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Abstract

The generally accepted view that a sunspot originates from a flux tube, emerging through
the solar photosphere, after travelling coherently across the underlying convection zone, is
being challenged. While the properties of an emerging flux tube appear to reproduce the
observations, it is not clear if other mechanisms are possible as well. Furthermore, questions
remain about the formation and coherent rise of such structures,which are currently strongly
debated.

One of the objectives of the present work is to verify that it is possible to create coherent
magnetic structures starting from a homogeneous background. The driving idea is to un-
derstand if and under what set of conditions, sunspots can form as near surface phenomena,
as opposed to rising tachoclinic magnetic flux tubes.

In direct numerical simulations we found a reduction of the effective turbulent pressure
in the presence of magnetic fields and stratification, as anticipated by earlier analytical cal-
culations. A subsequent mean-field analysis incorporating this reduction suggests that this
setup can become unstable and form magnetic flux concentrations under certain conditions.

Mean-field models are however degenerate in the sense that different closure models
can be used, possibly giving different results. In the case above, the effect of turbulence
was captured by modelling the Reynolds stress tensor. Rather than looking for higher
order closure, one can also determine coefficients in a closure model from experiments or
simulations. The test-field method is an example of the latter and has been successfully
used for modelling the electromotive force in dynamo problems.

Closure models are approximations within a certain parameter regime (for example only
for low magnetic Reynolds number) and as such suffer from a loss in generality. In this
context we also investigate the validity of the astrophysical dynamo description for condi-
tions more relevant to laboratory experiments, such as the reversed field pinch in plasma
confinement experiments.
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Summary of the papers

Paper I introduces the physics behind the reduction of the effective turbulent pressure in
the presence of a magnetic field. This paper gives results of the first stratified simulations
and confirms that the pressure reduction effect works even if there is small-scale dynamo
action.

Associated mean-field models show the formation of structures by an instability that
is investigated in more detail in Paper II, where it is referred to as the negative effective
magnetic pressure instability. Here it is shown that the break-up of the eigenmode into
three-dimensional structures with variation along the direction of the mean field is only
possible when there is also a negative effective tension force, although our direct simulations
have show that the corresponding effect should be absent.

In Paper I, the test-field method was applied to determine the effect of turbulent pumping
down the gradient of turbulent intensity. It was also shown that such pumping is absent
if there is just density stratification. To investigate more rigorously turbulent transport in
a stratified layer, we develop in Paper III a new test-field method for inhomogeneous and
anisotropic turbulence in the presence of just one preferred direction. In that case, new
effects emerge that are connected with the symmetric part of the gradient matrix of the
mean magnetic field.

To examine whether mean-field effects can also be studied in laboratory experiments,
we apply in Paper IV mean-field dynamo theory to a cylindrical geometry and determine
the magnetic field evolution in the case where an axial magnetic field is applied together
with an axial electric field. The mean field is essentially determined by the same feed-
back mechanism that would quench dynamo action in the astrophysical case of self-excited
dynamos.
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Chapter 1

Introduction

Our solar system’s central star has long been a daily observed enigma. Since Galilei opened
Pandora’s box about 400 years ago with his publications on sunspot observations, a number
of the Sun’s mysteries have been cleared up, yet new ones emerge and plenty remain. One
of them is the origin of those very sunspots.

The study of solar activity is not purely of academic interest. While short term space
weather predictions are a faraway dream, improving our understanding of the long term
solar cycle will support planning of space research activity and missions. More down to
earth, effects of solar activity are related to magnetic storms interfering with power grids
in polar regions and intercontinental aviation (high altitude, polar routes). There may also
be effects on the Earthly climate due a correlation between solar activity and magnetic
shielding of cosmic rays.

Sunspot observations and terrestrial tracers of solar activity contain our main longterm
data source on the solar cycle. They play a key role in our current efforts to understand
the physics of the Sun over extended temporal spans. And vice versa, numerical realisation
of sunspot-like structures requires insight into the physical conditions inside the Sun.

1.1 Looking at sunspots

The first telescopes permitted early 17th century scientists a more detailed inspection of
the celestial bodies. While Galileo Galilei was not the first person to notice sunspots, see
Figure 1.1, he was the one who confronted the western world and its dogmatic Aristotelic
world view (perfect spheres in circular orbit around the earth) with their existence. As
their motions did not stroke with ellipsoid trajectories around the sun, Galilei reasoned
that they might be the equivalent of terrestrial clouds on the solar surface. In his drawings
he categorised the observed spots by shape.

As the Maunder minimum (1645-1715) literally offered very little to see (Eddy, 1976),
most astronomers let their attention wander to other directions of the skies. Interest was
regained half way into the 19th century, when Schwabe, in 1843, after an 18 year search for
a planet closer to the sun than Mercury, noticed the cyclic behaviour (‘a period of about
10 years’) of the number of sunspots (Schwabe, 1844). Under an uninteresting title, this
discovery kept went almost unnoticed until its publication in Kosmos by von Humboldt
(1851). This sparked a new wave of that resulted in a large quest for phenomena with the
same frequency, ranging from geophysical and atmospherical cycles to somewhat dubious
demological trends (Westwood Oliver, 1883). In the wake of enthusiasm after this discovery,
Carrington (1858) noticed and Spörer (1883) defined an equatorial migration of the sunspots
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2 Chapter 1 Introduction

Figure 1.1: Observational sketches and classification of sunspots by shape, Galileo Galilei - Istoria
e Dimostrazioni Intorno Alle Macchie Solari, 1613

during these 11 years, the latter also reported a time delay between the cycles of the two
hemispheres (Spörer, 1888).

With the invention of the spectroscope (1814) and new insights on the origin of light at
the end of the 19th century, new observational methods became available to astronomers.
It was now possible to investigate physical properties of faraway objects by analysing their
light. In 1896 Zeeman discovered atomic line splitting in a magnetic field (degeneracy
of energy levels is broken by interaction of the magnetic field with the electron angular
momentum), with the secondary lines (m = ±1 transitions) circularly polarised in opposite
directions. The combination of a spectrometer and a polarimeter could now be used to
measure a magnetic field: the wavelength separation of the lines gives a measure of the
magnetic field. The next big step in the description of sunspots was the discovery of their
magnetic nature by Hale (1908). Studying line splitting in Fe and Ti absorption lines,
he found that sunspots exhibited very strong magnetic fields. In his continuing study of
sunspots at the Mt Wilson observatory, Hale et al. (1919) found sunspot structures with
opposite polarities on the northern and southern hemispheres. These polarities turned out
to reverse at the end of the 11-year cycle, see Figure 1.2. This suggested that the true
magnetic cycle is 22 years long, the ‘Hale cycle’, as opposed to the sunspot number cycle.
In the same article Joy’s observation regarding the latitudinal change in orientation of
sunspots was published. Sunspots not the only magnetic structures appearing on the solar
surface, which are generally denoted by ‘magnetic active (surface) regions’.
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Figure 1.2: Illustration of the active region polarity reversal during consecutive 11-year solar cycles,
G.E. Hale 1919

1.2 Developments in solar physics

Spectroscopic data revealed surface electromagnetic fields (Zeeman splitting), surface ve-
locities (Doppler shift), constituent elements (absorption spectrum) and temperature and
density estimates (line broadening, Stark effect, colour index and continuum assumption).
Yet all of this is limited to the immediate photosphere, and until the second half of the
previous century there was almost no information on the interior structure of the sun due
to its opacity for electromagnetic radiation.

As both the understanding of theoretical physics and the amount of available data grew,
different attempts were made to put these into a meaningful physical model.

A first mathematical model by Lane in 1870 (Tassoul & Tassoul, 2004) was based on
the observation of low mass elements in a gaseous state by spectral analysis of the solar
atmosphere. In this early model it was assumed that the Sun’s interior was gaseous and
chemically homogeneous throughout, and in a state of hydrostatic equilibrium, what would
be called nowadays a ‘polytropic model’. The hydrodynamical aspect of stellar structure
was further developed in the beginning of the twentieth century by Eddington (1926): con-
sidering competition of radiative and convective energy transfer processes, today’s picture
of a radiative core and a convective envelope was established.

Unfortunately neither gravitational energy nor any other mechanism known at the time
was sufficient to compensate for the radiative losses of the sun, and as such to explain its
long life time (Eddington, 1920), as derived from independent geological estimates about the
age of the Earth. The discovery of mass energy equivalence at the start of the 20th century
lead to the development of nuclear physics , and soon the idea of thermonuclear reactions
powering the Sun via fusion of hydrogen into helium (Chandrasekhar, 1939; Burbidge et
al., 1957) was found to be the solution of the energetic problem.
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While the questions about the structure of the Sun were slowly being solved, others arose
with the observation of solar magnetic fields. In 1919 Joseph Larmor wrote a paper in which
he proposed possible explanations for solar magnetic fields (Larmor, 1919), of which a self-
excited dynamo based model, to ‘maintain a permanent magnetic field from insignificant
beginnings, at the expense of some of the energy of the internal circulation’, seemed to
him the only plausible explanation. However, Cowling (1933) proved the impossibility of
axisymmetric dynamos and concluded his paper with ‘The theory proposed by Sir Joseph
Larmor, that the magnetic field of a sunspot is maintained by the currents it induces in
moving matter, is examined and shown to be faulty; the same result also applies for the
similar theory of the maintenance of the general field of Earth and Sun.’

This discouraged further investigation, and the dynamo theory was left undeveloped, until
it was picked up again by Elsasser (1946) in a description of the earth magnetic field. The
solution to Cowling’s ‘antidynamo theorem’ was found to be the intrinsic multidimensional
nature of turbulence required to break the symmetry. In 1955, following the same lines,
Parker reintroduced dynamos in solar physics (Parker, 1955).

The global dipole field and its reversal, observed in the 1950s by Babcock & Babcock
(1955). This reversal showed that the solar magnetic field could not be due to permanent
magnetism. A subsequent qualitative solar model by Babcock (1961), mathematically
revised by Leighton (1969), introduced a global solar dynamo description. It is now clear
that the solution to the origin of the solar magnetic field should involve a dynamo, but as
yet we are still unable to reproduce from first principles its basic phenomenology.



Chapter 2

Mean-field theory and dynamos

2.1 Turbulence

The dynamical behaviour of fluids strongly depends on both initial and boundary condi-
tions, and the presence of even small perturbations. In many circumstances these effects
are so pronounced, that statements about the long term evolution of a flow, are, in general,
true only in a statistical sense. This chaotic behaviour is often referred to as ’turbulence’
and is due to the nonlinearity of the fluid equations.

Turbulence is characterised by a self similar energy transfer from larger to smaller scales.
This can be visualised as large vortex structures, also called ‘eddies’, breaking up in smaller
copies of themselves. This process continues eventually down to scales where dissipative
energy losses dominate the behaviour of the flow. For isotropic homogeneous turbulence
the energy contained in this cascade is distributed according to a power-law in wave number
k−5/3, as derived from dimensional arguments by Kolmogorov (1941). The exact value of
the exponent can in principle be altered in the presence of anisotropy introduced either by
gravity or magnetic fields.

The degree to which a flow is turbulent, can be characterised by the Reynolds number
(Re), approximately the ratio between the nonlinear term and the dissipation term in the
fluid equations. In fluid dynamics Re is customarily defined as u× l/ν, where l is a relevant
length scale, u the local velocity and ν the viscosity. In magneto-hydrodynamics (MHD), it
is possible to define a magnetic equivalent ReM = u×l/η, where the viscosity is substituted
by the magnetic diffusivity η, and the ratio ReM/Re = ν/η is called the magnetic Prandtl
number(PrM ).

2.2 Mean field theory

Physical phenomena observed on large spatial or temporal scales can be manifestations
of processes happening on much smaller scales. Unfortunately it is computationally pro-
hibitive to simultaneously compute and resolve the dynamics on all relevant scales. In
the case of the Sun, the dynamical ranges are so large, that such an approach is virtually
impossible. To realise global scale simulations, it is necessary to model the effects due to
physics occurring on scales that are not resolved.

Two general formalisms exist: large eddy simulations (LES), where a spectral filtering is
applied to distinguish between resolved and modelled scales, and mean field theory (in fluid
dynamics also known as Reynolds averaged Navier-Stokes or RANS), where the distinction
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6 Chapter 2 Mean-field theory and dynamos

is made between averaged (X) and fluctuating (x) quantities, where

X = X + x. (2.1)

Despite the resemblance of Equation (2.1) to a perturbation equation, mean-field theory
does not make any assumption about the relative strength of the fluctuations, only that
their average value is zero.

The averaging procedure must obey certain rules. These Reynolds averaging rules require
that the average of the fluctuating component is zero and that the averaging operator must
commute with respect to summation, derivation, multiplication with an averaged quantity:

f = 0 (2.2)

F +G = F +G (2.3)

∂sF = ∂sF (2.4)

FG = FG (2.5)

While these rules seem natural, in practice they are not obeyed by many averaging proce-
dures. An important exception are averages over periodic coordinate directions. Yet, for
example, in spatial or time averaging, errors introduced by violations become negligible if
the separation between the averaging scale and the scale over which the mean fields vary
is large enough: integrating F + f over a dimension with length L only returns F when
variations in f average out to 0 over this scale L and deviations of F over scale L are still
small.

Neither LES nor RANS leads to a closed system of equations, and consequently fur-
ther assumptions need to be introduced. Both approaches are commonly used in fluid
dynamics, however within the astrophysical MHD community their applicability has been
questioned, in particular because behaviour at small scales is generally anisotropic (due
to magnetic fields) and in violently turbulent flows it is very subjective to define a proper
scale separation.

2.2.1 Example: induction equation

The time evolution of a magnetic field is described by the induction equation. In the non-
relativistic limit, when temporal and spatial scales are larger than the plasma scales, it
reads:

∂tB = ∇× (U×B− ηµ0J) . (2.6)

To increase readability, in the rest of the text the units are chosen such that µ0 = 1. Using
a Cartesian coordinate system, assuming the velocity field to be a simple shear flow (the
flow direction is orthogonal to its gradient) U = Sxey, and a magnetic field such that
Bz = 0 and Bx and By are only function of x, the evolution of the magnetic field becomes:

∂tBy = BxS + η∇2By (2.7)

∂tBx = η∇2Bx (2.8)
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It is evident that By can be generated by shearing of the Bx component, however, as no
source seems available for the latter, the system will eventually just decay on a resistive
timescale. This field generation by shear is referred to as the Ω-effect. The reason being
that in rotating bodies (i.e. the solar interior), the shear generally corresponds to differential
rotation.

After performing an averaging operation according to the rule of Reynolds averages, we
split the involved quantities of Equation (2.8) into their mean and fluctuating parts. We
can now separately consider the evolution of the mean components:

∂tBy = (∇× u× b)y +BxS + η∇2By (2.9)

∂tBx = (∇× u× b)x + η∇2Bx (2.10)

where an additional term compared to the total field equations, now occurs. This term is
an average that depends on the correlation between magnetic and velocity fluctuations, and
is called the mean electromotive force (EMF). The evolution equations for the fluctuating
parts can be obtained by subtracting the mean from the total field equations, for the
y-component this gives:

∂tby =
(∇× [u×B + U× b− u× b

])
y

+ bxS + η∇2by (2.11)

The simplest assumption one can make is that the EMF depends only on the local value
of the mean quantities, and in particular on the local value of the mean magnetic field and
its spatial derivatives:

u× bi = αijBj + ηijk∂kBj = E i, (2.12)

where the turbulent transport coefficient tensors α and η themselves may depend on mean
field quantities. If there is a non-zero α, it is possible to create Bx starting from a finite
field in the y direction, this is the α-effect. The resulting generation of magnetic energy
from kinetic energy is indicated by the term dynamo.

In the isotropic case the EMF expression reduces to

E = αB− ηtJ (2.13)

where ηt can be interpreted as a turbulent diffusivity (Brandenburg & Subramanian, 2005).

2.2.2 The α-effect

It is possible to generate magnetic fields through turbulent motions. Following the formal-
ism from Steenbeck et al. (1966), dynamo term linear in B is dubbed the α-effect. Note
that while the isotropic part of the ηt-tensor term is associated with diffusive decay, its
anisotropic components can give rise to a large scale field in the presence of a magnetic
field gradient.

From the analysis Pouquet et al. (1976), it is clear that in the case where the effect of
magnetic fields on the flow can not be neglected, the expression for α can be approximated
by:

α = −τ
3
u · ω +

τ

3ρ
j · b. (2.14)
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The first term, combining the velocity (u) and vorticity (ω) fluctuations and a timescale τ is
indicated as the kinematic α-effect. Regarding if for, a certain flow, this term remains finite
or becomes 0 in the limit of high ReM , the resulting dynamo will be called respectively fast
or slow. The second term, the mean value of scalar product of the fluctuating components of
magnetic field (b) and current density (j) divided by the density (ρ), also called the ‘current
helicity’ of the fluctuating fields, reduces the effect in the presence of strong magnetic fields.
Because of this, the α-effect is ‘quenched’ and the dynamo saturates (Ivanova & Ruzmaikin,
1977). We can approximate this current helicity by magnetic helicity a ·b ≈ k2j ·b, where a
is the fluctuating component of the magnetic vector potential and 1/k a length scale. Thus
the magnetic quenching can be alleviated by a flux of magnetic helicity from the fluctuating
fields out of the domain (Kleeorin et al., 2000; Blackman & Field, 2000).

Depending on the relative importance of the shearing term in Equation (2.10), dynamo
systems are generally categorised as αΩ or α2 or α2Ω dynamo, in the latter case has both
effects occur with a similar order of magnitude. Different mechanisms will also result in
different field topology (Chabrier & Küker, 2006).

2.3 Closure models

The turbulent transport coefficients in the dynamo example above are an example of a
closure model. They can be given (from measurements or estimates) or derived from other
equations, for example an evolution equation for the EMF (Brandenburg et al., 2005),
which eventually will introduce further unknowns (which have to be modelled).

These models generally have a certain parameter range for which they are valid, extrap-
olation to a different regime is not necessarily a good idea.

Unfortunately the model simplifications are based on perturbation assumptions, like low
magnetic Reynolds number (dominant diffusion term) or small fluctuating fields (triple
correlations can be neglected). In the astrophysical context these parameter domains are
relatively uninteresting, but on the bright side, this domain is also accessible by DNS and
the validity of these approaches can be tested for this regime.

2.3.1 Example: test-field method

An alternative approach is the measurement of transport coefficients in DNS. Being a
diagnostic method, this concept has the drawback that one is restricted to flow conditions
that can be produced in DNS. Also, in itself, this method has no predictive character (only
by interpreting the findings in a model).

A promising technique is the ‘test-field method’ (Schrinner et al., 2005, 2007; Rheinhardt
& Brandenburg, 2010): Through hydrodynamical calculations a turbulent flow is calculated.
By adding a test (magnetic) field B(q), with a small amplitude to stay in the kinematic
regime and a geometry that allows relatively simple numerical analysis, this turbulent
system generates fluctuations b(q):

∂tb(q) = ∇× [U× b(q) + u×B(q)] + η∇2b(q) +∇× [u× b(q) − u× b(q)]. (2.15)
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Figure 2.1: Effect of scale separation on transport coefficients for an axisymmetric turbulent flow in
the presence of rotation and density stratification.

This feedback is used to calculate the EMF, which in turn allows us to determine the mean
field coefficients for the given flow by solving.

E i = u× b(q)
i = αijB

(q)
j + ηijk∂kB

(q)
j (2.16)

The validity of the method hinges on the assumption that the transport coefficients depend
only on the flow (¯̄α

(
U,u

)
and ¯̄η

(
U,u

)
). Hence it is exact in the kinematic regime, where

the magnetic field is not strong enough to affect velocities, with fields varying linear in space.
For stronger mean magnetic fields the numerical simulation should be full MHD instead
of only hydrodynamical, however the formalism still holds through implicit B-dependence
of U and u) and it is possible to obtain transport coefficients as a function of the average
velocity and magnetic field. The method can be expected to break down when magnetic
fluctuations affect the flow (the equations are no longer linear in the test-field).

As the validity of this method is still under some discussion, it is important to provide
results which can be compared to the ones obtained through different methods or analytical
calculations. In this context we studied in Paper III how measured turbulent transport
coefficients depend on angular velocity and gravity in axisymmetric turbulence, i.e. tur-
bulence that has only one preferred direction. The advantage of this setup is that due
to symmetry, the amount of possible non-zero coefficients in Equation (2.16) reduces from
9+27 = 36 to 9, which reduces the amount of computations and makes it easier to interpret
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the physical origins and effects of the individual coefficients (competing pumping effects and
(an)isotropic diffusion and magnetic field generation). The findings seem to support earlier
predictions. In particular, in the absence of gravity and for weak rotation, as quantified
by the Coriolis number Co = 2Ω/urmskf , the only non-vanishing coefficients are β⊥ and
β‖, which quantify contributions to the mean electromotive force proportional to the mean
current density perpendicular and parallel to the preferred direction. As angular velocity
increases, several new effects come into play, such as an effect proportional to Ω × J, also
known as the Rädler-effect (Rädler, 1969), quantified by the coefficient δ, as well as effects
perpendicular and parallel to a vector K, which is the projection of the symmetric part of
the magnetic field gradient tensor along the proffered direction.

2.4 Observed dynamos

2.4.1 Experimental measurements

Liquid sodium experiments

Since its theoretical prediction, a number of experiments have been devised to demonstrate
the existence of the α-effect and to verify and extend our current knowledge. Up until now
successful generation of a magnetic field was obtained in a number of liquid sodium exper-
iments in Karlsruhe (Müller & Stieglitz, 2002), Riga (Gailitis et al., 2004) and Cadarache
(Monchaux et al., 2009). Sodium was used for its high conductivity and low mass density
(among liquid metals), in order to be able to reach sufficiently high ReM with reasonable
power consumption. Liquid metal experiments are however limited in diagnostics, due
to their electromagnetic opacity, as well as in accessible parameter range. Hopefully the
plasma experiment under construction in Madison (Spence et al., 2009) will allow us to
study the effect beyond the current limitations.

Reversed field pinch

In fact there are already plasma experiments where the α-effect is found to play an im-
portant role, namely in the reversed field pinch setup (RFP). This is a transformer-based
magnetic confinement plasma experiment in the context of nuclear fusion research.

In the RFP experiment a current generates and heats a plasma in a toroidal vessel.
This current is generated by a time dependent flux, confined in an iron core, through the
conducting plasma ring, which essentially plays the role of the load in a transformer setup.
The plasma is confined by magnetic pressure from, on one hand, an externally applied
toroidal field (poloidal magnetic coils) and, on the other hand, a poloidal field generated by
the toroidal current. The fact that the latter is of the same magnitude order as the applied
field is one of the key differences compared to the tokamak setup. The observed toroidal
magnetic field profile during operation shows a sign reversal near the edge, after which the
device was named.

The experiment is used to study MHD phenomena that might be relevant for research
in nuclear fusion, like turbulent transport and resistive wall instabilities Bodin (1983);
Ortolani (1989). The RFP setup is currently not considered as a possible reactor option
due to its high energy and particle losses.
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Figure 2.2: Toroidal component of current and electric field in the RFP, adapted from Ji & Prager
(2002)

The presence of a dynamo in this context is apparent from the need for an EMF term to
balance Ohm’s law, shown in Figure 2.2:

ηJext = E + Eext + U×B + E , (2.17)

where we consider the externally applied electric field separately as a source term. The
effect of the EMF is a flattening of the current profile by reduction of the current in the
center and an increase near the edge. In terms of stability this means a reduction of current
instabilities in the center and a reduction of kink instabilities (which are proportional to
the field gradient), but also an increase of the wall instabilities and as such the presence of
a dynamo does not solve the problem of poor confinement.

