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Abstract

Observations show that Coronal Mass Ejections (CMEs) are associated with
twisted magnetic flux configurations. Conventionally, CMEs are modeled by
shearing and twisting the footpoints of a certain distribution of magnetic flux
at the solar surface and letting it evolve at the surface. Of course, the surface
velocities and magnetic field patterns should ultimately be obtained from real-
istic simulations of the solar convection zone where the field is generated by
dynamo action. Therefore, a unified treatment of the convection zone and the
CMEs is needed. Numerical simulations of turbulent dynamos show that the
amplification of magnetic fields can be catastrophically quenched at magnetic
Reynolds numbers typical of the interior of the Sun. A strong flux of mag-
netic helicity leaving the dynamo domain can alleviate this quenching. In this
sense, a realistic (magnetic) boundary condition is an important ingredient of
a successful solar dynamo model.

Using a two-layer model developed in this thesis, we combine a dynamo-
active region with a magnetically inert but highly conducting upper layer which
models the solar corona. In four steps we improve this setup from a forced
turbulent to a convectively driven dynamo and from an isothermal to a poly-
tropic stratified corona. The simulations show magnetic fields that emerge
at the surface of the dynamo region and are ejected into the coronal part of
the domain. Their morphological form allows us to associate these events with
CMEs. Magnetic helicity is found to change sign in the corona to become con-
sistent with recent helicity measurements in the solar wind. Our convection-
driven dynamo model with a coronal envelope has a solar-like differential rota-
tion with radial (spoke-like) contours of constant rotation rate, together with a
solar-like meridional circulation and a near-surface shear layer. The spoke-like
rotation profile is due to latitudinal entropy gradient which violates the Taylor–
Proudman balance through the baroclinic term. We find mean magnetic fields
that migrate equatorward in models both with and without the coronal layer.
One remarkable result is that the dynamo action benefits substantially from the
presence of a corona becoming stronger and more realistic.

The two-layer model represents a new approach to describe the generation
of coronal mass ejections in a self-consistent manner. On the other hand, it has
important implications for solar dynamo models as it admits many magnetic
features observed in the Sun.
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1. The Sun

Eins, Hier kommt die Sonne
Zwei, Hier kommt die Sonne

Drei, Sie ist der hellste Stern von allen
Vier, Hier kommt die Sonne

Rammstein

Its vicinity to the Earth makes the Sun an object that can be studied in such a
precision and resolution than no other star. It reveals a multitude of complex
processes and features, where we only know as much as the tip of an iceberg.
Although there have been major advances in observing techniques and mod-
eling of solar phenomena in the recent times, fundamental processes as the
activity cycle of Sun are ill understood.

Let me start with an introduction to the structure of the Sun. In solar
physics, we distinguish the solar interior, containing everything below the vis-
ible solar surface, from the solar atmosphere as everything above the solar
surface. The solar surface is defined as the layer, where the optical depth at
a continuum wavelength is unity. The density stratification from the center of
the Sun to its surface varies by about nine orders of magnitudes. The temper-
ature spans from 15 million Kelvin to around 6 thousand Kelvin. The solar
interior can be divided into three main parts as shown in Fig. 1.1. In the inner
part, the core, nuclear fusion supplies the main source of energy for this star.
This energy is outwards transported through the radiative zone by radiation.
The radiative zone extends from 0.3 to 0.7 solar radii and rotates as a solid
body according to helioseismology. Above the radiative zone, the energy is
predominantly transported via convection.

The definition of the solar atmosphere is somewhat ambiguous in the lit-
erature. Stix (2002), for example, defines the atmosphere as the photosphere
and the chromosphere above. In other work, even the interplanetary space of
the heliosphere is included. However, in this work I will define the solar atmo-
sphere as the combination of the photosphere, chromosphere, transition region
and solar corona. Near the surface of the Sun, heat is mainly transported as
radiation and can leave the Sun freely. The thin surface layer is the lowest
part of the solar atmosphere and is called photosphere, because it emits the
largest amount of visible light of the total solar luminosity. The lower bound-
ary of the chromosphere is usually defined by the temperature minimum on the
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Figure 1.1: A cut-away schematic view of the solar interior, showing the main
three parts: core, radiative zone, convection zone. Courtesy of the Center for
Science Education of Berkeley, University of California, US.

Sun. The temperature structure of the chromosphere is heavily influenced by
complex radiation processes which can only be described by non–equilibrium
radiative transfer models. The temperature increases in the chromosphere is
caused by one or several of the following heating mechanism; Joule heating,
sonic and Alfvén waves. The structure and dynamics of the chromosphere are
strongly dependent on the magnetic field and radiative energy transport. The
intensity of chromospheric lines, e.g. the cores of Ca H & K, can be used to
determine the magnetic activity of other stars than the Sun (see e.g. Noyes
et al., 1984; Baliunas et al., 1995; Brandenburg et al., 1998; Saar and Branden-
burg, 1999). At a height of around two megameters (Mm), the chromosphere
ends and turns into the transition region. There, temperature rises sharply and
the density drops by several orders of magnitude. This region represents the
transition to solar corona. The corona extends to two to three solar radii, from
which the solar wind takes over reaching far out into the interplanetary space.

In the following three sections, I describe these three layers of the Sun in
more detail, because they are directly relevant to my work. In the last two
sections, I give an overview about the cyclic behavior of magnetic activity of
the Sun and the Sun-Earth relation.
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Figure 1.2: The internal differential rotation of the Sun as obtained from helio-
seismology. The bottom of the convection zone lies at r = 0.713 solar radii (R�).
Image courtesy of GONG.

1.1 The convection zone

In the convection zone, most of the energy is transported to the surface in con-
vection cells, where hotter plasma rises, cools and sinks again; see § 2 for de-
tails. Typically, the size of the convection cells depends strongly on the depth
due to strong ranging pressure scale height. At the bottom of the convection
zone the cells are large, several tens of Mm. At the surface the cells have sizes
of about one Mm and are called granules. In the convection zone these motions
are highly turbulent. Additionally, the rotation of the Sun acts on the plasma
motions as well and causes a differential rotation inside the convection zone.
The equator of Sun rotates faster (25 days rotation period) than the poles (30
days). But the exact radial rotation was unknown until the advent of helioseis-
mology. This technique, where one identifies discrete wave modes occurring
on the surface of the Sun and invert their properties, allows to measure the
velocity and temperature distribution inside the convection zone with a high
precision. In Fig. 1.2 the rotation profile obtained by the Global Oscillation
Network Group (GONG: Harvey et al., 1996) is shown. It matches the surface
observation, where the equator rotates faster than the poles. But the differen-
tial rotation has also a radial dependence (see e.g. Thompson et al., 2003). Be-
low the convection zone the radiative zone rotates with constant speed. How-
ever, the overlying convection zone has latitudinally dependent rotation and
this leads to a region of strong velocity gradients (shear) at the bottom of the
convection zone. This region is known as the tachocline (Spiegel and Weiss,
1980). A similar, but thinner region exists close to the surface, which is the
Near Surface Shear Layer (NSSL), (see e.g. Thompson et al., 1996; Schou
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et al., 1998). The overall rotation is clearly not a profile of cylindrical rotation,
but the contours of constant rotation are parallel to the rotation axis. In the Sun
the contours are spoke-like, i.e. they are pointing radially outward. Sunspot
proper motions indicate a meridional circulation in the solar convection zone;
first found by Tuominen (1941). The flow direction is poleward near the sur-
face and equatorward inside the convection zone. Helioseismology measure-
ments confirm the poleward flow near the surface, but where the equatorward
return flow is located is not clear at the moment. There could even exist more
than one cell of circulation (Hathaway, 2011).

The dynamics and the structure of the convection zone is an important field
of research, because the turbulent motions of the convection together with the
differential rotation are able to generate a large-scale magnetic field. The exis-
tence of a large-scale magnetic field inside the convection zone is not disputed
and can be observed at the surface on the Sun. That there is a mechanism of
creating a magnetic field, called solar dynamo is not disputed either. But the
location, of the dynamo and how the dynamo works is still under discussion. It
is commonly believed that the magnetic field itself back reacts on the turbulent
motion and differential rotation as well. At the moment, there is no way to
observe magnetic fields below the solar surface. Therefore, we have to rely
on simulations of solar dynamo models and constraints from surface observa-
tions. In § 4, I present a selection of different solar dynamo models as well as
their results.

1.2 The surface of the Sun

The surface of Sun is a region which gives us the most information about the
solar interior. We can measure the velocity and the magnetic field with high
precision and use the solar oscillations for helioseismology. The convection
cells at the surface form a pattern, which is called granulation. The hot plasma
flows up in the center of each cell and flows down at its boundaries. The
magnetic field occurs at the surface at different scales. The small-scale field is
located between the granules in the intergranular lanes. Plage regions, where
the magnetic field is stronger than in the quite Sun can cover a region larger
than several granules. Hence, the magnetic field is not strong enough to quench
the fluid motions, but the granulation is small-scale and obviously disturbed by
the magnetic field. The situation is even more extreme in a sunspot. The dark
spots on the solar surface, of which the biggest ones can be seen with the naked
(protected) eye from the Earth, have strong magnetic field of up to 4000 gauss.
The magnetic field is so strong that it suppresses the convective heat transport.
This makes the sunspot become 1000 Kelvin cooler than the surface around
it, resulting in a dark spot. A beautiful image of a sunspot observed with the
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Figure 1.3: Image of a sunspot (AR1591). Observed with CRISP at the Solar
Swedish Telescope (SST) on La Palma, Spain at a wavelength of 557.6 nm on
14th of October 2012. Observation and data reduction by Mats Löfdahl, Atefeh
Barekat, and Jörn Warnecke.

Swedish 1-meter Solar Telescope can be seen in Fig. 1.3. Sunspots mostly
occur as bipolar magnetic concentration with a leading (in terms of rotation)
spot and a following spot or plage.

The dynamics and properties at the surface are determined by the radiative
cooling of the hot plasma coming from the interior toward the surface. The
surface of the Sun is called the photosphere and corresponds to the layer, where
the optical depth of the continuum is unity. The strong radiative cooling leads
to a strong temperature and therefore density gradient close to the surface.

5



Figure 1.4: White light image of the solar corona during a solar eclipse 2009,
observed at Enewetak Atoll, Marshal Islands. Composition of 38 eclipse images.
Image processing by Miloslav Druckmüller. Courtesy: Miloslav Druckmüller,
Peter Aniol, Vojtech Rusin, Lubomir Klocok, Karel Martisek, Martin Dietzel.
www.zam.fme.vutbr.cz/~druck/Eclipse/index.htm

1.3 The solar corona

The solar corona is the outer part of the solar atmosphere and reaches out
to several solar radii. The temperature in the corona is up to two—in coronal
loops even ten—million of Kelvin, which leads to emission lines of highly ion-
ized atoms. But because of the smaller density, which is nine orders of magni-
tude lower than in the photosphere, it is difficult to observed these lines. They
are only observable from Earth during a solar eclipse (as shown in Fig. 1.4)
or using a coronagraph, where the photospheric light is covered by an occlud-
ing disk. From space, one is able to measure the corona in ultraviolet and
X-rays. Due to the low density, the magnetic pressure is stronger than the gas
pressure (plasma β = 2µ0 p

B2 � 1). This means that the resulting Lorentz force
dominates inside the corona, and plasma flows along the field lines. Most of
the emission comes from the hot plasma moving along magnetic field lines.
Therefore the observed plasma structure corresponds directly to the magnetic
field structure, as shown in Fig. 1.4. One of the unsolved problems in solar
physics is the heating of the corona. The corona is several hundred times hot-
ter than the solar surface and need therefore an additional heating source to
sustain this high temperature. Numerical simulations have shown that braid-
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DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Figure 1.5: Time evolution of the sunspots area. The upper panel show the
sunspots area in the dependence to the latitude over time. In the lower panel the
average daily sunspots area is given over time. Graphics and Data courtesy of
David Hathaway, NASA Marshall Space Flight center for Solar Physics.

ing of field lines at their footpoints in the photosphere can dissipate enough
energy via Ohmic heating to produce coronal temperatures (see e.g. Gudik-
sen and Nordlund, 2005a; Bingert and Peter, 2011). However, there are other
proposed mechanisms which also can lead to such high temperatures: Ohmic
heating, sonic and Alfvén waves (see e.g. Aschwanden et al., 2007).

1.4 The solar cycle

Already Galileo Galilei observed sunspots as dark spots on the solar surface,
although he thought they were clouds. He counted them and noted their num-
bers. But only in the 19th century, Schwabe (1844) discovered a cyclic varia-
tion with a period of around 10 years. Today we have data of sunspot numbers
reaching all the way back to the days Galilei. These data led to an averaged cy-
cle period of the sunspot numbers to be around 11 years (Schwabe’s cycle). At
solar maximum we can observe several hundred sunspots each month, while
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Figure 1.6: Synoptic magnetogram of three and a half solar cycles. Color coded
is the radial magnetic field, which is plotted as the averaged magnetograms dur-
ing the cycles. Graphics and Data courtesy of David Hathaway, NASA Marshall
Space Flight center for Solar Physics.

at minimum there may be just a few, or none. In the recent history of the Sun,
there have been cycles with just a few sunspots even for a several month during
maximum. One prominent example is the Maunder Minimum (1650–1750),
where only a few spots even during the maxima were observed. This was the
time of the little ice age in Europe. If the Maunder Minimum and the ice age
are correlated is highly debated at the moment.

More detailed observations revealed a spatial distribution of the sunspots’
occurrence. As shown in Fig. 1.5, at the beginning of each cycle, sunspots
emerge preferably at higher latitudes, while at the end of each cycle they
emerge at lower latitudes (near the equator). This is often called a butterfly
diagram, because variation of the latitude of sunspots occurrence with time
is reminiscent of the wings of a butterfly. The overall preferred latitudes are
between±30◦. The number of sunspots of each maximum changes with every
cycle. Data of hundreds of years of sunspot observation suggest a secondary
overlying cycle with a period of around 100 years, which is called the Gleiss-
berg cycle (Gleissberg, 1976). The current cycle is in the decaying phase a
Gleissberg cycle, which had its maximum in the middle of last century (see
e.g. Feynman and Ruzmaikin, 2011).

Since Hale (1908) and Hale et al. (1919) we know that sunspots corre-
spond to magnetic field concentrations. The cyclic occurrence of the sunspots
must be strongly correlated to the magnetic field inside the Sun. Every eleven
years the sunspot pairs at the solar surface reverse their magnetic polarity. If
observed sunspot pairs on the northern hemisphere have leading positive po-
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Figure 1.7: Evolution of solar activity in X-rays. The photographs were taken
every 90 days by the satellite Yohkoh, a cooperative mission of Japan, the USA,
and the UK, in the years 1991–1995.

larity, spot pairs on the southern hemisphere have leading spots with negative
polarity. During the next sunspot cycle the leading spots on the northern hemi-
sphere have negative polarity and positive polarity on the southern hemisphere
(Hale et al., 1919). This behavior is a manifestation of the 22-year magnetic
cycle (Hale’s cycle). Synoptic magnetograms such as Fig. 1.6, where mag-
netograms are averaged in the time-latitude-plane, clearly show the magnetic
cycle: the polarity reverses every eleven years. The oscillation and the equator-
ward migration of the magnetic field is an important observational evidence for
a solar dynamo operating below the surface. With a primordial field, which has
been amplified in the formation process of the solar system, such a behavior
cannot be explained (see e.g. Dicke, 1978; Rosner and Weiss, 1992).

The solar cycle is seen not only at the visible surface. X-ray observation
of the solar corona show a strong cyclic dependence, as illustrated in Fig. 1.7.
The corona is hotter and more structured during solar maximum (see e.g. Wang
and Sheeley, 2003). These variations are manifestations of a close relation be-
tween the solar cycle and strong variations in solar activity related to magnetic
fields. This includes eruptive events like solar flares and coronal mass ejec-
tions, where huge amounts of energy are released. The overall solar irradiation
is also cycle dependent (first reported by Willson and Hudson, 1988). Even
though sunspots are dark and their coverage of the solar surface is higher at
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solar maximum (see Fig. 1.5), the solar irradiance is higher, because of the in-
creased amount of bright points, associated with small-scale strong magnetic
fields. Also the solar wind changes its structure during the cycle. At solar max-
imum coronal holes occur more frequently. These holes are often the source
of the fast solar wind, which has speeds up to 800kms−1 (see e.g. Cliver et al.,
1996). With a stronger solar wind and higher magnetic field strengths, the
solar magnetosphere can shield more effectively cosmic ray particles entering
our solar system. This might be related to a modulation of the cloud produc-
tion in the Earth atmosphere and so influence the climate on Earth (Svensmark
and Friis-Christensen, 1997; Lübken et al., 2009).

1.5 Space weather

Space Weather describes the momentary condition of the Sun-Earth interac-
tion, see the right panel of Fig. 1.8 for an artist illustration. A huge amount of
energy can be stored in the magnetic field generated by the dynamo in the Sun.
This energy can be partially released in violent eruptions. One of the promi-
nent examples are solar flares, where magnetic reconnection releases energy
directly via radiation mostly in Hα and the X-ray spectrum. These events are
most visible in the solar chromosphere and the corona. The other prominent
events are coronal mass ejections (CMEs), where plasma of the solar corona is
ejected into the interstellar space. The plasma clouds cause shocks, which can
accelerate particles to high velocities. An observed CME is shown in the left
panel of Fig. 1.8, where a typical three-part structure (Low, 1999) is clearly
visible. It comprises an outer arc-like structure of compressed coronal plasma,
which piles up in front of its core. The inner bright core is the original ejected
prominence. The third part is the cavity between the two bright structures. For
details on solar eruption models see § 5.

These eruptive events can have strong impacts on our daily life. Beside
the cultural and touristic influence of aurorae in arctic latitudes, these acceler-
ating particles can endanger human technology and life. The Earth’s magne-
tosphere prevents the main contribution of the particles and from the vicinity
of the Earth. Outside the magnetosphere, where for example the solar satellite
SOHO is operating, the radiation can be very strong. Microelectronics can be
damaged and the particle radiation can endanger the life of astronauts. Flight
to the Moon or to Mars is therefore very risky also from this perspective. As
an example, between the missions of Apollo 16 and 17 a strong flare erupted
in August 1972. It was energetic enough to endanger the life of the astro-
nauts during the Apollo missions, had they been on the way to or on the moon
(near-earth orbit doses from the solar flare on August 4, 1972 can be found in
Savun and Sladkova, 1976, and estimates of a hypothetical interplanetary crew
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Figure 1.8: Left panel: This SOHO LASCO C2 image shows a very large coro-
nal mass ejection (CME) blasting off into space on 2 December 2002. It presents
the standard shape of a CME: a large bulbous front with a second, more compact,
inner core of hot plasma. This material erupts away from the Sun at speeds of one
to two million kilometers per hour. Right panel: Artist illustration of Sun-Earth
interactions using a disk and a coronal image from SOHO. Image credit NASA.

dose during a strong solar flare in Stephens et al., 2005). Inside the Earth’s
magnetosphere the damage to microelectronics on satellites on typical near-
Earth orbits is small. Strong impacts are caused by the interaction of accel-
erated particles and magnetic fields of CMEs and the Earth’s magnetosphere.
Depending on the field polarity, the magnetic field can trigger reconnection
event in the Earth’s magnetic fields. These events then can cause geomagnetic
storms inside the Earth’s magnetotail. Geomagnetic storms consist of accel-
erated energetic particles, which follow the field lines of the Earth’s magnetic
field toward the polar regions, where they are visible as aurorae. If the energy
of the CME is strong enough, the geomagnetic storms can penetrate to lower
latitudes, which leads to aurorae also there. The magnetic north pole—which
is actually a south pole in the magnetic sense—does not have the same location
as the geographical north pole, it is shifted by around 5◦ toward Alaska. This
led to aurorae being visible at lower latitudes on the American continent than
in Asia or Europe. Besides the aurorae, the impact of geomagnetic storms can
be much more dramatic on the American continent than elsewhere at the same
latitudes. There are two main risks to humans, one is primary, the other one is
secondary. The primary risk is to be exposed to high radiation doses, for ex-
ample on polar flights, which can easily exceed the annual safe limit (see e.g.
Lantos, 2003). The secondary risk basically is the damage to infrastructure.
Due to large geomagnetic induced currents, generators and transformer sta-
tions can be destroyed and lead to large power grid failures. In recent history
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there were several events of such power grid failures. One prominent example
is the Quebec blackout in March 1989, where the city was without any power
for 9 hours. This geomagnetic storm was so strong that aurorae were seen in
Florida and Texas. However, much stronger storms are possible and can cause
even larger damages. It is not unrealistic to think of power grid failures that
last for several days in a large high populated region. Even in the summer time
this would cause a lot of problems. Additionally, telecommunication and navi-
gation systems are disturbed and can stop functioning. Nowadays, our society
depends more and more on technologies that are highly vulnerable by solar
eruptions.

