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“Le dije: Monta que te llevo al sol,

me dijo: Que tonteria, arderas!,

Le dije que no pensaba ir de dia y se reia,
ya veras le decia si te fias de este guia.
Dicen que cuando llegas hay un flash, y me
creia, me daba alas, pardabamos a dar caladas
en coordenadas desordenadas,

sentados en el Meridiano de Greenwich,
dejabamos colgar las piernas,

sabiendo que la busqueda era eterna,

v que hay muchas paradas a lo largo del
camino y que, lo importante no es llegar sino,
sino el camino en si, miramos atras

y supimos que nadie volveria a vernos mas.
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Abstract

Department of Astronomy

Effects of rotation and stratification on magnetic flux concentrations
by Illa R. Losada

The formation of magnetic flux concentrations in the Sun is still a matter of debate.
One observable manifestations of such concentrations is sunspots. A mechanism able
to spontaneously form magnetic flux concentrations in strongly stratified hydromagnetic
turbulence and in the presence of a weak magnetic field is the negative effective magnetic
pressure instability (NEMPT). This instability is caused by the local suppression of the
turbulence by the magnetic field. Due to the complexity of the system, and in order
to understand the fundamental physics behind the instability, the study started by con-
sidering simplified conditions. In this thesis we aim to move towards the complexity of
the Sun. Here we want to know whether the instability can develop under rotation and
in the case of a polytropic stratification instead of the simpler isothermal stratification.
We perform different kinds of simulations, namely direct numerical simulations (DNS)
and mean field simulations (MFS) of strongly stratified turbulence in the presence of
weak magnetic fields. We then study separately the effects of rotation and the change in
stratification.

It is found that slow rotation can suppress the instability. For Coriolis numbers larger
than 0.1 the MFS no longer result in growth, whereas the DNS start first with a decrease
of the growth rate of the instability and then, for Co > 0.06, an increase owing to the fact
that rotation leads to the onset of the dynamo instability, which couples with NEMPI in
a combined system. In fact, the suppression implies a constraint on the depth where the
instability can operate in the Sun. Since rotation is very weak in the uppermost layers
of the Sun, the formation of the flux concentration through this instability might be a
shallow phenomenon. The same constraint is found when we study the effects of poly-
tropic stratification on NEMPI. In this case, the instability also develops, but it is much
more concentrated in the upper parts of the simulation domain than in the isothermal
case. In contrast to the isothermal case, where the density scale height is constant in the
computational domain, polytropic layers decrease their stratification deeper down, so it
becomes harder for NEMPI to operate.

With these studies we confirm that NEMPI can form magnetic flux concentrations even
in the presence of weak rotation and for polytropic stratification. When applied to the
Sun, the effects of rotation and the change of stratification constrain the depth where
NEMPI can develop to the uppermost layers, where the rotational influence is weak and
the stratification is strong enough.
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Prologue

“No book, however good, can survive a hostile

reading.”
Orson Scott Card, Ender’s Game
This work started in May 2012, when I first visited Nordita. It was a time when a new
theory for the formation of magnetic flux concentrations on the solar surface began to
take shape. This theory is based on the suppression of turbulent pressure by magnetic
fields and goes back to early work by Kleeorin, Rogachevskii, and Ruzmaikin in 1989 and
1990, but it became computational reality only with the thesis work of Koen Kemel in
October 2012. While the essence of this effect was already demonstrated in his thesis,
a number of important questions remained unanswered: can this theory really explain
active regions and even sunspots under more realistic conditions? Can it survive a change
in stratification or when there is rotation? These are questions that will be addressed in

the present thesis.

There were several other open questions at the time, such as the importance of spherical
geometry and the interaction with an underlying dynamo that is responsible for main-
taining the overall magnetic field. Those are questions that are currently being addressed
in the thesis work of Sarah Jabbari, who started with me at the same time. Some of her
work on the dynamo involves the presence of rotation and therefore naturally connects
to my work discussed in the present thesis. This led to a joint publication that will be

addressed below, but it will not be included in the present thesis.

Eventually, of course, we need to ask about the broader implications of this new theory
for the formation of coronal mass ejections that can affect us here on Earth. One must
therefore include an outer corona, which was already done in the recent thesis of Jorn

Warnecke in 2013. The connection with magnetic flux concentrations led to another

Xix



XX CHAPTER 0. PROLOGUE

joint publication — this one with Jorn Warnecke — but it will also not be included in the
present thesis. Nevertheless, this work has been important in that it was the first example

showing the formation of bipolar spots, which are commonly also seen in the Sun.

At the heart of the new developments discussed in the present thesis is turbulence and
its interaction with magnetic fields. Therefore I begin by describing the essence of these
topics in Chapter 1 which describes the basic framework. The set of equations relevant
to the problem cannot be solved analytically, so we need to use simulations and some
approximations, which are briefly described in Chapter 2. Chapter 3 describes different
mechanisms to produce magnetic field concentrations, like the flux-tube model, and de-
velops the central theory of this thesis, NEMPI. In Chapter 4, my current contributions
to this theory are explained. In particular I discuss how rotation and stratification in-
fluence the instability, and address these aspects in a solar context. Finally, Chapter 5

draws some conclusions and the upcoming work towards the end of my PhD.



Framework

“Big whirls have little whirls

That feed on their velocity,

And little whirls have littler whirls
And so on to viscosity”

L.F. Richardson

The framework of the present thesis comprises magnetic fields, mean field theory, and
turbulence. This chapter reviews some of the fundamental equations in solar physics and
introduces some new concepts that we develop in this work. The basic equations are
adapted from general books, like Schrijver et al. (2011) or Carroll and Ostlie (1996).

