstruction. Sol. Phys.,
179:189–219, 1998. 6

H. Ji and S. C. Prager. The α dynamo effects in laboratory plasmas. Magnetohydrodynamics, 38:191–210,
2002. 19

A. Johansen, J. S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, and A. Youdin. Rapid planetesimal
formation in turbulent circumstellar disks. Nature, 448:1022–1025, 2007. 24

P. J. Käpylä, A. Brandenburg, N. Kleeorin, M. J. Mantere, and I. Rogachevskii. Negative effective magnetic
pressure in turbulent convection. Month. Not. Roy. Astron. Soc., 422:2465–2473, 2012. 35, 42

A. P. Kazantsev. Enhancement of a magnetic field by a conducting fluid. Sov. J. Exp. Theor. Phys., 26:1031,
1968. 16

A. P. Kazantsev, A. A. Ruzmaikin, and D. D. Sokolov. Magnetic field transport by an acoustic turbulence-
type flow. Zhurnal Eksperimental noi i Teoreticheskoi Fiziki, 88:487–494, 1985. 16

L. L. Kitchatinov and M. V. Mazur. Stability and equilibrium of emerged magnetic flux. Sol. Phys., 191:
325–340, 2000. 32, 43

I. N. Kitiashvili, A. G. Kosovichev, A. A. Wray, and N. N. Mansour. Mechanism of spontaneous formation
of stable magnetic structures on the Sun. Astrophys. J., 719:307–312, 2010. 32

N. Kleeorin and I. Rogachevskii. Effective Ampère force in developed magnetohydrodynamic turbulence.
Phys. Rev. E, 50:2716–2730, 1994. 32

N. Kleeorin and A. Ruzmaikin. Dynamics of the average turbulent helicity in a magnetic field. Magneto-
hydrodynamics, 18:116–122, 1982. 19

N. Kleeorin, I. Rogachevskii, and A. Ruzmaikin. Magnetic force reversal and instability in a plasma with
developed magnetohydrodynamic turbulence. Sov. Phys. JETP, 70:878–883, 1990. 32



N. Kleeorin, D. Moss, I. Rogachevskii, and D. Sokoloff. Helicity balance and steady-state strength of the
dynamo generated galactic magnetic field. Astron. Astrophys., 361:L5–L8, 2000. 19

N. I. Kleeorin, I. V. Rogachevskii, and A. A. Ruzmaikin. The effect of negative magnetic pressure and the
large-scale magnetic field instability in the solar convective zone. Pisma Astron. Zh., 15:639–645, 1989.
9, 32

A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’
numbers. Akademiia Nauk SSSR Doklady, 30:301–305, 1941. 12

A. G. Kosovichev. Tomographic imaging of the Sun’s interior. Astrophys. J. Lett., 461:L55, 1996. 5

A. G. Kosovichev and J. O. Stenflo. Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J.
Lett., 688:L115–L118, 2008. 30

F. Krause and K.-H. Rädler. Mean-field magnetohydrodynamics and dynamo theory. Pergamon Press, Ltd.,
Oxford, 1980. 16

J. H. Lienhard. Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Washington
State University, 1966. 13

M. G. Linton, D. W. Longcope, and G. H. Fisher. The helical kink instability of isolated, twisted magnetic
flux tubes. Astrophys. J., 469:954, 1996. 27

D. W. Longcope, G. H. Fisher, and S. Arendt. The evolution and fragmentation of rising magnetic flux
tubes. Astrophys. J., 464:999, 1996. 27

V. Martinez Pillet, B. W. Lites, and A. Skumanich. Active region magnetic fields. I. Plage fields. Astrophys.
J., 474:810, 1997. 4

H. K. Moffatt. Magnetic field generation in electrically conducting fluids. Cambridge University Press,
1978. 16

NASA/Marshall solar Physics. http://solarscience.msfc.nasa.gov. 2

Å. Nordlund, A. Brandenburg, R. L. Jennings, M. Rieutord, J. Ruokolainen, R. F. Stein, and I. Tuominen.
Dynamo action in stratified convection with overshoot. Astrophys. J., 392:647–652, 1992. 29