The name space weather also indicates that the time scales of these events
are rather short and comparable to those of weather on Earth. A CME needs
one to five days to reach the Earth. Because of the strong impact on the Earth,
several countries have installed early warning systems to be prepared. Today,
we are monitoring the Sun with numerous space and ground based telescopes
everyday—even looking with STEREO on the far-side of the Sun—to know,
when the next CME will hit the Earth. However, to forecast and predict solar
space weather, one should understand two important ingredient in more detail.
One is the solar activity cycle. Observations show that solar eruptions hap-
pen preferably during solar maximum, i.e. when the magnetic field is relative
strong (Schwenn, 2006). Modeling the solar activity cycle with a solar dy-
namo model will be part of my thesis and involves mostly Papers V and VI.
The other ingredient is the emergence and eruption of magnetic fields from
the solar convection zone through the solar atmosphere into the interplanetary
space. The generation of magnetic field configurations, which then eventually
trigger reconnection and liberation of magnetic energy and plasma, seems to
be crucial for CME modeling. My contribution to modeling coronal ejections
using an alternative approach also is part of my thesis and is described in Pa-
pers I, II, III and IV.
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2. Solar Convection, Turbulence
and Rotation

You can check-out any time you like,
But you can never leave!

Eagles

2.1 Convective motions

Convection is an important mechanism to transform thermal energy into ki-
netic energy. This is of particular interest in astrophysics, because large gra-
dients of temperature together with gravity are often found in astrophysical
environment, like in Galaxies, in accretion disks or in the interior of stars. Mo-
tions caused by convection are in most astrophysical environment turbulent
and can lead to interesting physical phenomena, for instance, enhanced mix-
ing of metals, generation of magnetic fields via a dynamo instability (see § 3.2
and § 4) or the footpoint motion of magnetic fields on the solar surface, leading
to coronal heating (see e.g.Gudiksen and Nordlund, 2005a; Bingert and Peter,
2011).

2.1.1 The convective instability

Let us assume a simple explanatory case: We have a very large container of
a perfect gas in hydrostatic equilibrium, with the vertical coordinate z. Grav-
itational acceleration is locally uniform pointing in the negative z direction
ggg = −gẑzz, which leads to a decrease of density ρ(z) and pressure p(z) with
height z. Now, we consider a blob of radius r, which has the same values of
density ρ and pressure p as its surrounding medium. We displace the blob
a small distance upwards against gravity; in Fig. 2.1 a sketch of the blob is
shown. The density ρ ′ and pressure p′ of the surrounding medium have de-
creased, so that ρ ′ < ρ and p′ < p. If the adiabatic time scale is much larger
than the diffusion time scale, we can assume that the difference in pressure
between the blob and the surrounding will reach a new balance rather quickly
and will cause an adiabatic expansion of the blob r→ r+δ r. But the exchange
of heat is comparably slow, which can lead to a difference in temperature and
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Figure 2.1: Moving a blob of gas upwards in a stratified surrounding.

therefore to a density ρ∗ inside the blob which is different from ρ ′. If the
density inside the blob ρ∗ is higher than in its surroundings, it is heavier and
moves back downwards; the gas is stable. If the density inside the blob ρ∗ is
lower than in the surroundings, it moves upwards due to the buoyancy force;
the gas is convectively unstable. This can be expressed by looking at the dif-
ference in the specific entropy s (i.e entropy per unit mass) of the blob and its
surrounding medium. In a perfect gas this change of entropy is given by

∆s = cV∆ ln p− cP∆ lnρ, (2.1)

where cV is the specific heat at constant volume and cP is the specific heat at
constant pressure. Let us now calculate the density difference ∆ lnρ = lnρ∗−
lnρ ′

∆ lnρ =− 1
cP

∆s+
1
γ

∆ ln p (2.2)

where γ = cP/cV is the adiabatic index. The pressure difference balances to
zero (∆ ln p = 0) leading to the expansion of the blob. Because the blob has
been displaced adiabatically, its entropy stayed constant and we can express
the entropy difference as a gradient over height. We can calculate the density
difference as

ρ
∗−ρ

′ =
ρ ′

cP

ds
dz

z. (2.3)

This equality expresses directly the relation between the dynamics of the blob
and the entropy gradient. If the entropy gradient is positive, the blob becomes
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heavier as it rises and is pulled downward by gravity. If the entropy gradient
is negative, the blob becomes lighter as it rises and continues to rise. Solving
a simplified momentum equation of the blob, we can express this behavior in
terms of a frequency. This frequency N is called Brunt–Väisälä frequency and
can be deduced from Eq. (2.3) to

N =

√
g
cP

ds
dz
, (2.4)

where g enters because gravity is the restoring force. If N is a real number,
the gas is convectively stable, and the blob will oscillate with the frequency
N. If N is imaginary, the gas is convectively unstable, and the blob moves fur-
ther upward and causes an instability. This is equivalent to the Schwarzschild
instability criterion

dlnT
dlnP

= ∇ > ∇ad =

(
dlnT
dlnP

)
s
, (2.5)

where ∇ad is the double-logarithmic isentropic temperature gradient. The
double-logarithmic temperature gradient ∇ is not to be confused with nabla
operator ∇∇∇ in div, grad, and curl.

For cases, where the adiabatic time scale is comparable or smaller than the
typical diffusive one, we need to define a more general criterion. In general,
a fluid with a negative entropy gradient can be convectively unstable, if the
diffusivities are small enough. There, the instability criterion can be expressed
by the non-dimensional Rayleigh number (Jeffrey, 1926)

Ra =
gd4

νχ

(
− 1

cP

ds
dz

)
0
, (2.6)

where d is the height of the domain, ν the kinematic viscosity and χ the heat
diffusivity, which is related to the heat conductivity K = cPχρ . The entropy
gradient ds/dz is either taken as an average or at a certain location. A mean-
ingful Rayleigh number can only be calculated from the hydrostatic reference
solution, which is indicated by the 0. For every system, there exists a critical
positive Rayleigh number Racrit, above which the gas is (linearly) convectively
unstable.

Ra > Racrit⇒ unstable (2.7)

For a non-rotating fluid without magnetic field the relation above corresponds
to Eq. (2.5). To determine this number analytically is nearly impossible and
depends on the boundary conditions. If the Rayleigh number in a system is
very large, the gas would likely be convectively unstable.

A more detailed discussion of the derivation and the calculation of the
instability criteria can be found in Choudhuri (1998) and Stix (2002).
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2.1.2 Fluid dynamics

In many astrophysical systems the mean-free path of particles, like ions and
electrons in a plasma, is much smaller than the typical physical length scale.
This allows us to use the continuum mechanics for fluid dynamics. For ex-
ample in the solar convection zone the typical mean-free path of the ions and
electrons is of the order of λ = 10−8 cm and the typical length scale is the pres-
sure scale height HP = 1010 cm, which satisfies the fluid dynamic approach.
For describing changes and evolutions of fluid quantities, we use typically the
Lagrangian or convective derivative, which moves along with the fluid motions

D
Dt

=
∂

∂ t
+uuu ·∇∇∇, (2.8)

where uuu is the fluid velocity. The conservation of mass leads to the continuity
equation

Dρ

Dt
=−ρ∇∇∇ ·uuu, (2.9)

which is often rewritten with the logarithmic derivative as

Dlnρ

Dt
=−∇∇∇ ·uuu. (2.10)

The conservation of momentum is given by the Navier–Stokes equation

ρ
Duuu
Dt

= ρggg−∇∇∇p+∇∇∇ ·2νρSSS+FFF , (2.11)

which is often also written in terms of the velocity evolution equation

∂uuu
∂ t

=−(uuu ·∇∇∇)uuu+ggg+
1
ρ
(−∇∇∇p+∇∇∇ ·2νρSSS+FFF) , (2.12)

where the traceless rate-of-strain tensor SSS is given by

Si j =
1
2(ui, j +u j,i)− 1

3 δi j∇∇∇ ·uuu, (2.13)

and FFF includes additional forces originating, for example, from the magnetic
field or rotation of the frame; ν is the microphysical kinematic viscosity. The
contributions in the momentum equation can be categorized in three parts.
There are the terms of forces which are set by the environment or the state of
the fluid; the gravitational acceleration ggg and the pressure gradient ∇∇∇p count
to this category. Then there is the diffusion term 1

ρ
∇∇∇ · 2νρSSS, which includes

second derivatives and will—as suggested by the name—smooth out strong
velocity gradients. The third term (uuu ·∇∇∇)uuu is the advection term and it is non-
linear in the velocity uuu. The last one is the most interesting term. Because
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of its non-linearity it makes analytic descriptions of the fluid difficult. One
of the consequences of non-linearity is turbulence, which will be discussed in
§ 2.2. We can define a meaningful dimensionless number called the Reynolds
number by comparing advection and diffusion terms

Re≡ ‖(uuu ·∇∇∇)uuu‖∥∥∥ 1
ρ

∇∇∇ ·2νρSSS
∥∥∥ ≈ UL

ν
. (2.14)

U is the typical velocity of the system, L its typical length scale and ‖ · ‖
defines a norm, which has to be chosen specifically for the setup. The first
term, which represents the exact definition is often called term-based Reynolds
number. For Reynolds numbers of the order of unity or smaller, diffusion
dominates and the flow is laminar; for Reynolds numbers much larger than
unity, non-linearities dominate and the flow becomes turbulent. Typical val-
ues of the Reynolds number for the solar interior are Re ≈ 1012... 1013. Note
that the Reynolds number depends on the length scale under consideration;
choosing the relevant length scale for a specific setup can be difficult. In Pa-
pers I-VI, we define the Reynolds number as Re = urms/kfν , where kf is the
wavenumber of the energy carrying scale and urms the root-mean-square veloc-
ity, see Eq. (2.24). As an example, in one of the simulation setups of Paper V
Re = 50, but the term-based Reynolds number is ≈ 5. The difference of one
order of magnitude might be related to our choice of L, which we set to cor-
respond to the depth of the convection zone. Using the pressure scale height
near the surface as a more appropriate choice of L leads to an equality of the
term-based Reynolds number and Re = urms/kfν . However, the norm used to
determine the term-based Reynolds number plays a crucial role.

2.2 Turbulence

Turbulence is often present in astrophysics, but it is actually difficult to define
accurately. We can call a flow turbulent, if the Reynolds number is very high
and therefore fluid flows non-laminar. Turbulence can be also defined as a flow,
in which the correlation length and correlation time become finite. The flow
generates structures such as eddies and becomes in general more complex.
It is easier to illustrate this with a simple example. Consider a fluid with a
certain velocity and viscosity ν that flows around a cylinder; similar to a bridge
pillar in a river. Assuming that the viscosity remains constant, we increase
slowly the velocity and therefore the Reynolds number. In Fig. 2.2, we show
an illustration of this behavior. For Reynolds numbers Re < 5 the flow around
the cylinder is fully laminar and without any disturbance, e.g. the flow patter in
the front of the cylinder is the same as that behind the cylinder. For Reynolds
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Figure 2.2: Flow past a cylinder for different values of the Reynolds number,
from laminar to fully turbulent (Lienhard, 1966). Image courtesy of Koen Kemel.

numbers Re < 40, we find a weak return flow associated with two eddies at the
back of the cylinder. When the Reynolds number is increased to Re. 150, then
the eddies are ejected into the flow, which leads to an oscillatory flow pattern
behind the cylinder. For even higher Reynolds numbers Re ≈ 300, transition
to turbulence takes place and the flow pattern becomes very complex. Higher
Reynolds numbers make the flow even more distorted and give rise to eddies
at a range of different scales.

2.2.1 Kolmogorov turbulence

For isotropic homogeneous turbulence, we can describe some properties with
the Kolmogorov theory (see e.g. Frisch, 1995). If we have a fluid in a sta-
tistically stationary state and we inject energy at a certain scale to sustain the
turbulence, for example by stirring, we can apply this theory. Assuming the
energy injection scale is large, then the corresponding wavenumber k is small.
The energy spectrum will have a peak at this scale. Kolmogorov’s theory pre-
dicts that the energy cascades toward smaller length scales with a constant
slope as k−5/3. At a certain scale for which Re = urms/kν ≈ 1, depending on
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the viscosity ν , this power law changes to an exponential decrease. This scale
is called the dissipative scale. At this scale the kinetic energy of the motions is
dissipated to thermal energy via viscous heating.

2.2.2 Mean-field theory

Turbulence is a small-scale phenomenon but can contribute to large scales sig-
nificantly (see e.g Frisch, 1995). For example, at every airport in the winter
time, the wings of the airplanes are cleaned from ice before take-off. Other-
wise icing can give a rougher wing surface causing turbulent motions along
the wing. This leads to a change of the aerodynamic lift of the plane.

Describing the small scales of a fluid as well as its large scales in one con-
sistent theory is very challenging. In addition, in numerical experiments of
high Reynolds number turbulent flows, the grid resolution often is too small to
resolve sufficiently a large range of scales. Mean-field theory is one way to ap-
proach this problem. There, the small-scale physics is modeled or parametrized
in terms of mean-field quantities (see e.g. Rüdiger, 1989). A field fff can be de-
composed into a mean or averaged part fff and a fluctuation part fff ′

fff = fff + fff ′. (2.15)

The definition of the averaging procedure is arbitrary and only needs to satisfy
the Reynolds rules,

fff ′ = 0 (2.16)

fff +hhh = fff +hhh (2.17)(
∂ fff
∂xi

)
=

∂ fff
∂xi

(2.18)

fff hhh = fff hhh = fff hhh, (2.19)

fff hhh′ = 0 (2.20)

where hhh is an arbitrary field and xi an arbitrary direction including time. Typi-
cally the average is over time and/or one spatial direction. We can now rewrite
the Navier–Stokes equation (2.12) in terms of mean quantities.

∂uuu
∂ t

=−(uuu ·∇∇∇)uuu+ggg+
1
ρ

(
−∇∇∇p+∇∇∇ρQQQ+∇∇∇ ·2νρSSS+FFF

)
, (2.21)

where we neglect additional terms involving correlation with fluctuating den-
sity ρ ′. FFF includes additional forces coming for example from the large-scale
and small-scale magnetic field. QQQ is the Reynolds stress tensor representing
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stress contributions due to the small-scale velocities as a second order correla-
tion tensor and can be parametrized in terms of the mean flow. The components
of this tensor are given for isotropic turbulence by

Qi j = u′iu
′
j =−νt

(
∂ui

∂x j
+

∂u j

∂xi

)
−ζtδi j

∂uk

∂xk
, (2.22)

where νt and ζt are the turbulent shear and bulk viscosities. They are param-
eters, which have to be calculated from the small-scale physics in the system.
The Reynolds stresses (2.22) are clearly dissipative and can be interpreted as
a representation of energy transfer to smaller non-resolved scales. The term
of the Reynolds stresses in the mean Navier–Stokes equation can be combined
with its mean diffusive term by adding the turbulent viscosity νt to the micro-
physical viscosity ν to give a total viscosity νT = ν +νt. In most astrophysical
objects the turbulent viscosity is much higher than the molecular one, therefore
νT ≈ νt.

2.2.3 Mixing length theory

Solving the turbulent hydrodynamic equations for stellar structure models is
a complex problem, in particular, because the turbulent aspects of stellar con-
vection are not fully understood. One way to estimate the turbulent viscosity
νt in the solar interior is by using mixing length theory (see e.g. Stix, 2002).
To simplify the equations, we can define a specific length scale, the mean-free-
path of a convective blob. This length gives the distance, which a convective
blob travels before it is completely mixed with the surroundings. This mixing
length l is related to the typical length scale of the system, the pressure scale
height HP (Vitense, 1953) by,

l = αMLTHP with HP =−
(

1
p

∂ p
∂ r

)−1

, (2.23)

where αMLT is a free parameter of OOO(1). A good estimate of the typical tur-
bulent velocity of a system is given by the root-mean-squared velocity urms,
defined as

urms =

√
(uuu′)2. (2.24)

The turbulent viscosity νt is related to the mixing length via (Prandtl, 1926)

νt =
1
3 urmsl = 1

3 αMLTurmsHP. (2.25)

Clearly, the rms velocity urms as well as the pressure scale height HP are depth
dependent. In Table 2.1 the temperature, density, scale height, rms velocity
and the turbulent viscosity are shown for different heights z in a solar mixing
length model of Spruit (1974).
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Table 2.1. The solar mixing length model of Spruit (1974).

z [Mm] T [K] ρ [g cm−3] HP [Mm] urms [m/s] τ [d] νt [cm2/s]

24 1.8×105 0.004 8 70 1.3 1.5×1012

39 3.0×105 0.010 13 56 2.8 2.0×1012

155 1.6×106 0.12 48 25 22 3.2×1012

198 2.2×106 0.20 56 4 157 0.6×1012

Note. — z is the distance to the solar surface, T the temperature, ρ the density, HP the
pressure scale height and τ is the typical turnover time of a convective cell. νt is the calculated
turbulent viscosity according to (2.25).