1.1 Fundamental equations

The Sun is a big ball of plasma. A plasma is a fluid state of charged particles. The
main difference with other fundamental states of matter is that plasmas are electrically
conducting and can therefore interact with electromagnetic fields. The aim of the present
work is then to describe the characteristics and evolution of plasma and its interaction
with electromagnetic fields.

We consider the continuum approximation and assume that we can describe the fluid by
its macroscopic properties. This approximation is valid when the mean distance between
particles is much smaller than the typical scales of the system, i.e. the macroscopic scale
of the system is much bigger than the microscopic one. In the solar interior, for example,
the typical mean inter-particle distance is 107'm, while the macroscopic scale of the
system is 10®m (Charbonneau, 2013). Even the mean-free path of photons is much
larger (107 m) than the inter-particle distance.

1.1.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of interactions between magnetic fields and
plasma flow. We consider here the case of non-relativistic, slowly varying plasmas (Choud-
huri, 1998).
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The MHD basic equations describe the evolution of the thermodynamic variables den-
sity p and specific entropy s, velocity U, and magnetic field B though the following
equations:

1. continuity equation (conservation of mass):

dp
o =~V (U, (1.1)

2. momentum equation (conservation of momentum):

DU

3. induction equation:

B

4. energy equation (conservation of energy):

D
D—jI2Vps+77,qu2—V'(Frad+Fcond+"‘)7 (14)

ol
where dots indicate the possibility of additional terms. In these equations, D/Dt =
d/0t + U - V is the advective derivative' with respect to the actual (turbulent) flow,?
B = B+ V x A is the magnetic field, By is an imposed uniform field, J = V x B/ pq is
the current density, i is the vacuum permeability, n = 1/(uo0) is the magnetic diffusivity,
o is the electrical conductivity of the plasma, F, = V - (2vpS) is the viscous force, and
Sij = %(@Ui + 0,U;) — %@jV - U is the traceless rate-of-strain tensor of the flow. The
viscous force can also be written as

F,=V-(2upS) =vp(V’U +iVV . -U +25-Vinvp). (1.5)

In Equation (1.4), T is the temperature, which is related to p and s via s = ¢, InT — (¢, —
¢y) In p + const, where ¢, and ¢, are the specific heats at constant pressure and constant
volume, respectively. The specific entropy is defined only up to an additive constant that
needs to be fixed a priori to the calculation. In the PENCIL CODE, which is used in this
thesis, this constant is chosen to be zero.

Often, we will not solve the energy equation, but we will assume an isothermal setup
(T = const) or an isentropic atmosphere (s = const). Also, we will drive turbulence “by

! The term advection means the transport of some substance or quantity by the fluid due to its own
motion, i.e., moving of oil in a river or change in temperature due to wind motions. It is not the same
as convection, since convection implies the transport both by diffusion and advection. Mathematically,
the advection operator is u - V and the advection equation for a vector quantity a in an incompressible
fluid (hence, V - U = 0 and U is solenoidal), is: da/0t + (U - V)a = (a - V)U for a line element.

2 We are using a Lagrangian description of the fluid, i.e., we move with the fluid.
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hand”, using an external source, modeled as a function f. In the numerical modeling,
this forcing function f is a sequence of random, white-in-time®, Gaussian distributed,
plane, non-polarized waves with a certain average wavenumber k¢, which represents the
inverse scale of the energy-carrying eddies in the system.

Some derivations from the momentum equation. The term J x B in the mo-
mentum equation is called the Lorentz force and it can be rewritten, using the definition
of current density:

JxB:(VxB)xB:(B-V)B—V(%), (1.6)

where the first term on the right-hand side (rhs) comprises the magnetic curvature and
tension forces and the second term is the magnetic pressure gradient.

Using the definition of the advective derivative and Equation (1.6), we can write the
momentum equation as:

ou 1 1 1 B? 1
& U VYU-"Vpig+t-(B-V)B--V |2 )4+-V- @S+ f .
T A A’ <2uo> oy St I
advection ~ ~ ~ 7\ ~~ ~  forcing
environment Lorentz force diffusion
(1.7)

We can analyze further the meaning of the rhs terms in this equation. The first one,
U - VU, which is the advection term, is non-linear in the velocity U. The second and
third terms, %Vp and g, respectively, are due to the environment or the state of the fluid.
Next, we have the Lorentz force, which is the only one that includes the magnetic field.
The diffusion term, F',,, includes second derivatives and tends to smooth gradients in the
velocity. Finally, we have the forcing. This term is needed in the cases where we drive
turbulence in the system, but we are not solving an energy equation, which could lead
to turbulent convection. This formulation allows us to have a well-defined and controlled
turbulent medium, which helps us to isolate the specific mechanism under study in the
system.