Å. Nordlund, R. F. Stein, and M. Asplund. Solar surface convection. Living Reviews in Solar Physics, 6:2,
April 2009. 8

S. Ortolani and D. Schnack. Magnetohydrodynamics of plasma relaxation. World Scientific Publishing,
Co. Pte. Ltd., Singapore, 1993. 19

E. N. Parker. The formation of sunspots from the solar toroidal field. Astrophys. J., 121:491, 1955. 27

E. N. Parker. The generation of magnetic fields in astrophysical bodies. X - Magnetic buoyancy and the
solar dynamo. Astrophys. J., 198:205–209, 1975. 28

E. N. Parker. Sunspots and the physics of magnetic flux tubes. I - The general nature of the sunspot. II -
Aerodynamic drag. Astrophys. J., 230:905–923, 1979. 27

J. Peiró and S. Sherwin. Finite difference, finite element and finite volume methods for partial differential
equations. In Yip S., editor, Handbook of materials modeling, Vol. 1: Methods and models, pages 1–32.
Springer, Berlin, 2005. 21

PENCIL CODE. https://code.google.com/p/pencil-code, 2001. 21

A. Pouquet, U. Frisch, and J. Leorat. Strong MHD helical turbulence and the nonlinear dynamo effect.
Journal of Fluid Mechanics, 77:321–354, 1976. 19



W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in FORTRAN. The
art of scientific computing. Cambridge University Press, 1992. 21

M. Rheinhardt and A. Brandenburg. Test-field method for mean-field coefficients with MHD background.
Astron. Astrophys., 520:A28, 2010. 18

M. Rheinhardt and A. Brandenburg. Modeling spatio-temporal nonlocality in mean-field dynamos. Astron.
Nachr., 333:71–77, 2012. 18

L. F. Richardson. Weather prediction by numerical process. Cambridge University Press, 1922. 12

M. Rieutord and F. Rincon. The Sun’s supergranulation. Living Reviews in Solar Physics, 7:2, 2010. 3

I. Rogachevskii and N. Kleeorin. Magnetic fluctuations and formation of large-scale inhomogeneous mag-
netic structures in a turbulent convection. Phys. Rev. E, 76(5):056307, 2007. 32

Royal Swedish Academy of Sciences. http://www.solarphysics.kva.se. 2

A. Ruzmaikin. Clustering of emerging magnetic flux. Sol. Phys., 181:1–12, 1998. 28

A. A. Schekochihin, S. C. Cowley, S. F. Taylor, J. L. Maron, and J. C. McWilliams. Simulations of the
small-Scale turbulent dynamo. Astrophys. J., 612:276–307, 2004. 16

M. Schrinner, K.-H. Rädler, D. Schmitt, M. Rheinhardt, and U. Christensen. Mean-field view on rotating
magnetoconvection and a geodynamo model. Astron. Nachr., 326:245–249, 2005. 17

M. Schrinner, K.-H. Rädler, D. Schmitt, M. Rheinhardt, and U. R. Christensen. Mean-field concept and
direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophysical and As-
trophysical Fluid Dynamics, 101:81–116, 2007. 17

M. Schwabe. Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr.,
21:233, 1844. 1

SDO/HMI. http://sdo.gsfc.nasa.gov. 3

S. K. Solanki. Sunspots: an overview. Astron. Astrophys. Rep., 11:153–286, 2003. 4

F. W. G. Spörer. Resultate aus Beobachtungen der Sonnenflecken. Astron. Nachr., 107:331, 1883. 1

H. C. Spruit. Pressure equilibrium and energy balance of small photospheric fluxtubes. Sol. Phys., 50:
269–295, 1976. 32

M. Steenbeck, F. Krause, and K.-H. Rädler. Berechnung der mittleren Lorentz-Feldstärke v×B für ein
elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung. Zeitschrift
Naturforsch. A, 21:369, 1966. 16