2.2.4 Turbulent heat transport

The heat transport in the convection zone is very complex, because the turbu-
lent convective motions carry a significant amount of the total heat flux. This
can be modeled also here by expressing the small-scale correlation properties
with mean-field quantities (see e.g. Rüdiger, 1989). The mean convective heat
flux reads

FFFconv = (ρuuu)′ cPT ′, (2.26)

where (ρuuu)′ is fluctuating mass flux and T ′ the fluctuating temperature. With
the help of mean-field calculations, one can derive the convective heat flux in
terms of the mean entropy gradient, see Rüdiger (1989),

FFFconv =−χtρT ∇∇∇s, (2.27)

where χt is the turbulent heat diffusivity, which can be expressed in terms of
the mixing length l

χt =
1
3 urmsl (2.28)

or using the pressure scale height HP

χt =
1
3 αMLTurmsHP. (2.29)

The turbulent heat diffusivity is generally speaking not a scalar as in Eq. (2.27),
but a tensor

Fi =−χi jρT ∂ js. (2.30)

If the heat fluxes and the entropy gradients are known, we can calculate the tur-
bulent heat diffusivities accordingly. A good approximation for the convective
heat flux is |FFFconv| ≈ ρu3

rms, which was already pointed out by Vitense (1953).
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2.3 Rotation

The Sun has a mean rotation period of around Trot = 27.3days. Compared
with other stars, the Sun is considered a slow rotator. The solar rotation can be
quantified in terms of the non-dimensional Coriolis number,

Co =
‖2ΩΩΩ0×uuu‖
‖(uuu ·∇∇∇)uuu‖

≈ 2Ω0

urmskf
, (2.31)

where kf is the wavenumber of the inverse length scale of the system and
ΩΩΩ0 = Ω0(cosθ ,−sinθ ,0) is the rotations vector with Ω0 the rotation rate of
the solar interior (without the convection zone), for which we can assume a
solid body rotation. For the case of the Sun, the rotation frequency is f =
1/Trot = Ω0/2π ≈ 425nHz. The Coriolis number gives the strength of rotation
compared with the turbulent motions. For the solar convection zone we often
choose (as in e.g. Käpylä et al., 2010, as well as Papers IV–VI)

kf =
21
R�
≈ 2π

d
, (2.32)

where d = 0.3R� is the thickness of the convection zone and R� ≈ 700Mm
the solar radius. In the literature the Rossby number Ro is often used instead
of the Coriolis number (following Stix, 2002)

Ro =
urms

2Ω0l
⇒ Co =

2π

Ro
, (2.33)

where l = 2π/kf. Hence, the Rossby number is the same as the inverse Cori-
olis number except a factor of 2π . The Coriolis number of the Sun is around
6, when averaged over the convection zone. If we instead take a height depen-
dent rotation profile and a height dependent rms velocity, the Coriolis number
shows also a strong height dependence. At the bottom of the convection zone
the Coriolis number is around Co≈ 60, while near the surface Co≈ 0.06 (Stix,
2002).

As shown in Fig. 1.2, the Sun rotates in the convection zone non-cylindri-
cally, which is unexpected. Let us consider the simplest case. We have a
sphere of fluid rotating about an axis. If there is no turbulence or other forces,
the sphere rotates as a solid body. This means, Ω is constant and the rotation
speed uφ = Ωϖ = Ωr sinθ increases linearly with distance from the rotation
axis ϖ = r sinθ . The situation changes, if we consider pressure gradient and
gravity acting on the fluid. When the turbulent motions are weak compared
with rotation speed (Co� 1), the Coriolis force balances with the pressure
and the gravity. Then, the Taylor-Proudman theorem states, that the contours
of constant rotation rate are parallel to the rotation axis; i.e. the local velocity of
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the fluid is constant along cylindrical surfaces, if the density is constant. In Pa-
per IV and VI, the differential rotation is constant along cylindrical surfaces,
because of the strong rotation rate as implied by the Taylor-Proudman theorem.
The Sun is slightly above this limit (Co ≈ 6), and the additional forces acting
on the plasma are more important in the convection zone (Kippenhahn, 1963).
There, anisotropic turbulent motions and turbulent heat fluxes generated by the
convection resulting in a non-zero latitudinal temperature gradients break the
Taylor-Proudman balance via the baroclinic term, see Eq. (2.37). In addition
the magnetic field also influences the motion of the flow inside the convec-
tion zone, but we will introduce this in § 3. These forces are able to transform
the rotation of a solid body to a differential rotation with radial contours of
constant rotation. In Paper V we found a similar differential rotation profile,
although the rotation rate is slightly higher (Co ≈ 8), but also there the turbu-
lent stresses and the turbulent heat transport form this rotation profile via the
baroclinic term. On the other hand the rotation will influence the convective
motions due to the Coriolis and centrifugal forces. The rotation has yet another
effect on the fluid motions. It generates a mean flow in the meridional plane,
which points polewards at the surface and equatorwards below the surface.
This flow is called the meridional circulation. It is known since long time,
that a slow rotating body as the Sun should have a so-called Eddington–Sweet
circulation to fulfill conservation of energy (see e.g. Kippenhahn and Weigert,
1990). The meridional circulation can be interpreted as a type of Eddington–
Sweet circulation, and it is caused by the inclination of the isobaric relative to
the isopycnic surfaces. Isobaric and isopycnic surfaces are the surfaces, where
the pressure and the density are constant, respectively. But for the Sun, the
time-scale of the Eddington–Sweet circulation is longer than its lifetime.

2.4 Mean-field models of solar differential rotation

The main mechanism causing the differential rotation is the anisotropy of
the convective motions (see e.g. Kippenhahn, 1963; Tuominen and Rüdiger,
1989). The Sun is approximately axially symmetric. Therefore we can define
mean quantities by averaging over the azimuthal direction φ . To investigate
this, we look at the conservation of mean angular momentum in spherical co-
ordinates.

∂
(
ρΩr2 sin2

θ
)

∂ t
+∇∇∇ ·

[
ρr sinθ

(
uuuuφ +uuu′u′

φ

)]
= 0, (2.34)

where Ω = uφ/r sinθ is the local rotation rate, uuu′u′
φ

is part of the Reynolds
stress tensorQQQ introduced in Eq. (2.22). Note that we neglect here the magnetic
parametrization of the angular momentum transport. First order smoothing
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calculations reveal an extra term in the components of the Reynolds stress
tensor, which is related to the mean rotation

Qi j = Λi jkΩk−NNNi jkluk;l, (2.35)

where the semicolons denote the co-variant derivatives. Comparing Eq. (2.35)
with Eq. (2.22), we find that the isotropic part of the turbulent viscosity tensor
NNNi jkl can be associated with the turbulent viscosity νt. The Λi jk describes the
so-called Λ-effect. Using the right parameter for Λi jk and NNNi jkl , it is possible
to model the differential rotation of the Sun (see e.g. Tuominen and Rüdiger,
1989; Brandenburg et al., 1992; Kitchatinov and Rüdiger, 1995; Kitchatinov
and Rüdiger, 2005).

Differential rotation can be obtained by solving Eq. (2.34) alone while
ignoring the meridional circulation. But it will be insufficient, if the rotation
period becomes shorter than the time scale of the turbulent viscosity. This is
expressed with the Taylor number

Ta =
(
2Ω0R2

�/νt
)2
. (2.36)

For the Sun the Taylor number is around Ta ≈ 3× 107 (Rüdiger, 1989). The
meridional circulation depends on the rotation rate. For low Ta the meridional
flow increases with increasing Ta, until it reaches Ta ≈ 3× 105, then it de-
creases with increasing Ta; for a rotation rate equal or larger than that of the
Sun, the meridional circulation is suppressed by the rotation (Köhler, 1970).
This can also be seen from the evolution equation of the mean azimuthal vor-
ticity, which can be derived by taking the curl of (∇∇∇×) Eq. (2.21) (e.g. Küker
and Stix, 2001)

∂ωφ

∂ t
= r sinθ

∂Ω
2

∂ z
−
[

∇∇∇× 1
ρ

∇∇∇(ρQQQ)

]
φ

+
(

∇∇∇T ×∇∇∇s
)

φ

, (2.37)

where ∂

∂ z = cosθ
∂

∂ r −
1
r sinθ

∂

∂θ
is the derivative along the rotation axis. We

neglect here again the Maxwell stresses MMM, which can be added by replacing
ρQQQ⇒ ρQQQ+MMM. The three terms on the right hand side give rise to three dif-
ferent mechanisms to produce meridional circulation. The first is due to the
differential rotation, the second due to Reynolds stresses. The third term is
the baroclinic term and is probably the most important one for the meridional
circulations (Rüdiger, 1989; Kitchatinov and Rüdiger, 2005). As can be seen
from Eq. (2.37), baroclinicity is defined as the misalignment of the gradient of
temperature and entropy, which gives a contribution to the vorticity evolution.
The baroclinic term has two contributions:

(
∇∇∇T ×∇∇∇s

)
φ

= ∂rT ∂θ s− ∂θ T ∂rs.
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Radial and latitudinal entropy gradients are comparable, but because the latitu-
dinal temperature gradient is usually much smaller than the radial temperature
gradient, the baroclinic term is a manifestation of the result of a latitudinal
entropy difference. This implies that the poles are hotter than the equator.
Mean-fields models show that just a few Kelvin difference between poles and
equator can cause a solar-like meridional circulation (Rüdiger, 1989). In sim-
ulations, it frequently turns out that the influence of the Reynolds stresses can
be neglected. Assuming now a constant meridional flow, the left hand side of
Eq. (2.37) is zero and the two remaining terms on the right hand side must bal-
ance. The term r sinθ

∂Ω
2

∂ z indicates, to which degree the differential rotation
is cylindrical or non-cylindrical. For a cylindrical rotation the term is zero, for
differential non-zero. This means that a dominant baroclinic term can reshape
the cylindrical differential rotation caused by anisotropic Reynolds stresses to
a non-cylindrical one. In Paper VI we have used this equation to conclude that
the solar-like radial contours of constant rotation are shaped by the a non-zero
latitudinal entropy gradient.
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3. Magnetohydrodynamics

From a long view of history—seen from, say,
ten thousand years from now—there can be little doubt

that the most significant event of the 19th century will be judged
as Maxwell’s discovery of the laws of electrodynamics.

Richard Feynman

For many astrophysical objects magnetic fields are essential. Magnetic fields
have a strong influence in the star formation processes occurring in a collapsing
nebula. Magnetic fields cause a planetary disk to become turbulent without
which planet formation may be impossible. Magnetic fields give stars as our
Sun an activity cycle that has a strong impact on the surrounding planets via
eruptive events.

3.1 Magnetohydrodynamical equations

In general, the evolution of magnetic fields BBB and electric fields EEE are described
by the Maxwell equations (Maxwell, 1865)

∇∇∇ ·EEE =
ρe

ε0
[Gauss’ law], (3.1)

∇∇∇ ·BBB = 0 [no magnetic monopoles], (3.2)

∇∇∇×EEE =−∂BBB
∂ t

[Faraday’s law], (3.3)

∇∇∇×BBB = µoJJJ+µoεo
∂EEE
∂ t

[Ampere’s and Maxwell’s law], (3.4)

where ρe is the charge density, ε0 the vacuum permittivity and µ0 the vacuum
permeability. The speed of light is defined via c = 1/

√
ε0µ0. To describe

magnetic fields in astrophysical objects, we combine the Maxwell equations
with the equations of the fluid dynamics introduced in § 2.1.2. To simplify we
assume non-relativistic velocities, no electromagnetic waves and high conduc-
tivity. Additionally we use Ohm’s law and in doing so transform the magnetic
and electric fields into the co-moving frame of the fluid. With these condi-
tions, we can derive the evolution equation for the magnetic field, the induc-
tion equation

∂BBB
∂ t

= ∇∇∇× (uuu×BBB)−∇∇∇× (η∇∇∇×BBB) , (3.5)
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where η = 1/µ0σ is the magnetic diffusivity and σ the conductivity. The
current density is given by

JJJ =
1
µ0

∇∇∇×BBB. (3.6)

To form a complete set of equations in magnetohydrodynamics (MHD), we
combine the equation above with the Navier–Stokes equation (2.12) includ-
ing the Lorentz force FFFL = JJJ×BBB,

∂uuu
∂ t

=−(uuu ·∇∇∇)uuu+ggg+
1
ρ
(JJJ×BBB−∇∇∇p+∇∇∇ ·2νρSSS+FFF) (3.7)

and the continuity equation as in Eq. (2.10)

Dlnρ

Dt
=−∇∇∇ ·uuu. (3.8)

Usually we also include an energy equation. Here we take one in the form of
the evolution equation of the specific entropy

T
Ds
Dt

=
1
ρ

∇∇∇ ·K∇∇∇T +2νSSS2 +
µ0η

ρ
JJJ2, (3.9)

where K is the heat conductivity, 2νSSS2 is the viscous heating and µ0η

ρ
JJJ2 is

the Joule or Ohmic heating. We use these equations with the assumption of a
perfect gas obeying the equation of state

p =
1
γ

c2
s ρ, with c2

s =
1
cP

(γ−1)T, (3.10)

where cs is the speed of sound. The Eqs. (3.5)–(3.10) form a complete set of
MHD equations.

In the induction equation, we have, similar to Eq. (2.12), an advection
and a diffusion term. Here, we can also define a non-dimensional number
to describe the relation of these two terms. Because of the similarity to the
Reynolds number, we call it the magnetic Reynolds number, which is defined
as

ReM ≡
‖∇∇∇× (uuu×BBB)‖
‖∇∇∇× (η∇∇∇×BBB)‖

≈ UL
η

, (3.11)

where we used dimensional arguments. U is the typical velocity of the system,
and L the typical length scale. For magnetic Reynolds numbers in the order
of unity or smaller the diffusion dominates and the magnetic field decays via
Ohmic heating, for magnetic Reynolds numbers much higher than the unity
magnetic field can be amplified. In the simulations of Papers I–VI, we use for
the magnetic Reynolds number the definition ReM = urmskf/η . Also here, the
ratio of the two terms might give a different value than the ReM defined above.
Before discussing the mechanism of amplifying magnetic fields, we discuss
briefly two important applications of the MHD equations.
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3.1.1 Alfvén’s theorem

When the conductivity σ is high enough, the field is frozen into the fluid. If
we consider a bundle of parallel magnetic field lines in a fluid, there exists a
well defined magnetic flux through the cross section of the bundle. During the
motions of the fluid, the magnetic flux can change in two different ways. A
change in the magnetic field can change the magnetic flux and a change in the
cross section can change the flux as well. Adding now these two contributions,
one can show that the total change of the flux dΦ/dt only depends on the cur-
rent density JJJ and the conductivity σ (see e.g. Stix, 2002, for a more detailed
calculation)

dΦ

dt
=−

∮
C

JJJ
σ
·dlll, (3.12)

where C is boundary of the cross section, dlll is the line element along the
boundary. In the limit of σ → ∞∞∞, the magnetic flux is constant. This theo-
rem can be successfully applied in the solar convection zone and solar corona,
where the high temperatures lead to high conductivities. There the flow and
the magnetic fields are strongly tied to each other. The plasma-β parameter
(β = 2µ0 p

B2 ) describes, whether the magnetic field or the fluid motion are dom-
inating the other. In the convection zone, the plasma-β is mostly larger than
unity and the fluid motion can generate magnetic fields due to this effect. In
the corona, the plasma-β is mostly smaller than unity and plasma flows along
the magnetic field lines forming coronal loops and prominences. In sunspots,
magnetic fields are strong and plasma-β is smaller than unity. This suppresses
the fluid motion inside the umbral region and quench the convective heat trans-
port, leading to a dark spot.

3.1.2 Force-free fields

For the solar corona it is common to approximate the magnetic fields by force-
free fields. In general, this means that the Lorentz force is zero, which can be
achieved by (except the trivial solution BBB = 000)

1
µ0

∇∇∇×BBB = JJJ = αffBBB, (3.13)

where αff is a force-free parameter. When αff = 0, then JJJ = 0 and the magnetic
field is a potential field BBB = ∇∇∇Φm with no currents (Schmidt, 1964; Semel and
Rayrole, 1968). It can be calculated by solving the Poisson equation for the
magnetic potential ∆Φm = 0. A more advanced method consist in using a non-
zero αff. There, the currents JJJ are (anti-)parallel to the magnetic fields BBB. In
Paper I we have calculated the angle between JJJ and BBB for one of the simu-
lations, which can give insights about αff, and we find that in the outer layers
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of our domain, which correspond to solar corona, the magnetic field is indeed
force-free. Similar calculations have been done for more realistic models of
the solar corona (Gudiksen and Nordlund, 2005a,b; Bingert and Peter, 2011),
where the authors found also force-free fields in their simulated coronae. For
describing the magnetic fields inside the corona, force-free extrapolation tech-
niques are commonly used. One possibility is to use magnetograms obtained
from high resolution observations of the photosphere and to extrapolate the
magnetic field into upper atmospheric regions. There are two extrapolation
methods, one is the linear force-free extrapolation, where αff = const (Nak-
agawa and Raadu, 1972; Alissandrakis, 1981; Gary, 1989), the other one is
the non-linear force-free extrapolation, where αff is constant along a field line
(Woltjer, 1958; Sakurai, 1981; Wiegelmann, 2004). A more detailed discus-
sion of different methods of force-free extrapolation can be found in Wiegel-
mann (2008). Neither of these methods work very well. One reason is the
chromosphere, which the field has to pass through.

3.1.3 Magnetic buoyancy

In § 2 we have already discussed the buoyancy of fluid elements due to differ-
ent temperature gradients. Magnetic fields can also lead to buoyancy of fluid
elements, this is called magnetic buoyancy. The Lorentz force in Eq. (3.7) can
be decomposed into two contributions:

JJJ×BBB =
1
µ0

(BBB ·∇∇∇)BBB−
∇∇∇
(
BBB2
)

2µ0
, (3.14)

where the first term is the magnetic tension along field lines and the second
term is the gradient of the magnetic pressure or magnetic energy density BBB2

2µ0
.

In Eq. (3.7) the magnetic pressure can then be combined with the gas pressure
forming a total pressure

ptot = p+
BBB2

2µ0
. (3.15)

If we consider a magnetic flux tube structure in non-magnetic surroundings.
In magnetic flux tubes, magnetic field lines are confined to the tube. Then the
magnetic field inside the tube leads to enhanced pressure. The pressure will
balance in a short time compared to the diffusion time and causes an expansion
of the tube. Because the mass inside the tube will not change, the expansion is
accompanied by a decrease of density. A density difference with the surround-
ing medium leads to the buoyancy of the tube. Magnetic buoyancy is believed
to be one of the key mechanism that makes magnetic flux tubes rise from the
bottom of convection zone to the surface and form bipolar regions.
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Figure 3.1: A schematic illustration of the stretch-twist-fold-merge dynamo
mechanism. Taken from Brandenburg and Subramanian (2005).

3.2 Generation of magnetic fields

We know that the Earth, other planets, the Sun and other stars have magnetic
fields. But where do they come from? We could imagine that weak magnetic
fields already existed in the interstellar clouds, out of which stars and planets
have been formed. In the phase of contraction, also the magnetic fields were
concentrated inside the star and this leads to the existence of strong magnetic
fields. This is certainly true, but this mechanism alone is not enough to ex-
plain the behavior of magnetic fields we observe today. The magnetic field
for example of the Earth would have decayed by diffusion away already, if
there would not have been a mechanism to regenerate magnetic fields. The
fields of the Earth and of the Sun show also another crucial behavior. They re-
verse and, in the case of the Sun, oscillate. The reversal interval of the Earth’s
magnetic field is random and shows a range of 0.1 to 50 million years. The
magnetic field of the Sun has an averaged period of 22 years. Oscillatory and
reversal magnetic field are unexplained by primordial field models; it can only
be explained by a dynamo mechanism (Ossendrijver, 2003; Brandenburg and
Subramanian, 2005; Charbonneau, 2010).