In Paper IV we attempt to describe the RFP dynamo in the context of Equations (2.13)
and (2.14). This model is generally used in the astrophysical context where magnetic fields
are generated from a small seed field by the α-term in the EMF. In the problem at hand,
however, a strong magnetic field is already present and the result of the α-effect, generated
from shearing instabilities, is a reduction of the field decay rate to resistive rather than
turbulent time scales (Ji & Prager, 2002). In our simulations we find indeed this slowed
decay as shown in Figure 2.3, however we generally do not find the field reversal, except
when including helicity fluxes in the domain, see Figure 2.4. This last result appears
to contradict earlier statements that the α effect would be responsible for the reversal
(Bhattacharjee & Hameiri, 1986), although it may be possible that our current model is
too simple.

2.4.2 Astrophysical dynamos

Dynamos are believed to be responsible for the major fraction of the large scale magnetic
fields observed in the universe, from galaxies to the field of our own little planet. The need
for dynamos is not always obvious. In galaxies, the Ohmic decay times exceed the age
of the universe. However, the gas is turbulent (driven by supernova explosions) and the
turbulent decay time is only some ten million years. Therefore, the field must be supplied
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Figure 2.3: Time evolution of magnetic energy contained in the mean and fluctuating component,
taken from Paper IV.

Figure 2.4: Radial profile of the toroidal component of the magnetic field with (dashed line) and
without (full line) helicity fluxes for two different ratios of induced to applied field, taken
from Paper IV.
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by a dynamo. By contrast, in Earth’s core, the Ohmic decay time is only of the order
of ten thousand years, so the need for a dynamo is very obvious. In the Sun, the Ohmic
decay time is again quite long, so a large scale magnetic field could survive in the radiative
interior for long times, but it would be difficult to explain reversals on an 11 year time
scale. The Sun’s magnetic field will be addressed in more detail in the following chapter.





Chapter 3

Observed properties of sunspots

3.1 Sunspot statistics

3.1.1 22 year cycle

As mentioned before, the sunspot number count exhibits a cyclic behaviour with a period
of, on average, 11 years with a magnetic polarity reversal across the equator in subsequent
cycles, giving a 22 year magnetic cycle. During such a cycle one observes an equator-ward
migration of active regions (‘Spörers law’) and a pole-ward migration of the mean surface
magnetic field (Li et al., 2001).

3.1.2 Large scale time modulation

Sunspot data shows a modulation of maximum activity on longer timescales, see also Fig-
ure 3.1, down to a nearly total absence during ‘grand minima’. Only one of the latter, the
Maunder minimum, has occurred since the beginning of systematic observations. However,
solar surface activity in pre-Galilean times can be estimated from isotopic 10Be abundances
in arctic ice (Beer et al., 1990), a comparison between sunspot count and 10Be data is
shown in Figure 3.2. The increased presence of this less stable isotope in an ice layer at
a certain depth can be explained by a larger amount of incoming cosmic rays at the time
of the corresponding ice formation due to a weaker shielding during periods of low solar
activity.

Figure 3.1: ’Butterfly diagram’: evolution of the number of sunspots as a function of latitude and
time, taken from the Marshall Space Flight Center website

15
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Figure 3.2: Comparison of sunspot observations (GSN/WSN) with the solar activity reconstructed
from 10Be abundance in arctic ice. Weak activity corresponds to lowered magnetic
shielding and as such increased cosmic radiation, leading to formation of less stable
isotopes (Usoskin et al., 2004).

Figure 3.3: Sunspot size distribution (Baumann & Solanki, 2005), sunspot area given in MSH (mil-
lionth of a solar hemisphere).

3.2 Individual spots

3.2.1 Surface structure

By ‘sunspot’, early astronomers referred to a black area (‘umbra’ - not necessarily a single
closed area and therefore sunspots are also referred to as ‘active surface region’), covering
a solar surface area of the order 107 - 109 square kilometer, see also Figure 3.3, and a
relatively dark area surrounding it (penumbra), an observation is shown in Figure 3.4.
The reduced observed radiation is caused by a suppression of the convective energy flux
by magnetic pressure. The magnetic fields have a field strength of the order 2000-4000
Gauss in the darkest part of the umbra down to 700-1000 Gauss at the outer edge of the
penumbra. Because of these strong magnetic fields, also the the temperature is reduced,
by respectively 1000-1900K in umbra and 250-400K in penumbra (Solanki, 2003): the total
pressure inside the spot has a large contribution of the magnetic pressure, thus radial
pressure balance requires the gas pressure, and as such the temperature, inside to be much
lower than outside. In addition, because of this temperature reduction, the optical depth
reaches unity at much larger geometrical depth (order 500-1500 km), this apparent surface
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Figure 3.4: Sunspot observed by the Swedish Solar telescope, taken from the website from the
Institute for Solar Physics.

depression was observed by Wilson in 1769 (Giovanelli, 1982). These fields have a field
strength of the order 2000-4000 Gauss in the darkest part of the umbra down to 700-1000
Gauss at the outer edge of the penumbra. An active region usually exhibits a bipolar
magnetic structure with a latitude dependent tilt with respect to the toroidal direction
(‘Joys law’, Hale et al. (1919)). Sunspots have a larger rotation speed than the surrounding
medium: at the equator the solar angular velocity is about 450nHz, for young sunspots
this can be as high as 473 nHz , this velocity decreases as the sunspot ages and and is
lower for sunspots in lower attitudes (Balthasar et al., 1986; Zappala & Zuccarello, 1991).
The reason for this velocity difference has been sought in anchoring or the formation of
sunspots deeper in the convection zone, where angular velocities are higher (Balthasar et
al., 1982). Sunspots often have an internal rotation. Its origins are under discussion, but
can be interpreted as the result of twist in an emerging flux tube (Longcope et al., 1999).

Local helioseismology has provided more information on the flow structure around sunspots,
showing a rather shallow structure surrounded by strong convective motions (Kosovichev,
1996, 2002, 2004; Zhao et al., 2001), see Figure 3.5.

3.2.2 Emergence and decay

In the early stage of a sunspot we see the appearance of an umbral area and the subsequent
growth of a penumbra (Schlichenmaier et al., 2011). Upon emergence there is a large spread
on the tilt angle as anticipated by Joy’s law with a relaxation period of the order of a few
days (Howard, 1996; Kosovichev & Stenflo, 2008).

DNS can be seen as an experimental tool. The advantages of this type of experiment are:
simple diagnostics and fully controlled boundary and initial conditions, the disadvantages
are: limited parameter space (due to resolution) and uncertainty about physical relevance
of the applied boundary and initial conditions.

Under certain initial conditions, by solving MHD and radiative transfer equations in
DNS in the top of the convection zone it is now possible to produce sunspot-like structures
very similar to observed ones (Rempel et al., 2009), see also Figure 3.6. This gives us the
opportunity to investigate the physics behind observed surface effects, like the Evershed
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Figure 3.5: Flows around a sunspot from local helioseismology data (Zhao et al., 2001) and a cor-
responding model (Hurlburt & Rucklidge, 2000).

Figure 3.6: Sunspot simulation (Rempel et al., 2009), surface view (above) and depth profile (below).
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Figure 3.7: Evolution of bright umbral dots (Schüssler & Vögler, 2006).

Figure 3.8: Sunspot emergence simulation (Cheung et al., 2010).
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Figure 3.9: sunspot decay rate in function of radius (Petrovay & Van Driel-Gesztelyi, 1997).

effect (radial outflows along magnetic field lines, Scharmer et al. (2008)) and umbral spots
(Schüssler & Vögler, 2006), see Figure 3.7.

Note however, that as one goes deeper into the convection zone, the uncertainty of the
simulation grows significantly. An initial condition that has been used for simulating the
emergence of sunspots is a magnetic flux tube at a depth of about 20 Mm (Cheung et al.,
2010), which will then buoyantly rise. The acceptable realisation at the surface, as shown in
Figure 3.8, does, however, not provide sufficient justification for the magnetic configuration
assumed at that depth.

Decay of sunspots is well documented, but again the physical background is not suffi-
ciently understood. Sunspot statistics appear to indicate a decrease of the area proportional
to the sunspot radius (Petrovay & Van Driel-Gesztelyi, 1997), shown in Figure 3.9, which
would indicate a decay process at the edge of the spot. Parker (1975) proposed a decay
through MHD instabilities. However, the typical dynamical timescale involved would be
only a few hours (radius divided by Alfvén speed). Meyer et al. (1977) found that if one has
a sufficiently strong magnetic flux concentration, buoyancy is able to stabilise interchange
instabilities.

An alternative would be decay through diffusion. The decay rate is much larger than
what molecular diffusion would be able to sustain, but turbulent diffusion would be able
provide such a fast decay (Krause & Rüdiger, 1975). In the latter case the diffusivity would
be quenched in the center of the spot by the strong magnetic field. The decay rate found
in this case is actually somewhat larger than the observed one (Rüdiger & Kitchatinov,
2000). If the magnetic profile is very steep, Petrovay & Moreno-Insertis (1997) argue that
the diffusion would be dominated by erosion of the edge through turbulence outside the
spot.

3.3 Solar interior

To understand the physics of sunspots we of course need information about the conditions
in which they form. A hydrostatic solar model with a high degree of refinement has been
developed in the previous century, yet limited information is available about the dynamics
and magnetic fields in the Sun.

Naturally we have information about the surface magnetic field (see Figure 3.10) and
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Figure 3.10: Latitude and time dependency of average solar surface magnetic fields, taken from the
Nasa Marshall Space Flight Center website

Figure 3.11: Propagation of rays of sound waves through a cross section of a solar model. The ray
paths are bent by the increase with depth in sound speed until they reach the inner
turning point, where the waves undergo total internal refraction (figure taken from by
Lecture Notes on Stellar Oscillations by Christensen-Dalsgaard, 2003)
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Figure 3.12: Radial profile of squared sound speed (Christensen-Dalsgaard et al., 1985) and toroidal
velocity in the solar convection zone (Schou et al., 1998).

flows at our disposition. However, direct information about magnetic fields below the
surface is inaccessible due to large opacities.

While electromagnetic waves are strongly damped in the sun, acoustic waves are not,
although one has to distinguish between pressure and gravity waves as the latter only
propagate in the stably stratified regions. The pressure waves (frequency typically a few
mHz) can propagate in the solar convection zone and create patterns on the surface that
depend directly on sound speed variations in the convection zone, illustrated in Figure 3.11.
Inversion of this pattern allows to reconstruct radial profiles of velocity (advection of the
acoustic waves) and temperature (combination of measured sound speed and a chemical
composition inferred from a solar model). The study of acoustic wave propagation in the
Sun is called ‘Helioseismology’ (Christensen-Dalsgaard et al., 1985; Kosovichev, 1996, 2002).

From the temperature and density profiles, one can calculate that between 0.713 solar
radii (Christensen-Dalsgaard et al., 1991) and the photosphere, the entropy gradient is
negative, so the sun is unstable to convection and this region is thus dubbed ‘convection
zone’. The location of the bottom of the convection zone is also identified in the radial
dependence of the sound speed, see the left hand panel of Figure 3.12. ‘Convection’ indicates
turbulent heat transport without a net particle transport, a simple illustrative example is
the Rayleigh-Bénard cell, where heated fluid rises into a colder layer where it deposits
its energy, is pushed a bit to the side by other upcoming fluid elements and sinks down
again. This behaviour arises because in the opaque outer layer of the Sun radiative heat
transfer is inefficient. Near the interface between a convectively stable and an unstable
region there will be a certain diffusion of convective motions into the former: the affected
stably stratified zone is called ‘overshoot layer’.

The toroidal velocity profile shows a strong shear layer at the bottom of the convection
zone, named ‘tachocline’ (Spiegel & Zahn, 1992; Charbonneau et al., 1999), below which
the Sun rotates rigidly, seeFigure 3.12. In the convection zone the rotation pattern varies
in a spoke-like fashion. There is one more layer with strong shear near the solar surface
(at a depth of approximately 35 Mm). Poloidal velocities are about an order of magnitude
smaller than the toroidal ones and as such are hard to measure. Many solar dynamo models
incorporate a pole-wards surface flow and an equator-wards return flow near the bottom of
the convection zone, this flow pattern is referred to as ‘meridional circulation’. However,
recent observations seem to indicate that the return flow is much closer to the surface,
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namely around the same radial distance as the aforementioned near-surface shear layer
(Hathaway, 2011).





Chapter 4

Models of a magnetic Sun

4.1 Aspects of a (solar) model

The idea behind modelling: ‘Make everything as simple as possible, but not simpler.’ When
starting to build a model one has to consider which processes take place, which of those
are the most important and which ones can be neglected for a given parameter space.
This choice of which physics to include can be made based on estimations from previous
insights or parameter dependency experiments and then tested comparing the results with
observations. These experiments can be of numerical or laboratory origins, with limitations
of appropriate boundary and initial conditions and respectively resolution or realisability
and diagnostics.

Unfortunately, the solar convection zone is far out of the reach of current day experiments
and thus a large number of competing processes remain to complicate our view. At the
same time, the available observational data is limited to flows and temperatures (sound
speed) in the convection zone (initial conditions) and surface magnetism (observable one
should be able to reproduce).

Generation of sunspots is strongly tied to the global magnetic field generation and trans-
port. Below a summary of thoughts on these processes.

4.2 The Rising Flux Tube

The solar dynamo is usually described in the αΩ-dynamo formalism: generation of a toroidal
field by shearing a poloidal field by differential rotation (‘Ω-effect’) and the regeneration of
a poloidal field from a toroidal field by helical turbulence (‘α-effect’).

Figure 4.1: Rising flux tube model: a perturbed flux tube segment subject to magnetic tension,
magnetic buoyancy, adiabatic expansion and Coriolis forces rises and generates internal
twist (Ossendrijver, 2003).
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Figure 4.2: interface dynamo as proposed by Parker(left) and a simulation implementation(right)
(Charbonneau, 2005).

In this generally accepted framework, thin flux tubes are generated and stored in the
overshoot layer at the bottom of the convection zone, where turbulent diffusion is not
strong enough to instantly destroy any newly created magnetic structures, and buoyantly
rise to the surface, forming sunspots, see Figure 4.1. Different rising flux tube models agree
on generation of the toroidal magnetic field by shearing the poloidal field in the strong
tachocline shear layer, but offer several alternative processes to generate a poloidal field.
Based on the location where the latter is produced, one can divide the models in three
main categories:

• Overshoot dynamos: the α effect is located at the base of convective zone, originating
from magnetic buoyancy instabilities (Thelen, 2000) or hydrodynamic instability of
latitudinal differential rotation (Dikpati & Gilman, 2001). However, it has been
argued that the width of the overshoot layer may be too small for these models to be
viable (Rüdiger & Brandenburg, 1995).

• Interface dynamos: the alpha effect is located above the shear layer where the mag-
netic field is stored (Parker, 1993), thus avoiding quenching by the presence of a
strong magnetic field, see Figure 4.2.

• Babcock-Leighton type flux transport dynamos: rising flux tubes are tilted by the
Coriolis force to produce Hale’s polarity law, resulting in a net poloidal field upon
emergence. The meridional flow is responsible for pole-ward transport of this residual
field (Dikpati & Charbonneau, 1999). This corresponds to an alpha effect in the near-
surface layer with a reversed sign compared to the previous models.

Given that it has no memory, a dynamo alone can not account for the observed large
scale time modulations of solar activity. It has been suggested (Gough, 1981) that these
could be the result of magnetic or thermal coupling between the radiative and convective
regions in the Sun.
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4.3 Unanswered questions

Numerical simulations and observations by local helioseismology have raised a number of
questions for the accepted picture of flux tubes rising from the overshoot layer. Some have
been answered, others have been swept under the carpet as a sacrifice to the conceptual
elegance of the theory (Brandenburg, 2005; Parker, 2009), a brief look at the latter:

• The flux tube simplification, initially introduced for educative purpose, has become
a key element in the theory. Questions have been raised about the physical relevance
of this field structure (Cattaneo et al., 2006), and so far one has not been able to
produce these tubes in numerical simulations.

• The buoyant rise is pictured as a dominant transport process, however, simulations
have shown competing downward turbulent pumping (Nordlund et al., 1992).

• A magnetic field strength of 100kGauss at the base of the convection zone (implying
magnetic energies a hundred times larger than the energy contained in the local
velocity field) are required to avoid pole-ward deflection of rising flux tubes by the
Coriolis force (Choudhuri & Gilman, 1987; Fan et al., 1993).

• For integrity during rise through the convection zone (over 20 scale heights) fairly
large fields (Fan et al., 2003) and a certain degree of twist are required . A small
degree of twist (above a critical value twist would make the tubes kink-unstable
(Linton et al., 1996)) can stabilise tubes to some extent with respect to Rayleigh-
Taylor instabilities (Moreno-Insertis & Emonet, 1996) as long as the Alfvén speed of
the azimuthal component is larger than the relative speed of the surrounding plasma
(Abbett et al., 2000, 2004).

4.4 Distributed dynamo

The issues above are key criticisms on the deeply seated flux tube dynamo paradigm and
appear to favour the idea of sunspot generation in the top layer (70Mm) of the convection
zone. Other observations and numerical results in favour of a dynamo operating in the
near-surface layer of the Sun:

• Helioseismologic observations show that sunspots are fairly shallow structures (Koso-
vichev, 2002)

• The observed sunspot angular velocity coincides with the rotation speed around
35Mm below the surface (Thompson et al., 2003).

• The buoyancy of magnetic structures in the convection zone (Parker, 1975) is sup-
pressed by downward pumping (Nordlund et al., 1992) and as such need not lead to
a strong loss of magnetic flux.

• Fully convective stars (i.e. without a possibility to store magnetic fields) have dynamos
(Vilhu, 1984)
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Sunspots as local collapse

5.1 Turbulent sunspot formation

As magnetic fields restrict plasma motions, it is fairly straightforward to assume that turbu-
lent effects will have a certain (anisotropic) field dependence. Mean-field simulations with
B-dependent turbulent transport coefficients (Kitchatinov & Mazur, 2000) and turbulent
pressure (Rogachevskii & Kleeorin, 2007; Brandenburg et al., 2010) have shown a possi-
bility to create sunspot-like large scale magnetic structures. Of course the validity of the
assumed magnetic dependence should be tested in direct simulations for the appropriate
parameter range.

5.2 Thermal collapse

5.2.1 Principle

When turbulent heat transport is locally suppressed close to the solar surface, the radiative
losses can no longer be balanced by the reduced heat flow. As a result the plasma cools
down and, in a compressional downflow, enhances the magnetic field.

5.2.2 Model

The model was tested in a 2D mean-field simulation by Kitchatinov & Mazur (2000), solving
the induction and entropy equation in a stratified convection setup with an imposed vertical
magnetic field of 400 or 700Gauss. The quenching of the turbulent transport coefficients
is based on the result of an analysis within the quasi-linear approximation by Kitchatinov
et al. (Kitchatinov et al., 1994). For strong fields with respect to the equipartition field
strength (a hypothetical magnetic field containing the same energy as the local velocity
field), the thermal diffusivity is inversely proportional to the ratio B/Beq. In the absence
of a magnetic field, there is of course no magnetic quenching.

Other approximations in the simulations include: inelasticity and near-adiabatic strati-
fication, also, due to computational limitations on the density contrast, it was not possible
to include the upper 3Mm of the convection zone.

The simulations show local magnetic field enhancements (higher than observed in the
Sun), heat flux reduction (smaller than observed) and downdrafts (in agreement with he-
lioseismic tomography).
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Figure 5.1: Magnetic (upper panel) and velocity (lower panel) field configuration resulting from
magnetically quenching of turbulent heat transport (Kitchatinov & Mazur, 2000).

5.3 Reduced turbulent pressure

5.3.1 Principle

The effect of velocity fluctuations on the mean flow is, in its simplest form, captured by
the Boussinesq assumption that relates the Reynolds stress tensor uiuj to the mean strain
through a constant turbulent viscosity. This relation is of course in most cases far too
simplified and there will be dependencies on the mean flow (such as the Λ-effect, Rüdiger
(1980)) or the mean magnetic field (Rüdiger, 1974).

The effect of the presence of magnetic fluctuations can be modelled through a modi-
fication of the magnetic stress tensor. An analysis by Rüdiger et al. (1986) suggested a
reduction of the total magnetic tension force by magnetic fluctuations. Kleeorin et al.
(1990) came to a similar conclusion regarding the magnetic pressure and suggested that an
instability resulting from this effective magnetic pressure reduction might well be able to
create large scale magnetic flux concentrations, and perhaps even play an important role
in the formation of sunspots.

The argument for the magnetic pressure reduction can be understood as follows. The
turbulent pressure has both magnetic and kinetic contributions, in the case of isotropic
turbulence one finds (Kleeorin & Rogachevskii, 1990; Rogachevskii & Kleeorin, 2007):

Pturb =
1
3
ρu2e+

1
6
b2/µ0. (5.1)

It was shown numerically by Brandenburg et al. (2010) that for magnetic fields that are
not too strong with respect to the equipartition value, the turbulent energy remains ap-
proximately constant. This can be expressed as

Eturb =
1
2
ρu2 +

1
2
b2/µ0 ≈ const. (5.2)
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Figure 5.2: reduced magnetic pressure due to forced turbulence in a magnetised stratified medium,
taken from Paper I.

Combining both expression gives:

Pturb =
1
6
b2/µ0 +

2
3
Eturb. (5.3)

This effect was predicted by analytical studies by Rogachevskii & Kleeorin (2007) and was
also found numerically by Brandenburg et al. (2010) for forced turbulence in an unstratified
medium. In Paper I we demonstrate the presence of a reduction and sign reversal of the
effective magnetic pressure also in a stratified medium, see Figure 5.2. Similar results were
later obtained by Käppylä et al. (2011) for turbulent convection.

From Equation (5.3) one sees that magnetic fluctuations have a negative feedback on the
local pressure. This could cause a compression of the flow and with it a compression of
the frozen in magnetic fields, leading to an increase of the local magnetic field strength.
Assuming that the fluctuations are correlated with the mean field, there will be an even
stronger reduction of the local pressure and an instability develops. Eventually saturation
occurs when the magnetic field reaches values for which the pressure sign reversal disap-
pears. Note that in the presence of a small scale dynamo, where magnetic fluctuations are
generated even in the absence of a mean field, the pressure difference is reduced and the
instability may not occur.

Thus far the negative effective magnetic pressure instability (NEMPI) has not been
observed in direct numerical simulations, while mean-field computations do show certain
structure formation in the magnetic field (Brandenburg et al., 2010), as also shown in Fig-
ure 5.3. To clarify the dichotomy between these results, a parameter study was conducted
in Paper II. This analysis showed that for weak stratification or strong turbulent diffusion
NEMPI is not triggered.