Since the advection term is non-linear in the velocity, it can introduce chaotic behaviour
and hence turbulence in the system. On the other hand, the diffusion term smoothes the
velocity gradients, so it will favour laminarity. So their comparison defines a dimensionless
quantity that is called the Reynolds number, which characterizes the flow pattern:

U-VU L
po_ lUvU UL

- ~ 1.
TV -S|~ v (18

where U is the typical velocity of the plasma and L its typical length scale. At low
Reynolds number, the diffusion term dominates, so the flow is laminar; but for high

3white-in-time means that the temporal frequency spectrum is flat
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Reynolds number the advection term dominates, so the flow becomes turbulent. A stan-
dard Kolmogorov k~5/3 spectrum can only occur at wavenumbers k larger than the energy
injection wavenumber. Figure 1.1 shows examples of flows at different Reynolds numbers,
which are here only moderately large, because the flow speeds exceed v/L by less than a
factor 400. As we shall see below, a small Reynolds number implies that the wavenum-
ber interval between the injection wavenumber and the dissipation wavenumber is rather
short.

Re <<1 [ 1<Re<4- — [ 4<Re<40 | 40<Re<400 _—] 400 <Re
L. <1 - o e — . / &7 \ Turbulence

Sl ) . /g destroys
— R, Y @ﬁl, Y O orier

NS . e “\\,“ Nl " ¢ &0 _@ leet
L o s s e A e oscillations ——— N o
Symmefrical = Flow disturbed = | pegininwake ~ | Vortex Street formed ) N M

Figure 1.1: Effect of the Reynolds number on the flow pattern around a cylinder. (Ex-
tracted from http://forums.x-plane.org/index.php?showtopic=69180)

The Reynolds number allows us also to scale the system, since two different systems
with the same Reynolds number should have similar flow patterns. This allows us to
predict the behaviour of new ships or planes; or even in car designs, based on smaller
models in high speed flow channels or wind tunnels.

In the following sections we will be interested in the total pressure in the system. It
can be obtained by just grouping some terms and rewriting the equation as:

oUu 1 B? 1
— =—--V <pI+pUU+—I—BB) +g+-V-(2vpS) + f, (1.9)
ot p 2u0 p

where I is the unit matrix while UU and BB denote dyadic products. The term in
parenthesis is the total momentum tensor:

B2
[ =pI+pUU+ _—I—BB. (1.10)
Mo

It will play an important role in the following chapters.

Some derivations from the induction equation. Using Maxwell’s equations, we
can rewrite the induction equation as:

%—Jf =V x (U x B)+1nV*B. (1.11)

In this case we can also define a dimensionless number, called magnetic Reynolds number,
Reys, by comparing the relative strengths of both terms on the rhs of Equation (1.11):

IVxUxB]| UL
Rey = ~—.
'V x npod || 7

(1.12)
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Although the definition is similar to that of the Reynolds number, the magnetic Reynolds
number is not just a hydrodynamic effect, but takes into account the diffusive properties
of magnetic fields. For low values of Reyy, the second term on the rhs of Equation (1.11),
a diffusion term, dominates; whereas for large enough values, Rey; > 1, the first term,
advection, does. In hydromagnetic turbulence we can define a critical magnetic Reynolds
number, Ry, i, above which small-scale dynamo action is possible, for example.

Both numbers, Re and Rej;, measure the importance of advection versus diffusion.
In the first case, from purely hydrodynamic contributions (momentum equation) and in
the second one, from the magnetic counterpart (induction equation). We can combine
both definitions and define the magnetic Prandtl number Prj;, as the ratio between
hydrodynamic and magnetic diffusivity:

1%
Pry = —. 1.13
M= (1.13)

Usually, the exact values of Re and Reys and the estimates in Equations (1.8) and (1.12)
do not agree, because they depend on the definition of the length scale of the system L,
used in the approximation, as has been illustrated with examples shown by Chatterjee
et al. (2011).

The magnetic Prandtl number weighs the importance of the mechanisms responsible
for diffusion in the system. We can use the following approximation for Pr:

o T5/2,-1 T4
Pry = p x T——352 = " (1.14)
and compare a typical galaxy and the Sun. The temperature is roughly similar in both
cases (10°K), but the densities differs by around 24 orders of magnitude, so for the Sun
the magnetic Prandtl number is very small (roughly 107%), whereas for galaxies it will
be orders of magnitude bigger (roughly 10*') (Brandenburg and Subramanian, 2005).
Therefore, the nature of the dynamo may be quite different in stars and in galaxies
(Schekochihin et al., 2002; Brandenburg and Subramanian, 2005).

1.1.2 Turbulence

The word turbulence is generally associated with random movements and instability.
Turbulent systems tend to have a large Reynolds number, Re > 1. A key concept of
turbulence is the constancy of energy flux at each length scale or wavenumber. This
concept leads directly to the energy spectrum of turbulence.
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1.1.2.1 Energy spectrum

The energy spectrum, E(k,t), represents the amount of energy at each wavenumber. The
wavenumber, k, defines the k-space of the velocity Fourier transformation:

U :L Leik“um S¢
(k,t) (27?)3/0 (x,t)d x. (1.15)

The minimum wavenumber in our domain will then be ky;, = 27/L, where L is the
length scale of the system under consideration (i.e., size of the box for a simulation or the
depth of the convection zone for the Sun). Thus, the smaller the value of k, the bigger
the length scale. The kinetic energy spectrum is then:

(ki) =sp0 3 [atk, 0, (1.16)

k_<|k|<k4

where py is the averaged density, k+ = k+0k/2 defines the interval around the wavenum-
ber k, and 0k = 27 /L is the spectral resolution.

The actual form of the spectrum depends on the type of turbulence in the system, e.g,
if it is isotropic or anisotropic; homogeneous or inhomogeneous. It will peak at some
energy-carrying scale ¢, with a wavenumber k¢ = 27 /l;. Sometimes, the energy spectrum
will be time-dependent, so the energy-carrying scale will change in time, leading to an
energy cascade (Brandenburg and Nordlund, 2011).