The dynamo mechanism is a type of instability, which transfers kinetic
energy into magnetic energy. But a dynamo mechanism as an instability can
never create magnetic fields, it can only amplify small magnetic fields to larger
ones. The basic idea can be illustrated by the stretch-twist-fold-merge-mech-
anism, see Vainshtein and Zel’dovich (1972) and Fig. 3.1. Taking a closed flux
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rope in a incompressible medium and expand it to twice its length (A⇒B). The
volume of the rope will be preserved because of the incompressible surround-
ings. The magnetic field lines are frozen in, see § 3.1.1, and the cross section
halves, therefore the magnetic field strength doubles. Now we twist the rope
so that we get a figure as an eight (B⇒C). Then we fold the two loops on top of
each other (C⇒D). We have now two loops, where the magnetic field points in
the same direction and each of them has a magnetic field strength as strong as
the original rope. With the help of reconnection, we can merge the two ropes
into one rope with the same volume as before, but with twice the magnetic field
(D⇒A). To generate a larger magnetic field we use kinetic energy to stretch,
twist and fold the rope and a small amount of diffusivity to merge the loops
This mechanism illustrates quite well the basic idea of a dynamo operating in
the Sun or inside the Earth. In reality it would be hard to imagine a flow, which
can reproduce the same deformations as described above. We will discuss now
two of the important dynamo mechanisms generating magnetic fields; the first
one is the so-called α2-dynamo and the second one the so-called α-Ω-dynamo.

3.2.1 α2-dynamo

From direct numerical simulations, we know that turbulence can amplify mag-
netic fields (see e.g. Brandenburg and Subramanian, 2005). We saw in § 2.2
that mean-field models are a powerful tool to describing turbulence and its
influence on physical quantities. To describe turbulent dynamos, we use a
mean-field approach. As a first step, we write the mean induction equation,
(compare with Eq. (3.5) and see Krause and Rädler, 1980)

∂BBB
∂ t

= ∇∇∇×
(
uuu×BBB

)
+∇∇∇×

(
uuu′×BBB′

)
−∇∇∇×

(
η∇∇∇×BBB

)
, (3.16)

where primes indicate fluctuating quantities and bars mean quantities. The
averaging reveals a new term ∇∇∇×

(
uuu′×BBB′

)
, which is the correlation of the

fluctuating velocity field and the fluctuating magnetic field. This term can be
responsible for generating a magnetic field and is called mean electromotive
force E = uuu′×BBB′. Following the mean-field approach, we can express this
quantity which rise from the fluctuations, in terms of mean quantities

E = uuu′×BBB′ = αBBB−ηt∇∇∇×BBB, (3.17)

where α and the turbulent diffusivity ηt are in general tensors. Inserting it into
Eq. (3.16) and assuming a turbulent flow without any mean velocity (uuu = 000),
we obtain

∂BBB
∂ t

= ∇∇∇×
(
αBBB
)
−∇∇∇×

(
ηT∇∇∇×BBB

)
, (3.18)
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where we add the two diffusivities to a total diffusivity ηT = ηt +η . The tur-
bulent diffusivity ηt in general increases the diffusion of the magnetic field and
hence cannot contribute to a dynamo effect, but there can also be exceptions
(see e.g. Devlen et al., 2012, where a case with ηT < 0 was found). With a zero
mean velocity field, the term ∇∇∇×

(
αBBB
)
, called the α-effect, is the only effect

capable of amplifying a magnetic field (Steenbeck et al., 1966). For homoge-
neous and isotropic turbulence, α can be expressed by (see e.g. Pouquet et al.,
1976)

α =−1
3

τcωωω ′ ·uuu′+ 1
3

τc

ρ
JJJ′ ·BBB′ = αK +αM, (3.19)

where τc is the turbulent correlation time, ωωω ′ = ∇∇∇× uuu′ is the fluctuating vor-
ticity. αK is the kinetic, and αM the magnetic part of α , which can provide
an important feedback of the mean magnetic field on α . If α and ηT are con-
stant in space, we can move them in front of the derivatives. If we additionally
assume axisymmetry in spherical coordinates along the ϖ-axis (ϖ = r sinθ ,
∂

∂φ
= 0), we can divide the mean magnetic field in a poloidal and toroidal part

BBB = BBBpol +BBBtor with BBBpol =
(
Br,Bθ ,0

)
and BBBtor =

(
0,0,Bφ

)
. Then we can

decompose the mean-field induction equation in two separate equations:

∂BBBpol

∂ t
= α∇∇∇×BBBtor +ηT∆BBBpol (3.20)

∂BBBtor

∂ t
= α∇∇∇×BBBpol +ηT∆BBBtor, (3.21)

where we have used Eq. (3.3). Here we can see, why this dynamo is called α2-
dynamo. The toroidal field gets amplified by the α-effect from the poloidal
field and the poloidal field gets amplified by the α-effect from the toroidal
field.

3.2.2 α–Ω-dynamo

Now we consider an additional mean flow, and Eq. (3.18) will change to

∂BBB
∂ t

= ∇∇∇×
(
uuu×BBB

)
+∇∇∇×

(
αBBB
)
−∇∇∇×

(
ηT∇∇∇×BBB

)
. (3.22)

Applying now a mean flow uuu = uuutor = (0,0,Ωϖ), which corresponds to a ro-
tation with angular velocity Ω and using similar assumptions as above, we can
also write two separate equations

∂BBBpol

∂ t
= α∇∇∇×BBBtor +ηT∆BBBpol (3.23)

∂BBBtor

∂ t
= ∇∇∇×

(
uuutor×BBBpol

)
+α∇∇∇×BBBpol +ηT∆BBBtor, (3.24)
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Now, we see that, because of the mean flow in terms of a rotation, the toroidal
field gets amplified additionally by a term related to the mean velocity. This
kind of dynamo is called α–Ω-dynamo, because the mean velocity is related
to the differential rotation. Precisely speaking, this dynamo is called α2–Ω-
dynamo, but since the α-effect generating the toroidal field is typically weaker
than the Ω-effect, it can be neglected.

3.3 Magnetic helicity

Magnetic helicity is an important quantity in astrophysics. Not only does it
indicate the twist of magnetic fields, it is conserved on a resistive timescale.
Magnetic helicity is defined as

H =
∫

V
AAA ·BBBdV, (3.25)

where AAA is the magnetic vector potential and related via BBB = ∇∇∇×AAA with the
magnetic field. The magnetic helicity is in general gauge dependent, but choos-
ing a infinite volume V one can make it independent. Normally, we are using
the magnetic helicity density h = AAA ·BBB, which is always gauge dependent. In
the following we will apply the Weyl gauge, which satisfies

∂AAA
∂ t

= uuu×BBB−µ0ηJJJ (3.26)

The evolution equation for the magnetic helicity is then given by

∂

∂ t

∫
V

AAA ·BBBdV =−2
∫

V
µ0ηJJJ ·BBBdV −

∫
V

∇∇∇ ·FFFh dV, (3.27)

where FFFh are the helicity fluxes and we have used Eqs. (3.5) and (3.26). If
we assume zero fluxes and look at the limit, when the conductivity is going to
infinity (η ⇒ 0), then the right hand side of Eq. (3.27) vanishes and magnetic
helicity is conserved. With the exception of the flux term ∇∇∇ ·FFFh, the velocity
does not enter, so magnetic helicity is not affected by turbulence diffusion. In
the convection zone and the solar corona, the conductivity is high enough to
conserve magnetic helicity to a first order, but there, also magnetic helicity
fluxes will play an important role.

3.3.1 Catastrophic quenching of the α–effect and magnetic helicity
fluxes

One might ask, why does the magnetic helicity have some relation with the
α–effect? First of all, α consist of two parts: αK and αM (Pouquet et al.,
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1976). αK describes the magnetic field amplification in the kinematic regime,
i.e. when the magnetic field is weak and does not react back on the flow. In
this stage, αM is much smaller than αK and can be neglected. For larger mag-
netic fields, αM becomes much stronger and contributes with an opposite sign
to α . We know from numerical simulations of homogeneous and isotropic tur-
bulence (see e.g. Brandenburg and Subramanian, 2005) that the magnetic field
grows first exponentially, which is consistent with linear stability analysis, and
then saturates, when the field has become sufficiently strong. Usually, ωωω ′ ·uuu′
and JJJ′ ·BBB′ have the same sign, let us assume the positive. As we see from
Eq. (3.19), αM enters with a plus sign and can balance with the negative αK, if
the field is strong enough. For helical magnetic fields, αM can be related to the
mean magnetic helicity of the fluctuating fields

αM =
1
3

τc

ρ
JJJ′ ·BBB′ ≈

k2
f

3
τc

ρ
AAA′ ·BBB′, (3.28)

where k f is the typical wavenumber of the fluctuations. Now let us look at the
evolution of the mean magnetic helicity. We first consider the mean magnetic
helicity of the total field h = AAA ·BBB, where the evolution equation is given by
taking the mean of every term of Eq. (3.27)

∂

∂ t
h =

∂

∂ t
AAA ·BBB =−2µ0ηJJJ ·BBB−∇∇∇ ·FFFh. (3.29)

The mean magnetic helicity h has two contributions: one from the mean-fields
hm = AAA ·BBB and one from the fluctuating fields h f = AAA′ ·BBB′. In their evolution
equations, an additional term appears arising from the electromotive force E =
uuu′×BBB′, see Eq. (3.17),

∂

∂ t
hm=

∂

∂ t
AAA ·BBB = 2uuu′×BBB′ ·BBB−2µ0ηJJJ ·BBB −∇∇∇ ·FFFm

h , (3.30)

∂

∂ t
h f =

∂

∂ t
AAA′ ·BBB′ =−2uuu′×BBB′ ·BBB−2µ0ηJJJ′ ·BBB′−∇∇∇ ·FFF f

h , (3.31)

where h = hm + h f and FFFh = FFF
m
h +FFF

f
h . Using Eq. (3.28) together with the

evolution of h f from Eq. (3.31), we express the evolution of the magnetic αM,
see Kleeorin and Ruzmaikin (1982) by

∂αM

∂ t
=−2ηtk2

f

(
uuu′×BBB′ ·BBB

B2
eq

+
αM

ReM

)
−∇∇∇ ·FFFαM , (3.32)

where the mean flux of αM is related to the mean helicity flux of the fluctuating
fields by

FFFαM =
ηtk2

f

B2
eq

FFF
f
h , (3.33)
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where Beq is the magnetic equipartition field strength, i.e. a magnetic field,
whose energy is equal to kinetic energy. The expression (3.32) is also called
the dynamical quenching formula and describes an important issue of the dy-
namo theory. For high magnetic Reynolds numbers ReM, the α-effect is catas-
trophically quenched (see e.g. Vainshtein and Cattaneo, 1992; Cattaneo and
Hughes, 1996; Brandenburg and Dobler, 2001). This can be seen by setting
the left-hand side of Eq. (3.32) to zero and using αM = α−αK

α =
αK +ReM

(
ηtJJJ ·BBB− 1

2 ∇∇∇ ·FFF f
h

)
/B2

eq

1+ReMBBB
2
/B2

eq

(3.34)

For high magnetic Reynolds numbers and vanishing flux, the second term bal-
ances with αK to a zero α . However, it is important that the mean magnetic
helicity flux also enters into this equation. If FFF f

h is negative and large enough
it can suppress the quenching (Blackman and Field, 2000). It has been seen
in several numerical simulations of dynamos (Brandenburg and Subramanian,
2005; Mitra et al., 2011; Del Sordo et al., 2013) that if one allows for mag-
netic helicity fluxes, the catastrophic quenching is suppressed. The behavior is
one of the motivations for using a combined model of a convection zone and
a corona as in Papers I to V. An open boundary of a dynamo domain allows
magnetic helicity fluxes to escape and alleviates the catastrophic quenching at
high Reynolds numbers.
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4. Solar Dynamo Models

Die Zukunft wird nicht gemeistert von denen,
die am Vergangenen kleben.

Willy Brandt

In this chapter I will briefly discuss a few of the most important models for
the solar dynamo. More detailed discussions of solar dynamo models can
be found in reviews by Ossendrijver (2003), Brandenburg and Subramanian
(2005), Charbonneau (2010), and Brandenburg et al. (2012) as well as in Stix
(2002) and in Charbonneau (2013).

4.1 The challenge

Modeling the solar dynamo is challenging. Not only does there exist a large
range of scales, over which a solar dynamo mechanism should operate, there is
also a large amount of observed features which a solar dynamo model should
reproduce. Let us start with the scales set by the solar environment. The den-
sity scale height varies from about tenths of Mm deep in convection zone to
150 km at the surface. The temperature spans from the bottom to the sur-
face the range from two million Kelvin to six thousand Kelvin. The fluid and
magnetic Reynolds numbers inside the Sun are high enough to allow for hy-
dromagnetic turbulence (Frisch, 1995). Even developing a hydrodynamical
model without any magnetic fields would be challenging as such, see § 2.2.
But solving the MHD equations with realistic parameters and resolving the
small as well as the large scales in one simulation is at the moment impossible;
or more precisely, the computing power is not sufficient to simulate a realistic
model even if we run it as long as the age of the universe. Even if we assume
the doubling of computing power every two years (Moore’s law), it would take
over 100 years to have computer powerful enough to solve the solar dynamo
realistically.

We have constraints from observations of magnetic fields on the surface
and in the solar atmosphere, but unfortunately no information about the mag-
netic field inside the convection zone. The main properties, a solar dynamo
should reproduce, can be divided into global and local phenomena. The global
are: an eleven years activity cycle as a result of a 22 years magnetic cycle,
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where every eleven years the field reverses; equatorward migration of radial
and azimuthal magnetic fields being antisymmetric with respect to the equa-
tor, as well as a polar migration near the poles, as shown in Fig. 1.6. Addi-
tionally, global phenomena include a cyclic behavior with secondary cycles
as the Gleissberg cycle and grand minima as the Maunder Minimum. As local
phenomena, a solar dynamo model should reproduce flux concentrations in the
range from sunspots and their groups to pores and plage fields. The magnetic
orientation of the sunspots should be such that the leading and the following
spots have the same polarity configuration in one hemisphere, but the opposite
one in the other hemisphere. This configuration should remain for eleven years
and reverse once every cycle (Hale’s law). Further there should be a certain tilt
angle of the line between two spots of a pair and the horizontal (Joy’s law). We
can also include magnetic field configurations, which allow flares and coronal
mass ejections to occur. Additionally, there are the ingredients, introduced
in the previous Chapters, in particular the effects of turbulent convection (see
§ 2) causing the solar differential rotation with the tachocline and the NSSL
(see § 1.1).

There are different approaches to deal with the constraints mentioned above.
Most of the approaches simplify the physical properties of their systems. There
are the mean-field models, where the small-scale turbulent quantities are ex-
pressed and parametrized by mean quantities, see § 4.2 and Krause and Rädler
(1980). These models are often utilized in two dimensional simulations. A
subclass of these models are the kinematic models, where the backreaction of
the magnetic field on the flow is neglected or just included in a rudimentary
form. One example are the Babcock–Leighton dynamo models, see § 4.2.1. In
contrast to the mean-field models are the direct numerical simulations (DNS)
of solar dynamos, see § 4.3. There the fluid and magnetic Reynolds numbers
are chosen above the limit of numerical diffusion and stability of the numeri-
cal setup. These values are orders of magnitude smaller than the realistic solar
ones. Here, two additional simplifications are used. Instead of simulating the
full spherical shell of the solar convection zone, often Cartesian boxes are used
to simulate a region of interest as a part of the convection zone, see § 4.3.1.
Also instead of self-consistent convective motion, random forcing is applied
to generate turbulent motions. Groups doing local as well as global simula-
tions (§ 4.3.2) use approximations for the fluid dynamics as incompressible or
anelastic flows.

4.2 Mean-field models

In the mean-field models, we use the mean-field equations for the velocity
field, the magnetic field and the density, see Eqs. (2.21) and (3.16) and Krause
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and Rädler (1980). Additionally the mean energy equation is solved using
expressions for the convective flux similar to Eq. (2.27) or Eq. (2.30). The
main difficulty of these models is to find good values and profiles for turbulent
viscosity νt , turbulent diffusivity ηt as well as for α and Λ (see § 2.4). For this
we can use mixing length theory, see § 2.2.3, or they can be determined from
direct numerical simulations by using a technique like the test-field method
(Schrinner et al., 2007).

One issue for mean-field models is the implementation of the magnetic
backreaction on the flow. In many models the Lorentz force in the momen-
tum equation is either ignored (kinematic) or the time evolution of the fluid is
not even solved and instead the flow field prescribed and used in the mean
induction equation (see e.g. Dikpati and Charbonneau, 1999; Ossendrijver,
2003). Other models use algebraic quenching formulae for α , as in Käpylä
et al. (2006b)

α =
α0

1+BBB
2
/B2

eq

, (4.1)

which is the same as neglecting the mean helicity flux and the mean current
density (∇∇∇ ·FFF f

h = JJJ = 0) in Eq. (3.34), or solve an explicit evolution equation
for α as Eq. (3.32). In general, models where the meridional circulation is
able to transport the flux and is dominant over the turbulent diffusion are of-
ten called flux-transport dynamo models, when the toroidal magnetic field is
produced at the bottom of the convection zone and leads to equatorward migra-
tion of mean magnetic field at the surface (see e.g. Dikpati and Charbonneau,
1999). Most of the models solve the equations of the α-Ω-dynamo model,
where the differential rotation obtained by helioseismology enters as an in-
put parameter. Mean-field models were able to reproduce successfully many
observed features, as in Rüdiger and Brandenburg (1995), Dikpati and Char-
bonneau (1999), Ossendrijver (2003), Käpylä et al. (2006b), and Kitchatinov
and Olemskoy (2012).

Transition between the differential rotation in the convection zone to the
rigid rotation in the core leads to a region of strong shear below the convec-
tion zone, the tachocline (Spiegel and Weiss, 1980). Strong shear results in a
strong Ω-effect and can amplify the toroidal field to large values. However,
how large these values are, is debated (Brandenburg, 2005). But, because of
the quenching of α in dependence on the equipartition field strength Beq, see
Eq. (4.1), having the α-effect localized in the same region is difficult. Parker
(1993) proposed an interface dynamo, where α is strong above the tachocline
to avoid the strong quenching effects, see for example the approaches by Mac-
Gregor and Charbonneau (1997). In other approaches, like those of Rüdiger
and Brandenburg (1995) and Käpylä et al. (2006b), α was calculated more
sophisticatedly. As an example we show in Fig. 4.1 a butterfly diagram from
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Figure 4.1: Butterfly diagram of mean azimuthal magnetic field Bphi plotted
over resistive time t/τ and latitude θ near the surface of the convection zone
r = 0.99R� for a mean-field α-Ω dynamo model (from Käpylä et al., 2006b).

Käpylä et al. (2006b), where a meridional circulation of um = 10m s−1 is used.
Additionally the authors include the effect of the NSSL (Brandenburg, 2005)
as well as turbulent pumping (see e.g. Ossendrijver et al., 2002; Käpylä et al.,
2006a), where anisotropies in the α-tensor lead to advection of mean mag-
netic fields. The new approach of this work was that the transport coefficients
were obtained from local three dimensional calculations of convection. As
seen from Fig. 4.1, the mean-magnetic field migrates equatorwards at lower
latitudes and polewards near the poles. Additionally the field is antisymmetric
over the equator. This is precisely the behavior of the solar magnetic field. In
these models, the mean-fields are defined by averaging in azimuthal direction
and therefore are not capable of resolving the small-scales or describing flux
concentrations as observed in sunspots. Describing these phenomena needs an
additional model for forming flux concentrations, for which there have been
different proposals (see e.g. Kitchatinov and Mazur, 2000; Brandenburg et al.,
2011a; Stein and Nordlund, 2012).