5.3.2 Mean-field model

As mentioned above, the effect of magnetic fluctuations is modelled as a feedback on the
magnetic stress tensor. The current model is described by three turbulent transport co-
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Figure 5.3: Magnetic flux concentration formation through NEMPI for different values from qs,
taken from paper II.

efficients: qp is related to the magnetic pressure, qs to the magnetic tension force and qg
to the interaction between the magnetic field and convection. In the direct simulations
of paper I, the latter two coefficients were found to be zero within the measurement er-
rors. The pressure reduction, shows a single dependence on the ratio of the mean field and
the equipartition field strength β = B/Beq, as shown in Figure 5.2. For the purpose of
mean-field modelling a fit function of the form

PM =

(
1− qp0

[
1− 2

π
arctan

(
β

2

β2
p

)])
β

2 (5.4)

was used, where qp0 and βp are model constants . However, it remains to be checked if the
correct values for low magnetic fields, to which NEMPI has shown to be very susceptible,
can be reproduced by this fit.
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Outlook

The findings of Paper II should now be interpreted in the context of Paper I and we will
have to see if it is numerically possible to realise NEMPI in DNS, and whether NEMPI
can be applicable to the parameter regime of the solar convection zone. Depending on the
outcome, a proper continuation of our research would be the inclusion of radiative transfer
into the model. Along the same line of thought, I would like to see if it is possible to confirm
the results obtained by Kitchatinov & Mazur (2000), as discussed in Chapter 5, in DNS.

The continuation of Paper IV might include the application of the current model to
a three-dimensional structure and/or changes in the model itself, this may be strongly
affected by the questions sprouting from communications with the referees on our current
work. It would be interesting to continue to explore the limitations of this mean-field model
with respect to laboratory experiments.
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Contribution to the papers

In Paper I nearly all of the DNS simulations were performed and analysed by me. I
played an active role in the discussion of the content of the text and in the adaptations
following the referee reports. Paper II was built on mean-field simulations, which were
performed and analysed by me. I wrote a few sections in the paper, although they were
largely rewritten and extended by the senior coauthors. My contribution to Paper III
was mostly through coding and participation in the analysis of the results as far as the
validity of the method was concerned. Paper IV sprouted from a course project, and
involved a fair amount of coding (initial and boundary conditions, modifications of existing
equations), findings from these explorations were then more rigorously analysed by Axel,
who also wrote most of the text in the paper.
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Balthasar, H., Vazquez, M. & Wöhl, H., 1986, A&A, 155, 87-98

Baumann, I. & Solanki, S.K, 2005, A&A, 443, 1061-1066

Beer, J., Blinov, A., Bonani, G., Hofmann, H. J., Finkel, R. C., 1990, Nature, 347, 164-166

Bhattacharjee, A. & Hameiri, E., 1986, Phys. Rev. Lett., 57, 206-209

Blackman, E.G. & Field, G.B., 2000, ApJ, 534, 984-988

Bodin, H., Nucl. Instr. & Meth. Phys. Res., 1983, 207, 1-22

Brandenburg, A., 2005, ApJ, 625, 539-547
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ABSTRACT
To understand the basic mechanism of the formation of magnetic flux concentrations, we determine by

direct numerical simulations the turbulence contributions to the mean magnetic pressure in a strongly stratified
isothermal layer, where a weak uniform horizontal mean magnetic field is applied. In a first setup, the turbulent
intensity is nearly constant in height, so the kinetic energy density decreases with height due to the decrease in
density, while in a second series of numerical experiments, the turbulent intensity increases with height such
that the kinetic energy density is nearly independent of height. Turbulent magnetic diffusivity and turbulent
pumping velocity are determined with the test-field method for both cases. Corresponding numerical mean-
field models are used to assess whether or not a large-scale instability is to be expected. The existence of a
negative effect of turbulence on the effective mean magnetic pressure is demonstrated for strongly stratified
forced turbulence over a range values of magnetic Reynolds and Prandtl numbers. The vertical profile of
the turbulent magnetic diffusivity is found to agree with what is expected based on simple mixing length
expressions. Turbulent pumping is shown to be down the gradient of turbulent magnetic diffusivity, but it is
twice as large as expected. Mean-field numerical modelling confirms the excitation of the instability for both
setups, although no large-scale instability is found in the direct numerical simulations. Small-scale dynamo
action is shown to reduce the negative effect of turbulence on the effective mean magnetic pressure.
Subject headings: MHD – Sun: magnetic fields – sunspots – Turbulence

1. INTRODUCTION

In a stratified layer, magnetic fields do not normally stay in
equilibrium but tend to become buoyantly unstable (e.g. New-
comb 1961; Parker 1966, 1979a; Gilman 1970a,b; Hughes &
Proctor 1988; Cattaneo & Hughes 1988; Wissink et al. 2000;
Isobe et al. 2005; Kersalé et al. 2007), see also reviews by
Hughes (2007) and Tobias & Weiss (2007). This mecha-
nism is generally invoked in order to understand magnetic
flux emergence at the solar surface (e.g. Hood et al. 2009).
The mechanism does not explicitly rely upon the existence of
turbulence, except that the origin of the Sun’s magnetic field is
generally believed to be related to a turbulent dynamo operat-
ing in the convection zone, or possibly beneath it; see Solanki
et al. (2006) for a recent review.

Turbulent dynamos work under a variety of circumstances
and are able to produce large-scale magnetic fields (see Bran-
denburg & Subramanian 2005 for a review). At first glance
this generation process is counter-intuitive, because it works
against the well-known concept of turbulent mixing (Taylor
1921; Prandtl 1925). However, it is now well established that
turbulence can also cause non-diffusive effects. In addition
to the well-known α effect that is generally believed to be re-
sponsible for the Sun’s large-scale field (Moffatt 1978; Parker
1979b; Krause & Rädler 1980), there is also the Λ effect that
is responsible for driving the differential rotation of the Sun
(Rüdiger 1980, 1989; Rüdiger & Hollerbach 2004). Yet an-
other import effect is turbulent pumping or γ effect (Rädler
1969), which corresponds to the advection of mean magnetic
field that is not associated with any material motion. The γ
effect appears, for example, in nonuniform turbulence and

transports mean magnetic field down the gradient of turbu-
lent intensity, which is usually downward in turbulent convec-
tion. However, this effect can also be modified by the mean
magnetic field itself (Kitchatinov et al. 1994; Rogachevskii &
Kleeorin 2006), which can then correspond to a mean-field
buoyancy effect.

When invoking the concept of magnetic buoyancy, one
must ask what the effect of turbulence is in this context. The
turbulent pressure associated with the convective fluid mo-
tions and magnetic fluctuations is certainly not negligible and
reacts sensitively to changes in the background magnetic field.
The main reason for this is that the kinetic energy density in
isotropic turbulence contributes to the total turbulent dynamic
pressure twice as much as turbulent magnetic energy density,
i.e.

Pturb = 1
3ρu

2 + 1
6b

2/µ0. (1)

Here, Pturb is the total turbulent dynamic pressure caused by
velocity and magnetic fluctuations, u and b, respectively, µ0

is the vacuum permeability, ρ is the fluid density, and overbars
indicate ensemble averaging. On the other hand, any rise in
local turbulent magnetic energy density must be accompanied
by an equal and opposite change of turbulent kinetic energy
density in order to obey approximate energy conservation, i.e.

1
2ρu

2 + 1
2b

2/µ0 ≡ Etot ≈ const. (2)

This relation is known to hold quite well even in open sys-
tems with boundaries, as was demonstrated by direct numeri-
cal simulations (Brandenburg et al. 2010, hereafter referred to
as BKR). This clearly implies that, upon generation of mag-
netic fluctuations, the total turbulent dynamic pressure shows
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a reversed (destabilizing) feedback, i.e.

Pturb = − 1
6b

2/µ0 + const, (3)

where the constant is 2Etot/3 (Kleeorin et al. 1990). For
strongly anisotropic turbulence, Eq. (3) is also valid except for
the change of the 1/6 factor into 1/2 (Rogachevskii & Klee-
orin 2007), hereafter referred to as RK07. This phenomenol-
ogy was supported by analytical studies using the spectral
τ approximation and the renormalization approach and led
Kleeorin & Rogachevskii (1994) to the realization that the ef-
fective mean magnetic pressure force is reduced and can be
reversed for certain mean magnetic field strengths (see also
Kleeorin et al. (1990)). Under certain conditions (e.g. strong
density stratification), this can cause a magnetic buoyancy in-
stability via perturbations of a uniform mean magnetic field in
stratified turbulence (Kleeorin et al. 1993, 1996). Later, when
considering the effect of turbulent convection on the mean
Lorentz force, RK07 suggested that magnetic flux concen-
trations in the Sun such as active regions and even sunspots
might be formed by this reversed feedback effect.

Contrary to a statement by Spruit (2011), the effect of
turbulence on the mean Lorentz force cannot be understood
solely in terms of turbulent magnetic diffusion. Turbulence
has two main effects. Firstly, it creates inhomogeneous mag-
netic structures by the reversed feedback effect, and secondly,
it acts in the opposite way by destroying magnetic flux con-
centrations through turbulent magnetic diffusion.

The basic phenomenon of magnetic flux concentration by
the effect of turbulence on the mean Lorentz force has been re-
cently confirmed numerically by BKR who solved the mean-
field momentum and induction equations and found a linear
instability for sufficiently strong stratification. This instabil-
ity was followed by nonlinear saturation at near-equipartition
strengths.

Using direct numerical simulations (DNS) of forced turbu-
lence, BKR also verified the validity of the phenomenology
highlighted by Eq. (3). However, their DNS ignored the ef-
fects of stratification which would lead to additional effects
such as turbulent pumping that might oppose the instability.

Extending the DNS of BKR to the case with stratification
is therefore one of the main goals of the present paper. This
will allow us for the first to make a meaningful comparison
between DNS in stratified fluid with mean-field modeling. We
are now also able to present data for cases where small-scale
dynamo action is possible. An additional aim is to clearly
demonstrate the operation of the instability directly in a three-
dimensional turbulence simulation. One might then expect
to see the spontaneous formation of long-lived magnetic flux
concentrations. The effects of convection will be addressed in
a companion paper (Käpylä et al. 2011).

Most of the numerical simulations on magnetic flux emer-
gence (e.g. Stein & Nordlund 2001; Schüssler & Vögler 2006;
Martı́nez et al. 2008; Rempel et al. 2009) have been done us-
ing initial conditions with an already existing strongly inho-
mogeneous large-scale magnetic field. Recent simulations by
BKR and Kitiashvili et al. (2010); Käpylä et al. (2011) study
the formation of large-scale magnetic structures from an ini-
tially uniform large-scale magnetic field. In particular, Large-
Eddy Simulations of solar magneto-convection by Kitiashvili
et al. (2010) do already give indications that the spontaneous
formation of long-lived magnetic flux concentrations from
initial uniform magnetic field might be possible, although the
underlying mechanism in their simulations still remains to be

clarified. One of the differences compared with BKR is the
vertical orientation of the imposed magnetic field in turbulent
convection. In forced and convection-driven turbulence sim-
ulations of BKR and Käpylä et al. (2011), respectively, the
imposed magnetic field was a horizontal one. A similar type
of magnetic flux concentration has been seen in convection
simulations at large aspect ratios by Tao et al. (1998), which
show a segregation into magnetized and weakly magnetized
regions.

Other possibilities for causing flux concentrations include
turbulent thermal collapse, whereby the magnetic field sup-
presses the convective energy flux, leading to local cooling,
and thus to contraction and further enhancement of magnetic
flux (Kitchatinov & Mazur 1988). By considering isother-
mal stratified flow, we will exclude this possibility in our
present work, allowing thus a more definitive identification of
the effect of density-stratified turbulence on the mean Lorentz
force.

2. DNS MODEL AND ANALYSIS

We consider a cubic computational domain of size L3. The
smallest wavenumber is then k1 = 2π/L. We adopt an
isothermal equation of state with constant sound speed cs,
so the gas pressure is p = ρc2s . In the presence of gravity,
g = (0, 0,−g), where g is the constant gravitational acceler-
ation, this leads to an exponentially stratified density,

ρ = ρ0 exp(−z/Hρ), (4)

with a constant density scale height Hρ = c2s/g and a nor-
malization factor ρ0. For all our calculations we choose
k1Hρ = 1. This implies that the number of scale heights
is ∆ln ρ = L/Hρ = 2π, corresponding to a density con-
trast of exp 2π ≈ 535. This state is also chosen as our initial
condition.

We solve the equations of compressible magneto-
hydrodynamics in the form

ρ
DU

Dt
= J ×B − c2s∇ρ+∇ · (2νρS) + ρ(f + g), (5)

∂A

∂t
= U ×B + η∇2A, (6)

∂ρ

∂t
= −∇ · ρU , (7)

where ν and η are kinematic viscosity and magnetic diffusiv-
ity, respectively, B = B0 + ∇ × A is the magnetic field
consisting of a uniform mean field, B0 = (0, B0, 0), and a
nonuniform part that is represented in terms of the magnetic
vector potential A, J = ∇ × B/µ0 is the current density,
and Sij = 1

2 (Ui,j + Uj,i) − 1
3δij∇ · U is the traceless rate

of strain tensor, where commas denote partial differentiation.
The turbulence is driven with a forcing function f that con-
sists of random plane non-polarized waves with an average
wavenumber kf = 5 k1. The forcing strength is arranged such
that the turbulent rms velocity, urms = 〈u2〉1/2, is around
0.1 cs. This value is small enough so that compressibility ef-
fects are confined to those associated with stratification alone.

Our simulations are characterized by several non-
dimensional parameters. We define the Reynolds number as
Re = urms/νkf and the magnetic Prandtl number as PrM =
ν/η. We anticipate that it is important to have PrM < 1. How-
ever, in order to reach somewhat larger values of ReM we now
choose as our primary model PrM = 0.5 instead of 0.25, as
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was the case in BKR. In some additional cases, we span the
entire range from PrM = 1/8 to PrM = 8. For large enough
values of ReM and PrM , there is small-scale dynamo action.
We define the equipartition field strength both as a function of
z and for the middle of the domain, i.e.

Beq(z) = (µ0ρu2)1/2, Beq0 = (µ0ρ0)1/2 urms. (8)

The latter will be used to specify the normalized strength of
the imposed horizontal field, which is also independent of
height. Another alternative is to normalize by the equipar-
tition field strength at the top of the domain. In our models
with nearly height-independent turbulent velocity, this would
make the imposed field strength normalized by the equiparti-
tion value at the top ≈ 5 times bigger.

In all cases we adopt stress-free perfect conductor boundary
conditions at top and bottom of the domain. The simulations
are performed with the PENCIL CODE1, which uses sixth-
order explicit finite differences in space and a third-order ac-
curate time stepping method (Brandenburg & Dobler 2002).
We use a resolution of either 1283 or 2563 mesh points.

In this paper we present two groups of runs. In the first
group we have the same forcing amplitude at all heights while
in the second group we adjust the forcing such that the rms ve-
locity becomes height-dependent. In contrast to earlier work
where it was possible to analyze the results in terms of vol-
ume averages, we now have to restrict ourselves to horizontal
averages which show a strong dependence on height. Thus,
we determine the contribution to the mean momentum den-
sity that comes from the fluctuating field, i.e.,

Π
f

ij = ρ uiuj + 1
2δijb

2 − bibj , (9)

where the µ0 factor is dropped from now on and overbars indi-
cate xy averages. The superscript f signifies the contributions
from the small-scale field. This, together with the contribu-
tion from the mean field,

Π
m

ij = ρU iU j + δij
(
p+ 1

2B
2
)
−BiBj − 2νρ Sij , (10)

comprises the total mean momentum tensor, and the averaged
momentum equation is given by:

∂

∂t
ρU i = −∇j

(
Π

f

ij +Π
m

ij

)
+ ρ gi. (11)

Here U and B are the mean velocity and magnetic fields, p is
the mean fluid pressure. We are interested in the contribution
to Eq. (9) that arises only in the presence of the mean field,
so we subtract the corresponding tensor components that are
obtained in the absence of the mean field and make for this
the ansatz (RK07)

Π
f,B

ij −Π
f,0

ij = −
(
1
2qpδij + qgĝiĝj

)
B

2
+ qsBiBj , (12)

where ĝ is a unit vector in the vertical direction. Equation
(12) can even be obtained from symmetry arguments, i.e., in
the case of a horizontal imposed field, the linear combination
of three independent true tensors, δij , ĝiĝj and BiBj , yields
ansatz (12). In the theory, the coefficients qp, qs and qg have
been obtained using the spectral τ approach and the renormal-
ization approach. The τ approach has been justified in a num-
ber of numerical simulations (Brandenburg et al. 2004; Bran-
denburg & Subramanian 2005b, 2007). However, if there is

1 http://pencil-code.googlecode.com

insufficient scale separation, higher order terms such as J iJj

would need to be included. Such terms are not presently in-
cluded with the uniform fields used in the present study.

The effective mean Lorentz force that takes into account the
turbulence effects, reads:

ρFM
i = −∇j

(
1
2B

2
δij −BiBj +Π

f,B

ij −Π
f,0

ij

)
. (13)

Except for the contribution proportional to ĝiĝj and the fact
that we use here only horizontal averages, Eq. (12) is equiv-
alent to that used in BKR, where full volume averages were
used. Asymptotic expressions for the B dependence of qp,
qs, and qg are given in Appendix A. Here we use DNS of
density-stratified turbulence to determine these coefficients.
In the present case, we have B ≈ (0, B, 0),

ρ (u2
x − u2

0x) +
1
2 (b

2 − b20)− b2x + b20x=− 1
2qpB

2
, (14)

ρ (u2
y − u2

0y) +
1
2 (b

2 − b20)− b2y + b20y =−(12qp − qs)B
2
,

ρ (u2
z − u2

0z) +
1
2 (b

2 − b20)− b2z + b20z =−(12qp + qg)B
2
,

where we have taken into account that there is a small-scale
dynamo, which would have produced finite background mag-
netic fluctuations b0. The critical magnetic Reynolds num-
ber for small-scale dynamo action is around 100. To derive
Eqs. (14) we used Eqs. (9) and (12).

3. RESULTS

3.1. Effective mean magnetic pressure
We begin by considering the turbulence effects on the effec-

tive mean magnetic pressure and plot in Fig. 1 the dependence
of qp on height. To improve the statistics, we present here
time averaged results of qp, which itself is already averaged
over x and y. Error bars have been calculated by dividing
the time series into three equally long pieces and computing
the maximum departure from the total average. In agreement
with earlier work, this function is always positive and exceeds
unity if the mean magnetic field is not sufficiently strong. This
is the case primarily at the bottom of the domain (negative val-
ues of z) where the density is high and therefore the magnetic
field, in units of the equipartition field strength, is weak. Fur-
thermore, since B0 = const and Beq increases with depth,
B0/Beq is smallest at the bottom, so qp increases. The sharp
uprise toward the boundary is just a result of the exponential
increase of the density combined with the fact that the hori-
zontal velocity reach a local maximum on the boundary.

The total effective magnetic pressure of the mean field
(that takes into account the effects of turbulence on the mean
Lorentz force) is given by 1

2 [1 − qp(B)]B
2. This has to be

compared with the turbulent kinetic energy density, 1
2ρu

2.
Small contributions of terms ∝ qg to the effective mean mag-
netic pressure are discussed in Sect. 3.3. In Fig. 2 we plot
(1 − qp)B

2
/B2

eq, where B2
eq is itself in general a function of

height; see Eq. (8). It turns out that this function now reaches
a negative minimum somewhere in the middle of the domain.

We expect that qp is a function of the ratio of B/Beq. This
was confirmed numerically in BKR for constant Beq by vary-
ing the value of B0 to obtain qp for a range of different sim-
ulations. In the present case, however, Beq is a function of z,
which is the main reason why qp depends on height. It turns
out that the dependence of qp on both B and z can be reduced
to a single dependence just on the ratio B/Beq. This is shown
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FIG. 1.— Dependence of qp(z) (solid lines) with error margins (dashed
lines) as functions of z, for B0 = 0.1Beq0, B0 = 0.2Beq0, and B0 =
0.5Beq0, with Re = 70, g/c2sk1 = 1, and a density contrast of 530.
Note that qp(z) reaches a maximum at the bottom of the domain where
B0/Beq(z) is minimum.

FIG. 2.— Normalized effective mean magnetic pressure as a function of
depth, for B0 = 0.1Beq0, B0 = 0.2Beq0, and B0 = 0.5Beq0 using Re =
70. Note that this function now reaches a negative minimum somewhere in
the middle of the domain.

FIG. 3.— Same as Fig. 2, but as a parametric representation as function
of the local value of the ratio of B0/Beq(z). Note that the curves for
B0 = 0.1Beq0, B0 = 0.2Beq0, and B0 = 0.5Beq0 collapse onto a single
dependency. The error range is not shown, but the width of the error margin
of the normalized effective mean magnetic pressure is generally below 0.05.

in Fig. 3, where we plot the effective mean magnetic pressure
as a function of magnetic field in units of the local equiparti-
tion value. Note that now all three curves for different values
of B collapse onto a single curve.

In the earlier DNS of BKR we described the results using a
simple fit formula,

qp = qp0

(
1− 2

π
arctan

B
2

B2
p

)
. (15)

Unfortunately, this formulation gives reasonably good fits for
a range of different combinations of qp0 and Bp. Therefore,
we now give the two new fit parameters, the value of the min-
imum effective pressure,

Pm(B) = (1− qp)B
2
/B2

eq, (16)

as well as the positions of the minimum and the transition
through zero, defined by

Pm(B∗) = min(Pm), and Pm(Bcrit) = 0. (17)

The resulting minimum of the effective magnetic pressure is
now smaller than the value found in the DNS of BKR. Nev-
ertheless, it it remarkable that these two rather different simu-
lations still agree reasonably well and produce a minimum of
the effective pressure that is compatible with what is expected
from the τ approximation results of RK07. This is shown
in Table 1, where we compare the results for min(Pm) and
Bcrit/Beq with those of BKR and RK07. The fact that nearly
the same functional form for the effective magnetic pressure
of the mean field is obtained, supports the idea that this effect
is robust.

We reiterate that, as long as the value of the plasma beta
(i.e. the ratio of gas pressure to magnetic pressure), is much
larger than unity, our results are independent of the plasma
beta. What matters is the ratio of magnetic energy density to
kinetic energy density, not the thermal energy density. This
is also clear from the equations given in Appendix A. In the
present simulations, the plasma beta varies from between 5
and 100 at the top to around 105 at the bottom, so the total
pressure (gas plus magnetic plus turbulent pressure) is clearly
positive.

3.2. Equipartition versus pumping
It turns out that most of the variability of the magnetic field

occurs near the bottom of the computational domain. This is
evident from Fig. 4, where we show visualizations of the y
component of the departure from the imposed field, By −B0,
on the periphery of the domain for runs with B0/Beq0 = 0.1,
0.2, and 0.5.

An obvious reason why most of the magnetic field varia-
tion occurs near the bottom of the computational domain is

TABLE 1
COMPARISON OF THE PRESENT SIMULATIONS WITH BKR AND RK07.

PrM ReM Bcrit/Beq −min(Pm)

RK07 0.33 0.04
BKR 1/4 45 0.65 0.38
present 1/4 70 0.36 0.15
present 1 70 0.28 0.07
present 4 70 0.16 0.01
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FIG. 4.— Visualization of (By −B0)/Beq on the periphery of the computational domain for runs with B0/Beq0 = 0.1, 0.2, and 0.5, with Re = 70.

FIG. 5.— Normalized mean magnetic field in the direction of the imposed
field versus height for B0 = 0.1Beq0, 0.2Beq0, and 0.5Beq0 with Re =
70.

related to the local value of the equipartition field strength,
Beq, which is proportional to ρ1/2. Therefore, B0/Beq, is
large in the upper parts, so it will be less easy for the turbu-
lence to produce strong fluctuations due to the enhanced work
done against the Lorentz force. By contrast, in the lower parts
B0/Beq is small, allowing magnetic fluctuations to be pro-
duced.