Turbulence is commonly associated with vorticity, w = V x u, so it is also useful to
define the kinetic helicity spectrum:

HK(k):% Y@t w-a), (1.17)

ke <|k|<k.

This kinetic helicity spectrum always obeys the realizability condition (Brandenburg and
Nordlund, 2011):
|Hg (k)| < 2kEk (k). (1.18)

In a similar fashion, it is possible to define the magnetic energy spectrum FEj;(k) and
the corresponding magnetic helicity spectrum Hy (k). Kinetic helicity is an important
quantity in the Sun, since it defines a threshold for the onset of an a-effect dynamo, see
Paper II.

1.1.2.2 Turbulent cascade and Kolmogorov turbulence

Kolmogorov theory (Frisch, 1995) describes isotropic homogeneous turbulence. This the-
ory can be applied, for example, to a fluid in a statistically stationary state where we
inject energy at a given wavenumber to maintain turbulence. The energy spectra will
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show a peak at the injection scale, so if the scale is large, the spectra will peak at a
correspondingly small wavenumber.

Nonlinearities in the hydrodynamic equations produce a cascade of energy from large
to small scales, with a slope k3. This slope changes to an exponential decrease at
the scale where the local (k-dependent) Reynolds number becomes about 1, Re(k) =
u(k)/kv = 1, and this defines the dissipative scale kq, where the energy is dissipated into
heat. The range of wavenumbers where energy is transferred without dissipation from
the injection wavenumber, k¢, to the dissipation wavenumber, kq, is called the inertial
range, see Figure 1.2.

Input of energy slope =-5/3
log(E(k)) § ~ at largest scales in inertial range

Energy cascade
through inertial effects

Viscous dissipation
dominates

= Inertial Range -

log(k)

Figure 1.2: Kolmogorov energy spectrum: it peaks at the injection scale, the energy
cascades towards small scales with a —5/3 slope and decreases exponentially at the dis-
sipation scale. Figure extracted from Berselli et al. (2005).

The slope of the cascade can be obtained from dimensional analysis using the following
ansatz for the energy spectrum (e.g. Brandenburg and Nordlund, 2011):
E(k) = Cgek’, (1.19)
where ¢ is the energy flux and C¥ is a constant, called the Kolmogorov constant.

We can obtain the exponents a and b using dimensional analysis:

[E) = L?/7?,
[k] =1/L, (1.20)
e] = L?/72
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Thus, for dimensional compatibility, we get the following equations:

3=2a—-b a=2/3
2=3a }j { b=-5/3 (1.21)

So, the Kolmogorov spectrum is:

E(k) = Cxe??k=3, (1.22)

1.1.2.3 Inverse cascade

The term inverse cascade is a process that refers to a stepwise transfer of energy from
one wavenumber to the next smaller one. This is just the other way around than in
Kolmogorov turbulence. Prominent examples include two-dimensional hydrodynamic
turbulence and three-dimensional hydrodynamic turbulence with helicity. An example is
the generation of large-scale magnetic fields from a small scale one. Figure 1.3 shows an
example of this type of energy transfer. In Figure 1.3a case, we drive the turbulence at a
high wavenumber (small scale, k¢/kynin = 30) and the energy is transported towards larger
scales. The change in the spectrum is more evident in Figure 1.3b, where the temporal
evolution of the magnetic spectrum shows how the energy increases towards the big scales
in the simulation, keeping the same turbulent cascade towards the dissipation scale.

1073 ‘ forcing ‘

1074}~ NEMPI: Ey(k) A
box wave—
number

2
eq

(k) ky/B

2
M

E

: 1 10 100
k/k, k,H,

(a) This figure shows the energy and he- (b) Evolution of the spectra of B, at differ-

licity spectra, both kinetic and magnetic. ¢ times, ranging from t1/ Hg ~ 0.2 (blue

Here we can see the energy peak at the g;)iq Jine), 0.5 (dotted line), 1 (dashed line),
injection scale, the decay towards the dis- ;4 2.7 (red dot-dashed line). We can see
sipati'on range ar}d the trans{:'er of energy 1,4y magnetic energy is transported towards
(specially magnetic) towards big scales. Ex- bigger scales in this MHD simulation. Ex-

tracted from Paper II tracted from Brandenburg et al. (2014).

Figure 1.3: Inverse cascade: in this case energy is injected at small scales and cascades
towards big ones. Normally, one can find this kind of cascade in the case of small-scale
helical turbulence that excites a large scale instability, like the dynamo instability.



1.1. FUNDAMENTAL EQUATIONS 9

1.1.2.4 Driven turbulence

In any given system, turbulence can be driven either by an instability or by explicit
stirring. For example, in the outer layers of the Sun, turbulence is driven by convection,
an instability of the entropy of the system. But in simulations it is convenient to emulate
this turbulence with explicit stirring. This allows us to control the type and properties
of the turbulence.

Numerically, solving turbulence is computational very demanding: we have to solve
at the same time many different scales of the system to have a full description of the
turbulence. As discussed above, in astrophysical systems the Reynolds number is usually
huge, up to Re ~ 10 in the solar interior. Since the length of the inertial range scales
with the Reynolds number as kq/k¢ ~ Re®/4, this length of scales is also huge. The hope
is often that the physics of interest happens at scales far from the dissipation range, so we
can assume that the physics is independent of it. Moreover, we assume that features at
intermediate scales depend on the Reynolds number in a known fashion, which allows us
to cut off the small scales that cannot be resolved. Thus, we are normally not interested
in the full inertial range, but as soon as our physics happens within the resolved scales,
we can solve just the scales of interest.