4.2.1 Babcock–Leighton dynamo models

A different approach is to include the process of sunspot formation and their
decay into a solar dynamo model. It is broadly believed that sunspots are
formed by strong magnetic flux tubes emerging from the tachocline to the so-
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Figure 4.2: Left panel: A schematic sketch of an emerging magnetic flux tube.
Due to magnetic buoyancy the flux tube rises from the bottom of the convec-
tion zone to the solar atmosphere. When it breaches through the photosphere
it forms features like sunspots (After Parker, 1955, and Caligari et al., 1995).
Right panel: Operation of a solar cycle model based on the Babcock–Leighton
mechanism. The diagram is drawn in a meridional quadrant of the Sun, with
streamlines of meridional circulation plotted in blue. Poloidal field having accu-
mulated in the surface polar regions (A) at cycle n must first be advected down
to the core–envelope interface (dotted line) before the production of the toroidal
field for cycle n+ 1 can take place (B⇒C). Buoyant rise of flux ropes to the
surface (C⇒D) is a process taking place on a much shorter timescale. From
Charbonneau (2010).

lar surface and breaching as bipolar regions through the photosphere (see e.g.
Ossendrijver, 2003; Charbonneau, 2010). I will first introduce the mechanism
before discussing its results and criticism at the end of this section. It is known
that strong shear in the tachocline can produce strong magnetic fields. If these
fields get concentrated into flux tubes, they might rise due to the magnetic
buoyancy effect, see § 3.1.3 for the description of the effect and an illustration
in the left panel of Fig. 4.2. During its rise the tube might form a loop with
an Ω shape, where the two legs breach through the solar surface and form the
typical pattern of a bipolar region. This idea was already proposed by Parker
(1955) and demonstrated in numerical models by Caligari et al. (1995). Nu-
merical simulations of near surface loop emergence by Cheung et al. (2008)
were able to reproduce observed features of sunspot emergence.

Babcock (1961) and Leighton (1964) introduced a new mechanism, which
can be used for solar dynamo models. As described in § 1.4, sunspot pairs have
a leading and a following spot (in respect with rotation) with opposite polar-
ity. On average the leading spot emerges at lower latitudes than the following
spot (Joy’s law). Because of the differential rotation the spots will lose their
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cohesiveness. Eventually the leading spot will decay by coalescing with an-
other sunspot of opposite sign from the other hemisphere. The following spot
will be advected by meridional circulation toward the poles, where it forms
together with other decaying sunspots a polar field of the sign of the former
following sunspot. Flux tubes rising to the surface will be deflected by the
Coriolis force resulting in twisted tubes and the tilt angle of the sunspot pairs
following Joy’s law. This effect is actually an α-effect operating on larger
scales as the turbulence, but in comparison to the large-scale magnetic field
of Sun, these scales are still small. Therefore, the Babcock–Leighton effect
is nothing else than a local α-effect represented in Eq. (3.16) operating on
larger scales than the turbulence and being confined to the near surface region.
For the Babcock–Leighton mechanism, we need a meridional circulation and
a differential rotation as a input for the flow. This is a kinematic flux-transport
dynamo model, where the magnetic backreaction on the flow is completely ne-
glected. Because the problem is axisymmetric and one hemisphere is indepen-
dent of the other, it can be calculated as a two dimensional model with toroidal
and poloidal fields in one hemisphere. The two amplification mechanisms (Ω
and Babcock–Leighton) are separated in location and are only connected by
the meridional circulation. In the right panel of Fig. 4.2, the scheme of the
Babcock–Leighton-Model is shown. Starting at point A, the poloidal mag-
netic field of cycle n is transported by the meridional circulation downwards
to the tachocline (A⇒B). There the field is transformed into a strong toroidal
field due to the differential rotation and is transported towards the equator by
the meridional circulation (B⇒C). The strong toroidal field rises to the surface
due to magnetic buoyancy and generates sunspots of cycle n+1 (C⇒D). Then
the sunspots decay and form a new reverse polar field (D⇒A).

The success of these models emerges from the good agreement with ob-
servations. With Babcock–Leighton models many observed features can be
reproduced (see e.g. Dikpati and Charbonneau, 1999, Charbonneau, 2010, and
reference therein), including grand minima in the solar cycle (see e.g. Karak,
2010). But this model is also strongly criticized, because of its simplifications
(see e.g. Brandenburg, 2005). First of all, the formation of sunspots via emerg-
ing flux tubes is not well verified. If a flux tube emerges via magnetic buoy-
ancy, also its volume expands and the magnetic field decreases. Therefore the
generated magnetic field at the tachocline has to be large (100 kilo-gauss, see
Choudhuri and Gilman, 1987), maybe too large to be generated by a dynamo
mechanism (see e.g. Guerrero and Käpylä, 2011). Whether a flux tube survives
the journey to the surface through violent turbulent convection depends cru-
cially on the amount of magnetic twist in the tube (see e.g. Fang et al., 2010).
The advection of the following spot of a sunspot pair to the poles implies that
the spots in the pair loose their cohesiveness. These are strong simplifications,
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which are in contradiction with the effects of magnetic tension and pressure
within the spots as well as the anchoring of the spots in the underlying az-
imuthal magnet field. One of the important assumptions of these models is the
one-cell meridional circulation and Joy’s law. The one-cell meridional circu-
lation have been recently questioned by improved observations by Hathaway
(2011) and simulations by Miesch et al. (2012). As one might think, Joy’s
law is an observationally determined law. But the tilde angle between the line
between the two sunspots in a pair and the horizontal line is not always the
same. It turn out, that detailed measurements show a large scatter range of the
angle, which can be even negative at some occasions (Kosovichev and Stenflo,
2008; Stenflo and Kosovichev, 2012). Therefore, the generality of Joy’s law
is not always given. In all, the Babcock–Leighton dynamo model suffers from
a strong lack of verifiable physical properties of the solar environment. With
the use of fine-tuned parameters, this model is capable of modeling a lot of
observed features without providing understanding of their real origin.

4.3 Direct numerical simulations

Instead of simplifying or parameterizing the MHD equations, one can also
solve directly by using viscosities and diffusivities far above the solar values.
The advantage of these models is that effects like turbulent heat transport or the
α-effect, which arise from magnetohydrodynamical turbulence, do not have to
be included artificially. The results of these simulations are in general more re-
liable than mean-field models, because no fine tuning of turbulent coefficients
is possible. On the other hand analyzing and describing their results in terms
of physical quantities might be more difficult.

4.3.1 Local simulations

Solar dynamo simulations of a small region of the Sun are used to study local
phenomena or general properties of dynamos. Simulating only a part of the
convection zone allows us to reach higher fluid and magnetic Reynolds num-
bers. In simulations of turbulent dynamo models it is common to use random
forcing in the momentum equation to mimic turbulent convective motions,
without actually solving the energy equation. In the work by e.g. Pouquet et al.
(1976), Käpylä et al. (2006a) and Hubbard et al. (2009), local direct numerical
simulation with forced turbulence are used to estimate transport coefficients as
α , where the test field method (Schrinner et al., 2007) may be employed in
determining the transport coefficients. For details I refer to Brandenburg et al.
(2010) and references therein.
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Figure 4.3: Large-scale magnetic field from a simulation of turbulent convection
with shear in a Cartesian box. In the left panel the early phase is shown, where
the magnetic field is weak and has the same as the convection or smaller one. In
the right panel the saturated state is shown. The magnetic field is more than two
times larger than Beq. The sides of the box show the periphery of the domain
whereas the top and bottom slices show By at bottom and the top of the domain,
respectively (taken from Käpylä et al., 2008).

Local convective simulations generating the turbulent motions self-consist-
ently started with Meneguzzi and Pouquet (1989) and Nordlund et al. (1992),
who showed that the turbulent pumping effects lead to a downdraft of mag-
netic fields. Later as shown by Käpylä et al. (2008), it was possible to generate
for the first time large-scale magnetic fields generated by turbulent convection
using shear. Recently, local simulations have been used to estimate the possi-
bility of creating flux tubes with convection and shear (Guerrero and Käpylä,
2011). But the maximum magnetic field strength obtained by their simulations
is ∼ 6 Beq. Some of the flux tubes are even able to rise up to the surface, but
they always lose their initial coherence.

Assuming that the Babcock–Leighton mechanism is the right one to de-
scribe the large-scale fields and the sunspot emergence, the question remains,
where the magnetic field of smaller or intermediate strength come from. One
proposed mechanism is a small-scale dynamo operating in the surface layer
of the Sun, driven by the small-scale turbulent motion of the granulation.
These ideas are investigated in local dynamo simulations (see e.g. Cattaneo,
1999; Vögler and Schüssler, 2007). It is possible to excite a small-scale dy-
namo just by the turbulent motions without any rotation and shear, for de-
tails see the review by Stein (2012). Concerns, the magnetic Prandtl number
(PrM = ReM/Re) is with PrM � 1 too small for a small-scale dynamo to op-
erate, was resolved by Brandenburg (2011). In Paper I we also use a local
model of a solar dynamo driven by random forcing. In the following papers,
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we expand the domain to global simulations.

4.3.2 Global simulations

Global simulations of solar dynamos are in most cases still utilizing a model
describing only a part of the Sun. Describing the physics of the convection
zone is sufficient. In some cases, polar regions are omitted to avoid the coor-
dinate singularity at the axis, so instead of the whole sphere just a spherical
wedge is used (see e.g. Käpylä et al., 2010; Mitra et al., 2010b, and Papers
II–VI). In other models the whole convective spherical shell was modeled by
using the anelastic approximation ∇∇∇ · (ρuuu) = 0, thus filtering out sound waves
(see e.g. Brun et al., 2004).

The first global numerical simulations of solar dynamo models by Gilman
and Miller (1981), Gilman (1983) and Glatzmaier (1985) were already able to
produce remarkable results. The mean magnetic field showed an oscillating
behavior, but it migrated polewards. Due to larger computing power in the
last 30 years, more realistic global simulations were possible. Even though
their luminosity and rotation rate are similar to those in the Sun, their fluid
and magnetic Reynolds numbers are still several orders of magnitude lower
than the solar ones. One way of dealing with this issue is to use large-eddy
simulations (LES), where small-scale turbulence effect are added to the di-
rect numerical simulations. These models were used to simulate successfully
large-scale magnetic fields generated self-consistently by convection in spher-
ical shells (see e.g. Brun et al., 2004; Brown et al., 2008). For rotation rates
larger than solar, large-scale active so-called wreaths of non-oscillatory mag-
netic field were found (Brown et al., 2010). The azimuthal field concentrated
at lower latitudes and is organized in loosely bundled flux tubes. More re-
cently, using these models, also oscillating large-scale magnetic fields were
found (Brown et al., 2011; Nelson et al., 2013, and references therein), but
these oscillating patterns are far from solar-like regular patterns. The azimuthal
magnetic field consist of strong wreath, which change their polarity irregularly
and with no significant correlation in the two hemispheres. These wreaths mi-
grate from time to time polewards but never equatorwards. For solar rotation
rates, Brun et al. (2004) failed to produce large-scale magnetic fields. Using
grid methods instead of spherical harmonics, Ghizaru et al. (2010) and Racine
et al. (2011) were able to produce oscillatory large scale magnetic fields, but
without any clear migration.

Approaches, where instead of a full sphere a spherical wedge is used, have
been successful in generating large-scale migrating magnetic fields. With ran-
dom forcing of helical transversal waves, Mitra et al. (2010b) could produce an
oscillatory magnetic field with equatorward migration. In this case the migra-
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Figure 4.4: Butterfly diagram for the mean azimuthal magnetic field Bφ near
the surface of the convection r = 0.98R� as a function of latitude 90◦− θ for
Co = 7.6. The white dotted line denotes 90◦−θ = 0 (taken from Käpylä et al.,
2012, and Paper VI).

tion can be explained by a sign change of α across the equator. In this model
no rotation is applied, but the sign of the kinetic helicity are reversed across
the equator, which mimics the effect of the solar rotation. The same effect
has been seen in the model of Paper II. Simulations of self-consistent convec-
tive dynamos in spherical wedges were at first unable to reproduce oscillatory
magnetic fields (see e.g. Käpylä et al., 2010, and Paper IV). But recently, with
the implementation of an LES approach for the turbulent heat conductivity χt
(Käpylä et al., 2011b) and a black body boundary condition for the tempera-
ture, Käpylä et al. (2012) were able to produce an equatorward migration of
the large-scale magnetic field. In Fig. 4.4 the butterfly diagram of the mean
azimuthal magnetic field is shown. There exists a clear equatorward migra-
tion of the field between latitudes of 40◦ and 60◦, which has a cycle period
of 33 years, clearly longer than the solar magnetic cycle. Near the pole, there
exists a poleward migrating branch, which is similar to the observed pattern
as seen in Fig. 1.6. Paper VI is a follow-up work of Käpylä et al. (2012),
where we investigate mainly how the density stratification influences the equa-
torward migration of the mean field as shown in Fig. 4.4. The magnetic field
is again generated by self-consistent convection in a rotating spherical wedge.
The mean azimuthal magnetic field shows poleward migration for all runs in
the beginning of the simulations, when the magnetic field is weak. For high
enough stratification (density contrast above 25) this pattern is overcome by
equatorward migration. For a slight increase of magnetic and fluid Reynolds
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number the pattern does not change significantly. As in Käpylä et al. (2012),
the Coriolis numbers in these runs are around slightly higher than that in the
Sun. At the moment the work of Käpylä et al. (2012) and its followup work
of Paper VI are the state of the art of equatorward migration of self-consistent
convective dynamos. In Paper V we find a similar pattern, but the higher lati-
tudes show strong equatorward migrations instead of poleward. Unfortunately
the mechanism for the equatorward migration behavior is still unclear and need
more investigation. In § 6, I will discuss the difference in the setup as well as
the results in more detail.

An important result of the global convection simulations is that the mag-
netic field is distributed over the whole convection zone. Although Nelson
et al. (2013) detect even flux tubes, there are no clear signs of their formation
in the tachocline, from where they should rise and contribute to the solar cy-
cle. In this sense, the direct numerical simulations of the global solar dynamo
support the distributed dynamo model of Brandenburg (2005).

Let me also make a note about the differential rotation in solar dynamo
models. The differential rotation in direct numerical simulations is normally
not an input quantity as in the mean-field and flux-transport models: it emerges
instead from the simulations. Kitchatinov and Rüdiger (2005), Miesch et al.
(2006) and Brun et al. (2011) use only hydrodynamical models to be able
to reproduce solar-like differential rotation. This can be misleading, because
Maxwell stresses as well as suppression of turbulent heat fluxes due to mag-
netic fields (e.g. Käpylä et al., 2004) can influence the differential rotation.
Solar dynamo models were able to generate an equator rotating faster than
the poles for higher than solar rotation rates (e.g. Nelson et al., 2013, and
Paper VI), but spoke-like rotation contours as in Fig. 1.2 or in mean-field hy-
drodynamical models by Brandenburg et al. (1992) and Kitchatinov and Rüdi-
ger (2005) have only been achieved in hydro-LES by imposing a latitudinal
entropy gradient at the bottom of the convection zone (Miesch et al., 2006) or
with a stably stratified layer below the convection zone, which mimic the radia-
tive interior (Brun et al., 2011). The only MHD DNS models of self-consistent
convection reproducing spoke-like rotation are those with a coronal envelope
of Paper V. I will present and discuss its results in § 6 in more detail.

47



48



5. Models of Solar Eruptions

Explosions are not comfortable.

Yevgeny Zamyatin

In this chapter, I want to give a short overview about the different models of
solar eruptions. First I present some observational constrains of solar erup-
tions and then the models of these eruptions. More detailed information can
be found in the reviews by Chen (2011) and by Shibata and Magara (2011),
whereas observations of coronal mass ejections (CMEs) are summarized by
Webb and Howard (2012). Solar eruptions can be categorizes into two main
groups of phenomena. One are the solar flares, which are impulsive emis-
sions of radiation accompanied by a sudden increase of brightness and particle
showers. The other one are coronal mass ejections (CMEs), where plasma of
the corona gets ejected out into the interplanetary space. Often and in partic-
ular for strong events, these two phenomena are connected (see e.g. Harrison,
1995). The energy released in such events have been stored before inside the
magnetic field.

5.1 Observational constrains

On the first day of September 1859, Carrington (1859) and Hodgson (1859)
observed the first flare in the continuum light on the photosphere. In the left
panel of Fig. 5.1, a sketch of the sunspot region is shown, from which this flare
emerged. The flare and the associated CME led to a strong geomagnetic storm,
which is know as the Carrington event. It was the largest ever recorded solar
storm, which resulted in aurorae in the Caribbean and telegraph failures in the
US and Europe. More detailed observation of flares and CMEs are possible
since space telescopes are monitoring the Sun. Flares are hard to observe from
the ground, because either they are emitted only in this part of the spectrum,
which is absorbed by the Earth’s atmosphere, or the coronal emissions are
much weaker than the photospheric ones. After the first mission, of the NASA
space station Skylab, the Sun was monitored permanently by the SOlar and
Heliospheric Observatory (SOHO: Domingo et al., 1995) built by ESA and
NASA. With the instruments on SOHO, the photosphere, the chromosphere
and the solar corona can be observed simultaneously 24 hours a day. Addi-
tionally there were two white light coronagraphs (LASCO) on board, which
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Figure 5.1: Left panel: Sketch from the first observed and noted sunspot for-
mation, which lead to a solar flare. The British astronomer Richard Carrington
had done this drawing of the Sun at the 1st of September 1859, after he had ob-
served a solar flare for the first time. The white regions among the black and gray
sunspots represent the Doppler ribbons (A and B) of the white flare which emerge
suddenly amid the sunspots (Carrington, 1859). Right panel: Solar prominence
observed with EIT on SOHO in the He II/Si XI 304 Å line band. Image courtesy
of NASA/ESA.

are able to observe the shapes of CMEs as shown in Fig. 5.2. Nowadays, the
Dynamic Solar Observatory (SDO: Pesnell et al., 2012) gives us remarkable
pictures and data of solar flares and coronal mass ejections. With the twin
spacecrafts Solar TErrestrial RElations Observatory (STEREO: Kaiser et al.,
2008) CMEs can be observed three-dimensionally, which gives important in-
sights of the structure and evolution of CMEs.

Flares have a power law energy distribution, which range from weak nanoflares,
releasing energies of about 1019 J, to white flares, releasing energies of about
1024 J. Nanoflares are believed to contribute to the heating process in the so-
lar corona (e.g. Bingert and Peter, 2011, 2013). White flares are strong flares
and can cause major impacts on the Earth. Because of the observation of even
stronger flares on other solar-type stars, Maehara et al. (2012) suggested that
superflares, which are hundred times more powerful than white light flares, are
also able to occur on the Sun. Typically the flare is first visible as two ribbons
in Hα emitted from the chromosphere, as see in left panel of Fig. 5.1. Later,
strong X-ray and UV emissions follow from X-loops in the corona.