The vertical dependence of the horizontally averaged mean
magnetic field (now normalized to B0 = const) is shown in
Fig. 5. We see that, especially for intermediate field strengths,
there is an increase of the magnetic field near the top of the
domain. One possibility is that this is caused by the effect
of nonlinear turbulent pumping, which might cause the mean
field to be pumped up due to the gradients of the mean tur-
bulent kinetic energy density in the presence of a finite mean

TABLE 2
PrM DEPENDENCE FOR ReM = 35, 70, AND 130.

Brms/By Bcrit/Beq −min(Pm)

PrM\ReM 35 70 130 35 70 130 35 70 130
1/8 0.3 0.28 0.07
1/4 2.4 6.2 0.36 0.25 0.15 0.05
1/2 4.5 7.1 0.34 0.25 0.10 0.05
1 0 5.4 unc. 0.28 0.17 0.07
2 0 5.9 0.24 0.22 0.09 0.03
4 0 5.8 0.20 0.16 0.02 0.01
8 0 3.5 n.r. 0.12 n.r. 0.01

‘unc.’ means result is uncertain, ‘n.r.’ means no sign reversal of qp.

FIG. 6.— Turbulent kinetic energy density versus height for n = ∞ for
B0 = 0 (dotted line) and B0 = 0.2Beq0 compared with the case for n =
1.4 and B0 = 0.2Beq0.

magnetic field (cf. Rogachevskii & Kleeorin 2006). This type
of pumping is different from the regular pumping down the
gradient of turbulent intensity (Rädler 1969). To compensate
for this effect, we have produced additional runs where the
kinetic energy density is approximately constant with height.
This is achieved by modulating the forcing function by a z-
dependent factor ez/Hf . We define n = Hf/Hρ and find that
for n = 1.4 the kinetic energy density is approximately inde-
pendent of height; see Fig. 6.

As a consequence of reducing the turbulent driving in the
lower parts by having Beq(z) ≈ const, we allow the magnetic
field to have almost the same energy density as the turbulence,
i.e. B0/Beq(z) is approximately independent of z. This also
means that the fluctuations are now no longer so pronounced
at the bottom of the domain (Fig. 7), where Re drops to values
around 5 and the flow is no longer turbulent. However, at
the top the Reynolds number is around 120, so here the flow
is still turbulent. In Fig. 8 we show the vertical dependence
of the horizontally averaged mean magnetic field in units of
the imposed field strength. Note that now the field shows an
increase toward the bottom of the domain. This effect might
be related to regular turbulent pumping (Rädler 1969), which
now has a downward component because u2 decreases with
depth. We return to this issue further below.

In the runs shown above we used PrM = 1/2. As expected
from earlier work of BK07, the negative magnetic pressure
effect should be most pronounced at small PrM . This is in-
deed confirmed by comparing with larger and smaller val-
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FIG. 7.— Visualization of (By − B0)/Beq on the periphery of the com-
putational domain for the run with nearly uniform turbulent kinetic energy
density using Hf = nHρ with n = 1.4.

FIG. 8.— Normalized mean magnetic field in the direction of the imposed
field versus height in the case of nearly constant turbulent kinetic energy den-
sity, i.e. Beq(z) ≈ const.

ues of PrM ; see Fig. 9 and Table 2. For these runs we have
again constant turbulent intensity with height (n → ∞), sim-
ilar to those of Fig. 4. A snapshot of the magnetic field for
PrM = 1/8, ReM = 130, and a resolution of 2563 mesh
points is shown in Fig. 10, where we see intense small-scale
distortions of the field at the bottom and weaker large-scale
patches at the top. It is however unclear whether this is re-
lated to the expected reduction of turbulent pressure by the
mean field.

3.3. Resolution dependence
A density contrast of over 500 may seem rather large (Cat-

taneo et al. 1991). However, this impression may derive from
experience with polytropic models, where most of the density
variation occurs near the surface. In our isothermal model, the
scale height is constant, so the logarithmic density change is
independent of height. In Fig. 11 we demonstrate by explicit
comparison that simulations with 1283 and 2563 mesh points
give nearly the same result.

3.4. Coefficients qs and qg

FIG. 9.— Normalized effective mean magnetic pressure for different values
of PrM , where ReM is approximately 70 and B0 = 0.1Beq0.

FIG. 10.— Visualization of (By−B0)/Beq on the periphery of the compu-
tational domain for a run with B0/Beq0 = 0.1, PrM = 1/8, ReM = 130,
Re = 1000 at a resolution of 2563 mesh points.

FIG. 11.— Resolution dependence of qp(By/Beq) for PrM = 1/2,
ReM = 70 using 1283 and 2563 mesh points. Error bars are given by
the shaded areas.
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FIG. 12.— Similar to Fig. 3, but for qsB2/B2
eq and now as a function of

By/Beq. Within the error range (dashed lines), qs = 0 for all field strengths.

FIG. 13.— Similar to Fig. 12, but for qg. Note that qg attains positive values
for B0/Beq = 0.1.

Using Eqs. (14), we now determine qs and qg. The re-
sults are shown in Figs. 12 and 13 for the three imposed field
strengths considered above, where u2 was nearly independent
of z, so Beq(z) varied by a factor of expπ ≈ 23, allowing us
to scan the dependence on B/Beq in a single run. It turns out
that both qs and qg are around zero.

Comparing with BKR, we should point out that they found
qg always to be zero, because the turbulence was isotropic in
the plane perpendicular to the direction of the imposed field.
On the other hand, recent calculations of stratified convection
with an imposed horizontal magnetic field did indeed yield
non-vanishing (positive) values of qg (Käpylä et al. 2011).
More recent calculations of qg from stratified convection, on
the other hand, confirm that qgB2/B2

eq is indeed different
from zero and around 0.4. In the present study with vertical
density stratification, qg is much smaller, but generally posi-
tive. This appears to be in conflict with the theoretical expec-
tation for qg given in Appendix A, where qg = O(ℓ2f /H

2
ρ) and

kf/k1 = 5, we find ℓ2f /H
2
ρ ≈ 1.6, while Fig. 13 suggests that

|qg| is much smaller.
Next, we discuss the results for qs. In BKR there was

some evidence that qs can become negative in a narrow
range of field strengths, but the error bars were rather large.

The present results are now much clearer and suggest that
(1 − qs)B

2
/B2

eq is indeed always positive. This is also in
agreement with recent convection simulations (Käpylä et al.
2011).

In summary, the present simulations provide no evidence
that the coefficients qs and qg could contribute to the large-
scale instability that causes the magnetic flux concentrations.
This is not borne out by the analytic results given in Ap-
pendix A. The results from recent convection simulations
fall in between the analytic and numerical results mentioned
above, because in those qg was found to be positive, while qs
was still found to be negative (Käpylä et al. 2011).

3.5. Local field concentrations?
One of the features we might eventually expect to see is the

formation of local magnetic field concentrations in DNS. This
may require larger values of the magnetic Reynolds number
than what has been possible so far. The current simulations
(Fig. 7) do already show some type of magnetic field concen-
tration near the top, but the effect is not yet as pronounced
as one would eventually expect it to be. To find out whether
magnetic flux concentrations should have been expected, we
need to determine the underlying mean-field transport coeffi-
cients and compare with a corresponding mean-field model.
This will be done in the next section.

4. COMPARISON WITH MEAN-FIELD MODELS

4.1. Basic equations
We follow here the same procedure as BKR and consider

the equations for the mean velocity U , the mean density ρ,
and the mean vector potential A in the form

∂U

∂t
= −U ·∇U − c2s∇ ln ρ+ g +FM +FK,tot, (18)

∂A

∂t
= U ×B + E − ηJ −∇Φ, (19)

∂ρ

∂t
= −∇ · ρU , (20)

where Φ is the mean electrostatic potential, B = B0+∇×A
is the mean magnetic field including the imposed field, and

ρFM = J ×B + 1
2∇(qpB

2
) (21)

is the effective mean Lorentz force, where we use for qp(B)
the fit formula given by Eq. (15). This fit formula was also
used in BKR. However, in view of the results of Sect. 3.4, the
qs and qg terms will now be omitted, and

FK,tot = (νt + ν)
(
∇2U +∇∇ ·U + 2S∇ ln ρ

)
(22)

is the total (turbulent and microscopic) viscous force,

E = γ ×B − ηtJ , (23)
is the mean electromotive force, where γ is the turbulent
pumping velocity and ηt is the turbulent magnetic diffusivity.
In our mean-field models we assume νt/ηt = 1 (Yousef et al.
2003). The kinematic theory of Roberts & Soward (1975) and
others predicts that ηt(z) = urms(z)/3kf and γ = − 1

2∇ηt.
It is fairly easy to assess the accuracy of these expressions by
computing turbulent transport coefficients from the simula-
tions using the test-field method (Schrinner et al. 2005, 2007).
This will be done in Sect. 4.2.
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FIG. 14.— Results for ηt and γ with the test-field method (solid
lines; error margins are shown as dashed lines). In the upper panel,
the dotted line gives 1.2urms/3kf and the dash-dotted line represents
1.2urms0 exp(z/Hu)/3kf . In the lower panel, the dash-dotted lines rep-
resents −1.2urms0 exp(z/Hu)/3kfHu.

A comment regarding Φ is here in order. It is advantageous
to isolate a diffusion operator of the form ηt∇2A by using the
so-called resistive gauge in which Φ = ηt∇ ·A. This means
that the diffusion operator now becomes ηt∇2A+(∇·A)∇ηt
(Dobler et al. 2002). This formulation is important in situation
where ηt is non-uniform.

4.2. Determination of ηt and γ from the simulations
We use the kinematic test-field method of Schrinner et al.

(2005, 2007) in the Cartesian implementation, as described
by Brandenburg et al. (2008a), to compute ηt and γ from the
simulations. For a response to earlier criticism of this method
see Appendix B. We analyze the two setups discussed above
and refer to them as Model U (where urms and hence ηt are
nearly constant in height) and Model B (where Beq is nearly
constant in height).

The set of test fields includes constant and linearly grow-
ing ones. For both models we use B0 = 0.01ρ1/2cs, corre-
sponding to B0 ≈ 0.1Beq0 for Model U and B0 ≈ 0.07Beq0

for Model B. The results are shown in Figs. 14 and 15. In
Table 3 we summarize the relevant parameters inferred for
these models. It turns out that the DNS results are well de-
scribed by ηt = 1.2 ηt0, with ηt0 = urms/3kf and urms(z) =
urms0 exp(z/Hu), but γ = −dηt/dz, i.e. without the 1/2 fac-
tor expected from the kinematic mean-field theory.

We emphasize that γ ≈ 0 for Model U, suggesting that
additional effects owing to the mean magnetic field such as
mean-field magnetic buoyancy (Kitchatinov et al. 1994; Ro-
gachevskii & Kleeorin 2006) are weak (Appendix C)

4.3. Results from the mean-field models
Next we consider solutions of Eqs. (18)–(23) for Mod-

els U and B using the parameters specified in Table 3. We
have either constant ηt (Models U) or constant Beq (Mod-
els B). In both cases we use η = 2ν = 4 × 10−4cs/k1,
B0 = 0.01ρ1/2cs, with Bp/Beq = 0.12, which corresponds

FIG. 15.— Same as Fig. 14, but for the case with Hu → ∞ that corre-
sponds to Model U.

FIG. 16.— Evolution of the mean velocity for Models U and B obtained
by solving the mean field equations. Model B’ refers to a model where the
pumping velocity is ignored.

to the values used in the DNS. As in BKR, these equations
exhibit a linear instability with subsequent saturation. How-
ever, this result is still remarkable because there are a num-
ber of differences compared with the models studied in BKR.
Firstly, we consider here an isothermal atmosphere which is
stably stratified, unlike the isentropic one used in BKR, which
was only marginally stable. This underlines again the robust-
ness of this model and shows that this large-scale instability
can be verified over a broad range of conditions. Secondly,
this instability also works in situations where ηt and/or Beq

are non-uniform and where there is a pumping effect that
sometimes might have a tendency to suppress the instability.

TABLE 3
SUMMARY OF PARAMETERS ENTERING MODELS U AND B.

Model ηt0k1/cs Beq/ρ
1/2
0 cs ReM comment

U 0.0088 0.130 66 Beq = Beq0 ez/2Hρ

B 0.0023 0.035 2.5–60 ηt = ηt0 ez/2Hρ
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In Fig. 16 we compare the evolution of the rms velocity
of the mean flow. Note that, in contrast to the correspond-
ing plots in BKR, we have here normalized U rms with re-
spect to vA0 ≡ B0/

√
ρ and time is normalized with respect

to the Alfvén wave traveling time, (vA0k1)−1. This was done
because in these units the curves for Models U and B show
similar growth rates. This is especially true when the pump-
ing term is ignored in Model B, i.e. when we set artificially
γ = 0. With pumping included (as was determined from
the kinematic test-field method), the growth rate is slightly
smaller (compare dashed and dotted lines). The pumping
effect does not significantly affect the nonlinear saturation
phase, i.e. the late-time saturation behavior for the two ver-
sions of Model B is similar. Instead, the saturation phase is
different for Model U compared with Model B and the satu-
ration value is larger for Model U.

Visualizations of the mean magnetic field as well as the
mean velocity are shown in Fig. 17 for three times near satu-
ration. As in BKR, an eigenfunction develops at the smallest
horizontal wavenumber and the field is largest near the top
of the domain. As the field reaches saturation, the structures
descend, although the ratio |B|/Beq is still largest at the top
where it reaches values of the order of 0.4.

5. DISCUSSION

To understand the mean-field results obtained above, let us
discuss the physics of the large-scale instability in more de-
tail. We consider an isolated flux tube of magnetic field lines.
If the flux tube is lighter than the surrounding fluid, it moves
upward. The reason for continued upward floating of the mag-
netic flux tube is as follows. The decrease of the magnetic
field inside the ascending tube is due to its expansion, but this
is accompanied by an increase of the magnetic pressure inside
the tube. The latter is caused by the negative effective mean
magnetic pressure, 1

2 (1 − qp)B
2
< 0. The decrease of the

magnetic field inside the tube results in a decrease of the fluid
density and causes buoyancy of the magnetic flux tube. The
latter implies the excitation of a large-scale instability. The
criterion of this instability reads (Kleeorin et al. 1993, 1996)

(1− qp) (Hρ −HB) > 0, (24)

where HB is the characteristic spatial scale of the mean mag-
netic field variations. This instability can be excited even
in a uniform mean magnetic field (HB → ∞). The source
of free energy of this instability is provided by the small-
scale turbulent fluctuations. In contrast, the free energy in
the Parker’s magnetic buoyancy instability (Parker 1966) or
in the interchange instability in plasma (Tserkovnikov 1960)
is drawn from the gravitational field. In the absence of turbu-
lence (qp = 0), condition (24) coincides with the criterion for
the Parker’s magnetic buoyancy instability (Hρ > HB).

Our DNS have shown that for an isothermal atmosphere
with strong density stratification the total turbulent pressure
is decreased due to the generation of magnetic fluctuations by
the tangling an imposed horizontal mean magnetic field by the
velocity fluctuations. This phenomenon strongly affects the
mean Lorentz force so that the effective mean magnetic pres-
sure becomes negative. For our numerical model with approx-
imately uniform turbulent rms velocity, the ratio of imposed
to equipartition field strength changes with height, because
the density decreases with height, while the imposed field is
constant. This allows us to determine the full functional form
of the effective mean magnetic pressure as a function of nor-

FIG. 17.— Mean magnetic field in the y direction (color coded) together
with velocity vectors in the xz plane for Model U. Note the spontaneous
production of flux structures.

malized field strength for a single run.
In all the runs where a negative effective mean magnetic

pressure is found, the magnetic fluctuations are noticeably re-
duced in those parts of the domain where the imposed field
exceeds about 10–30% of the equipartition value. This de-
pendence is found to be similar to that obtained earlier using
both analytic theory (RK07) and direct numerical simulations
(BKR), and the results are robust when changing the strength
of the imposed field.

In simulations where the turbulent velocity is nearly inde-
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pendent of height, the reduction of magnetic fluctuations oc-
curs in the upper layers where the equipartition field strength
decreases with height (Model U). In Model B, where the
equipartition field strength is nearly constant in height, the
magnetic fluctuations are found to be slightly stronger in the
upper parts.

However, none of our direct numerical simulations of
forced hydromagnetic turbulence show any obvious signs of a
linear large-scale instability that might result in magnetic flux
concentrations, as was expected from corresponding mean-
field calculations. At this point we can only speculate about
possible causes of this discrepancy. Obvious candidates in-
clude too small values of the magnetic Reynolds number or
too large values of the magnetic Prandtl number. On the other
hand, our direct simulations suggest that even for the rather
moderate values studied in this paper, a suppression of the to-
tal turbulent pressure exists such that the net effective mean
magnetic pressure shows a clear negative minimum at about
10–20% of the equipartition value. Another perhaps more
likely possibility is that our ansatz for FM is too simplis-
tic. Obvious extensions include higher order terms involving
derivatives of the mean magnetic field. Although the effects
of such terms should decrease with increasing scale separa-
tion, i.e., for larger values of kf/k1, it is not clear that our
value of kf/k1 = 5 is sufficient. Given that the most unstable
mode is expected to have an even smaller length scale in the
direction of the mean field, it becomes indeed quite likely that
kf/k1 = 5 is not sufficient in that direction. It might therefore
be worthwhile to perform DNS with larger scale separation.
At the same time, it should be possible to determine the effec-
tive mean magnetic pressure using mean magnetic fields that

are not uniform but vary on the scale of the domain. Further-
more, it is worthwhile to perform direct numerical simulations
of the type presented here, but over a broader range of values
of the magnetic Reynolds and Prandtl numbers. In this way it
should be possible to optimize our choice of parameters in or-
der to see where the results of mean-field and direct numerical
simulations can be brought closer together.

We reiterate that, while our DNS in stratified fluids repro-
duce the theoretically expected form of qp(B/Beq), they do
not currently demonstrate the excitation of a large-scale in-
stability. This situation is reminiscent of the history of DNS
findings of the α effect and large-scale dynamo action. In the
early papers of Meneguzzi et al. (1981) and Kida et al. (1991)
the absence of a large-scale dynamo instability in helically
forced DNS was noted. This, however, was no evidence for
the absence of the α effect, but just an artifact of insufficient
scale separation, as was noted only much later; see Fig. 23 of
Haugen et al. (2004).
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APPENDIX

A. THE B DEPENDENCE OF qp , qs , AND qg

In the following we summarize theoretical results for the B dependence of the coefficients qp, qs, and qg that enter in Eq. (12).
We focus here on the case of anisotropic density-stratified background turbulence. Expressions for the isotropic case were given
by RK07 and are summarized in BKR. Following BKR, we define β ≡ B/Beq. We define the scale of the energy-carrying eddies
as ℓf = 2π/kf . Due to density stratification, new terms emerge that are proportional to ℓ2f /H

2
ρ . These terms were absent in BKR,

but otherwise the following formulae are identical.
For very weak mean magnetic fields, 4β ≪ Rm−1/4, qp, qs and qg are approximately constant and given by

qp(β) =
4
45
(
1 + 9 lnRm

)
(1− ǫ) +

16 ℓ2f
9H2

ρ

, qs(β) =
1
15
(
1 + 8 lnRm

)
(1− ǫ), qg(β) = − 8 ℓ2f

3H2
ρ

; (A1)

for Rm−1/4 ≪ 4β ≪ 1 we have

qp(β) =
16
25

[1 + 5| ln(4β)|+ 32β2] (1− ǫ) +
16 ℓ2f
9H2

ρ

[
1− 16β2

5

]
, (A2)

qs(β) =
32
15

[
| ln(4β)|+ 1

30
+ 12β2

]
(1− ǫ), qg(β) = − 8 ℓ2f

3H2
ρ

[
1− 16β2

5

]
; (A3)

and for strong fields, 4β ≫ 1, we have

qp(β) =
1

6β2

(
1− ǫ+

3 ℓ2f
H2

ρ

)
, qs(β) =

π

48β3
(1− ǫ), qg(β) = − 3 ℓ2f

4H2
ρ β

2
, (A4)

where the parameter ǫ = 〈b20〉/〈u2
0〉 takes into account the contributions caused by the small-scale dynamo (see RK07, where it

was assumed for simplicity that the range of scales of magnetic fluctuations generated by the small-scale dynamo coincides with
that of the velocity fluctuations). Here we have taken into account that the anisotropic contributions to the nonlinear functions
qp(β) and qg(β) for density-stratified background turbulence are given by

qg(β) = −3
2
qp(β) = − 8 ℓ2f

3H2
ρ

[
64β4 − 4β2 +

1
3
+

1
4β2

− 29 ln
(
1 +

1
8β2

)
− arctan(

√
8β)

8
√
2β3

]
. (A5)
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For the derivation of Eq. (A5) we used Eqs. (A10)–(A11) given by RK07 with the following model of the density-stratified
background turbulence written in the Fourier space:

〈ui(k)uj(−k)〉 = 〈u2
0〉E(k)

8π k2 (k2 + λ2)

[
δij (k2 + λ2)− ki kj − λi λj + i

(
λi kj − λj ki

)]
, (A6)

where the velocity field satisfies the continuity equation in the anelastic approximation divu = ui λi, λi = −∇iρ/ρ, δij is the
Kronecker tensor, the energy spectrum function is E(k) = (2/3) k−1

f (k/kf )−5/3 for kf < k < kf Re3/4.

B. CRITICISMS OF THE TEST-FIELD METHOD

The kinematic test-field method has previously been criticized on the grounds that it invokes a predetermined arbitrary mean
field. It has been argued (Cattaneo & Hughes 2008) that this technique will therefore yield only approximations to the true mean-
field coefficients, and that their quality will depend on how well the true mean field is approximated by the choice of test field.
This is not true, and the original criticism was in fact absent in the published version (Cattaneo & Hughes 2009). However, we
emphasize that one needs not only one, but a set of different test fields to determine all relevant components of the α and turbulent
diffusivity tensors. Furthermore, for finite scale separation ratios in space and time one also needs to represent all frequencies in
space and time. The knowledge of all higher frequencies allows one to compute the integral kernels that describe the nonlocality
of turbulent transport; see Brandenburg et al. (2008c) for nonlocality in space and Hubbard & Brandenburg (2009) for nonlocality
in time. The multitude of test fields does allow one to compute also those parts of the α and turbulent diffusivity tensors that
do not enter in the particular problem at hand, but also those parts that enter under any other circumstances. An example is the
evolution of a passive vector field where the same mean-field theory applies (Tilgner & Brandenburg 2008).

Furthermore, had we used the quasi-kinematic test-field method, we would need to respond to the criticism of Courvoisier et al.
(2010), who point out that this method fails if there is hydromagnetic background turbulence originating, for example, from small-
scale dynamo action. In such a case a fully nonlinear test-field method must be employed (Rheinhardt & Brandenburg 2010).
Furthermore, it is worth noting that even in cases where small-scale dynamo action was expected, such as those of Brandenburg
et al. (2008b) where values of ReM up to 600 were considered, the quasi-kinematic test-field method was still found to yield valid
and self-consistent results, as was demonstrated by comparing the growth rate expected from the obtained coefficients of αij and
ηij . This growth rate was confirmed to be compatible with zero in the steady state; see also Ponty & Plunian (2011). Finally, as
shown in Rheinhardt & Brandenburg (2010), the quasi-kinematic method is valid if magnetic fluctuations result solely from an
imposed field.