Chapter 2 describes in more detail how different kinds of simulations treat turbulence.
In particular, we consider numerical aspects and the application to the mean-field concept
and direct numerical simulations.

1.1.3 Mean-Field equations

The mean-field approach, also known as the Reynolds-averaged Navier-Stokes equations,
treats turbulent systems by writing all the quantities (such as F') as averages (F) and
fluctuations f, without making any assumption about their relative strengths:

F=F+f, (1.23)

where I is a Reynolds average that must satisfy the Reynolds rules (Krause and Raedler,
1980):

[=0, (1.24)

F=T, (1.25)
F+H=F+H, (1.26)
FH=TFH=FH, (1.27)
FH =0. (1.28)
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1.1.3.1 Mean Field MHD equations

We now write the velocity and magnetic field in the MHD equations as sums of mean
values and fluctuations:

U=U +u,

_ (1.29)
B=B+b,

assuming that the mean values satisfy exactly or approximately the Reynolds rules. Now,
the MHD equations are averaged and written as:

the continuity equation:

Dp —
—=—pV-U 1.30
the momentum equation:
DU _
— =-Vnp+g+7F, (1.31)
Dt
the induction equation:
OB o _
— =V x (U x B+ & —nud). (1.32)

ot

Most of the computational approaches , e.g. the so-called implicit large eddy simulations
(ILES), ignore the terms F and €. We see however that these terms can lead to important
effects (see Chapter 2 for more on the computational approach).

From £ in the induction equation: dynamo instability. The term & in the mean-
field induction equation, Equation (1.32), is the mean electromotive force:

E=uxb, (1.33)

which correlates the velocity and magnetic field fluctuations. The « effect refers to the
possibility that this correlation has a component parallel to the mean magnetic field, i.e.,
£ = aB + ..., where the dots refer other terms. This can lead to an amplification of the
mean magnetic field, e.g. Moffatt (1978).

From F in the momentum equation: negative effective magnetic pressure
instability (NEMPI). Just like in the induction equation, the nonlinear terms in the

momentum equation lead to small-scale correlations of the form F; = —Vjﬂgj, where
Hzfj = Uy — % + (L-jﬁ is the stress tensor resulting from the fluctuating velocity and

magnetic fields. One of the contributions to F has to do with turbulent viscosity and
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depends just on the mean flow and is denoted by Fk, while the - other contribution
depends quadratically on the mean magnetic field and is denoted by Fk. Further details
will be described in Chapter 3.

1.2 Energy transport

The basic mechanisms for transporting the energy generated at the Sun’s core to the
surface are radiation, convection and conduction (see, e.g Carroll and Ostlie, 1996). Ra-
diation transports energy via photons, which are absorbed and re-emitted randomly,
thus its efficiency depends strongly on the opacity*. Convection transports energy via
the motion of buoyant hot mass elements outward and cold elements inward. Conduc-
tion transports energy via collisions between particles such as electrons. Generally this
transport mechanism is not important, except in the corona.

The mechanism that will dominate the energy transport will depend on the conditions of
the gas. In the Sun the energy is transported via radiation in the interior out to 0.7R, via
convection from this point up to the surface, and via conduction in the corona, although
most of the energy is radiated away from the photosphere. Magnetic fields also transport
energy, and this is one of the important mechanisms of heating the corona.

4Opacity is defined as the cross section for absorbing photons of wavelength A per gram of stellar
material, i.e., the bigger it is, the more difficult it is for the photons to diffuse. Opacity is a function of
the composition, density and temperature of the gas.






MHD simulations

“1. A robot may not injure a human being, or,
through inaction, allow a human being to come
to harm.
2. A robot must obey the orders given it by
human beings except where such orders would
conflict with the First Law.
3. A robot must protect its own existence as
long as such protection does not conflict with
the First or Second Laws.”

Isaac Asimov

In the present work we are trying to explain certain aspects of solar physics developing a
new theory and parametrizations in the MHD equations. We use numerical simulations
to test this theory and check whether we get meaningful results. On the one hand,
numerical simulations have proven to be an essential tool in nowadays physics, since
analytic solutions often restrict the physics in unacceptable ways. But on the other hand,
we have to keep in mind the nature and limitations of our simulations. Therefore it is
crucial to develop numerical simulations that are able to test those analytic theories. This
chapter describes briefly the different kinds of simulations we use. Also the computational
code and some of the basic setup are discussed.

2.1 DNS and MFS

The finite machine power and its discrete nature forces the simulations to obey certain
constraints and limitations. There are numerous ways to solve the equations on machines
and normally each problem requires a deep knowledge to be translated into computers.
In MHD, we do this translation, generally through Direct Numerical Simulations (DNS),
Mean Field Simulations (MFS) and/or Large Eddy Simulations (LES). Here we will
describe just the first two kinds of simulations, DNS and MFS, since those are the ones
used in this thesis.

DNS provide a solution to the hydromagnetic equations as stated for describing the
Sun under certain conditions (we normally add or neglect terms depending on the specific
problem, like introducing radiative transfer just in atmospheric problems, not deep in the

13
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convection zone). DNS can only be used in parameter regime not applicable to the Sun
(too small values of Re and Reyy, and too large Pry,). MFS, on the other hand, allow
us to extend the regime of applicability provided we can establish sufficient faith in its
accuracy. It is therefore important to develop both approaches and perform comparisons
wherever possible.