Coronal mass ejections (CMEs) can be divided into two main categories.
There are jet-like ejections, the narrow CMEs and there are the cone-like ejec-
tions, the normal CMEs. In the following I will focus on the normal type of
CMEs. Normal CMEs are basically prominences, which are ejected into the
interplanetary space (House et al., 1981). In the right panel of Fig. 5.1, an ex-
ample of a prominence observed with EIT on SOHO, is shown. Hot plasma can
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Figure 5.2: This SOHO LASCO C1 image shows a very large coronal mass
ejection (CME) blasting off into space on 27 February 2000. It presents the
standard shape of a CME: a large bulbous front with a second, more compact,
inner core of hot plasma. This material erupts away from the Sun at speeds of
one to two million kilometers per hour. Image credit ESA and NASA.

only flow along the magnetic field lines for example of a coronal loop and can
be trapped there. If field lines reconnect underneath this prominence and re-
lease sufficient magnetic energy to push the prominence out, a CME happens.
The hot and dense prominence will show up as a bright bubble in projected
white light image, as in Fig. 5.2. In front of this emerging bubble the coronal
plasma will pile up and form a bright arc. The bright bubble, the cavity in be-
tween and the bright arc form the characteristic three-part structure of CMEs
(see e.g. Illing and Hundhausen, 1985; Low, 1996). Ahead of the arc, the CME
causes shocks, which can accelerate particles to high velocities. These parti-
cles can then penetrate the Earth’s atmosphere. The plasma, which is carried
out with the CME is often called magnetic cloud (Rust, 1994). This plasma has
a typical mass of 1011 to 1013 kg (see e.g. Hudson et al., 1996) and can reach
a velocity of 1000km/s. Coronal mass ejections are believed to carry a large
amount of magnetic helicity out of the Sun, (e.g. Low, 1994, 2001; Plunkett
et al., 2000; Régnier et al., 2002; Thompson et al., 2012). Magnetic clouds can
form bipolar magnetic field, just due to their rotation and inclination (see e.g.
Li et al., 2011, where they use in-situ measurements of two satellites). More
measurements of current helicity, which can serve as a proxy for magnetic he-
licity, and magnetic twist could be important for dynamo theory. Blackman
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and Brandenburg (2003) suggested CMEs to be a major contributor to mag-
netic helicity transport out of the Sun and so to prevent catastrophic quenching
of the α-effect, see § 3.3.1.

5.2 Models and simulations

For powering CMEs and flares, one needs a large amount of energy (1025 J). In
the solar atmosphere only the magnetic field can supply this amount of energy.
As calculated in Stix (2002), a volume of 1023 m3, with a field strength of a
hundred gauss have a magnetic energy of around 4× 1024 J, which is of the
same order as the flare energies of 1025 J. The thermal and kinetic energy are
much lower, and not sufficient to store this amount of energy. As a basic step,
modeling flares and CMEs starts by modeling the storage of energy in the
magnetic field. Observations suggest strong shearing motions localized near
strong magnetic field gradients in active regions before a flare or CME erupts.
Sturrock (1980) and Antiochos et al. (1999) use shearing motions to model
magnetic storage in the corona. Also Warnecke (2009) found indications that
granulation motion is capable of twisting and shearing the magnetic field to
store sufficient energy for a flare or CME.

For studying the mechanism of eruptive events, it is often sufficient to use
two dimensional models. For example Forbes and Priest (1995) and Priest
and Forbes (2000) are able to reproduce the spread of Hα ribbons and X-
loop structures in the after-flare phase by using a two dimensional force-free
reconnection model. Simplified flux rope models can be used to generate a
current sheet and trigger the ejection of flux ropes.

In three dimensions, there are two different types of models commonly
used. The first one is the break-out model (see e.g. Antiochos et al., 1999).
There, a multi-flux system of coronal fields is used to form complex magnetic
topologies in the corona. To trigger the eruption, they use an observed photo-
spheric magnetogram and impose velocities similar to the observed ones. The
shearing motions lead to reconnection of the coronal field, which then causes
the eruption. Here, the coronal field topology is crucial for eruptions to happen,
and the storage of energy is comparable to the one needed to release CMEs.
The second type of model are the three-dimensional flux rope-models. There,
a twisted flux rope (configuration see Titov and Démoulin, 1999) is placed into
a simulation model, where to bottom represents the photosphere. Shearing the
footpoints of this rope breaks its stability and causes a rise and twist of the
rope. This have been studied intensively by Török et al. (2004) and Török and
Kliem (2005), where they were able to reproduce a rising and twisting promi-
nence similar as in observed ones on the Sun as shown in Fig. 5.3. In their
simulation they solved the ideal MHD equations, where no reconnection can

52



Figure 5.3: Comparison of observations and simulations, time is evolving from
top to bottom: Left panel: TRACE 195 Å images of the confined filament erup-
tion on 27th May 2002. Right panel: Colored magnetic field lines outlining the
core of the kink-unstable flux rope with starting points lie in the bottom plane.
The magnetogram of the vertical magnetic field is shown color coded at the bot-
tom of the box (taken from Török and Kliem, 2005).

happen, this prohibited the flux rope from ejecting. A slightly different ap-
proach has been conducted by Fan and Gibson (2004, 2007), where a twisted
flux rope emerges into a prescribed coronal field configuration. It becomes un-
stable and ejected depending crucial on the amount of twist. With this model
they were able to reproduce X-ray observation of intense current layers of
inverse-S-shapes on the northern hemisphere. Similar simulation have been
also performed by Roussev et al. (2003) to find suitable trigger mechanism.
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For other models using the flux emerging and shearing motions to trigger an
erupting flux rope see e.g. Amari et al. (2000). Similar flux-rope models are
used to simulate the formations of CME shocks (see e.g. Pomoell et al., 2008).
These shocks are of particular interest, because they can accelerate particles
to high speeds penetrating the Earth’s atmosphere and lead to high doses of
radiation.

At the moment, in all models of erupting events, the initial condition are
prescribed. The magnetic field at the bottom of the domain is either taken
from two-dimensional observations of the photospheric magnetic fields or set
by hand. The overall magnetic field is the extrapolated from the bottom field or
also completely set by hand as by including a flux rope configuration. Twisted
magnetic field has to be included artificially or by implying strong shearing
motions at the footpoints. Observing horizontal velocity field is only possible
with a low accuracy and low resolution, and they are not even sufficient to ac-
tually trigger the ejections (see e.g. Baumann et al., 2012). That the magnetic
field configuration and the velocity field are connected to magneto–convection
and a dynamo process below the surface, is often neglected. In § 6 I will there-
fore describe a different approach, where we combine the dynamo process
below the surface to trigger coronal ejections, see also Paper I - IV.
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6. A Combined Two-Layer
Model

Das Studium und allgemein das Streben
nach Wahrheit und Schönheit ist ein Gebiet,

auf dem wir das ganze Leben lang
Kinder bleiben dürfen.

Albert Einstein

6.1 Motivation

The main purpose of this thesis is to develop a two-layer model combining
the solar convection zone and the solar corona. There are basically two moti-
vations for the combined two-layer model. One path originates from model-
ing coronal mass ejections and flux emergence. As described in § 1.5, coronal
mass ejections and solar flares are contributing to the space weather, which has
a strong impact on the life on Earth. Despite this importance, a reliable pre-
diction of space weather events and in particular solar storms is currently not
possible. After the detection of solar eruptions on the solar surface using space
telescopes, it takes about one to five days for them to reach the Earth. This time
interval is currently the maximum advance warning time we have. Predictions
about the strength and velocity of the ejection can be only made during this
interval. There have recently been major advances in simulating and observ-
ing coronal mass ejections and solar flares, see § 5. However, the mechanism
leading to eruptions is not yet fully understood. Whether an active region is
likely to erupt, can often only be answered using statistical arguments rather
than physical understanding (see e.g. Schwenn, 2006). It is generally agreed
that the solar magnetic field not only supplies the energy source, but it also
triggers the eruptive events. On the Sun, however, the magnetic field is only
observable in the photosphere and above; information about magnetic fields in
the interior of the Sun is not accessible. This is one of the reasons, why most of
the models of solar eruptions use photospheric magnetic fields as lower bound-
ary condition, see § 5. The surface magnetic field is the only observable field,
which is useful to include in an eruptive event model. One might believe that
this is the most realistic boundary condition, but this is actually misleading. If
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twisted magnetic fields and other complex topologies are projected onto a two-
dimensional plane at the solar surface, the regaining magnetic field information
from this projection will be insufficient and possibly wrong. But these complex
topologies and twisted fields might be one of the important ingredients missing
in the eruption models. To generate twisted magnetic fields in these models,
either strong shearing motions are applied at the bottom of their domain, rep-
resenting the photosphere or twisted magnetic fields are just imposed in the
domain as initial conditions. The fact that the magnetic field structures and the
photospheric motions are coupled together in terms of magneto-convection or
dynamo action is often neglected. The combined two-layer model developed
in this thesis connects the fluid motions below the surface of the Sun with the
fluid on and above the surface directly, as well as the magnetic field below and
above the surface. In eruptive models, the twist of the magnetic field plays an
important role and can also be found in observed coronal mass ejections (see
e.g. Thompson et al., 2012). Instead of imposing twisted fields or generating
them by at least partially artificial photospheric motions, another possibility
is that these twisted fields are generated by dynamo action below the surface.
Differential rotation and convection is capable of producing helical magnetic
fields, which contain a large amount of twist. Our combined two-layer model
allows twisted magnetic fields, which have been generated below the surface,
to emerge and to contribute to CMEs.

The other motivation starts from dynamo theory. As described in §§ 3.2
and 4, magnetic helicity and magnetic helicity fluxes are important quantities
in dynamo theory and solar dynamo models. Dynamo action can be catas-
trophically quenched for high magnetic Reynolds numbers (see e.g. Branden-
burg and Subramanian, 2005, and § 3.3.1). The only loophole is via magnetic
helicity fluxes, which are capable of preventing catastrophic quenching of the
α-effect (Blackman and Field, 2000; Brandenburg et al., 2009). From this
point of view, an appropriate boundary condition for the magnetic field is cru-
cial for the performance of the dynamo. Numerical simulations have shown
that a dynamo can be more efficient with open (vertical field) boundaries than
with closed (perfect conductor) ones (Brandenburg and Sandin, 2004). In the
Sun, the convection zone has no closed boundaries at the surface. Magnetic
fields can emerge through the surface and can be eventually ejected. We know
that the Sun has a powerful dynamo operating inside the convection zone. If
the dynamo theory of quenching the α-effect (see § 3.3.1) is reliable, the Sun
has to transport large amounts of magnetic helicity out of the convection zone.
Possible candidates for the transport are the solar wind and coronal mass ejec-
tions (Blackman and Brandenburg, 2003). Coronal mass ejections are a good
candidate, because they are believed to carry magnetic helicity outwards (see
e.g. Thompson et al., 2012).
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Observations of magnetic helicity on the solar surface are difficult to per-
form. Magnetic helicity is not a gauge-invariant quantity and is therefore im-
possible to be determined unambiguously, but there are mechanisms to de-
termine the relative helicity or proxies for the magnetic helicity such as the
current helicity (Pariat et al., 2005; Thalmann et al., 2011; Valori et al., 2012).
But even the gauge invariant current helicity can only partly be observed and
measured, because the horizontal components of the current density are not
accessible.

The combined two-layer model can be used to create a realistic boundary
condition for the solar dynamo, similar to the solar photosphere. We can de-
termine if such a boundary condition supports a dynamo below the surface and
can be even more efficient than without giving the possibility of ejections of
magnetic helicity. We can investigate the interplay between the solar convec-
tion zone and the solar corona in terms of dynamo-driven ejections as well as
magnetic helicity fluxes with this model.

6.2 Model and setup

The model consists of two layers, where the lower one represents the solar
convection zone and the upper one the solar corona. In the lower layer we use
turbulent motions to amplify a weak Gaussian-distributed seed magnetic field.
There are no imposed or initial magnetic fields in the upper layer. Magnetic
fields are only able to emerge from the lower layer into the upper layer in order
to have magnetic field in the upper layer. One of the important features of the
combined two-layer model is that there are no numerical boundaries between
the two layers. The different dynamics of the two layers are controlled in the
used equations by a choosing suitable profile function multiplying terms on
the right hand side of the MHD equations, see § 3. This allows a flux of mag-
netic helicity and magnetic fields between the two layers. For the numerical
computations, we use the PENCIL CODE with sixth-order centered finite dif-
ferences in space and a third-order accurate Runge–Kutta scheme in time. For
the extension of the PENCIL CODE to spherical coordinates see Mitra et al.
(2009).

6.2.1 Step by step

The combined two-layer model is simple at the starting point and has been im-
proved step by step. In every step, we include more realistic physical features
leading to new useful insights and results. Using a step-by-step method allows
us to adjust the model, where improvements are important and needed. It also
allow us to compare the results of every step with the former ones.
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Figure 6.1: Schematic sketch of the model setup of Paper I (top), Paper II
(middle) and Papers IV and V (bottom).
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6.2.2 A forced turbulent dynamo in a Cartesian box

As a first step we use a model in a Cartesian box, see top panel of Fig. 6.1.
This model is used in Papers I and III. The lower layer, which is about one
third of the total domain, mimics the convection zone and the upper layer rep-
resents the solar corona. In the lower layer, we impose a forcing function in
the momentum equation which injects random helical transverse waves in the
domain. Profile functions arrange for a smooth transition from the forced mo-
mentum equation in the lower layer to a non-forced one in the upper layer.
The forcing is used to mimic convective turbulent motions and its helical part
represents the influence of rotation and stratification on these motions. We
neglect gravity and solve the continuity equation only in the lower layer sup-
porting the turbulent motions. We omit the energy equation and apply instead
a constant temperature in the whole domain. This leads to so-called force-
free model in the coronal layer, which has been used to model properties of
the solar corona as well as plasmoid ejections, which fits well with observa-
tions of coronal fields (see e.g. Mikic et al., 1988; Ortolani and Schnack, 1993;
Warnecke, 2009). It implies that processes like magnetic buoyancy are not
captured. The boundary conditions are periodic in the x and y directions. In
the z direction, we use a stress-free boundary condition for the velocity field.
For the magnetic field we employ a perfect conductor at the bottom boundary
and a vertical field condition (Bx = By = 0) on the upper boundary. The verti-
cal field condition is chosen, because in the solar corona the solar wind pushes
the field lines radially at a distance of around r ≈ 2 . . .2.5R� (see e.g. Levine
et al., 1982; Schrijver and De Rosa, 2003).

6.2.3 A forced turbulent dynamo in a spherical domain

As a second step, we transform the setup from Cartesian to spherical coordi-
nates. We now model a major part of the Sun, as shown in the middle panel
of Fig. 6.1 using a spherical wedge, which extends from the bottom of the
convection zone at r = 0.7R� to the upper solar corona at r = 1.6 . . .2R�.
In the latitudinal (θ ) direction we omit the poles and limit ourselves to lati-
tudes of ±0.5 radians (corresponding to ±29◦). The wedge has a 17◦ extent
in the azimuthal (φ ) direction for simplicity. This model is used in Papers II
and III. Besides the use of spherical coordinates, there are two main improve-
ments added to the model. As the first one, we include gravity, which is much
weaker than in the Sun, and solve the continuity equation in the whole domain.
This leads to a radial density stratification covering in most of the simulations,
around one or two orders of magnitude, while in the Sun, the density contrast
is around 14 orders of magnitude. Secondly, we apply a latitudinally depen-
dent forcing function. The kinetic helicity density uuu ·ωωω imposed in terms of
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the helical forcing, is largely negative in the northern hemisphere and positive
in the southern hemisphere. This mimics the different sign of the kinetic helic-
ity in both hemispheres due to solar rotation, which is omitted in this model.
As in the Cartesian model, we omit the energy equation and use a constant
temperature. The boundary conditions are periodic in the φ -direction while in
the radial direction they are similar to those of the z-direction in the Cartesian
model. On the θ -boundaries, we employ stress-free velocity and perfect con-
ductor boundary conditions for the magnetic field. We prevent a flux of mass at
the outer radial boundary of the full domain, because an open boundary allows
a Parker wind to develop. A Parker wind for this low gravitation is too strong
and would push all the magnetic field out of the domain in a short time.

6.2.4 A convective dynamo in a spherical domain

As a third step we use self-consistent convection to generate a large-scale mag-
netic field. This model is used in Paper IV, where we combine a setup used
by Käpylä et al. (2010, 2011b) for the convection zone with the isothermal
coronal model of Paper II. We extend the domain to latitudes of ±1.3 radi-
ans (corresponding to ±75◦) and to longitudes of π/2 radians (90◦), see lower
panel of Fig. 6.1. As one of the improvements, we solve the energy equation
in terms of the entropy, see Eq. (3.9) and use a cooling function to keep the
temperature at the surface of the convection zone and in the corona constant.
We impose a with radius decreasing profile for the heat conductivity and an
initial temperature profile of a polytropic atmosphere with an index of m = 1
to generate an convectively unstable stratification in the convection zone. Ad-
ditionally, we switch to a rotating frame, by adding the Coriolis force in the
momentum equation, but we neglect the centrifugal force (see discussion in
Dobler et al., 2006). This leads to the generation of differential rotation and
helical motions inside the convection zone. The density contrast is now around
four in the convection zone and forty in the whole domain, i.e. higher than in
Paper II, but still not much closer to the solar density stratification. Due to
the low density in the corona, the Coriolis force is there unrealistically strong
compared to the Lorentz force1. This leads to strong velocity gradients and
possible artefacts such as the magneto-rotational instability. That is why we
employ a damping term in the momentum equation to reduce the mean ve-
locities in the corona, see details in Section 2.2 of Paper IV, but actually the
damping violates Galilean invariance. The boundary conditions are very simi-
lar to those of the model of Paper II. However, for the temperature, we use a
constant heat flux at the bottom and constant temperature at the top boundary.

1In Eq. (2.12), the Coriolis force would enter on the rhs as −ΩΩΩ0×uuu, the Lorentz
force as 1

ρ
JJJ×BBB.
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Figure 6.2: Mean radial profiles of stratification for one representing run of Pa-
per V in the equilibrated state. The normalized density ρ/ρ0 (dashed lines), pres-
sure p/p0 (dash-triple-dotted), and temperature T/T0 (solid) are plotted together
with the specific entropy s/cP (dash-dotted) over the radius. The inset shows the
same profiles in logarithmic representation to emphasize the steep decrease of
the pressure and density in the lower coronal layer. The index 0 represents the
value at the bottom of the convection zone.

At the latitudinal boundaries the entropy and the density have zero gradients
to avoid heat fluxes in and out of the domain.

6.2.5 A convective dynamo in a spherical domain with a hot corona

In a forth step, performed in Paper V, we improve our model in two as-
pects. We use a more advanced convection zone model similar to Käpylä et al.
(2011a, 2012) (also employed in Paper VI), where the decrease of the heat
conductivity with radius is stronger in the convection zone and a turbulent heat
conductivity χt is introduced. The latter resembles the unresolved convective
heat flux, see § 2.2.4 and is in this sense an LES feature. This leads to a much
higher convective flux than in Paper IV. The energy equation then reads (com-
pare with Eq. (3.9) and Equation (4) in Paper V)

T
Ds
Dt

=
1
ρ

∇∇∇ · (K∇∇∇T +χtρT ∇∇∇s)+2νSSS2 +
µ0η

ρ
JJJ2−Γcool(r). (6.1)

There, Γcool(r) is a radially dependent cooling function, which is also improved
compared with the one in Paper IV. We impose a cooling profile which causes
a higher temperature in the corona than at the bottom of the convection zone.
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In Fig. 6.2, an overview of the mean radial profiles of density, pressure and
temperature is plotted for the model used in Paper V. Using this type of tem-
perature profile allow us to achieve much higher density contrasts than in the
models of Papers II and IV. The density contrast in the convection zone is
now around fifteen, whereas in the whole domain it is about two thousand.
We apply the same boundary conditions as in Paper IV. It turns out that the
velocity damping used in the model of Paper IV could be better realized by
a viscosity profile than an actually damping term in the momentum equation.
The viscosity increases to an about twenty times higher value in the corona
than in the convection zone. This is sufficient to damp high velocities in the
corona, at least in the first stage, when the magnetic field is still weak. Also,
because of the stronger stratification the Coriolis forces are not that strong as
in Paper IV.