C. COMMENTS ON MEAN-FIELD BUOYANCY

The work of Kitchatinov & Pipin (1993) is of interest in the present context, because it predicts the upward pumping of
mean magnetic field. Here we discuss various short-comings of this work. (i) The gradient of the mean density is zero, (ii)
the background turbulence is homogeneous, (iii) fluctuations of pressure, density and temperature are adiabatic, (iv) low Mach
number flows are considered. Since the gradient of the mean density is zero, the hydrostatic equilibrium, ∇p = ρg, exists only if
the gradient of the mean temperature is not zero. This implies that the turbulent heat flux is not zero and temperature fluctuations
are generated by the tangling of this mean temperature gradient by the velocity fluctuations. Therefore, the key assumption made
in Kitchatinov & Pipin (1993) that fluctuations of pressure, density and temperature are adiabatic, is not valid and the equation
for the evolution of entropy fluctuations should be taken into account. This implies furthermore that the temperature fluctuations
in Eq. (2.5) of their paper cannot be neglected. By contrast, we consider here flows with a non-zero mean density gradient and
turbulence simulations that have strong density stratification.
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As was demonstrated in earlier studies, turbulence can result in a negative contribution to the effective mean magnetic
pressure, which, in turn, can cause a large-scale instability. In this study, hydromagnetic mean-field modelling is performed
for an isothermally stratified layer in the presence of a horizontal magnetic field, and the negative effective magnetic
pressure instability (NEMPI) is comprehensively investigated. It is shown that, if the effect of turbulence on the mean
magnetic tension force vanishes, which is consistent with results from direct numerical simulations of forced turbulence,
the fastest growing eigenmodes of NEMPI are two-dimensional. The growth rate is found to be sensitive to details of the
dependence of the effective mean magnetic pressure on the mean magnetic field. A fit formula is proposed that gives the
growth rate as a function of turbulent kinematic viscosity, turbulent magnetic diffusivity, mean magnetic field strength,
and the degree of stratification. The formation of sunspots and solar active regions is discussed as a possible application
of NEMPI.
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1 Introduction

The concept of turbulent viscosity is often used in astro-
physical and other applications in recognition of the fact
that the microscopic viscosity is far too small to be relevant
on the length scales under consideration. Turbulent viscos-
ity is the simplest parameterization of the Reynolds stress
tensor, uiuj , where u = U − U is the velocity fluctuation
about a suitably defined average, denoted here by an over-
bar. Turbulent viscosity is by far not the only contribution
to the Reynolds stress tensor.

In addition to hydrodynamic contributions such as the Λ
effect (Rüdiger 1980, 1989), which is relevant to explaining
stellar differential rotation (Rüdiger & Hollerbach 2004),
and the anisotropic kinetic alpha effect (Frisch et al. 1987),
which provides an important test case in mean-field hydro-
dynamics (Brandenburg & von Rekowski 2001; Courvoisier
et al. 2010), there are magnetic contributions as well. One
can think of them as a magnetic feedback on the hydrody-
namic stress tensor (Rädler 1974; Rüdiger 1974) or, espe-
cially when magnetic fluctuations are also considered, as a
mean-field contribution to the turbulent Lorentz force.

Work by Rüdiger et al. (1986) suggested that the total
magnetic tension force that includes the effects of fluctu-
ations should be reduced and might even change sign. A
similar result was obtained by Kleeorin et al. (1989, 1990)
using spectral τ approach who also found another effect of
a reversal of the effective magnetic pressure term; see also
Kleeorin & Rogachevskii (1994) and Kleeorin et al. (1993,
1996). Rogachevskii & Kleeorin (2007) argued that in tur-
bulent convection this can lead to the formation of large-

scale magnetic flux structures and perhaps even sunspots
and active regions.

Recently, direct numerical simulations (DNS) of both
unstratified and stratified forced turbulence (Brandenburg et
al. 2010, 2011; hereafter referred to as BKR and BKKR,
respectively) have substantiated this idea and have demon-
strated that the effective magnetic pressure can indeed
change sign. Similar results have now also been obtained
for turbulent convection (Käpylä et al. 2011a). These papers
have provided mean-field calculations illustrating that there
is a negative effective magnetic pressure instability (here-
after referred to as NEMPI) when there is sufficient density
stratification.

This instability is the convective type instability as
well as interchange instability in plasma (Tserkovnikov
1960; Priest 1982) or magnetic buoyancy instability (Parker
1966). On the other hand, the source of free energy of
NEMPI is provided by the small-scale turbulence, while the
free energy in interchange or magnetic buoyancy instabil-
ity is drawn from the gravitational field. The mechanism
of NEMPI works even under isothermal conditions when
entropy evolution is ignored and an isothermal equation of
state is used. Three-dimensional calculations have shown
that the mean magnetic field develops structure along the
direction of the field (BKR). However, while the mean-field
calculations have illustrated the nature of the instability, no
systematic survey of solutions has yet been attempted.

The purpose of this paper is to clarify some still puzzling
aspects concerning NEMPI. This is particularly important
in view of the fact that no clear evidence of NEMPI has yet
been seen in DNS (BKKR). In other words, although DNS

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



2 K. Kemel et al.: Negative effective magnetic pressure instability

have shown that the effective mean magnetic pressure can
change sign, and although we know from mean-field models
that this should lead to the formation of structures near the
surface, this type of structure formation has not been seen
in DNS.

On the other hand, some type of structure formation has
recently been reported in Large-Eddy Simulations (LES), so
one wonders whether this might be an indication of NEMPI.
We have here in mind the radiation magneto-convection
simulations of Kitiashvili et al. (2010), in which one sees
the formation of whirlpool-like magnetic structures. How-
ever, even in the absence of magnetic fields, one finds the
formation of whirlpools, although this requires rapid rota-
tion (Käpylä et al. 2011b).

Most relevant to NEMPI is perhaps the work of Tao et al.
(1998), who also considered magneto-convection and find a
horizontal segregation into magnetized and non-magnetized
regions. The size of the individual regions is such that
they encompass several turbulent eddies. This phenomenon
might therefore well be associated with an effect that could
also be modelled in terms of mean-field theory. However,
before we can make such an association, we need to find
out more about the properties of NEMPI. In particular, we
need to know what is the optimal magnetic field strength,
what are the requirements or restrictions in the turbulent ve-
locity, and, finally, how much density stratification is needed
to make NEMPI work.

To connect the aforementioned requirements to DNS,
we need to have a meaningful parameterization of the tur-
bulence effects. The work done so far has been focussing
on measuring a reduction of the turbulent pressure and ef-
fective mean magnetic pressure as a function of the local
mean magnetic field strength. The shape of the resulting de-
pendence of the effective mean magnetic pressure on the
mean magnetic field has been matched to a specific fit for-
mula that can be characterized by two fit parameters that,
in turn, can be linked to the minimum effective mean mag-
netic pressure and the critical field strength above which the
effect is suppressed. However, there have been indications
that this parameterization is not unique and that different
combinations of the two fit parameters can result in similar
values of minimum effective pressure and the critical field
strength. The question therefore arises whether this degen-
eracy is important for the properties of NEMPI.

Finally, we mentioned already the fact that NEMPI is
capable of exciting three-dimensional structures that show
variation along the direction of the mean magnetic field.
This would raise the worry that the two-dimensional re-
sults presented so far may not reflect the properties of the
fastest growing mode and may therefore not be relevant to
describing NEMPI. However, it turns out that this is not the
case, because the degree to which three-dimensional modes
are excited depends on the sign of one of the turbulence
parameters, namely the term characterizing turbulence ef-
fects on the magnetic tension force, and that simulations
indicate that this sign is not favorable for exciting three-

dimensional modes (BKR). Before we begin addressing the
various points, we discuss first the mean-field model and
turn then to the points raised above.

2 Mean-field model

In view of future verifications of NEMPI with DNS, it is
essential to be able to reduce the essential physics to a
minimum. We will therefore not make any attempt to con-
sider other aspects that would make the model more realistic
with respect to the Sun. Given that NEMPI works even un-
der isothermal conditions (BKKR), we adopt an isothermal
equation of state where the mean pressure p is linear in the
mean density ρ, with p = ρc2s , and cs = const being the
isothermal sound speed. We solve the evolution equations
for mean velocity U , mean density ρ, and mean vector po-
tential A, in the form

∂U

∂t
= −U ·∇U − c2s∇ ln ρ+ g +FM +FK, (1)

∂ρ

∂t
= −U ·∇ρ− ρ∇ ·U , (2)

∂A

∂t
= U ×B − (ηt + η)J , (3)

where FM is given by

ρFM = − 1
2∇[(1− qp)B2] +B ·∇ [

(1− qs)B
]
, (4)

and

FK = (νt + ν)
(
∇2U +∇∇ ·U + 2S∇ ln ρ

)
(5)

is the total (turbulent plus microscopic) viscous force. Here,
Sij = 1

2 (U i,j + U j,i) − 1
3δij∇ · U is the traceless rate of

strain tensor of the mean flow. As in earlier work (BKR,
BKKR), we approximate qp and qs by simple profiles that
are only functions of the ratio β ≡ |B|/Beq, i.e.,

qσ(β) = qi0[1− (2/π) arctan(β2/β2
σ)], (6)

where σ stands for subscripts p and s, respectively. The
functions qp and qs quantify the impact of the mean mag-
netic field on the effective pressure and tension forces, re-
spectively.

As initial condition, we assume a hydrostatic stratifica-
tion with ρ(z) = ρ0 exp(−z/Hρ), where Hρ = c2s/g is
the scale height in a domain of size Lx × Ly × Lz , where
−Lz/2 ≤ z ≤ Lz/2. We normally use Lx = Ly ≡ L and,
unless noted otherwise, also Lz = L. In most of the cases
we use Lx = Ly = Lz ≡ L. We add a small perturbation to
the velocity field. We allow for the presence of an imposed
field in the y direction, B0 = (0, B0, 0). The total field is
then written as

B = B0 +∇×A, (7)

so the departure from the imposed field is expressed in terms
of the mean magnetic vector potential A.

On the upper and lower boundaries we adopt stress-free
boundary conditions for velocity, i.e. Ux,z = Uy,z = Uz =

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Fig. 1 Visualization of By at the periphery of the computational domain near the end of the kinematic growth phase.
Note the change of the field pattern with increasing values of qs0 (=0, 5, 10, and 20 from left to right).

0, and a perfect conductor boundary condition for the mag-
netic field, i.e. Ax = Ay = Az,z = 0. Here, commas de-
note partial differentiation. No boundary condition for the
density is required. All computations have been carried out
with the PENCIL CODE1.

Our model is characterized by the following set of in-
put parameters. There are four parameters characterizing
the hydrostatic equilibrium stratification, namely g, c2s , ρ0,
and Lz . The remaining parameters are the Alfvén speed at
the surface, vtopA = B0/

√
ρtopµ0, turbulent viscosity and

magnetic diffusivity, as well as the parameters qσ0 and βσ .
Here, ρtop = ρ0 exp(−ztop/Hρ) is the density at the sur-
face, which is usually at z ≡ ztop = Lz/2.

3 Results

3.1 Two- and three-dimensional solutions

Earlier work has suggested that the eigenmodes of NEMPI
can be three-dimensional (BKR). This could make two-
dimensional calculations questionable if the first excited
mode were indeed the fastest growing one. However, it turns
out that the wavelength of the eigenmode in the direction of
the field increases as qs decreases. In BKR, where three-
dimensional (y-dependent) solutions to NEMPI were first
reported, qs was chosen to be around 10, and the fastest
growing mode was indeed three-dimensional. In Fig. 1 we
show that the effective wavenumber of the variation of the
field in the y direction decreases with decreasing values of
qs. This is shown quantitatively in Fig. 2, where we plot
the dependence of the typical value of the field-aligned
wavenumber, ky , on the value of qs0. Here, ky is evaluated
in a layer near the surface. For normalization purposes, we
define the lowest wavenumber in the computational domain
as k1 = 2π/L.

We find that the typical value of ky grows approximately
linearly with increasing values of qs0. As an approximate fit
formula we can use k2y/k

2
1 ≈ 1.3 qs0. In addition, we find

that the growth rate of the instability, λ, grows with qs0 ap-
proximately linearly, once qs0 exceeds a value of around 5.
The fact that ky → 0 as qs0 → 0 is significant, because

1 http://www.pencil-code.googlecode.com

BKKR and also Käpylä et al. (2011b) found from simula-
tions that qs0 ≈ 0. In that case, the characteristic length
scale along the direction of the field becomes infinite and the
calculation essentially two-dimensional. Conversely, when
studying NEMPI in two dimensions, changing the value of
qs0 has no effect on structure formation and the growth rate;
see Table 1. However, it is now clear that this is an artifact
of restricting the solutions to be two-dimensional.

3.2 Degeneracy in the qp fit formula

We mentioned in the introduction that recent attempts to de-
termine qp0 from simulations faced the difficulty that the fit
formula possesses a degeneracy in that we can obtain a sim-
ilarly looking dependence of the effective mean magnetic
pressure Peff(β) = [1− qp(β)]β2 over a wide range of val-
ues of qp0 by adjusting the value of βp correspondingly. The
core of the problem becomes clear from Fig. 3, where we
plot the function Peff(β) in the lower panel and min(Peff)
versus βcrit in the upper panel. The parameter βcrit is de-
fined by the condition Peff(βcrit) = 0. It is evident that
min(Peff) becomes more negative as βcrit decreases and
qp0 increases. However, for a given value of βcrit, the fit
formula cannot produce a minimum of Peff that is below a
certain value. This minimum value is attained for qp0 → ∞,
but even the graphs for qp0 = 50 or 20 lie quite close to-
gether. Conversely, for a given value of min(Peff), there is
a minimum value of βcrit below which there is no solution.
For min(Peff) = −0.1, for example, there are no values of
qp0 for βcrit below about 0.3, while between 0.30 and 0.35
the same value of min(Peff) can be attained for qp0 between
20 and ∞. This is shown more clearly in the second panel of

Table 1 Comparison of growth rates for different values
of Ly and qs, including a two-dimensional (2D) simulation
(Ly → ∞).

Ly qs = 0 qs = 30

3D L 0.0124 0.2070
3D 8L 0.0137
2D ∞ 0.0141 0.0141

www.an-journal.org c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 K. Kemel et al.: Negative effective magnetic pressure instability

Fig. 2 Dependence of ky on qs0 (upper panel), together
with the corresponding growth rate λ (lower panel). Here, λ
is normalized by λ0 ≡ g/cs.

Fig. 3, where we plot Peff(β) for different values of qp0 and
values of βcrit that all cross the line min(Peff) = −0.1 in
the upper panel of this figure. This shows that, when qp0 is
10 or larger, the graph of Peff(β) becomes quite insensitive
to the exact value of qp0, and that the same graphs can be
obtained for a set of different combinations of qp0 and βp.

In the family of similarly looking solutions, the optimal
value of Bp is found to decrease with increasing values of
qp0, as is shown in the upper panel of Fig. 4. However, even
though the graphs of qp(β) are rather similar, mean-field
simulation show that the resulting growth rates are sensitive
to the value of qp in the parameter regime where B/Beq is
small. An alternative would be to use a third observation to
fix the degeneracy of the model. One such parameter could
be the position of the minimum of Peff , i.e., the value βmin,
for which Peff(βmin) = min(Peff) is obeyed.

3.3 Onset condition of NEMPI

With a given prescription of qp(β), assuming here qs0 = 0,
we can now compute two-dimensional mean-field models.
Our goal is to obtain a simple description that can tell us
how large the growth rate of the instability is, and what the
critical condition for the onset of the instability is. Not much
is known about the linear stability properties of NEMPI, so
we have to rely on numerical determinations of the growth
rates for different wavelengths in the different directions to
obtain an approximate representation of the dispersion re-
lation. Earlier work of Kemel et al. (2011) has suggested a
relation of the form

λ = Φ(vtopA , g/c2s , qp0, βcrit)− νtk
2
ν − ηtk

2
η, (8)

Fig. 3 Minimum effective magnetic pressure versus βcrit

for 5 values of qp0 (upper panel), and the corresponding
graphs of Peff(β) for which Peff = −0.1. For two values
of qp0 (5 and 50) the correspondence between βcrit and the
zero point of Peff(β) for curves with min(Peff) = −0.1 is
shown by vertical lines.

where kν and kη are inverse length scales quantifying the
effects of turbulent viscosity and turbulent magnetic diffu-
sivity, Φ is a function of the Alfvén speed at the top, vtopA ,
the inverse scale height H−1

ρ = g/c2s , and other parameters
describing the functional form of qp.

We now need to determine the various unknowns. We
begin by determining kν and kη by varying either only νt
or only ηt at a time. In this way we obtain a linear fit for
the growth rate, λ(ηt) = const − ηtk

2
η , giving us k2η as

the slope of this graph; see the upper and lower panels of
Fig. 5 for the corresponding results for kν and kη, respec-
tively. It turns out that kν ≈ 0.77 k1 and kη ≈ 1.1 k1. The
surprising result is that kν and kη are different from each
other by a factor of about

√
2. This was not the case in the

earlier work of Kemel et al. (2011) using less accurate data.
The new data seem sufficiently accurate so that this discrep-
ancy cannot easily be explained by numerical errors. More
plausibly, this discrepancy could be explained by a residual
dependence of Φ on either νt or ηt, or both. Note, however,
that the turbulent magnetic Prandtl number is of order unity
(Kleeorin & Rogachevskii 1994; Yousef et al. 2003), so this
uncertainty should be of no practical relevance.

Accepting now the fit parameters kν and kη as they have
been measured, we can proceed to determining the depen-
dence of Φ on vtopA , Hρ, and other fit physical input param-

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Fig. 4 Dependence of the fit parameter Bp on qp0, the
corresponding growth rate λ, and the dependence of λ on
Bp. Here, λ is normalized by λ0 ≡ g/cs.

eters. We assume that this relation is multiplicative and find
first the dependence on vtopA by plottingΦ = λ+νtk

2
ν+ηtk

2
η

against vtopA . It turns out that this is nearly a linear relation-
ship. Thus, keeping all other parameters unchanged, we find
Φ as a function of vtopA ; see the first panel of Fig. 6. Next,
we find Φ as a function of g/c2s , which results in an expo-
nential relationship, where lnΦ is found to increase linearly
with g/c2s ≡ H−1

ρ ; see the middle panel of Fig. 6. Thus, we
can write lnΦ ∝ 1/kρHρ, where kρ is a new fit parameter.
Here, kρ ≈ 0.5 k1. Finally, we show in the third panel of
Fig. 6 the dependence of Φ on the reconstructed fit,

Φfit = vtopA kA exp(1/kρHρ)ϕ(qp0, βp), (9)

where kA ≈ 0.26 k1 gives the best fit. This combined fit ap-
pears reasonably accurate for most of the parameter regime,
substantiating thus the general validity of the fit formulae
(8)–(9).

Some comments about the system size are in order. In
all cases with qs0 = 0, we find that in three-dimensional
calculations with finite y extent, the value of Ly affects
the growth rates only slightly; see Table 1. On the other
hand, doubling the x extent yields two pairs of rolls, but
at a slightly lower growth rate, indicating that our standard
value of Lx is still not quite in the asymptotic regime. Ex-
tending the domain downward (in the negative z direction)

Fig. 5 Dependence of λ on ηt (upper panel) and νt (lower
panel). In the two panels, the straight lines represent the
negative slopes k2η ≈ 1.2 and k2ν ≈ 0.6, approximately. In
the lower panel, the dotted line gives, for comparison, the
negative slope 1.2 of the upper panel.

Fig. 6 Dependence of λ̃ on vtopA (upper panel), g/c2s
(middle panel), and the combined fit Φ(vtopA , g/c2s ) (lower
panel).

does not change the results at all, but extending it in the up-
ward direction (positive z direction) changes the value of

www.an-journal.org c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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ρtop and hence the value of vtopA in a way that is already
fully described by our scaling law in Eq. (9).

4 Conclusions

The present work has clarified a number of puzzling as-
pects of NEMPI. Firstly, it is now clear that we can pro-
ceed with two-dimensional simulations as long as we know
that qs0 = 0 (or negative). However, this may not always
be the case. The fact that three-dimensional structures can
emerge from NEMPI was initially thought to be an inter-
esting aspect, because it could readily explain the formation
of bipolar regions (BKR). However, given that simulations
now indicate that qs0 ≈ 0 (or perhaps even negative), this
proposal would no longer be an option, unless some other
as yet unexplored effect begins to play a role. In principle,
all turbulent transport processes are nonlocal and must be
described by a convolution with the mean field rather than
a multiplication. In Fourier space, the convolution corre-
sponds to a multiplication with a scale-dependent turbulent
transport coefficient. Thus, the idea of explaining bipolar
regions would again become viable if this effect only ex-
isted at intermediate length scales. This would be a task for
future simulations to clarify, because none of the currently
available techniques are yet equipped to addressing this pos-
sibility.

Next, we have seen that the degeneracy in the fit for-
mula used for qp(β) and Peff(β) is significant in that differ-
ent combinations of qp0 and βp result in similar values of
min(Peff) and βcrit, but the growth rates can still be quite
different. This means that it is not sufficient to measure only
min(Peff) and βcrit. Instead, to characterize the functional
form of Peff(β) more accurately, we need some other char-
acteristics to represent the dependence of this function near
the origin. One such possibility is to use the field strength
for which the minimum of the effective magnetic pressure
is reached.

Finally, we have tried to establish an approximate dis-
persion relation to predict the growth rate of NEMPI as a
function of turbulent viscosity, turbulent magnetic diffusiv-
ity, mean field strength, and the strength of stratification.
This formula may serve as a first orientation and can hope-
fully be improved further with future simulations. This for-
mula can also be useful in connection with analytic esti-
mates concerning the regimes when NEMPI is expected in
DNS or under other more realistic circumstances.
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Käpylä, P. J., Mantere, M. J., Hackman, T.: 2011a, ApJ (submit-

ted), arXiv:1106.6029
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Rüdiger, G., Tuominen, I., Krause, F., Virtanen, H.: 1986, A&A

166, 306
Tao, L., Weiss, N.O., Brownjohn, D.P., Proctor, M.R.E.: 1998, ApJ

496, L39
Tserkovnikov, Y. A.: 1960, Sov. Phys. Dokl., 5, 87
Yousef, T. A., Brandenburg, A., Rüdiger, G.: 2003, A&A 411, 321
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ABSTRACT

Context. The large-scale magnetic fields of stars and galaxies are often described using mean-field dynamo theory.
At moderate magnetic Reynolds numbers, the transport coefficients which define the mean electromotive force can be
determined from simulations. This applies analogously also to the mean-field theory of passive scalar transport.
Aims. In the case of axisymmetric turbulence, that is, turbulence with only one preferred direction, magnetic transport
is governed by nine coefficients and passive scalar transport by four coefficients. All these coefficients are determined
for turbulence in the presence of either rotation or density stratification or, if they are aligned to each other, of both.
The kinematic problem is considered in which the magnetic field does not act back on the flow.
Methods. The test-field method is used where transport coefficients are determined by solving a set of equations with
properly chosen mean magnetic fields or mean scalars. The method is adapted to mean fields which may depend on all
thee space coordinates.
Results. Anisotropy of turbulent diffusion is found to be moderate in spite of rapid rotation or strong density stratifi-
cation. Contributions to the mean electromotive force determined by the symmetric part of the gradient tensor of the
magnetic field turn out to be important. In stratified rotating turbulence, the α effect is strongly anisotropic, suppressed
along the rotation axis on large length scales, but strongly enhanced at intermediate length scales. Also the Ω×J effect
is enhanced at intermediate length scales. The turbulent passive scalar diffusivity is typically almost twice as large as
the magnetic turbulent diffusivity.
Conclusions. The method provides a powerful tool for analyzing transport properties of axisymmetric turbulence. A
range of future applications is proposed. In the presence of rotation and stratification, all mentioned coefficients are
non-vanishing. Some of those ignored in earlier investigations turn out to be of significant magnitude.