2.1.1 DNS

One of the major problems of solving the MHD equations in a high-Reynolds-number
regime is the range of different scales: from small-scale features to global scales. In the
case of the Sun, the spatial scale range from the size of the entire Sun (mean radius of
700 Mm) to the small granules at the surface (of 1 — 3 Mm). The time scale ranges
from the solar cycle (around 22 years) to the turnover time scale of the granules (around
5 minutes). The dissipative time scale is shorter still. Direct numerical simulations (DNS)
solve the full MHD equations on all scales — from the scale of the system down to the
viscous dissipation scale. Here one does not assume any model for turbulence, so its full
spatial and temporal range must be solved. We can estimate the spatial and temporal
resolution needed to perform such a simulation, and will find that the computational cost
is very high.

Solving problems with computers requires discretization in space, usually with a mesh,
and in time, with a finite time step. We will now estimate the computational resolution
of both scales.

The strength of turbulence is characterized by the Reynolds number (see Section 1.1.2)
and in DNS we are solving the full range of scales, down to the Kolmogorov dissipa-
tive scale. Therefore, the resolution needed will scale with the Reynolds number in the
following way: the Kolmogorov scale (k is:

lx = (V3 /), (2.1)

where v is the kinematic viscosity and e is the rate of kinetic energy dissipation. To
resolve this scale, the increment Ax of the mesh must be smaller than:

The number N of points in the mesh must obey:
NAz > L, (2.3)

where L is the integral scale (the biggest scale in the domain).

On the other hand, we can approximate the rate of kinetic energy dissipation as:

e~ud /L, (2.4)

rms
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where ;s is the root mean square (rms) of the velocity. Taking into account the defini-
tion of the Reynolds number, we find that the number of mesh points N3 required scales
as:

N3 > ReY* = Re*®. (2.5)

We can also make some estimates of the required temporal resolution. The time step
At must be chosen small enough not to lose track of the fluid particles. In fact, when
we solve partial differential equations using a finite differences method, we must satisfy
the Courant-Friedrich-Lewy condition (CFL condition, Courant et al., 1967) for a stable
scheme. This condition defines the Courant number:
uAt

C =7 < Cuas, (2.6)
where u is the velocity. Since there are also sound waves and Alfvén waves, the time step
is controlled by u = max(u? + 2 + v%4)"/2. Cpax depends on the discretization method.
Cmax = 0.9 in the third order Runge-Kutta scheme used in the PENcCIL CODE. The
turbulence time scale T is:

L
= 2.7
T (27)
so the time step must typically be less than:
.

Combining both scales, it turns out that the number of operations scales as Re3. So we
have computationally an upper limit on the Reynolds number, and it becomes impossible
to reach solar interior conditions, where the Reynolds number is of the order of Re ~
10'2...10'3. Due to intrinsic limitation on memory and CPU capacity, we cannot perform
DNS on the full range of scales, so we limit the resolution of our simulations, trying to
cover the physics of interest.

2.1.2 MFS

Mean field simulations (MFS) are an averaged version of the original equations. All linear
terms translate trivially into averaged terms, but for all nonlinear terms one has at least
one extra term that captures the correlations between fluctuations. A famous example
is the « effect in dynamo theory. Turbulent viscosity and turbulent magnetic diffusivity
are other such terms.

In principle there can be a large amount of extra terms, but most of the time they do
not change the character of the solution. In the case of turbulent viscosity and turbulent
magnetic diffusivity, turbulence just enhances the micro-physical values of viscosity and
magnetic diffusivity. In other cases, extra terms may be too small to affect the nature of
the system. The « effect is obviously an exception in that it produces a linear instability
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that leads to the growth of a large-scale magnetic field until this growth is limited by
other new nonlinear effects.

The subject of this thesis is another mean-field effect that also leads to an instability,
the negative effective magnetic pressure instability (NEMPI), but in this case the cause
it is not found in the mean-field induction equation, but in the mean-field momentum
equation. The nature of this instability is the concentration of magnetic flux and is
therefore potentially relevant to sunspot formation.

2.2 Pencil Code

All the simulations included in this thesis are performed with the PENCIL CODE. One
of the side projects I have been involved in is the development of the new web-page
of the code http://pencil-code.nordita.org/, a quick guide for beginners and some
additions and modifications to the code itself.

The PENCIL CODEis an open source project that was initiated by Brandenburg and
Dobler (2002) during a one-month Summer School. In its core, it is a framework for
solving partial differential equations in 3D, 2D, 1D, and even in 0D, using either a laptop
as well as a supercomputer with up to tens of thousands of processors. The code is
currently hosted by Google Code under the URL Pencil-Code.GoogleCode.com. There
are now over 22,000 revisions of the code, which have been done by over 90 people during
various stages. The integrity of the code is monitored automatically by nightly tests
running some 60 samples of particular applications.