More detailed descriptions of the model setups can be found from the
model sections of Papers I, II, IV and V. To summarize, the convection zone
of our two-layer model has been evolved from a simple local isothermal layer,
where random helical forcing generated a magnetic field to a global layer with
self-consistent convection, self-generated differential rotation and a magnetic
field generated by the turbulent convective motions. Likewise, the coronal
layer develops from an isothermal, zero-gravity force-free model to a realistic
corona, where the temperature is high and the density low.

6.3 Main results of Paper I to V

In the following I present the main results of Papers I–V as well some un-
published additional results. The order follows rather the result topics than the
publishing chronology.

6.3.1 Magnetic field generation

In all papers a large-scale magnetic field is generated by turbulent motions in
the lower layer representing the convection zone. In Paper I the saturated
magnetic field is bipolar, where its alignment direction is a random choice of
the system. The vertical component of the field varies sinusoidally in one of
horizontal directions and is essentially constant in the other. The field pattern
is stationary, but can move slowly in one of the directions, see Figs. 7 and
9 of Paper I. In the model of Paper II the saturated magnetic field shows
an equatorward migration due to an α-effect, which changes sign across the
equator, similar to Mitra et al. (2010b). In Fig. 6.3, we show the equatorward
migration of the radial magnetic field at the surface of the lower layer. Two po-
larities of opposite sign are generated at the poles and move toward the equator,
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Figure 6.3: Equatorward migration, as seen in visualizations of the normalized
radial magnetic field Br/Beq at the surface (r = R�) over a horizontal extent of
∆θ = 58◦ and ∆φ = 17◦ for six different time snapshots. τ = 1/urmskf indicates
the turnover time of the turbulent motions (taken from Paper II).

where they annihilate. At the same time the polarities in each hemisphere have
changed and new magnetic fields move equatorward, see Fig. 5 in Paper II.

The model used in Paper IV shows no clear sign of equatorward migration
(Figs. 10 and 11 of Paper IV). The mean (azimuthal averaged) magnetic field
seems to be stationary and forms “wreaths” of strong fields, similar as in Brun
et al. (2004), Brown et al. (2008) and Nelson et al. (2013). The field shows no
sign of polarity change, but some changes in strength. They are in phase with
velocity changes, similar as in Paper II; the field is strong, when the velocity
is weak, and vice versa, see Fig. 5 of Paper II as well as Fig. 9 of Paper IV. In
the model used in Paper V, the magnetic field is clearly oscillatory and shows
indications of equatorward migration of the mean magnetic field. In Fig. 6.4,
the butterfly diagram of the mean radial field is shown close to the surface of
the convection zone (r = 0.97R�). During the first hundred turnover times
the magnetic field is weak and a poleward migration is visible. But at later
times the equatorward migration is strong and penetrates again down to the
equator. After around t/τ = 1500 the dynamo seems to change its mode and
the equatorward migration vanishes or becomes less clear, but at t/τ = 2300
it reoccurs and penetrates to the equator. The magnetic cycle period is around
t/τ = 150 turn over times. Assuming a typical turnover time for convective
motion in bulk of the solar convection zone of a month, this cycle would cor-
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Figure 6.4: Time evolution of the mean radial magnetic field Br in the convection
zone at r = 0.97R�. The dashed horizontal lines show the location of the equator
at θ = π/2. The magnetic field is normalized by its equipartition value Beq.
Overbars indicate azimuthal averages (taken from Paper V).

respond to around 12 years, which is very close to the 22 years of the solar
magnetic cycle. Besides the work by Käpylä et al. (2012) and Papers V and
VI, equatorward migration was not previously reproduced in direct numeri-
cal simulations, see § 4. Brown et al. (2011) and Nelson et al. (2013) were
able to produce an oscillatory magnetic field with highly irregular cycles and
poleward migration. In the work by Racine et al. (2011), the authors found
regular oscillatory mean magnetic fields, but no clear equatorward migration.
One reason for the success of Käpylä et al. (2012) might be the use of a new
developed thermal boundary condition at the surface of the convection zone
following a black-body boundary condition, which lets the temperature vary
in time and space. This not only allows us to measure the irradiance variation
due to the magnetic cycle as done in Paper VI, it is less restrictive than forc-
ing the temperature or the entropy gradient to be a constant at the boundary as
e.g. in Brun et al. (2004, 2011) and Miesch et al. (2006). In the model of Pa-
per V, the coronal layer serves as an even less restrictive boundary condition.
The cause of the equatorward migration can be only clearly revealed, if one
determines the transport coefficients. Racine et al. (2011) used a rudimentary
way to calculate the α-tensor while neglecting the turbulent diffusivity tensor,
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Figure 6.5: Dependence of magnetic field energy normalized by the equiparti-
tion value B2

rms/B2
eq with coronal radial extent RC and magnetic Reynolds number

ReM. The solid black line indicates the dynamo region without any corona, the
other colors have coronal radial extents of 1.1R�, 1.2R�, 1.5R�, 2.0R�, 2.5R�,
and 3.0R�. The blue line represents simulations with a perfect conductor bound-
ary condition at top boundary in radial direction (r = RC) (taken from Warnecke
et al. 2013b, in preparation).

which limits their results fundamentally. A more accurate and reliable way to
determine the transport coefficients including the turbulent diffusivity tensor
is the test-field method, developed by Schrinner et al. (2007), which is at the
moment not implemented in spherical coordinates.

The magnetic field pattern in Fig. 12 of Paper V (compare also with the
other panels of Fig. 12 and 13 of Paper V) is different from that in Fig. 1.6
of the Sun and Fig. 4.4 of Käpylä et al. (2012) and Paper VI. In Paper V
the equatorward migration exists to high latitudes and is there also more stable
than at lower latitudes. In the Sun and in the work by Käpylä et al. (2012)
as well as in Paper VI, there exists a polar branch, where the field migrates
towards the while, and the equatorward migration is stronger at low latitudes.
However, the parameters in both of the simulations show also some difference.
For example, the runs of Paper VI, which produce equatorward migration
have a stronger stratification, i.e. the density contrast in the convection zone is
14 in Paper V while being ≥ 25 in Paper VI.

The model of Paper II is well suited for testing, whether a coronal layer
supports a dynamo in the lower layer. As shown in Fig. 6.5, the magnetic field
strength in terms of B2

rms/B2
eq is significantly higher for models with a corona

than for models without. This is a remarkable result, taking into account that in
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Figure 6.6: Differential rotation in the convection zone in the northern hemi-
sphere. The mean rotation profile Ω(r,θ)/Ω0 is shown color coded and with
white contours. The white-black dashed line indicates the surface (r = R�).
Overbars indicate azimuthal averages (taken from Paper V).

the simulations without a corona, a vertical field condition is applied at the up-
per boundary. A combined two-layer model is capable of supporting dynamo
action in addition to the helicity fluxes allowed by the vertical field condition.
The vertical field condition might be too restrictive as it forces the magnetic
field into a certain configuration, which has a lower dynamo saturation value,
see also § 6.4.

6.3.2 Differential rotation

Differential rotation plays a role only in Papers IV and V, because in the
other ones no rotation is included. In the model of Paper IV, the stratifica-
tion is weak and the convective flux is not as strong as the radiative flux. This
causes that the Taylor–Proudman balance is not broken and the rotation profile
is cylindrical in the convection zone as well as in the corona, see Fig. 6 of Pa-
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per IV. The model of Paper V is more suitable for investigating the differen-
tial rotation. We found the new and interesting result of a solar-like differential
rotation profile. As described in § 2.4 and § 4.3.2, direct numerical simulations
of global convective dynamos in spherical shells were not able to reproduce a
solar-like differential rotation pattern. In pure hydrodynamic simulations this
can be accomplished only by imposing a latitudinal entropy gradient at the
bottom of the convection zone (Miesch et al., 2006) or by including a stably
stratified layer below the convection zone (Brun et al., 2011). As shown in
Fig. 6.6, the equator rotates in our model faster than the poles, which has also
been achieved in other DNS and LES models (e.g. Käpylä et al., 2011b, 2012;
Nelson et al., 2013, and Paper VI). The important features are the roughly ra-
dial contour lines of constant rotation in the convection zone. This is generated
for the first time self-consistently in a direct magnetohydrodynamical numer-
ical simulation. We find out that the Taylor–Proudman balance is broken by
the baroclinic term in the mean azimuthal vorticity equation, see Eq. (2.37) and
Fig. 5 of Paper V. This is related to a 8% higher temperature at higher latitudes
than at the equator. It is still puzzling, that we do not see any similar spoke-
like differential profiles in the runs without any corona of Paper VI. One of
the reasons might be, that the transition region containing large temperature
and density gradients provides an isolation between the convection zone and
the corona. However, a realistic description of the upper thermal boundary as
an open boundary might be crucial also in this sense. The results of Brun et al.
(2011) show, that a more realistic treatment of the lower thermal and velocity
boundary can also lead to a realistic differential rotation profile including the
generation of a tachocline. See the details of this discussion in Section 3.1 and
3.2 of Paper V.

Additionally, the differential rotation profiles obtained in the model of
Paper V show a near-surface-shear layer (NSSL), at low latitudes. This is
a promising result, because we know from mean-field simulations, that the
NSSL plays an important part for the solar dynamo, generating a solar-like
oscillation pattern and migration direction of the mean magnetic field, (see
Käpylä et al., 2008, and § 4). In the LES model of Brun et al. (2011), the dif-
ferential rotation is similar to the rotation profile obtained by helioseismology
(see e.g. Thompson et al., 2003), but no NSSL was found by the authors, also
because the near-surface stratification was not included in these models. This
leads to the conclusion, that a corona supports the generation of an NSSL, due
to less restrictive boundary also for the velocity field.
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Figure 6.7: Magnetic field structure in the upper layer of the domain. Field lines
are shown in red and the modulus of the current density is shown in pink with
semi-transparent opacity. Note the formation of a vertical current sheet above the
arcade (taken from Paper I).

6.3.3 Coronal field structure

The model of Paper I shows a significant magnetic structure in the coronal
layer. Confined by the bipolar field and the vertical field boundary condition,
an arcade of magnetic field lines is formed. In Fig. 6.7 we show a three dimen-
sional visualization of this structure. Magnetic field lines form closed loops
between opposite polarities on the surface as well as open field lines which
connect to the upper boundary. At the interface between them an inverted
Y-point is formed. Such a point is basically the lower end of an extended X-
point. As plotted in Fig. 6.7, the location of the Y-point coincides with the
formation of a current sheet. In a more realistic simulation, this current sheet
would correspond to a region of strong Ohmic heating and energy dissipation.
This energy could be released as a flare. In the model of Paper II, the mag-
netic field in the corona forms a structure similar to magnetic clouds, which
are ejected recurrently. A deeper discussion on this will follow in § 6.3.4. Be-
sides the coronal ejection, the coronal magnetic fields influence the rotation in
the models of Papers IV and V. As shown in Fig. 2 of Paper V, the rms ve-
locity averaged over the whole domain decreases due to the growing magnetic
field. After the coronal magnetic field reaches a certain strength, the rotation
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Figure 6.8: Time series of the formation of a plasmoid ejection. Projections of
field lines of 〈BBB〉x in the yz plane are shown together with a color-scale repre-
sentation of 〈Bx〉x; blue stands for negative and yellow for positive values. The
dotted horizontal lines show the location of the surface at z = 0. τ indicates here
the time normalized to the turnover time. The angle brackets represent averages
in the direction of the subscript (taken from Paper I).

in the corona is quenched essentially to the same level as the turbulent motion
inside the convection zone. This is an important numerical result. Until now,
the rotation of the solar corona is not clearly determined by observations, see
Section 2.2 in Paper IV.

6.3.4 Coronal ejections

In Papers I–IV, the detection of coronal ejections can be reported. However,
in the model of Paper V, we see indication of ejections (not yet published), but
in Paper V we focus on the physical properties of the convection zone. Using
the model of Paper I, we produce ejections of magnetic field structures and
current helicity density JJJ ·BBB. Looking at lines of the magnetic field averaged in
the x direction, we find plasmoids recurrently getting ejected from the coronal
layer out of the domain. In Fig. 6.8, a positive Bx concentration is lifted up
and emerges through the top boundary. Between the third and fourth panels
in the second row of Fig. 6.8, a reconnection event happens, similar to what
is shown in Fig. 6.7. After the positive flux concentration has been erupted, a
new negative flux concentration has emerged and will be erupted shortly after
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Figure 6.9: Time series of coronal ejections in a spherical wedge. The normal-
ized current helicity, µ0RJJJ ·BBB/〈BBB2〉t , is shown in a color-scale representation for
different times; dark/blue stands for negative and light/yellow for positive val-
ues. The dashed lines show the location of the surface at r2 = x2+ z2 = R2 = R2

�.
Overbars indicate azimuthal averages (taken from Paper III).

that. Looking at a time-height diagram of current helicity, as in Fig. 3 of Pa-
per III, one notices that the ejections happen regularly and carry a substantial
amount of current helicity out of the domain. Here it is notable that magnetic
buoyancy is not the dominant force, at least in our simulations. Therefore, the
emergence and ejection of magnetic field structures must be due to the Lorentz
force that is basically due to the twists of the fields. Twisted magnetic fields
tend to untwist, because of the magnetic tension as part of the Lorentz force,
see Eq. (3.14). The most important way to untwist in this setup is to emerge
to the coronal layer or out of the domain through the top boundary. The model
we used in Paper II is able to produce coronal ejections of similar shape as
observed in coronal mass ejections. In Fig. 6.9, we show a time series of coro-
nal ejections by plotting the normalized current helicity µ0R�JJJ ·BBB/〈BBB2〉t for
different times. In the upper row a strong ejection has emerged close to the
equator and is pushed out of the domain. The ejection consists of a bubble-
like structure in the center and a bow in the front, which is very similar to
the three-part structure in observed coronal mass ejection on the Sun (see e.g
Illing and Hundhausen, 1985; Low, 1996, and § 5). The bow seems to have
always the opposite sign of current helicity than the bubble, which can be re-
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Figure 6.10: Time series of a coronal ejection zoomed into the region of the
ejection near the equator (θ = π/2), taken from Run A5 of Paper IV, where
turbulence is driven by convection. The dashed curved vertical lines show the
location of the surface r = R = R�. Left column: normalized current helicity,
µ0RJJJ ·BBB/〈BBB2〉t . Middle column: magnetic field, field lines of BBB projected into
the r,θ plane, where solid lines represent clockwise magnetic field lines and the
dashed ones counter-clockwise are shown together with a color-scale represen-
tation of Bφ . Right column: density fluctuations ∆ρ(t) = ρ(t)− 〈ρ〉t . For all
plots, the color-scale represents negative as dark blue and positive as light yellow
(taken from Paper IV.)
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lated to a bipolar magnetic structure. Such bipolar magnetic structures have
been observed in magnetic clouds (see e.g. Li et al., 2011). The occurrence of
ejections is not always close to the equator. However, their emergence seems
often to coincide with the annihilation of the magnetic field polarities at the
equator, as described in § 6.3.1. Also in our model, magnetic buoyancy is
not dominant, because the field generated by a forced turbulent dynamo is not
concentrated enough to couple efficiently to the pressure distribution as our
simulations show. Therefore the emergence and ejection of the magnetic field
can be explained by the untwisting of helical structures. Looking here also at
the time-height current helicity diagram, one finds recurrences, similar to those
in the Cartesian model of Paper I. The pattern of recurrence depends on the
fluid and magnetic Reynolds numbers (Re, ReM); see Fig. 12 of Paper II for
lower Re and ReM and Fig. 6 of Paper III for higher Re and ReM.

In the model of Paper IV, ejections are not that easy to detect as in the
previous models. The magnetic field is weaker and less helical. Additionally,
the ejections are smaller and hence more difficult to find in a larger domain.
We have performed many more runs than those mentioned in Paper IV, but
only in a few of them, we could detect ejections. These isolated structures can
be found best by plotting the current helicity density. In Fig. 6.10 we show
the time series of the current helicity density, the magnetic field and the den-
sity disturbance of such an isolated structure. In the current helicity density,
we found a bipolar structure similar to those in Paper II, but much smaller
and less pronounced. This is correlated with strong radial magnetic field con-
centrations near the surface. The density disturbance indicates the emergence
of a magnetic flux tube, whose density is lowered due to magnetic pressure.
Because of the low stratification inside our model, the tube stays less dense
than its surroundings and does not carry mass into the corona. Unfortunately,
the resolution of this isolated structure is not that high, because it is a global
simulations. A detailed analysis of this ejection shows a clear bipolar structure
in the current helicity represented by two current sheets and a strong radial
magnetic field, see Fig. 16 of Paper IV. The recurrence of the events is not
as regular as in Papers I and II, but we can detect several events happening
during the simulated time.

6.3.5 Magnetic helicity and current helicity

Already in the model of Paper I, we found a different sign of current helicity
in the coronal layer than in the dynamo layer, see Fig. 3 of Paper III. The cur-
rent helicity is positive in the lower layer, where the dynamo is operating and
negative in the upper layer, representing the corona. In the spherical model of
Paper II, the reversal of sign is even more pronounced. In Fig. 6.9, the current
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Figure 6.11: Time averaged current helicity µ0R� 〈JJJ ·BBB〉t/〈BBB2〉t . Dark/blue
corresponds to negative values, while light/yellow corresponds to positive val-
ues, as in Fig. 6.9. The dashed line shows the location of the surface at
r2 = x2 + z2 = R2 = R2

� (taken from one of the runs of Paper III).

helicity in the convection zone has a negative sign in the northern hemisphere
and a positive sign in the southern hemisphere. This is a result of the sign of
the helical forcing applied in this part of the domain. In the corona, we notice
that (in particular in the second row of Fig. 6.9) the current helicity carried by
the ejections has opposite signs as in the corresponding part in the convection
zone of each hemisphere: they are positive (yellow) in the northern hemisphere
and negative (blue) in the southern hemisphere. This can be seen even more
clearly in a time-averaged plot, as shown in Fig. 6.11. There we have aver-
aged over nearly 4000 turnover times, and see that the sign of current helicity
changes in the outer atmosphere. This behavior has been confirmed by Ulysses
spacecraft observations of the magnetic helicity (Brandenburg et al., 2011b).
This satellite measures the magnetic field far from the ecliptic which allows us
to compute the magnetic helicity using the Taylor hypothesis, see Matthaeus
et al. (1982) and Brandenburg et al. (2011b) for details. In the latter paper,
it was found that the magnetic helicity in the solar wind changes its sign at a
certain distance from the Sun, similar to the results found in our simulations.
In Paper III, we use a simple analytical model to explain this sign reversal.
The current helicity is related to the magnetic helicity of the fluctuating field,
see Eq. (3.28). Therefore, we can use Eq. (3.31) with Eq. (3.17), neglecting
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Figure 6.12: Sketch showing possible solutions of Eq. (6.3) for the mean helicity
density of the fluctuating fields h f (z) with S = const =−1 in z < 0 and S = 0 in
z > 0 (upper panel). The red (dashed) and black (solid) lines show solutions
for which the magnetic helicity flux (−κhdh f /dz, see lower panel) is negative in
the exterior. This corresponds to the case observed in the Sun. The blue (dotted)
lines show the case, where the magnetic helicity flux is zero above the surface and
therefore does not reverse the sign of h f (z) in the exterior (taken from Paper III).

the molecular diffusivity η and assuming a steady state, to derive the equation

∇∇∇ ·FFF f
h =−2αBBB

2
+2ηtµ0JJJ ·BBB. (6.2)

With a Fickian diffusion approach, FFF
f
h = −κh∇∇∇h f , we can construct a one

dimensional model of the helicity distribution

−κh
d2h f

dz2 = S(z), (6.3)

with the source term S(z)≡−2αBBB
2
+2ηtµ0JJJ ·BBB. Here κh is the magnetic he-

licity diffusion coefficient (assumed constant), which is expected to be around
0.3ηt (Hubbard and Brandenburg, 2010; Mitra et al., 2010a, and Paper II).
In Fig. 6.12, we plot three different solutions for h f , where the source term is
S(z) = −1 in the interior and zero outside (using arbitrary units). Depending
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on the slope, which depends on κ and the boundary conditions, and the size
of the domain, the helicity changes sign at different locations in the outer part.
This is why in some dynamo models, we can observe a sign change, but not
in all of them. In the model of Papers IV and V no clear indication of helic-
ity sign reversal has been found. This could be related to the lower amount
of magnetic helicity produce by less helical (as convective instead of forced)
motions.