Key words. magnetohydrodynamics (MHD) – hydrodynamics – turbulence

1. Introduction

Stellar mixing length theory is a rudimentary description of
turbulent convective energy transport. The mixing length
theory of turbulent transport goes back to Prandtl (1925)
and, in the stellar context, to Vitense (1953). The simplest
form of turbulent transport is turbulent diffusion, which
quantifies the mean flux of a given quantity, e.g., momen-
tum, concentration of chemicals, specific entropy or mag-
netic fields, down the gradient of its mean value. In all
these cases essentially a Fickian diffusion law is established,
where the turbulent diffusion coefficient is proportional to
the rms velocity of the turbulent eddies and the effective
mean free path of the eddies or their correlation length.

Mean-field theories, which have been elaborated, e.g.,
for the behavior of magnetic fields or of passive scalars in
turbulent media, go beyond this concept. In the case of
magnetic fields, the effects of turbulence occur in a mean
electromotive force, which is related to the mean magnetic
field and its derivatives in a tensorial fashion. Examples for
effects described by the mean magnetic field alone, with-
out spatial derivatives, are the α-effect (Steenbeck et al.,
1966) and the pumping of mean magnetic flux (Rädler,
1966, 1968; Roberts & Soward, 1975). Likewise the mean
passive scalar flux contains a pumping effect (Elperin et al.,
1996). In both the magnetic and the passive scalar cases

turbulent diffusion occurs, which is in general anisotropic.
The coupling between the mean electromotive force and the
magnetic field and its derivatives, or mean passive scalar
flux and the mean scalar and its derivatives, is given by
turbulent transport coefficients.

On the analytic level of the theory the determination of
these transport coefficients is only possible with some ap-
proximations. The most often used one is the second-order
correlation approximation (SOCA), which has delivered so
far many important results. Its applicability is however re-
stricted to certain ranges of parameters like the magnetic
Reynolds number or the Péclet number number. In spite
of this restriction, SOCA is an invaluable tool, because it
allows a rigorous treatment within the limits of its appli-
cability. It is in particular important for testing numerical
methods that apply in a wider range.

In recent years it has become possible to compute the
full set of turbulent transport coefficients numerically from
simulations of turbulent flows. The most accurate method
for that is the test-field method (Schrinner et al., 2005,
2007). In addition to the equations describing laminar and
turbulent flows, one solves a set of evolution equations
for the small-scale magnetic or scalar fields which result
from given mean fields, the test fields. By selecting a suffi-
cient number of independent test fields, one obtains a cor-
responding number of mean electromotive forces or mean
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scalar fluxes and can then compute in a unique way all the
associated turbulent transport coefficients.

Most of the applications of the test-field method
are based on spatial averages that are taken over
two coordinates. In the magnetic case this approach
has been applied to a range of different flows includ-
ing isotropic homogeneous turbulence (Sur et al., 2008;
Brandenburg et al., 2008a), homogeneous shear flow tur-
bulence (Brandenburg et al., 2008b) without and with
helicity (Mitra et al., 2009), and turbulent convection
(Käpylä et al., 2009). One of the main results is that in the
isotropic case, for magnetic Reynolds numbers Rm larger
than unity, the turbulent diffusivity is given by 1

3τu
2
rms,

where the correlation time τ is, to a good approximation,
given by τ = (urmskf)−1. Here, urms is the rms velocity of
the turbulent small-scale flow and kf is the wavenumber of
the energy-carrying eddies. For smaller Rm, the turbulent
diffusivity grows linearly with Rm. Furthermore, if the tur-
bulence is driven isotropically by polarized waves, the flow
becomes helical and there is an α effect that, in the kine-
matic regime (for weak magnetic fields), is proportional to
ω · u, where ω = ∇ × u is the vorticity of the small-scale
flow, u. In the passive scalar case, test scalars are used
to determine turbulent transport coefficients. Results have
been obtained for anisotropic flows in the presence of rota-
tion or strong magnetic fields (Brandenburg et al., 2009),
linear shear (Madarassy & Brandenburg, 2010), and for ir-
rotational flows (Rädler et al., 2011).

The present paper deals with the magnetic and the pas-
sive scaler case in the above sense. Its goal is to compute the
transport coefficients for axisymmetric turbulence, that is,
turbulence with one preferred direction, given by the pres-
ence of either rotation or density stratification, or both.
Except for a few comparison cases, we always consider flows
in a slab between stress-free boundaries. To facilitate com-
parison with earlier work on forced turbulence, we consider
an isothermal layer even in the density-stratified case, i.e.,
there is no convection, and the flow is driven by a pre-
scribed random forcing function just as we did in the case
of homogeneous turbulence. This is similar to earlier work
on forced homogeneous turbulence, but now we will be able
to address questions regarding vertical pumping as well as
helicity production and α effect in the presence of rotation.

2. Mean-field concept in turbulent transport

2.1. Mean electromotive force

The evolution of the magnetic field B in an electrically
conducting fluid is assumed to obey the induction equation,

∂B

∂t
= ∇× (U ×B − ηJ) , (1)

where U is the velocity and η the microscopic magnetic
diffusivity of the fluid, and J is defined by J = ∇ × B
(so that J/µ0 with µ0 being the magnetic permeability is
the electric current density). We define mean fields as aver-
ages, assume that the averaging satisfies (exactly or approx-
imately) the Reynolds rules, and denote averaged quantities
by overbars. The mean magnetic field B is then governed
by

∂B

∂t
= ∇×

(
U ×B + E − ηJ

)
, (2)

where E = u× b is the mean electromotive force resulting
from the correlation of velocity and magnetic field fluctua-
tions, u = U −U and b = B −B.

We focus attention on the mean electromotive force E
in cases in which the velocity fluctuations u constitute ax-
isymmetric turbulence, that is, turbulence with one pre-
ferred direction, which we describe by the unit vector ê.
Until further notice we accept the traditional assumption
according to which E in a given point in space and time
is a linear homogeneous function of B and its first spatial
derivatives in this point. Then, E can be represented in the
form

E = −α⊥B − (α‖ − α⊥)(ê ·B)ê− γê×B

−β⊥J − (β‖ − β⊥)(ê · J)ê− δê× J (3)

−κ⊥K − (κ‖ − κ⊥)(ê ·K)ê− µê×K

with nine coefficients α⊥, α‖, . . ., µ. 1 Like J = ∇ × B,
also K is determined by the gradient tensor ∇B. While
J is given by its antisymmetric part, K is a vector de-
fined by K = ê · (∇B)S with (∇B)S being the symmetric
part of ∇B. A more detailed explanation of (3) is given in
Appendix A. If ê is understood as polar vector (for exam-
ple ∇̺/|∇̺|, where ̺ is the mean mass density), then K
is axial and γ, β⊥, β‖ and µ are true scalars, but α⊥, α‖, δ,
κ⊥ and κ‖ pseudoscalars. Sometimes it is useful to interpret
ê as an axial vector (for example Ω/|Ω| with Ω being an
angular velocity). Then, K is a polar vector, β⊥, β‖, δ, κ⊥,
κ‖ and µ are true scalars but α⊥, α‖ and γ pseudo scalars.

We may split E and B into parts E⊥ and B⊥ perpen-
dicular to ê and parts E‖ and B‖ parallel to it. Then (3)
can be written in the form

E⊥ = −α⊥B⊥ − γê×B⊥ − β⊥J⊥ − δê× J⊥
−κ⊥K⊥ − µê×K⊥ (4)

E‖ = −α‖B‖ − β‖J‖ − κ‖K‖ .

Let us return to (3). In the simple case of homogeneous
isotropic turbulence we have α⊥ = α‖ and β⊥ = β‖, and
all remaining coefficients vanish. Then, (3) takes the form
E = αB − ηtJ with properly defined α and ηt. These two
coefficients have been determined by test-field calculations
(Sur et al., 2008; Brandenburg et al., 2008a).

In several previous studies of E, more general kinds of
turbulence (that is, not only axisymmetric turbulence) have
been considered, but with a less general definition of mean
fields, which were just horizontal averages. More precisely,
Cartesian coordinates (x, y, z) were adopted and the aver-
ages were taken over all x and y so that they depend on
z and t only (Brandenburg et al., 2008a,b). This definition
implies remarkable simplifications. Of course, we then have
Jz = 0. Further, there are no non-zero components of ∇B
other than Bx,z and By,z, for ∇ ·B = 0 requires Bz,z = 0,
and these components can be expressed as components of
J , viz. Bx,z = Jy and By,z = −Jx. (Here and in what
follows, commas denote partial derivatives.) This again im-
plies K = − 1

2 ê × J . As a consequence, this definition of

1 Note that the signs in front of some individual terms on the
right-hand side of (3), in particular of those with α⊥, α‖ and γ,
may differ from the signs used in other representations.
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mean fields reduces (3) to

E = −α⊥B − (α‖ − α⊥)(ê ·B)ê− γê×B

−β†J − δ† ê× J , (5)

where β† = β⊥ + 1
2µ and δ† = δ − 1

2κ⊥. Of course, α⊥,
α‖, γ, β† and δ† are independent of x or y. Clearly, β⊥
and µ as well as δ and κ⊥ have no longer independent
meanings. From (2) we may conclude that ∂Bz/∂t = 0. If
we restrict ourselves to applications in which Bz vanishes
initially, it does so at all times and the term with α‖ − α⊥
in (5) disappears. Then, only the four coefficients α⊥, γ, β†

and δ† are of interest. They can be determined by test-field
calculations using two test fields independent of x and y
(Brandenburg et al., 2008a,b).

In this paper we go in several respect beyond the as-
sumptions mentioned so far. Firstly, we relax the assump-
tion that E in a given point in space is a homogeneous
function of B and its first spatial derivatives in this point.
Instead, we admit a non-local connection between E and
B. For simplicity, however, we further on assume that E
at a given time depends only on B at the same time, that
is, we remain with an instantaneous connection between E
and B. Secondly, we consider mean fields no longer as av-
erages over all x and y. We define B at a point (x, y) in
a plane z = const by averaging over some surroundings of
this point in this plane so that it still depends on x and y.
In that sense we generalize (3) so that

E(x) = −
∫ (

α⊥(x, ξ)B(x− ξ)

+
(
α‖(x, ξ)− α⊥(x, ξ)

)(
ê ·B(x− ξ)

)
ê

+γ(x, ξ) ê×B(x− ξ)

+β⊥(x, ξ)J(x− ξ)

+
(
β‖(x, ξ)− β⊥(x, ξ)

)(
ê · J(x− ξ)

)
ê

+δ(x, ξ) ê× J(x− ξ) (6)

+κ⊥(x, ξ)K(x− ξ)

+
(
κ‖(x, ξ)− κ⊥(x, ξ)

)(
ê ·K(x− ξ)

)
ê

+µ(x, ξ) ê×K(x− ξ)
)
d3ξ .

As a consequence of the axisymmetry of the turbulence,
the coefficients α⊥, α‖, . . ., µ depend only via ξ2x + ξ2y on
ξx and ξy . We consider them also as symmetric in ξz. The
integration is over all ξ space. Of course, E , B, J , and K
may depend on t. For simplicity, however, the argument t
has been dropped.

Let us subject (6) to a Fourier transformation with re-
spect to ξ. We define it by

F (ξ) = (2π)−3

∫
F̃ (k) exp(ik · ξ) d3k . (7)

In this way we obtain

E(x) = −
∫ (

α̃⊥(x,k)B̃(k)

+
(
α̃‖(x,k)− α̃⊥(x,k)

)(
ê · B̃(k)

)
ê

+γ̃(x,k) ê× B̃(k)

+β̃⊥(x,k) J̃(k) +
(
β̃‖(x,k)− β̃⊥(x,k)

)(
ê · J̃(k)

)
ê

+δ̃(x,k) ê× J̃(k) (8)

+κ̃⊥(x,k)K̃(k) +
(
κ̃‖(x,k)− κ̃⊥(x,k)

)(
ê · K̃(k)

)
ê

+µ̃(x,k) ê× K̃(k)
)
exp(ik · x) d3k ;

see Chatterjee et al. (2011) for a corresponding relation in
the case of horizontally averaged magnetic fields that de-
pend only on z. Like α⊥, α‖, . . ., µ, the α̃⊥, α̃‖, . . ., µ̃ are
real quantities. They depend only via k⊥ = (k2x+ k2y)1/2 on
kx and ky and are symmetric in kz , i.e., depend only via
k‖ = |kz | on kz . Due to the reality of the α⊥, α‖, . . ., µ and
their symmetry in ξx, ξy and ξz we have

α̃⊥(x,k) =
∫

α⊥(x, ξ) cos kxξx cos kyξy cos kzξz d3ξ (9)

and analogous relations for α̃‖, . . ., µ̃. We note that α̃⊥, . . .,
µ̃, taken at k = 0, agree with α⊥, . . ., µ in Equation (3).

2.2. Mean passive scalar flux

There are interesting analogies between turbulent trans-
port of magnetic flux and that of a passive scalar (cf.
Rädler et al., 2011). Assume that the evolution of a pas-
sive scalar C, e.g., the concentration of an admixture in a
fluid, is given by

∂C

∂t
= −∇ · (UC −D∇C), (10)

where D is the microscopic (molecular) diffusivity. Then
the mean scalar C has to satisfy

∂C

∂t
= −∇ · (UC +F −D∇C), (11)

where F = uc is the mean passive scalar flux, u stands
again for the fluctuations of the velocity and c = C − C
for the fluctuations of C. Consider again axisymmetric tur-
bulence with a preferred direction given by the unit vector
ê. Assume that F in a given point in space and time is
determined by C and its gradient G = ∇C in this point.
Then we have

F = −γCCê− βC
⊥G− (βC

‖ − βC
⊥)(ê ·G)ê− δC ê×G, (12)

with coefficients γC , βC
⊥ , βC

‖ and δC . If ê is a polar vector,
γC is a scalar but δC a pseudoscalar, and if ê is an axial
vector, γC is a pseudoscalar but δC a scalar, while βC

⊥ and
βC
‖ are always scalars. We note that ∇ · (δC ê×G) is only

unequal zero if δC is not constant but varies in the direction
of ê × G. We may split F and G into parts F⊥ and G⊥
perpendicular to ê, and parts F‖ and G‖ parallel to it, and
give (12) the form

F⊥ = −βC
⊥G⊥ − δC ê×G⊥

F‖ = −γC êC − βC
‖ G‖. (13)

Let us now relax the assumption that F in a given point
in space and time is determined by C and G in this point.
Analogously to the magnetic case we consider a non-local
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but instantaneous connection between F and C. Then we
have

F(x) = −
∫ (

γC(x, ξ) êC(x− ξ)

+βC
⊥(x, ξ)G(x− ξ)

+
(
βC
‖ (x, ξ)− βC

⊥(x, ξ)
) (

ê ·G(x− ξ)
)
ê (14)

+δC(x, ξ) ê×G(x− ξ)
)
d3ξ .

As α⊥, α‖, . . ., µ in the magnetic case, γC , βC
⊥ , βC

‖ and δC

depend only via ξ2x+ξ2y on ξx and ξy, and we consider them
also as symmetric in ξz . The integration is again over all ξ
space. Note thatF , C, andGmay, even if it is not explicitly
indicated, depend on t. Applying the Fourier transforma-
tion defined by (7) on (14), we arrive at

F(x) = −
∫ (

γ̃C(x,k) ê C̃(k)

+β̃C
⊥(x,k)G̃(k)

+
(
β̃C
‖ (x,k)− β̃C

⊥(x,k)
) (

ê · G̃(k)
)
ê (15)

+δ̃C(x,k) ê× G̃(k)
)
exp(ik · x) d3k ,

where γ̃C
⊥ , β̃C

⊥ , β̃C
‖ and δ̃C are real quantities. They depend

only via k2x + k2y on kx and ky, and only via k‖ on kz , and
they satisfy relations analogous to (9). We note that γ̃C ,
β̃C
⊥ , β̃C

‖ , and δ̃C at k = 0 agree with γC , βC
⊥ , βC

‖ , and δC

in (12).

3. Simulating the turbulence

We assume that the fluid is compressible and its flow is
governed by the equations

DU

Dt
= f + g −∇h− 2Ω×U + ρ−1∇ · (2νρS)

Dh

Dt
= −c2s∇ ·U . (16)

Here, f means a random force which drives isotropic turbu-
lence (e.g., Haugen et al., 2004), g the gravitational force,
and h the specific enthalpy. An isothermal equation of state,
p = ρc2s , has been adopted with a constant isothermal sound
speed cs. In general a fluid flow in a rotating system is con-
sidered, where Ω is the angular velocity which defines the
Coriolis force. As usual ρ means the mass density, ν the
kinematic viscosity and S the trace-free rate of strain ten-
sor, Sij = 1

2 (∂Ui,j + ∂Uj,i) − 1
3δij∇ · U . The influence of

the magnetic field on the fluid motion, that is the Lorentz
force, is ignored throughout the paper.

We consider a cubic domain of size L3, so the smallest
wavenumber is k1 = 2π/L. In most of the cases a density
stratification is included with g = (0, 0,−g), so the den-
sity scale height is Hρ = c2s/g. The number of scale heights
across the domain, L/Hρ, is equal to ∆ ln ρ, where ∆ de-
notes the difference of values at the two edges of the domain.
For Hρ = L we have a density contrast of exp 2π ≈ 535.
The forcing is assumed to work with an average wavenum-
ber kf . The scale separation ratio is then given by kf/k1,
for which we usually adopt the value 5. This means that we

have about 5 eddies in each of the three coordinate direc-
tions.

The flow inside the considered domain depends on the
boundary conditions. Unless indicated otherwise we take
the top and bottom surfaces z = z1 and z = z2 with
z2 = −z1 = L/2 as stress-free and adopt periodic boundary
conditions for the other surfaces.

4. Computing the transport coefficients

4.1. Test-field method

In the magnetic case the coefficients α⊥, α‖, . . ., µ are de-
termined by the test-field method (Schrinner et al., 2005,
2007; Brandenburg et al., 2008a). This method works with
a set of test fields B, called BT, and the corresponding
mean electromotive forces E, called ET. For the latter we
have ET = u× bT, where the bT obey

bT = ∇× aT

∂aT

∂t
= U × bT + u×BT + (u× bT )′ + η∇2aT , (17)

with U and u taken from the solutions of (16). For the
boundaries z = const we choose conditions which corre-
spond to an adjacent perfect conductor, for the x and y
directions periodic boundary conditions.

We define four test fields by

B1s = (B0 sx sy sz, 0, 0) , B1c = (B0 sx sy cz, 0, 0)

B2s = (0, 0, B0 sx sy sz) , B2c = (0, 0, B0 sx sy cz) (18)

with a constant B0. Here and in what follows we use the
abbreviations

sx = sinkxx , cx = cos kxx
sy = sinkyy , cy = cos kyy (19)
sz = sinkzz , cz = cos kzz .

We recall that test-fields need not to be solenoidal (see
Schrinner et al., 2005, 2007).

We denote the mean electromotive forces which corre-
spond to the test fields (18) by E1s, E1c, E2s, and E2c. With
the presentation (6) and relations like (9) we find

E1s
x = −B0

(
α̃⊥ sx sy sz − (δ̃ − 1

2
κ̃⊥)kz sx sy cz

)

E1s
y = −B0

(
γ̃ sx sy sz + (β̃⊥ +

1
2
µ̃)kz sx sy cz

)

E1s
z = B0 β̃‖ky sx cy sz (20)

E2s
x = −B0

(
(β̃⊥ − 1

2
µ̃)ky sx cy sz + (δ̃ +

1
2
κ̃⊥)kx cx sy sz

)

E2s
y = B0

(
(β̃⊥ − 1

2
µ̃)kx cx sy sz − (δ̃ +

1
2
κ̃⊥)ky sx cy sz

)

E2s
z = −B0

(
α̃‖ sx sy sz + κ̃‖kz sx sy cz

)

and corresponding relations for E1c
x , . . . , E2c

x , whose right-
hand sides can be derived from those in (20) simply by
replacing sz and cz by cz and − sz, respectively.

In view of the assumed axisymmetry of the turbulence,
we consider α⊥, α‖, . . ., µ in what follows as independent
of x and y but admit a dependence on z. When multiplying
both sides of the equations (20) and of the corresponding
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ones for E1c
x , . . . , E2c

x with sx sy, sx cy or cy sy and averag-
ing over all x and y, we obtain a system of equations, which
can be solved for α̃⊥, α̃‖, . . ., µ̃. The result reads

α̃⊥ = −〈bss( szE1s
x + czE1c

x )〉
α̃‖ = −〈bss( szE2s

z + czE2c
z )〉

γ̃ = −〈bss( szE1s
y + czE1c

y )〉
β̃⊥ = − 1

2 〈Bss( czE1s
y − szE1c

y ) +Bsc( szE2s
x + czE2c

x )〉
= − 1

2 〈Bss( czE1s
y − szE1c

y )−Bcs( szE2s
y + czE2c

y )〉
β̃‖ = 〈Bsc( szE1s

z + czE1c
z )〉 (21)

δ̃ = 1
2 〈Bss( czE1s

x − szE1c
x )−Bcs( szE2s

x + czE2c
x )〉

= 1
2 〈Bss( czE1s

x − szE1c
x )−Bsc( szE2s

y + czE2c
y )〉

κ̃⊥ = −〈Bss( czE1s
x − szE1c

x ) +Bcs( szE2s
x + czE2c

x )〉
= −〈Bss( czE1s

x − szE1c
x ) +Bsc( szE2s

y + czE2c
y )〉

κ̃‖ = −〈Bss( czE2s
z − szE2c

z )〉
µ̃ = −〈Bss( czE1s

y − szE1c
y )−Bsc( szE2s

x + czE2c
x )〉

= −〈Bss( czE1s
y − szE1c

y ) +Bcs( szE2s
y + czE2c

y )〉 ,

where

bss = 4 sx sy/B0 , Bss = hss/kz

Bcs = 4 cx sy/kxB0 , Bsc = 4 sx cy/kyB0. (22)

The angle brackets indicate averaging over x and y.
Although the relations (21) and (22) contain kx, ky and
kz as independent variables, the α̃⊥, α̃‖, . . ., µ̃ should vary
only via k⊥ = (k2x + k2y)1/2 with kx and ky, and only via k‖
with kz .

4.2. Test-scalar method

In the passive-scalar case the coefficients γC , βC
⊥ , βC

‖ , and
δC are determined by the test-scalar method with test
scalars C

T
and the corresponding fluxes FT . For the latter,

we have FT = ucT , where cT obeys

∂cT

∂t
= −∇ ·

(
UcT + uC

T
+ (ucT )′ −D∇cT

)
. (23)

Again U and u are taken from the solutions of (16).

We define two test-scalars C
Ts

and C
Tc

by

C
s
= C0 sx sy sz , C

c
= C0 sx sy cz , (24)

where C0 is a constant and the abbreviations (19) are used.
From (14) we then have

F s

x = −C0(β̃C
⊥kx cx sy sz − δ̃Cky sx cy sz)

F s

y = −C0(β̃C
⊥ky sx cy sz + δ̃Ckx cx sy sz) (25)

Fs

z = −C0(γ̃C
⊥ sx sy sz + β̃C

‖ kz sx sy cz)

and analogous relations for Fc

x, . . . ,F
c

z with sz and cz re-
placed by cz and −sz, respectively.