Basically, the code solves the equations using high-order explicit finite differences for
the first and second derivatives, i.e. the quantity is first discretized and its derivative is
computed using high-order finite differences. For a sixth order case, the first and second
derivatives need the value of the function in the six surrounding points:

fi = (=fi—s +9fica —45f;i_1 + 45 fiy1 — Yfiva + firs)/(60Az), (2.9)

= (2fios — 27fi2 + 270fi 1 — 490f; + 270 fi11 — 27 fiy2 + 2fiys) /(180A27%),  (2.10)

Thus we need to define ghost zones on the boundaries with the proper values of the
variables. Also, the code uses a pencil decomposition scheme to improve cache-efficiency:
the equations are solved along pencils in the yz-plane. This formulation minimizes the
required memory of auxiliary and derived variables, since they are defined just on one
pencil. The code is highly modular, which implies large flexibility. The magnetic field
is implemented using the magnetic vector potential A instead of the magnetic field B
itself. This way the divergence-free condition is always fulfilled.

Most of the applications are in, but not limited to, astrophysics. In fact, given the highly
modular structure of the code, it is ideally suited for adding new equations, new terms,
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ete, without affecting the working of the other users who want to stay clear of particular
developments that are useful only to a subgroup of people. One of these developments
includes the treatment of mean-field terms. With this in place, it is easy to do both DNS
and MFS of the same problem and compare the results of these two kind of simulations.
This will be of crucial importance for the rest of this thesis (Paper II; Paper III). Of
course, the success of MF'S hinges on the correctness of the parameterizations used. But
even for that there is a tool in the code called the test-field method to compute mean-field
coefficients (used in Jabbari et al., 2014). This technique is well developed for the terms
in the induction equation, but it is not so well developed for parameterizations in the
momentum equation. Nevertheless, even in that case it is possible to compute mean-field
coefficients using more primitive methods that will be explained below in Section 3.3.

2.3 Simulation setup

All the simulations included in this thesis are Cartesian boxes in 2D or 3D. The specific
physical conditions, like density stratification or imposed magnetic field, depend on the
problem we want to study, but they share some basic initial setup.

The initial physical conditions of the simulations may have a big impact on the final
result and the solution to the actual problem, so they must be chosen carefully. Not all
those conditions have the same impact on the final result. Ideally, the problem should be
independent of the boundary conditions, but the initial rotation rate, if any, will change
the problem drastically.

2.3.1 Boundary conditions

Ideally, we would like to be able to solve the full physical system on the computer, but
generally this is impractical and not really useful. We are limited by the computer power
and our specific problem might be well localized and almost independent of the whole
system. If we are studying the convection zone in the Sun, we are not interested to resolve
the radiative atmosphere or the core. In this case, boundary conditions become a crucial
part of the problem. In the previous case, we can approximate the radiative interior
and surface by a radiative boundary layer, and solve the problem within it. Obviously,
boundary conditions are problem-dependent and must be meaningful.

Numerically, the need for boundary conditions comes from the computation of deriva-
tives. Those computations require the value of the variables in the adjacent points, so we
need to fill these “ghost zones” with the appropriate values. In practice, in our simula-
tions this requires also a way of filling the ghost zones for the density, even though there
is no boundary condition for density. One could do this using a one-side finite difference
formula (called 1s in the PENCIL CODE), but often a hydrostatic condition, hs, or an
extrapolating condition, a2, is numerically better behaved.
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MHD simulations will require boundary conditions for the velocity w, vector potential
A, and entropy s or temperature 7. In our simulations, we are not solving the entropy
or temperature equations, so we need to set boundary conditions just for the velocity
and the magnetic field. We have chosen small domains near the top of the convective
layer, so we impose periodic boundary conditions in the horizontal directions (typically
x and y). The vertical boundary conditions are different for velocity and magnetic field.
We will use stress-free boundary conditions for the velocity and either perfect conductor
or vertical field conditions for the magnetic field in the top and bottom layers. We can
summarize these conditions as follows (Pétrélis et al., 2003):

Stress-free boundary conditions (for the velocity):

We assume that the flow is enclosed within the domain. Therefore, the top and bottom
layers act as a plane of reflection. In this case, the tangential components of the velocity
obey the stress-free boundary conditions:

V.U, =V,U,=U,=0. (2.11)

Perfect conductor (for a horizontal magnetic field):

If we assume that the boundary is a perfect conductor, then the magnetic field is
frozen at this layer. In this case, V - B = 0, which implies the continuity of the normal
component of the magnetic field at the interface:

A, =A,=V.A.=0. (2.12)

This perfect conductor boundary condition means that there is no potential difference in
the boundary. In the PENCIL CODE we use the Weyl gauge for the vector potential:

dA
— =—-F 2.13
dt Y ( )

where E = nuoJ — U x B is the electric field, so this condition implies:
E,=E,=B.=0. (2.14)

We use this boundary condition especially in the cases of an horizontally imposed initial
field.

Vertical field condition (for a vertical initial imposed magnetic field):

In the cases where we impose a vertical initial field, we set the tangential components
of the magnetic field on the boundaries to zero, i.e. B, = By, = 0. In this case, we apply
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a condition similar of that of the velocity:
V.A, =V, A=A, =0. (2.15)

This condition approximates the conditions of a vacuum outside, although the correct
vacuum condition is more complicated and would involve solving a potential problem in
the outer space.

2.3.2 Non-dimensional numbers

The simulations are controlled by a set of non-dimensional numbers describing their
physical conditions, like the turbulence we have in the system, the energy injection scale,
etc. We try to use the same numbers in the different kinds of simulations for a better
comparison of the results. However, the different kinds of simulations (DNS vs MFS)
define different kinds of basic numbers.

Reynolds number: We perform DNS with a Reynolds number of Re = s /vks =~ 36.
This number is much less than the actual Reynolds number in the Sun, but here we
are strongly limited by the simulation. However, we expect to capture the physics
of interest.