6.4 Discussion and conclusions

The results of Papers I–V show that we were able to reproduce important
features of the Sun’s magnetic field as well as its differential rotation with a
simplified two-layer model. Combining the convection zone, where a dynamo
is operating, with an overlying corona gives useful and remarkable insights
about dynamo theory, the mechanism of coronal mass ejections and the mag-
netic helicity distribution in the Sun. We found that the dynamo is stronger
in the present of the corona and shows equatorward migration. The coronal
layer does not only influence the convection zone as it represents a more re-
alistic boundary condition for the magnetic field, it also seems to promote the
generation of spoke-like differential rotation. We are able to generate coro-
nal ejections and flux emergence just by the untwisting of helical fields. We
additionally show that even with kinetic helicity which is less for the convec-
tive dynamo than for a force turbulent one, coronal ejections occur. The shape
of these ejections is similar to those observed in real coronal mass ejections.
Most of these results have been found for the first time and suggest that they
are only reproducible using a combined two-layer model.

One issue with using direct numerical simulations to model astrophysical
bodies is the question, whether these models are realistic enough; and if they
are not, why we should bother using them. Currently, direct numerical simu-
lations are unable to reach realistic values of the magnetic diffusivity and fluid
viscosity. Therefore, every direct simulation of a solar dynamo model is per se
unrealistic. But, we can still learn a lot from these simulations. In particular,
we can run them for a series of different values of magnetic and fluid Reynolds
numbers and try to extrapolate the results to solar values. On the other hand,
our scope is not to reproduce every little detail of the Sun with our model; we
are more interested in specific models, and investigate their outcome. If we
understand the results of these simplified and concededly unrealistic simula-
tions in a proper way, it will yield great contributions to the understanding of
the Sun’s dynamics.

Beside the Reynolds numbers, what about the other quantities, are they
consistent with solar values? The density contrast is order of magnitudes lower
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than in the considered region of the Sun, which includes the entire convection
zone and the corona to a large extent. The solar density changes over fourteen
orders of magnitude, which is currently impossible to model in direct numer-
ical simulations. Using tools such as non-equidistant grids might extend the
contrast, but not to solar values. After all, we have improved the density con-
trast in our models from unity to over two thousand. Applying non-solar-like
values for the density stratification in our models influences the results. In the
model of Papers I and II, the density is either constant or does not play an
important role in producing ejections of current helicity density. But in the
models of Papers IV and V, the low stratification has a strong influence on
the results. For example in Paper IV, the ejected flux tube shows a lower den-
sity than the surrounding plasma because of the low stratification. We expect
that with a higher stratification this tube would have a higher density than the
surrounding plasma in the corona, similar to observed CMEs. Also, in Pa-
per VI the equatorward migration pattern depends crucial on the strength of
the stratification. The luminosity, we choose in the models of Papers IV and
V is much higher than the solar one. Using this, we try to compensate for
the low Reynolds number regime, which make convection harder to excite. A
similar argument we employ for the use of rotation rates higher than the Sun.
Although the Sun might have slower convective motions than expected (Hana-
soge et al., 2012), which would increase the solar Coriolis number, the Coriolis
numbers we use in our models are only slightly higher than those in the Sun,
although the rotation rate is three times higher. With lower magnetic Reynolds
numbers and a solar-like rotation rates it is in general more difficult to excite
a solar dynamo, therefore, we increase the rotation rate to compensate for the
too low magnetic Reynolds number. Additionally, higher rotation rate might
be not applicable to the Sun, but to other stars, where the magnetic fields are
also observable.

In our combined two-layer model, we use strong simplifications to imple-
ment the combination of a convection zone and a corona in a single model. We
found that there exists a dynamo solution which shows equatorward migration
even in the low Reynolds number regime. The fact that a coronal layer has a
strong influence on the properties inside the convection zone, may have been
overestimated by the lack of realistic stratification and Reynolds numbers, but
it should be taken into account in future simulations of stellar dynamo models.
Helical magnetic fields can emerge, build up structures similar to CMEs, and
get eventually ejected. The untwisting of magnetic fields as an alternative way
to the emergence of structures should be studied further and can in the Sun
also have significant importance.

Researchers, who model coronal mass ejections might criticize the lack of
coronal properties in our model. The value of the plasma-β , which determines,

76



Figure 6.13: Coronal ejection plotted in terms of the Ohmic heating µ0ηJJJ2 of
the model of Papers II and III. This ejection is the same as in the second panel
of Fig. 6.9. Bright colors correspond to large values and dark to small ones.
The solid black line show the location of the surface at r2 = x2 + z2 = R2 = R2

�.
Overbars indicate azimuthal averages.

whether the magnetic field follows the plasma, is not very low in our corona.
In the models of Papers II and IV our corona is isothermal and has therefore a
high value of plasma-β . This is a valid criticism, but not for our scope, which
is to describe the magnetic properties and the magnetic structures emerging
into the corona. Because the plasma-β is low in the solar corona, the magnetic
structures are the important features. We do not claim to describe the fluid and
plasma properties of these ejections realistically. We are interested to study
the emergence of ejections of magnetic field and current helicity. In future
models similar to those in Paper V, we will see, if a lower plasma-β changes
the main magnetic properties of the ejections. Additionally, we also do not
claim to describe the coronal ejections realistically, as we are more interested
in the mechanism of the emergence and its connection with dynamo action.
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In Papers II and III, we compare plots of current helicity density and white
light images of observed CMEs and conclude that the shape of our ejections
are similar to them. White light emission and current helicity are not the same
quantities and comparing these two can be misleading. However, in this work,
as mentioned before, we are mostly interested in CMEs as magnetic phenom-
ena. The current helicity concentrations are emerging from the surface of our
convection zone, carrying some mass with it. In a realistic simulation with
high enough density stratification, the shape of the current helicity ejections
would directly correspond to density enhancement and therefore emissivity.
In Fig. 6.13, we plot Ohmic heating for one of the prominent ejections of the
model of Paper II. The revealed shape shows clear similarities with the ob-
served one of real coronal mass ejections. We claim, that the Ohmic heating
can be related to the emissivity of the CMEs shown in Figs. 1.8 and 5.2.

For another aspect it is shown that a coronal layer as an upper boundary
condition is important for the dynamo. Comparing Fig. 4.4 with Fig. 6.4, the
evolution of the mean magnetic field shows a different behavior in cases with
and without a coronal layer. Beside the different patterns of the equatorward
migration in the saturated stage, the excitation times are significantly different.
In the simulation without a coronal layer (Fig. 4.4), the mean magnetic field
is visible after around t/τ = 1000, whereas in the case with a coronal layer
(Fig. 6.4), it is already visible in the very beginning of the simulation. The
input parameters of the simulations are not that different leading to a similar
estimation for the turnover time τ (see Papers V and VI). Additionally, the
simulation without a corona have been started from a equilibrated hydrody-
namical run, where the convective motions has reached a saturated state. In
the model with a corona the simulations have been started from the hydrostatic
reference solution without any convective motions. This fact together with the
similarity of the input parameters suggest that the coronal layer has a strong
influence on the excitation of the large-scale dynamo. To express it in a dif-
ferent way: the radial field boundary condition at the surface of the convection
zone is very restrictive and can change the dynamo evolution in the convec-
tion zone significantly. However, to have clear evidence for this, we have to
perform more simulations both with and without a coronal later, whereas the
other parameters are held exactly the same.

Overall, this two-layer model is an excellent model to study the corona-
dynamo interaction as well as the ejection of magnetic helicity and mass from
the convection zone through the corona into the interstellar space.
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7. Possible Future Developments

My goal is simple.
It is a complete understanding of the universe,

why it is as it is and why it exists at all.

Stephen Hawkins

This combined two-layer model as described in § 6 is a rich model, which can
be used in many ways for many different purposes. Let me outline here a few
possibilities.

7.1 Solar dynamo and helicity fluxes

Measuring and modeling magnetic helicity fluxes is an important element in
understanding the solar dynamo. The combined two-layer model provides
a straightforward approach to quantify how much magnetic helicity flux is
needed for the solar dynamo. It would be important to determine its influence
on the equatorward migration of the mean magnetic field found in the model
of Käpylä et al. (2012). This would involve a study of magnetic helicity fluxes
and mean magnetic fields generated by a convective dynamo using mono- and
bi-layer models. In this context, investigating also the differential rotation
in these simulations would be beneficial. However, a general understanding
of the dynamo and convection mechanism generating equatorward migration
and spoke-like differential rotation will only be possible by calculating the
transport coefficients of the mean-flow and mean magnetic field by using ap-
proaches like the test-field method (Schrinner et al., 2007). Although rudimen-
tary approaches have already been used (Racine et al., 2011), but their outcome
is limited by neglecting the turbulent diffusivity tensor. The obtained transport
coefficients can then be used in mean-field models of the solar dynamo. The
predictive power of those models and their Reynolds number dependence will
first be compared with DNS and those models will then be applied to magnetic
Reynolds numbers closer to those of the Sun.

7.2 Convection driven coronal mass ejections

In the work of Papers I, II and IV, we could show that a dynamo below the
surface can drive coronal ejections, which have a similar shape as observed
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CMEs and magnetic clouds. But these models have been performed using
strong simplifications, in particular in describing the coronal layer. The coro-
nal temperature, for example, is set to the value of the surface by applying a
prescribed cooling function. This led to a much higher plasma-β in our mod-
eled corona, than in the solar one. It would be a good project to develop a real-
istic coronal stratification in a bi-layer model of dynamo-driven coronal mass
ejection. This includes a realistic treatment of density and temperature pro-
files, a self-consistent coronal heating mechanism, background coronal field
structures as well as solar wind interactions. Step by step, one can include
more improvements in describing the coronal layer, starting with steeper tem-
perature and density profiles. One step would be including a realistic treatment
of heat conductivity similar as in the work by Bingert and Peter (2011), where
it leads to self-consistently generated coronal heating due to field line braid-
ing at the footpoints. Already these improvements will give important insights
about comparing self-consistent granulation motions with granulation velocity
drivers as used by Bingert and Peter (2011). Additionally, one can investigate
in what extend the coronal heating is affected by ejections. As a third step
one can impose coronal background fields and investigate, how the ejection
are influenced or even triggered by this field as shown by, e.g. Fan and Gibson
(2004). Due to numerical reasons, in the models of Papers I, II and IV, we ap-
ply closed radial boundaries, i.e. no mass flux can leave the domain. Therefore
a Parker solution of the solar wind is prohibited. To study the interaction of the
solar wind and coronal ejections would be a useful extension on the model. A
Cartesian bi-layer will give useful insights about driven coronal mass ejections.
However, this model can be extended to a global spherical model to study the
coronal mass ejections as well as their interplay with the global coronal field.
There, the Parker wind has a solution and can be generated self-consistently.

7.3 Space weather forecasting

A CME takes about one to five days to reach the Earth, see § 1.5 and § 5. This
time interval defines the maximum advance warning time for magnetic storm
events to happen. The prediction time could be extended using more realistic
models and new methods. The idea is to use the data assimilation technique
to forecast space weather. This is similar to weather forecast on Earth where
measurements of certain quantities at stations around the world are included
into the model. Each time new data are read in, the parameters of the model
will be adjusted. By running an ensemble of models with different parameters,
one is able to give probabilities of the resulting outcomes. Recently, there were
attempts to use these methods for the forecast of the solar activity cycle (see,
e.g., Dikpati and Anderson, 2012). It would be very interesting to apply the
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data assimilation and forecast techniques to my dynamo-driven coronal ejec-
tion model to develop a solar space weather forecast. This will involve the
improvement of the ejection model, including solar wind fluctuations as well
as low plasma β effects. Additionally, time should be spend on collecting ob-
servational data of ejections and preparing them to be accessible for the model.
Pinning down the crucial parameters of the ejection model with observed data
will be a first step. In a second step the actual forecasting can be done.
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Sammanfattning

Observationer visar att koronamassutkastningar är förknippade med vridna
magnetfältskonfigurationer. Koronamassutkastningar brukar vanligtvis mod-
elleras genom att man skjuvar och vrider fotpunkterna för en viss distribu-
tion av magnetiskt flöde vid solytan och sedan låter den tidsutvecklas på ytan.
Ythastigheterna och de magnetiska fältmönstren borde naturligtvis i första
hand erhållas från realistiska simuleringar av solens konvektionszon där fäl-
tet genereras genom dynamoverkan. Därför behövs en enhetlig hantering av
konvektionszonen och koronamassutkastningar. Numeriska simuleringar av
turbulenta dynamos visar att förstärkningen av magnetfält kan dämpas genom
s.k. "catastrophic quenching" vid magnetiska Reynoldstal som är typiska för
solens inre. Ett starkt flöde av magnetisk helicitet från dynamoområdet can
mildra denna dämpning. I denna mening är ett realistiskt (magnetiskt) randvill-
kor en viktig ingrediens för en framgångsrik soldynamomodell.

Med hjälp av den tvålagermodell som utvecklas i avhandlingen kombinerar
vi en dynamoaktiv område med ett magnetiskt “passivt” men effektivt ledande
övre lager som modellerar solens korona. I fyra steg förbättras denna upp-
ställning från en tvingad turbulent till en konvektivt driven dynamo och från
en isoterm till en polytropt stratifierad korona. Simuleringarna uppvisar mag-
netiska fält som uppstår vid dynamo områdes yta och sedan kastas in i domä-
nens korona. Deras morfologi låter oss associera sådana händelser med ko-
ronamassutkastningar. Den magnetiska heliciteten visar sig ändra tecken i
koronan och är förenlig med nyligen utförda helicitetsmätningar i solvinden.
Vår konvektionsdrivna dynamomodell med en yttre korona har en sol-liknande
differentiell rotation med radiella (eker-lika) konturer av konstant rotation-
shastighet, samt en sol-lik meridionell cirkulation och ett ytnära skjuvningslager.
Den eker-lika rotationsprofilen härrör från en longitudinell entropigradient som
bryter Taylor-Proudmanbalansen genom den barokliniska termen. Vi observerar
genomsnittliga magnetiska fält som migrerar mot ekvatorn både i modeller
med och utan koronalagret. Ett anmärkningsvärt resultat är att dynamoverkan
gynnas avsevärt av närvaron av en korona som är starkare och mer realistisk.

Tvålagermodellen representerar en ny ansats för att på ett självkonsistent
sätt beskriva hur koronamassutkastningarna skapas. Dessutom har den en
stor betydelse för soldynamomodeller eftersom den återger många magnetiska
företeelser som observerats i solen.





Zusammenfassung

Beobachtungen zeigen, dass koronale Massenauswürfe mit verdrillten mag-
netische Flußkonfigurationen verbunden sind. Üblicherweise werden koronale
Massenauswürfe mit Hilfe von Scherung und Verdrillung von Fußpunkten
einer vorgebenen magnetischen Flußverteilung und deren Entwicklung an der
Oberfläche modelliert. Letztlich sollten jedoch die Oberflächengeschwindig-
keiten und die Magnetfeldstrukturen aus realitischen Sonnenkonvektionssim-
ulationen entnommen werden, in denen das Feld von einem Dynamoprozess
erzeugt wird. Deshalb bedarf es einer vereinheitlichten Behandlung der Kon-
vektionszone der Sonne and koronaler Massenauswürfe. Numerische Simula-
tionen turbulenter Dynamos zeigen, dass die Verstärkung von Magnetfeldern
für sonnentypische magnetische Reynoldszahlen drastisch unterdrückt wird.
Ein starker magnetischer Helizitätsfluß, der das Dynamogebiet verlässt, kann
diese Unterdrückung abmildern. In diesem Sinne is eine realistische (mag-
netische) Randbedingung ein sehr wichtiger Bestandteil eines erfolgreichen
Modells für den Sonnendynamo.

Das in dieser Doktorarbeit entwickelte zweischichtige Modell, verbindet
eine dynamoaktive Schicht mit einer darüber liegenden Schicht, die zwar dy-
namoinaktiv, aber stark leitfähig ist, sie imitiert die Korona der Sonne. In
vier Schritten vervollkommnen wir den Simulationsaufbau von einem erzwun-
gen turbulenten zu einem von Konvektion getriebenen Dynamo und von einer
isothermen zu einer polytrop geschichteten Korona. Die Simulationen brin-
gen Magnetfelder hervor, die aus dem Dynamogebiet aufsteigen und aus dem
koronalen Teil des Simulationsgebiets ausgestoßen werden. Wegen deren mor-
phologischer Form interpretieren wir diese Ereignisse als koronale Masse-
nauswürfe. Im Ergebnis zeigt sich, dass die magnetische Helizität ihr Vorze-
ichen in der Korona ändert und daher mit kürzlich gemessenen Helizitätswerten
aus dem Sonnenwind übereinstimmt. Unser von Konvektion getriebenes Dy-
namomodel mit koronaler Hülle besitzt eine sonnenähliche differentielle Rota-
tion mit radialen (speichenähnlichen) Isolinien konstanter Winkelgeschwindig-
keit sowie eine sonnenähnliche meridionale Zirkulation und einer oberflächen-
nahen Scherschicht. Das speichenähnliche Profil der Rotation lässt sich auf
den latitudinalen Entropiegradienten zurückführen, der mit Hilfe der Baroklin-
ität das Taylor–Proudman–Gleichgewicht verletzt. Sowohl in Modellen mit
als auch ohne koronaler Schicht finden wir ein mittleres Magnetfeld, das zum
Äquator wandert. Ein beachtenswertes Ergebnis ist, dass der Dynamoprozess



durch das Vorhandensein der Korona erheblich begünstig und somit stärker
und realistischer wird.

Das zweischichtige Modell stellt einen neuen Ansatz dar, die Erzeugung
koronaler Massenauswürfe in einer selbstkonsistenten Weise zu beschreiben.
Auf der anderen Seite hat es wichtige Konsequenzen für Sonnendynamomod-
elle, da es viele magnetische Phänomene, die auf der Sonne beobachtet wer-
den, wiedergibt.
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