Analogously to the magnetic case, we assume that γC ,
βC
⊥ , βC

‖ , and δC are independent of x and y but may depend

on z. Analogous to (21) we find here

γ̃C = −〈css( szFs

z + czFc

z)〉
β̃C
⊥ = −〈Ccs( szFs

x + czFc

x)〉 = −〈Csc( szFs

y + czFc

y)〉
β̃C
‖ = −〈Css( czFs

z − szFc

z)〉 (26)

δ̃C = 〈Csc( szF s

x + czFc

x)〉 = −〈Ccs( szFs

y + czFc

y)〉 ,
where css, Css, Csc, and Ccs are defined like bss, Bss, Bsc,
and Bcs, with C0 at the place of B0. The angle brackets
indicate again averaging over x and y. Note that γ̃C , β̃C

⊥ ,
β̃C
‖ , and δ̃C should depend only via k⊥ = (k2x + k2y)1/2 on

kx and ky, and only via k‖ on kz.

4.3. Validation using the Roberts flow

For a validation of our test-field procedure for the deter-
mination of the coefficients occurring in (3) we rely on the
Roberts flow. We define it here by

u = u0(− cos k0x sin k0y , sink0x cos k0y ,
2f cos k0x cos k0y ) , (27)

with some wavenumber k0 and a factor f which charac-
terizes the ratio of the magnitude of uz to that of ux and
uy. We further define mean fields as averages over x and
y with an averaging scale which is much larger than the
period length 2π/k0 of the flow pattern. When calculating
the mean electromotive force E for this flow, we assume
that it is a linear homogeneous function of B and its first
spatial derivatives and adopt the second-order correlation
approximation. Although the Roberts flow is far from being
axisymmetric, the result for E can be written in the form
(3), where we have

α⊥ =
u2
0f

2ηk0
, α‖ = γ = 0

β⊥ =
u2
0(1 + 4f2)
16ηk20

, β‖ =
u2
0

8ηk20
, δ = 0 (28)

κ⊥ = κ‖ = 0 , µ = −u2
0(1− 4f2)
8ηk20

.

It agrees with and can be deduced from results reported in
Rädler et al. (2002a,b). As for the passive scalar case, an
analogous analytical calculation of the mean scalar flow F
leads to (12) with

γC = 0 , βC
⊥ =

u2
0

8Dk20
, βC

‖ =
u2
0f

2

2Dk20
, δC = 0 . (29)

We may proceed from the local connection of E with B
and its derivatives considered in (3) to the non-local ones
given by (6) or (8). As a consequence of the deviation of
the flow from axisymmetry, we can then no longer justify
that coefficients like α⊥(ξ) depend only via ξ2x + ξ2y on ξx
and ξy, and coefficients like α̃⊥(k) only via k⊥ on kx and
ky. This applies analogously to the connection of F with C

and its derivatives and to coefficients like β⊥(ξ) and β̃⊥(k).
A test-field calculation of the coefficients α̃⊥, α̃‖, . . .,

µ̃, as well as γ̃C , . . ., δ̃C has been carried out under the
conditions of the second-order correlation approximation
with u given by (27) and f = 1/

√
2. Figure 1 shows the
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results obtained for α̃⊥, β̃⊥, β̃‖ and µ̃, as well as β̃C
⊥ and

β̃C
‖ , as functions of k⊥/kf , with kf =

√
2k0, for two fixed

ratios k‖/k⊥. In the limit k⊥/kf ≪ 1 these coefficients take
just the values of α⊥, β⊥, β‖, µ, βC

⊥ and βC
‖ given in (28)

and (29). For larger values of k⊥/kf , as to be expected, the
α̃⊥, β̃⊥, β̃‖, µ̃, β̃C

⊥ and β̃C
‖ depend also on the ratio of kx

and ky.

4.4. Dimensionless parameters and related issues

Within the framework of this paper, the coefficients α⊥,
α‖, . . ., µ as well as α̃⊥, α̃‖, . . ., µ̃, and likewise γC , βC

⊥ , . . .,
δC and γ̃C , β̃C

⊥ , . . ., δ̃C , have to be considered as functions
of several dimensionless parameters. In the magnetic case
these are the magnetic Reynolds number Rm = urms/ηkf
and the magnetic Prandtl number Pm = ν/η, in the pas-
sive scalar case the Péclet number Pe = urms/Dkf and
the Schmidt number Sc = ν/D, further the Mach num-
ber Ma = urms/cs, the gravity parameter Gr = g/c2skf , the
Coriolis number Co = 2Ω/urmskf , as well as the scale sep-
aration ratio kf/k1.

Throughout the rest of the paper we give the coefficients
α⊥, α‖, γ, and γC as well as α̃⊥, α̃‖, γ̃, and γ̃C in units of
urms/3, the remaining coefficients β⊥, . . ., δC and β̃⊥, . . .,
δ̃C in units of urms/3kf . The numerical calculations deliver
these coefficients as functions of z and t. To avoid boundary
effects, we average these results over −2 ≤ k1z ≤ 1 (see
Figure 3 below). The resulting time series are averaged over
a range where the results are statistically stationary. Error
bars are defined by comparing the maximum departure of
an average over any one third of the time series with the
full time average.

In the case of isotropic turbulence it has been observed
that many of the turbulent transport coefficients enter an
asymptotic regime as soon as Rm exceeds unity (Sur et al.,
2008). While this should be checked in every new case again
(see below), it is important to realize that, according to sev-
eral earlier results (see also Brandenburg et al., 2009), only
values of Rm below unity are characteristic of the diffu-
sively dominated regime, while for Rm exceeding unity the
transport coefficients turn out to be nearly independent of
the value of Rm.

We are primarily interested in the limit k⊥, k‖ → 0, in
which the α̃⊥, α̃‖, . . . δ̃C turn into the α⊥, α‖ . . . δC . To
avoid vanishing test fields or test scalars in Equations (18)
and (24), we choose kx = ky = kz = k1, unless specified
otherwise.

5. Results

5.1. Homogeneous rotating turbulence

Let us first consider homogeneous turbulence in a rotating
system, that is, under the influence of the Coriolis force.
The angular velocity Ω responsible for this force defines
the preferred direction of the turbulence, ê = Ω/|Ω|. In
this case we expect only contributions to the mean elec-
tromotive force E from a spatially varying mean magnetic
field B, and contributions to the passive scalar flux F from
a spatially varying mean passive scalar C. That is, in (3)
we have only the terms with β⊥, β‖, δ, κ⊥, κ‖, and µ,

Fig. 1. The coefficients α̃⊥, β̃⊥, β̃‖, and µ̃, as well as β̃C
⊥

and β̃C
‖ for the Roberts flow, calculated in the second-order

correlation approximation, as functions of k⊥/kf , where
kf =

√
2k0 is the effective wavenumber of the flow. Results

obtained with kx = ky and k‖/k⊥ = 1/
√
2 ≈ 0.7 or

k‖/k⊥ = 1/16
√
2 ≈ 0.004 are represented by open squares

and dotted lines or by open diamonds and dashed lines, re-
spectively. Results with kx/ky = 0.75 [k⊥ = (3, 4, 0)k1] or
kx/ky = 5 [k⊥ = (5, 1, 0)k1] and k‖/k⊥ = 0.2 are indicated
by open or filled circles, respectively. Orange and grey sym-
bols correspond to the first and second expressions for β̃⊥
and µ̃ in (21) or for β̃C

‖ in (26).

and in (12) only those with βC
⊥ , βC

‖ , and δC . The terms
with β⊥ and β‖, as well as those with βC

⊥ and βC
‖ , charac-

terize anisotropic mean-field diffusivities, and that with δ
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Fig. 2. Co dependence of transport coefficients in a model
with rotation and density stratification, Rm ≈ 9, Pm =
Sc = 1, Gr = 0, kf/k1 = 5.

corresponds to the “Ω× J effect” (Rädler, 1969a,b, 1976;
Krause & Rädler, 1971, 1980), while the δC term vanishes
underneath the divergence and is therefore without inter-
est.

Figure 2 shows the dependence of the aforementioned
coefficients on Co for Rm ≈ Pe ≈ 9 and kf/k1 = 5. In the
limit of slow rotation we have β⊥ ≈ β‖ ≈ βC

⊥ ≈ βC
‖ . The

other four coefficients vary linearly with Co as long as Co
is small. Specifically, we find δ̃ ≈ −0.1Co, δ̃C ≈ −Co, as
well as κ̃⊥ ≈ −0.3Co and κ̃‖ ≈ −Co. These coefficients
reach maxima at Co ≈ 1. For rapid rotation, |Co| ≫ 1, all
coefficients approach zero like 1/Co. In particular, we have
β⊥ ≈ 1.2/Co and the same for β‖, βC

⊥ , and βC
‖ , further

κ̃⊥ ≈ −0.5/Co, κ̃‖ ≈ −1.2/Co, δ̃ ≈ −0.3/Co, and δ̃C ≈
−0.6/Co. Furthermore, we find that, within error bars, α⊥,
α‖, γ, and γC are indeed zero.

5.2. Stratified turbulence

Owing to the presence of boundary conditions at the top
and bottom of our domain and the lack of scale separation
for our default choice of kf/k1 = 5, the turbulence is in all
cases anisotropic, even if gravity is negligible. The ratio of
the vertical and horizontal velocity components, 2u2

‖/u
2
⊥,

is no longer, as in the isotropic case, equal to unity. For
moderate stratification (g/c2sk1 ≈ 1), not too large |z|, and
kf/k1 = 5, it takes a value of about 0.9. It decreases when

Fig. 3. Anisotropy 2u2
‖/u

2
⊥ of the flow for different strati-

fications g/c2sk1.

the ratio kf/k1 is decreased; see Table 1. Figure 3 shows
the z dependence of 2u2

‖/u
2
⊥. For strong stratification and

a high degree of scale separation, e.g. kf/k1 = 30, the men-
tioned ratio comes close to unity.

5.3. Stratified nonrotating turbulence

For axisymmetric turbulence in a nonrotating system show-
ing any kind of stratification in the representation (3) of E
only the four coefficients γ, β⊥, β‖, and µ can be non-zero.
Likewise, in the representation (12) of F only the three co-
efficients γC , βC

⊥ , and βC
‖ can be non-zero. Figure 4 shows

their dependence on Gr. It appears that γ is always close
to zero, while γC shows a linear increase for not too strong
gravity. At the same time, β⊥, β‖, βC

⊥ , and βC
‖ remain ap-

proximately constant. We find that µ is negative and mildly
increasing with increasing stratification, but the error bars
are large.

Table 1. Dependence of the density contrast and the
degree of anisotropy on the density stratification for tur-
bulence and 3 different values of kf/k1. The values of
2u2

‖/u
2
⊥ have been obtained as averages over the range

−2 ≤ k1z ≤ 1.

g/c2sk1 ρbot/ρtop Gr 2u2
‖/u

2
⊥

kf = 1.5k1 kf = 5k1 kf = 30k1
0 0 0 0.84 0.99 1.00
0.5 23 0.1 0.84 0.97 1.00
1 540 0.2 0.66 0.90 0.99
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Fig. 4. Gr dependence of the transport coefficients in a
model with density stratification, Rm ≈ 22, Pm = Sc = 1,
Co = 0, kf/k1 = 5.

5.4. Stratified rotating turbulence

For turbulence under the influence of gravity and rotation,
all nine coefficients α⊥, . . ., µ are in general non-zero, as
well as all four coefficients γC , . . ., δC . If both gravity and
rotation are so small that E is linear in g and Ω, more
precisely E contains gmΩn, where n and m mean integers,
only with n +m ≤ 1, α⊥ and α‖ vanish but γ, β⊥, δ and
κ⊥ may well be unequal to zero. If n + m ≤ 2, all nine
coefficients may indeed be non-zero.

The result is shown in Figure 5. The error bars are now
bigger than either with just rotation or just stratification.
For Co → 0, all parameters are finite, because gravity is
still finite. As Co is increased, β⊥ and β‖, as well as βC

⊥
and βC

‖ show a weak decline. On the other hand |α⊥| and
|α‖| increase with Co for Co < 1, but most other quantities
still show a mild increase until they all decrease again when
Co > 1. Both α⊥ and α‖ are negative, which is expected
for g and Ω being antiparallel to each other. Interestingly,
µ is finite for small values of Co, in agreement with the
result when there is only stratification (Figure 4), but with
a modest amount of rotation, µ is suppressed and grows
only when Co has reached values around unity.

5.5. Wavenumber dependence

Although we are primarily interested in the limit k⊥ → 0
and k‖ → 0, the values of all coefficients are of interest for k
close to kf , especially if those numbers are not small. Most
quantities decrease proportional to k−2 and can be fitted to
a Lorentzian profile, as has been found in earlier calculation
using the test-field method; see Brandenburg et al. (2008a),
who considered the dependence on k‖. Even earlier work
that was not based on the test-field method showed a de-
clining trend (Miesch et al., 2000; Brandenburg & Sokoloff,
2002). Nevertheless, as is shown in Figure 6, there are also
some coefficients that first increase with k‖, have a max-

Fig. 5. Co dependence of transport coefficients in a model
with rotation and density stratification, Rm ≈ 10, Pm =
Sc = 1, Gr ≈ 0.16, kf/k1 = 5.

imum near kf , and only then decrease with growing k‖.
Examples for such a behavior are α̃‖, δ̃, and κ̃⊥, while κ̃‖
peaks slightly below 0.5kf . The dependence on k⊥ is shown
in Figure 7. Note that our test fields vanish for k⊥ = 0,
so no values are shown in this case. Note also that −α̃‖,
−δ̃, −κ̃‖, and −β̃⊥, which all have maxima for k‖/kf ≈ 1,
show a clear monotonic decline with k⊥. Only −κ̃⊥ has a
maximum for intermediate values of both k‖/kf and k⊥/kf .

Most of the results presented in Figure 7 have been cal-
culated with kx = ky , a few single ones for α̃⊥, β̃⊥, κ̃⊥ and
β̃C
⊥ also with kx/ky = 0.75 and kx/ky = 0.2. While the re-

sults for β̃⊥ and β̃C
⊥ agree well for all these values of kx/ky,

there are significant discrepancies with α̃⊥ and κ̃⊥.

5.6. Dependencies on Rm and Pe

Let us finally consider the dependence of all 13 transport co-
efficients on Rm or Pe for a case where they are all expected
to be finite. Therefore we choose again the case Gr = 0.16
and Co = 1, which was also considered in Figures 5–7. We
keep Pm = Sc = 1.

The result are shown in Figure 8. As expected, all quan-
tities increase approximately linearly for Rm ≤ 1 and seem
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Fig. 6. k‖ dependence of transport coefficients in a model
with rotation and density stratification,Rm = 12, Co = 1.0,
kf/k1 = 5.

to level off to constant values for larger values of Rm, al-
though the uncertainty tends to increase significantly.

6. Conclusions

In this paper we have dealt with the mean electromotive
force and the mean passive scalar flux in axisymmetric tur-
bulence and calculated, at relatively little computational
cost, the transport coefficients which define these quanti-
ties. Unlike most of the earlier work, we have no longer
assumed that mean fields are defined as planar averages
but admit a dependence on all three space coordinates.

We may conclude from general symmetry considerations
that the mean electromotive force E has three contributions
defined by the mean magnetic field B, three defined by the
mean current density J , and three defined by the vectorK,
the projection of the symmetric part of the gradient tensor
∇B of the magnetic field on the preferred direction. In
many representations of E the last three contributions have
been ignored. Our results underline that this simplification
is in general not justified. The corresponding coefficients
κ⊥, κ‖ and µ are in general not small compared with β⊥,
β‖ and δ.

Fig. 7. Same as Figure 6, but k⊥ dependence. The filled
and open symbols denote results for α⊥, β⊥, κ⊥, and βC

⊥
obtained with kx/ky = 0.75 [k⊥ = (3, 4, 0)k1] and kx/ky =
0.2 [k⊥ = (1, 5, 0)k1], respectively.

It has been known since long that a stratification of
the turbulence intensity, that is, a gradient of u2, causes
a pumping of magnetic flux (Rädler, 1969a). It remained
however uncertain whether the same effect occurs if a pre-
ferred direction is given by a gradient of the mean mass den-
sity ̺ while the turbulence intensity is spatially constant.
In our calculations, which correspond to this assumption,
the value of γ is not clearly different from zero. This sug-
gests that a gradient of the mass density alone is not suffi-
cient for pumping, what is also in agreement with results of
Brandenburg et al. (2011). This is even more remarkable as
the corresponding coefficient γC which describes the trans-
port of a mean passive scalar is noticeably different from
zero. Pumping down the density gradient is indeed expected
(Elperin et al., 1995). An explanation of these results would
be very desirable.

In homogeneous rotating turbulence, apart from an
anisotropy of the mean-field conductivity, the Ω× J effect
occurs (Rädler, 1969b). In the passive scalar case again an
anisotropy of the mean diffusivity is possible. Even if the
flux proportional to Ω×∇C is non-zero, it cannot influence
C.
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Fig. 8. Dependencies of the transport coefficients on Rm

or Pe in a model with rotation and density stratification,
Co = 1.0, Gr = 0.16, kf/k1 = 5.

Let us turn to the induction effects described by K. If
the preferred direction is given by a polar vector, the corre-
sponding contribution to the mean electromotive force can
only be proportional to ê × K. We found such a contri-
bution in the case of the Roberts flow and also, for turbu-
lence subject the Coriolis force, in the results presented in
Figures 2–7

Contributions to the mean electromotive force de-
scribed here by K occur also in earlier calculations,
e.g. Kitchatinov et al. (1994) or Rüdiger & Brandenburg
(1995). As a consequence of other notations, however, this is
not always obvious. For example, Rüdiger & Brandenburg
(1995) consider a mean electromotive force of the form

E = −η‖J + (η‖ − ηT)(ẑJz − ẑ ×∇Bz) (30)

with two coefficients η‖ and ηT (equation (18) of their pa-
per with µ0J , in the sense of the definition introduced here,
replaced by J ; ẑ is our ê). It is equivalent to our represen-
tations (3) or (4) of E if we put there β⊥ = 1

2 (η‖ + ηT),
β‖ = ηT, µ = η‖ − ηT and all other coefficients equal to
zero.

If both rotation and density stratification are present,
there is also the α effect, which is necessarily anisotropic.

For strong rotation α‖ is only half as big as α⊥. By con-
trast, magnetic diffusivity is, within error bars, found to
be isotropic, that is, β⊥ ≈ β‖. In view of earlier re-
sults showing that turbulent diffusion should occur pref-
erentially along the rotation axis (Kitchatinov et al., 1994;
Rüdiger & Brandenburg, 1995), this result is surprising. In
the presence of rotation and density stratification all three
contributions to the mean electromotive fore described by
K are in general non-zero. Here, |κ⊥| is smaller than |κ‖|.

The present work is applicable to investigations of stel-
lar convection either with or without rotation, and it would
provide a more comprehensive description of turbulent
transport properties than what has been available so far
(Käpylä et al., 2009). The method utilized in this paper
can be extended to a large class of phenomena in which
turbulence with just one preferred direction plays an im-
portant role. Examples for that include turbulence under
the influence of a strong magnetic field and/or an exter-
nally applied electric field leading to a current permeating
the system. Turbulence generated by the Bell (2004) in-
stability is an example (Rogachevskii et al., 2011). Other
examples include all types of inhomogeneous turbulence
with only one preferred direction. In addition to density
stratification, there can be a systematic variation of the
turbulence intensity in one direction. A further example is
entropy inhomogeneity combined with gravity giving rise
to Brunt-Väisälä oscillations. Pumping effects also exist in
homogeneous flows if the turbulence is helical (Mitra et al.,
2009). By contrast, shear problems or other types of prob-
lem with two or more preferred directions that are inclined
to each other (e.g., turbulence in a local domain of a rotat-
ing stratified shell at latitudes different from the two poles)
are not amenable to such a study. Of course, although we
refer here to axisymmetric turbulence, problems in axisym-
metric cylindrical geometry are also not amenable to this
method, because the turbulence must be homogeneous in
one plane.
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Appendix A: Derivation of relation (3)

We start from the aforementioned assumption according to
which E is linear and homogeneous in B and its first spatial
derivatives,

E i = aijBj + bijk(∇B)jk . (A.1)

Here aij and bijk are tensors determined by the fluid flow.
The gradient tensor (∇B)jk can be split into a antisym-
metric part, which can be expressed by J , and a symmetric
part (∇B)Sjk. Therefore we may also write

E i = aijBj − bijJj − cijk(∇B)Sjk (A.2)

with new tensors bij and cijk with cijk = cikj . From the fur-
ther assumption that the flow constitutes an axisymmetric
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turbulence we may conclude that aij , bij and cijjk are ax-
isymmetric tensors. Defining the preferred direction by the
unit vector ê we then have

aij = a1δij + a2ǫijlêl + a3êiêj ,

bij = b1δij + b2ǫijl êl + b3êiêj ,

cijk = c1δjkêi + c2(δij êk + δikêj) (A.3)
+c3(ǫijl êlêk + ǫikl êlêj) + c4êiêj êk ,

with coefficients a1, a2, . . ., c4 determined by the fluid flow.
Taking (A.2) and (A.3) together and considering that

(δij êk + δikêj)(∇B)Sjk = 2Ki ,

(ǫijl êlêk + ǫiklêlêj)(∇B)Sjk = −2(ê×K)i , (A.4)

êiêj êk(∇B)Sjk = (ê ·K)êi ,

we find

E = a1B − a2ê×B − a3(ê ·B)ê

+b1J − b2ê× J − b3(ê · J)ê (A.5)

+2c2K − 2c3ê×K + c4(ê ·K)ê .

Since (∇B)ii = 0 there is no contribution with c1. With a
proper renaming of the coefficients (A.5) turns into (3).
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Rädler, K.-H., Kleeorin, N., & Rogachevskii, I. 2003, Geophys.
Astrophys. Fluid Dyn., 97, 249
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A model of driven and decaying magnetic turbulence in a cylinder
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Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly
conducting boundaries, an imposed axial magnetic and electric field. The thus injected magnetic helicity in the
system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the
small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the
magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of the
α effect in astrophysical applications. Application to the reversed field pinch in plasma confinement devices is
discussed.

PACS numbers: 52.55.Lf, 52.55.Wq, 52.65.Kj, 96.60.qd

I. INTRODUCTION

The interaction between a conducting medium moving at
speed U through a magnetic field B is generally referred
to as a dynamo effect. This effect plays important roles in
astrophysics [1, 2], magnetospheric physics [3], as well as
laboratory plasma physics [4]. It modifies the electric field
in the rest frame, so that Ohm’s law takes the form J =
σ (E +U ×B), where J is the current density,E is the elec-
tric field, and σ is the conductivity. Of particular interest for
the present paper is the case where an external electric field
Eext is induced through a transformer with a time-varying
magnetic field, as is the case in many plasma confinement ex-
periments. With the external electric field included, Ohm’s
law becomes

J = σ
(
E +Eext +U ×B

)
. (1)

In a turbulent medium, often only averaged quantities (indi-
cated below by overbars) are accessible. The averaged form
of Ohm’s law reads

J = σ
(
E +E

ext
+U ×B + E

)
, (2)

where E = u× b is referred to as the mean E = u× b
is referred to as the mean turbulent electromotive force, and
u = U −U and b = B −B are fluctuations of velocity and
magnetic field, respectively. It has been known for some time
that the averaged profiles, J and σE

ext do not agree in actual
experiments. This disagreement cannot be explained by the
U × B term either, leaving therefore E as the only remain-
ing term. Examples include the recent dynamo experiment in
Cadarache [5] and in particular the reversed field pinch (RFP)
[4, 6, 7], which is one of the configurations studied in con-
nection with fusion plasmas. The name of this device derives
from the fact that the toroidal (or axial, in a cylindrical geom-
etry) magnetic field reverses sign near the periphery. Indeed,
in the astrophysical context it is well-known that the E is re-
sponsible for the amplification and maintenance of large-scale
magnetic fields [1, 2].