R. F. Stein and Å. Nordlund. On the formation of active regions. Astrophys. J. Lett., 753:L13, 2012. 31

J. O. Stenflo and A. G. Kosovichev. Bipolar magnetic regions on the Sun: global analysis of the SOHO/MDI
data set. Astrophys. J., 745:129, 2012. 30

M. Stix. The Sun. An introduction. Springer-Verlag, Berlin, 1989. 1, 7

M. J. Thompson, J. Christensen-Dalsgaard, M. S. Miesch, and J. Toomre. The internal rotation of the Sun.
Ann. Rev. Astron. Astrophys., 41:599–643, 2003. 30

S. M. Tobias, N. H. Brummell, T. L. Clune, and J. Toomre. Pumping of magnetic fields by turbulent
penetrative convection. Astrophys. J. Lett., 502:L177, 1998. 29

I. G. Usoskin. A history of solar activity over millennia. Living Reviews in Solar Physics, 5:3, 2008. 6



J. M. Vaquero and M. Vázquez, editors. The Sun recorded through history: scientific data extracted from
historical documents, volume 361 of Astrophysics and Space Science Library, 2009. 1

M. A. Weber, Y. Fan, and M. S. Miesch. Comparing simulations of rising flux tubes through the solar
convection zone with observations of solar active regions: constraining the dynamo field strength. Solar
Physics, 2012. 30

J. A. Westwood Oliver. Sunspottery: Or, What do we owe to the Sun? Simpkin, Marshall, London, 1883. 1

J. H. Williamson. Low-storage Runge-Kutta schemes. Journal of Computational Physics, 35:48, 1980. 22

S. Yashiro and K. Shibata. Relation between thermal and magnetic properties of active regions as a probe
of coronal heating mechanisms. Astrophys. J. Lett., 550:L113–L116, 2001. 4

I. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokolov. Magnetic fields in astrophysics, volume 3. New
York, Gordon and Breach Science Publishers, 1983. 17

Y. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff. The almighty chance. World Scientific Publication,
Singapore, 1990. 16

J. Zhao, A. G. Kosovichev, and T. L. Duvall, Jr. Investigation of mass flows beneath a sunspot by time-
distance helioseismology. Astrophys. J., 557:384–388, 2001. 9


	Abstract
	Acknowledgments

	List of Papers
	1 Introduction
	1.1 Looking at the sun
	1.2 A magnetic sun
	1.3 A peek beneath the surface
	1.4 Where do those fields come from?

	2 Turbulence and magnetic fields
	2.1 The basic equations
	2.2 Turbulence
	2.2.1 Cascade
	2.2.2 Stochasticity

	2.3 Dealing with turbulence
	2.3.1 Modelling turbulence
	2.3.2 Mean-field theory
	Example: turbulent dynamo

	2.3.3 Closure models
	Kinematic mean-field induction (Paper I)
	Non-linear mean-field induction (Paper II)



	3 Numerical simulations
	3.1 Solving PDEs numerically
	3.1.1 Spatial derivatives: `finite difference code'
	3.1.2 Time evolution

	3.2 Numerical `experiment'
	3.3 Pencil Code: open, modular, parallel
	3.4 Runs and their analysis

	4 Magnetic fields on the solar surface
	4.1 Sunspots as a part of the solar dynamo
	4.2 Assumptions in the standard sunspot model
	4.3 Incompleteness in the standard sunspot model
	4.4 Alternative suggestions
	4.4.1 Convection zone dynamo
	4.4.2 Sunspots without rising flux tubes


	5 Turbulent stress and magnetic fields
	5.1 Effective magnetic pressure
	5.2 Experiment and model
	5.3 Negative effective magnetic pressure (Papers III, IV, VI)
	5.4 Negative effective magnetic pressure instability
	5.4.1 Observation in direct simulations (Papers V & VI)
	5.4.2 Reproduction of DNS results in mean-field simulations (Paper VII)
	5.4.3 Linear instability
	5.4.4 Nonlinear evolution
	5.4.5 Model extension (Paper VIII)

	5.5 NEMPI in the sun?

	References