The analogy among the various examples of the E term
has motivated comparative research between astrophysics and
plasma physics applications [8]. In these cases, E is found
to have a component proportional to the mean field (αB, re-
ferred to as the α effect) and a component proportional to the
mean current density (ηtJ , where ηt is the turbulent diffusiv-
ity). Since α is a pseudoscalar, one expects it to depend on
the helicity of the flow, which is also a pseudoscalar. Deci-
sive in developing the analogy between the α effects in astro-
physics and laboratory plasma physics is the realization that
α is caused not only by helicity in the flow (kinetic α effect),
but also by that of the magnetic field itself [9]. This magnetic
contribution to the α effect has received increased astrophysi-
cal interest, because there are strong indications that such dy-
namos saturate by building up small-scale helical fields that
lead to a magnetic α effect which, in turn, counteracts the
kinetic α effect [10–12]. This process can be described quan-
titatively by taking magnetic helicity evolution into account,
which leads to what is known as the dynamical quenching for-
malism that goes back to early work of Kleeorin & Ruzmaikin
[13]. However, it is now also believed that such quenching
would lead to a catastrophically low saturation field strength
[14], unless there are magnetic helicity fluxes out of the do-
main that would limit the excessive build-up of small-scale
helical fields [15]. This would reduce the magnetic α effect
and thus allow the production of mean fields whose energy
density is comparable to that of the kinetic energy of the tur-
bulence [16].

These recent developments are purely theoretical, so the
hope is that more can be learnt by applying the recently gained
knowledge to experiments like the RFP [6, 7]. Unlike toka-
maks, the RFP is a relatively slender torus, so it makes sense
to study its properties in a local model where one ignores cur-
vature effects and considers a cylindrical piece of the torus.
Along the axis of this cylinder there is a field-aligned current
that makes the field helical. This field is susceptible to kink
and tearing instabilities that lead to turbulence. It is generally
believed that the resulting mean turbulent electromotive force
E is responsible for the field reversal [4, 17]. The turbulence
is also believed to help driving the system toward a minimum
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energy state [18]. This state is nearly force-free and main-
tained by E

ext. This adds to the notion that the RFP must
be sustained by some kind of dynamo process [19]. In Carte-
sian geometry such a slow-down has previously already been
modeled using the dynamical quenching formalism [20].

The RFP has been studied extensively using three-
dimensional simulations [19, 21–23], which confirm the con-
jecture of J. B. Taylor [18] that the system approaches a min-
imum energy state. Additional understanding has been ob-
tained using mean-field considerations [24, 25]. Both, here
and in astrophysical dynamos there is an α effect that quan-
tifies the correlation of the fluctuating parts of velocity and
magnetic field. However, a major difference lies in the fact
that in the RFP the α effect is caused by instabilities of the
initially large-scale magnetic field while in the astrophysical
case one is concerned with the problem of explaining the ori-
gin of large-scale fields by the α effect [1, 2]. However, this
distinction may be too simplistic and there is indeed evidence
that in the RFP the α effect exists in close relation with a finite
magnetic helicity flux [26], supporting the idea that so-called
catastrophic quenching is avoided by helicity transport.

The purpose of this paper is to apply modern mean-field dy-
namo theory with dynamical quenching to a cylindrical con-
figuration to allow a more meaningful comparison between
the α effect in astrophysics and the one occurring in RFP ex-
periments.

II. THE MODEL

To model the evolution of the magnetic field in a cylinder
with imposed axial magnetic and electric fields, we employ
mean-field theory, where the evolution of the mean field B
is governed by turbulent magnetic diffusivity and an α effect.
Unlike the astrophysical case where α depends primarily on
the kinetic helicity of the plasma, in turbulence from current-
driven instabilities the α effect is likely to depend primarily
on the current helicity of the small-scale field [9]. The current
density is given by J = ∇ ×B/µ0, where µ0 is the vacuum
permeability and j = ∇ × b/µ0 is the fluctuating current
density. The mean current helicity density of the small-scale
field is then given by j · b. To a good approximation, the j · b
term is proportional to the small-scale magnetic helicity den-
sity, a · b, where a = A − A is the vector potential of the
fluctuating field. The generation of a · b is coupled to the de-
cay of A ·B through the magnetic helicity evolution equation
[10, 11, 13, 27] such that A ·B+a · b evolves only resistively
in the absence of magnetic helicity fluxes.

Note that a · b is in general gauge-dependent and might
therefore not be a physically meaningful quantity. However, if
there is sufficient scale separation, the mean magnetic helicity
density of the fluctuating field can be expressed in terms of
the density of field line linkages, which does not involve the
magnetic vector potential and is therefore gauge-independent
[28]. For the large-scale field, on the other hand, the magnetic
helicity density does remain in general gauge-dependent [29],
but our final model will not be affected by this, because the
magnetic helicity of the large-scale magnetic field does not

enter in the mean-field model.
We model an induced electric field by an externally applied

electric field Eext. In the absence of any other induction ef-
fects this leads to a current density J = σEext. Furthermore,
we ignore a mean flow (U = 0), and assume that the velocity
field has only a turbulent component u. For simplicity we as-
sume that Eext has no fluctuating part, i.e. Eext = E

ext. The
decay of B is accelerated by turbulent magnetic diffusivity ηt,
which is expected to occur as a result of the turbulence con-
nected with kink and tearing instabilities inherent to the RFP.
This mean turbulent electromotive force has two components
corresponding to the α effect and turbulent diffusion with

E = αB − ηtµ0J , (3)

where we have ignored the fact that α effect and turbulent
diffusion are really tensors. The evolution equation for B is
then given by the mean-field induction equation,

∂B

∂t
= ∇×

(
αB − ηTµ0J +E

ext
)
, (4)

where ηT = ηt + η is the sum of turbulent and microscopic
(Spitzer) magnetic diffusivities (not to be confused with the
resistivity ηµ0, which is also often called η). Note that only
non-uniform and non-potential contributions to E

ext can have
an effect.

As a starting point, we assume that the rms velocity urms

and the typical wavenumber kf of the turbulence are constant,
although it is clear that these values should really depend on
the level of the actual magnetic field. We estimate the value
of ηt using a standard formula for isotropic turbulence,

ηt = 1
3τu

2, (5)

where τ = (urmskf)−1 is the correlation time of the turbu-
lence and urms = (u2)1/2 is its rms velocity. Thus, we can
also write ηt = urms/3kf . The turbulent velocity results from
kink and tearing mode instabilities and will simply be treated
as a constant in our model. For the α effect we assume that
the kinetic helicity is negligible It would be much smaller than
the current helicity, but of the same sign [9], so it would con-
tribute to quenching the α effect, and so we just take

α = 1
3τj · b/ρ0, (6)

and use the fact that j · b and a · b are proportional to each
other. Here, ρ0 is the mean density of the plasma. For ho-
mogeneous turbulence we have j · b = k2f a · b/µ0, although
for inhomogeneous turbulence, k2f a · b/µ0 has been found to
be smaller than j · b by a factor of two [30]. We compute the
evolution of a · b by considering first the evolution equation
for A ·B. Note that A ·B evolves only resistively, unless
there is material motion through the domain boundaries [29],
so we have

d
dt

A ·B = 2E
ext ·B − 2ηµ0J ·B −∇ ·F , (7)
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where F is the mean magnetic helicity flux. While B evolves
subject to the mean field equation (4), the magnetic helicity of
the mean field will change subject to the equation

d
dt

(
A ·B

)
= 2Etot ·B − 2ηµ0J ·B −∇ ·Fm, (8)

where Etot = E+E
ext and Fm = E×A+ΦB is the mean

magnetic helicity flux from the mean magnetic field, and Φ
is the mean electrostatic potential. Here, E = ηµ0J − Etot

is the mean electric field. Subtracting (8) from (7), we find a
similar evolution equation for a · b,

d
dt

a · b = −2E ·B − 2ηµ0j · b−∇ ·F f , (9)

where F f = F−Fm is the mean magnetic helicity flux from
the fluctuating magnetic field. Note that Eext does not enter
in Eq. (9), because Eext = E

ext has no fluctuations. This
equation can readily be formulated as an evolution equation
for α by writing α = (τk2f /3ρ0µ0)a · b, i.e.,

∂α

∂t
= −2ηtk2f E ·B/B2

eq − 2ηk2f α−∇ ·Fα, (10)

where Fα = (τk2f /3ρ0µ0)F f , which is a rescaled mag-
netic helicity flux of the small-scale field and Beq is the field
strength for which magnetic and kinetic energy densities are
equal, i.e.,

B2
eq = µ0ρ0u

2
rms = (3ρ0µ0/τ) ηt. (11)

We recall that in the astrophysical context, equation (10) is
referred to as the dynamical quenching model [13, 27]. In a
first set of models we assume Fα = 0, but later we shall
allow for the fluxes to obey a Fickian diffusion law,

Fα = −κα∇α, (12)

where κα is a diffusion coefficient that is known to be compa-
rable to or somewhat below the value of ηt [29, 30].

We solve the governing one-dimensional equations (4)
and (10) using the PENCIL CODE in cylindrical coordinates,
(r, φ, z), assuming axisymmetry and homogeneity along the z
direction, ∂/∂φ = ∂/∂z = 0, in a one-dimensional domain
0 ≤ r ≤ R. On r = 0 regularity of all functions is obeyed,
while on r = R we assume perfect conductor boundary con-
ditions, which implies that n̂ × E = n̂ × J = 0, and thus
n̂× ∂A/∂t = 0, i.e., n̂×A = const.

As initial condition, we choose a uniform magnetic field B0

in the z direction. In terms of the vector potential, this implies

A(r, 0) = (0, B0r/2, 0) (13)

for the initial value of A(r, t).
We drive the system though the externally applied mean

electromotive force in the z direction. We choose

E
ext

z (r) = E
ext

0 J0(k1r), (14)

where E
ext

0 is the value of the mean electromotive force on
the axis and k1R ≈ 2.4048256 is the rescaled cylindrical

wavenumber for which E
ext

z (R) = 0, which corresponds to
the first zero of the Bessel function of order zero, and thus
satisfies the perfect conductor boundary condition on r = R.
An important control parameter of our model is the non-
dimensional ratio

Q = E
ext

0 /ηtkfB0, (15)

which determines the degree of magnetic helicity injection.
Other control parameters include the normalized strength of
the imposed field,

B = B0/Beq (16)

and the value of Lundquist number,

L = vA/ηkf , (17)

which is a nondimensional measure of the inverse microscopic
magnetic diffusivity, where vA = B0/

√
µ0ρ0 is the Alfvén

speed associated with the imposed field. The Lundquist num-
ber also characterizes the ratio of turbulent to microscopic
magnetic diffusivity, i.e.,

R ≡ ηt/η = urms/3ηkf = L/3B, (18)

which we refer to as the magnetic Reynolds number. Note
that, if we were to define the magnetic Reynolds number as
Rm = urms/ηkf , as is often done, then R = Rm/3 would be
three times smaller. Finally, the wavenumber of the energy-
carrying turbulent eddies is expressed in terms of the dimen-
sionless value of kfR. We treat kf here as an adjustable pa-
rameter that characterizes the degree of scale separation, i.e.,
the ratio of the scale of the domain to the characteristic scale
of the turbulence. In most of the cases we consider kfR = 10.
In summary, our model is characterized by four parameters:
Q, B, L, and kfR. In models with magnetic helicity flux we
also have the parameter κα/ηt.

In addition to plotting the resulting profiles of magnetic
field and current density, we also determine mean-field mag-
netic energy and helicity, as well as mean-field current helic-
ity, i.e.,

Mm = 〈B2
/2µ0〉, Hm = 〈A·B〉, Cm = 〈J ·B〉, (19)

where 〈.〉 =
∫ R

0
. r dr/(12R

2) denotes a volume average and
the subscript m refers to mean-field quantities. Following sim-
ilar practice of earlier work [11, 31], we characterize the so-
lutions further by computing the effective wavenumber of the
mean field, km, and the degree ǫm to which it is helical, via

k2m = µ0Cm/Hm, ǫm = Cm/2kmMm. (20)

In the following we shall refer to ǫm as the relative mag-
netic helicity. We recall that, even though A · B is gauge-
dependent, for perfect conductor boundary conditions, the in-
tegral

∫
A ·B dV is gauge-invariant, and so is then km. Simi-

lar definitions also apply to the fluctuating field, whose current
helicity is given by

Cf = 〈α〉B2
eq/µ0ηt. (21)
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The magnetic helicity of the fluctuating field is then Hf =
µ0Cf/k

2
f . The magnetic energy of the fluctuating field can be

estimated under the assumption that the field is fully helical,
i.e., 〈b2〉 = kf |〈a · b〉|, so that Mf = |Cf |/2kf . We study both
the steady state case where Q and B are non-vanishing, and
the decaying case where Q = B = 0. In the latter case, we
monitor the decay rates of the magnetic field.

III. RESULTS

A. Driven field-aligned currents

We begin by considering the case without magnetic helicity
fluxes and take B = 1, L = 1000 (corresponding to R = 333)
and kfR = 10. The resulting values of km and ǫm are given
in Table I and the mean magnetic field profiles are compared
in Fig. 1 for different values of Q. It turns out that, as we in-
crease the value of Q, the magnetic helicity of the mean field
increases, i.e. the product ǫmkm increases, but the relative he-
licity of the mean magnetic field decreases slightly, i.e., ǫm
decreases. The value of km increases with Q, which means
that the mean field will be confined to a progressively thinner
core around the axis. Furthermore, the anti-correlation be-
tween ǫm and km is also found when varying B (see Table II),
L, or R. This is demonstrated in Fig. 2, where we show that
ǫm is in fact proportional to (km/k1)−1/4 and that the prod-
uct ǫm(km/k1)1/4 is approximately constant, even though Q,
B, or L are varied. This scaling is unexpected and there is
currently no theoretical interpretation for this behavior.

It is interesting to note that km does not vary significantly
with B, provided R is held fixed. However, for weak fields,
e.g., for B = 0.1, the dynamics of the mean field is no longer
controlled by magnetic helicity evolution, and the value of
kmR has then dropped suddenly by nearly a factor of 2, and
ǫm is in that case no longer anti-correlated with km. This data
point falls outside the plot range of Fig. 2, and is therefore not
included. Also, if only L is held fixed, so that R varies with
B, then km is no longer weakly varying with B, and varies
more strongly in that case.

TABLE I: Q dependence of km and ǫm for B = 1, L = 1000, and
kfR = 10.

Q 0.01 0.03 0.10 0.20 0.50 1.00
kmR 2.76 3.44 4.63 5.26 6.49 7.20
ǫm 0.95 0.91 0.84 0.82 0.78 0.73

TABLE II: B dependence of km and ǫm for Q = 0.1, R = 100, and
kfR = 10.

B 0.1 0.2 0.5 1 2 5 10
kmR 1.80 3.33 3.50 3.99 3.42 3.31 3.25
ǫm 0.51 0.91 0.89 0.84 0.89 0.89 0.89

FIG. 1: Equilibrium profiles for three different driving strengths for
B = 1, L = 1000, and kfR = 10.

We must ask ourselves why the axial field component does
not show a reversal in radius, as is the case in the RFP. Ex-
perimental studies of the RFP provide direct evidence for a
reversal. By comparing radial profiles of the axial current,
J‖/σ, with those of the axial electric field, E‖, one concludes
that the mismatch between the two must come from the E‖
term [17, 32]. These studies show that E‖ < J‖/σ near the
axis and E‖ > J‖/σ away from it (assuming B‖ > 0 on the
axis). Comparing with Eq. (2), it is therefore clear that E‖
must then be negative near the axis and positive near the outer
rim. Turning now to dynamo theory, it should be emphasized
that there are two contributions to E‖, one from αB and one
from −ηtµ0J ; see Eq. (3). Let us therefore discuss in the fol-
lowing the expected sign of E‖. Given that Q is positive, J ·B
must also be positive, and therefore we expectα to be positive.
If the mean magnetic field was really sustained by a dynamo,
the α term would dominate over the ηt term, but this is likely
not the case here. Indeed, by manipulating Eq. (10) we see
that, in the steady state without magnetic helicity fluxes, the
equation for α takes the form

α =
Rηtµ0J ·B/B2

eq

1 +RB
2
/B2

eq

; (22)

see, e.g., Ref. [11]. However, as alluded to above, the relevant
term entering E is the combinationαred = α−ηtµ0J ·B/B

2,
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FIG. 2: (Color online) Dependence of ǫm on km for different sets
of runs where either Q is varied (filled symbols), B is varied while
keeping R = 100 (red diamonds), B is varied while keeping L =
100 (orange triangles), or L is varied (blue squares).

which is the reduced α. Inserting Eq. (22) yields

αred = −ηtµ0J ·B/B
2

1 +RB
2
/B2

eq

, (23)

with a minus sign in front. The important point here is that
αred is indeed negative if J · B is positive. This means that
we can only expect E‖ < J‖/σ, which is the situation in the
RFP near the axis [32]. In order to reverse the ordering and to
produce a reversal of the axial field, one would need to have
an α effect that dominates over turbulent diffusion. Note also
that for strong mean fields, αred is of the order of the micro-
scopic magnetic diffusivity. (This situation is well-known for
nonlinear dynamos, because there αred and the microscopic
diffusion term ηkm have to balance each other in a steady state
[33].)

We note in passing that km enters neither in Eq. (22) nor
in Eq. (23). However, km does enter if there is a magnetic
helicity flux and it affects the time-dependent case, as is also
clear from Eq. (10). Both cases will be considered below.

B. Effect of magnetic helicity flux

Next, we study cases where a diffusive magnetic helic-
ity flux is included. In our model with perfectly conducting
boundaries, the magnetic helicity flux vanishes on the bound-
aries, so no magnetic helicity is exported from the domain,
but the divergence of the flux is finite and can thus modify

FIG. 3: Effect of magnetic helicity flux on equilibrium profiles of
Bz for Q = 0.1 (upper panel) and Q = 0.03 (lower panel). Note
the field reversal at the outer rim in the latter case.

the magnetic α effect. The same is true of periodic bound-
aries, where no magnetic helicity is exported, but the flux di-
vergence is finite and can alleviate catastrophic quenching in
dynamos driven by the kinetic α effect [34].

In Fig. 3 we compare profiles of Bz with and without mag-
netic helicity flux. It turns out that the κα term has the effect
of smoothing out the resulting profile of Bz . More interest-
ingly, it can lead to a reversal of Bz at intermediate radii. For
our reference run with Q = 0.1 (upper panel), the reversal
is virtually absent at the rim of the cylinder. This is mainly
because the pinch is so narrow; see Table III. However, when
decreasing Q to 0.03, there is a clear reversal also at the outer
rim (lower panel). However, decreasing Q to 0.01 does not
increase the extent of the reversal. In none of these cases the
field reversal is connected with a change of sign of αred. In-
stead, αred is always found to be negative, even in the pres-
ence of a magnetic helicity flux. Thus, the sign reversal of Bz

is therefore associated with a sign reversal of Jz at the same
radius. Nevertheless, the reversal is still not very strong with
min(Bz)/max(Bz) ≈ −0.07, while in laboratory RFPs this
ratio is typically −0.2 [32].
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C. Decay calculations

Next, we consider the case of a decaying magnetic field
in the absence of an external electric field. In that case all
components of B must eventually decay to zero. The evolu-
tion of the magnetic energy of the resulting mean and fluc-
tuating fields is shown in Fig. 4, together with the evolu-
tion of km and ǫm. At early times, when 〈B2〉 ≫ B2

eq, the
energy of the large-scale magnetic field decays at the resis-
tive rate λ = −2ηk2m. During that time, the energy of the
small-scale field stays approximately constant: the magneti-
cally generated α effect almost exactly balances turbulent dif-
fusion and the magnetic field can only decay at the resistive
rate. However, at later times, when 〈B2〉 ≪ B2

eq, the en-
ergy of the small-scale field decays with a negative growth
rate λ = −2ηk2f , which then speeds up the decay of the en-
ergy of the large-scale magnetic field to a rate that is about
1.3× ηtk

2
m, where we have used the value kmR = 3.1 that is

relevant for the late-time decay. This value is also that obey-
ing Taylor’s [18] postulated minimum energy state. Again, no
reversal of the magnetic field is found, except in cases where
there is an internal magnetic helicity flux in the system.

IV. CONCLUSIONS

The present work is an application of the dynamical
quenching model of modern mean-field dynamo theory to
magnetically driven and decaying turbulence in cylindrical ge-
ometry. In the driven case, an external electric field is applied,
which leads to magnetic helicity injection at large scales. Such
a situation has not yet been considered in the framework of
mean-field theory. It turns out that in such a case there is a
weak anti-correlation between the actual value of magnetic
helicity of the mean field, ǫmkm, and the relative magnetic
helicity ǫm with ǫm ∼ k

−1/4
m . This weak anti-correlation is

found to be independent of whether Q, B, or L are varied.
No theoretical interpretation of this behavior has yet been of-
fered. In the decaying case, we find that the decay rate is close
to the resistive value when the field is strong, i.e., B > Beq,
and drops to the turbulent resistive value when the mean field
becomes weaker. This behavior has also been found in earlier
calculation of the decay of helical magnetic fields in Cartesian
geometry [20].

The original anticipation was that our model reproduces
some features of the RFP that is studied in connection with

TABLE III: Values of km and ǫm with and without magnetic helicity
flux.

Q 0.03 0.1
κα/ηt 0 1 0 1
kmR 4.63 4.50 3.51 3.32
ǫm 0.84 0.83 0.91 0.92

FIG. 4: (Color online) Evolution of 〈B2〉/B2
eq, km/k1, and ǫm for

different values of B. Note that time is shifted by t∗, which is the
time when km attains its second maximum. In the top panel, the
red lines indicate resistive decay rate of the large-scale field at early
times, resistive decay rate of the small-scale field at late times, and
the turbulent decay rate of the large-scale field at late times.

fusion plasma confinement. It turns out that the expected field
reversal that gives the RFP its name is found to require the
presence of magnetic helicity fluxes. Without such fluxes,
there is no reversal; see Fig. 3. Nevertheless, the reversal is
rather weak compared with laboratory RFPs. This discrep-
ancy can have several reasons. On the one hand, we have
been working here with a model that has previously only been
tested under simplifying circumstances in which there is tur-
bulent dynamo action driven by kinetic helicity supply. It is
therefore possible that the model has shortcomings that have
not yet been fully understood. A related possibility is that the
model is still basically valid, but our application to the RFP
has been too crude. For example, the assumption of fixed val-
ues of ηt and Beq is certainly quite simplistic. On the other
hand, it is not clear that this simplification would really affect
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the outcome of the model in any decisive way. A different
possibility is that the application of an external electric field
is not representative of the RFP. However, an important basic
idea behind the present setup has been to establish a model
as simple as possible, that could be tested by performing cor-
responding three-dimensional simulations of a similar setup.
This has not yet been attempted, but this would clearly consti-
tute a natural next step to take.
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