Magnetic Reynolds number: Rep; = wpys/nks = 18.
Prandtl number: Pr = v/~ 0.5.

Energy injection scale: k¢/k; = 30. The injection scale defines also the bigger wavenum-
ber we resolve in the system, the smallest scale.

Impose magnetic field strength: We adopt different values for the imposed mag-
netic field. By/Beqo = 0.1, 0.05 in the case with rotation; and By/Beq = 0.1, 0.02, 0.05
for the polytropic stratification (see Chapter 4). In both cases, the magnetic
field is normalized by the equipartition field strength at some depth, generally
Beqo = Beq(z = 0).

The equipartition magnetic field is defined as Beyq = /H0p Urms, and it is a measure
of the kinetic energy available in a turbulent medium. In the Sun, the equipartition
field varies significantly with the depth, due to the strong density stratification and
the change in the convective motions velocity.






Mechanisms to produce flux concentrations

“’E’s not pinin’! ’E’s passed on! This parrot
is no more! He has ceased to be! ’E’s expired
and gone to meet 'is maker! 'E’s a stiff! Bereft
of life, ’e rests in peace! If you hadn’t nailed
'im to the perch ’e¢’d be pushing up the daisies!
"Is metabolic processes are now ’istory! 'E’s off
the twig! 'E’s kicked the bucket, ’e’s shuffled
off ’is mortal coil, run down the curtain and
joined the bleedin’ choir invisibile!! THIS IS
AN EX-PARROT!?”

Monty Python

The formation of magnetic flux concentrations in the Sun, like sunspots, is still an unre-
solved problem in solar physics. Different kinds of observations constrain the problem and
the theories that might explain them. Furthermore, any complete theory must involve
the solar dynamo, another problem still under debate. This chapter describes differ-
ent mechanisms that attempt to produce magnetic flux concentrations and eventually
sunspots. We start with the most used mechanism: the flux-tube model, continue briefly
with another theoretical idea, the turbu-thermomagnetic instability, and finish with the
mechanism central to this thesis, the negative effective magnetic pressure instability.

3.1 Parker instability: Flux-tube model

The most popular theory to explain magnetic flux concentrations links these concentra-
tions and the solar dynamo through flux tubes of magnetic fields that rise throughout
the convection zone due to the Parker instability and emerge at the surface. This section
briefly describes the basic model and the problems of the theory.

3.1.1 Model

The basic idea of the flux-tube model for the formation of sunspots and active regions is
that a tube of strong field concentration can rise through the convection zone and break
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into the photosphere, thus creating a strong bipolar magnetic structure. This idea was
first proposed by Parker in 1955 (Parker, 1955b), and a schematic picture is shown in
Figure 3.1. The initial position of such tubes changed from merely 2 x 10* km below the
surface in first paper of Parker (1955b) to the bottom of the overshoot layer in his later
paper (Parker, 1975). This idea was elaborated in many subsequent papers such as that
of Caligari et al. (1995).

The Sun’s poloidal field is sheared by differential rotation; turning it into a toroidal one,
which is stored at the bottom of the convection zone. When the field becomes strong
enough, magnetic buoyancy dominates and the flux tube rises. Basically, hydrostatic
equilibrium requires that the gas pressure p, outside the tube must be balanced by the
magnetic pressure p,, and gas pressure inside the tube p;: p, = pp + pi, thus p; < p,.
If the temperature inside the tube equals the one outside, then p; < p,, so the tube is
lighter than the surrounding and rises.

The model assumes that initial flux tubes are stored in mechanical equilibrium until
they reach the threshold for the buoyancy instability to kick in and rise. Thus, they need
to be initially stored in the deeper subadiabatically stratified layer, where the field can
be stronger and have net neutral buoyancy.

Figure 3.1: Polar diagram of a flux
tube emergence. The initial equilib-
rium flux tube is located at a lati-
tude of 15° near the lower bound-
ary of the overshoot region and the
initial field strength is 1.2 x 105 G.
(Caligari et al., 1995)

A lot of the initial work in this field has been done using the thin flux tube approxima-
tion (Spruit, 1981). Using this model, Moreno-Insertis (1986) showed that the rise time
of magnetic flux tubes can be as short as 36 days. This is short compared with the period
of the solar cycle. Subsequently, much attention has been paid to the relation between
the magnetic field strength of flux tubes and the tilt angle of the resulting bipolar regions.
This led to the estimate of some 100 — 200 k G to produce tilt angles compatible with the
observed ones (D’Silva and Choudhuri, 1993).

The fine characteristics of the model are still under development. Are the tubes mono-
lithic or spaghetti-like? What is exactly the initial magnetic field needed for the rise?
What is the initial width of the tubes? All these questions require MHD simulations that
try to reproduce solar characteristics. These simulations normally impose a flux tube at
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the bottom of the computational domain and analyze the evolution of such a tube in a
convective medium. Figure 3.2 is an example of such a simulation.

L]
Iel [ke]

Figure 3.2: Evolution of a flux tube shown as a synthetic magnetogram in the photosphere
(left panel) and as a vertical cut (right panel). Figure from Rempel and Cheung (2014)

3.1.2 Problems

Although the flux-tube model is successful in forming magnetic flux concentrations, there
are some problems in its applicability to the Sun. This section summarizes some of these
problems.

Initial field strength: One might expect an initial field strength of the order of the
equipartition field! in the overshoot layer, but it turns out that a field of the order of
10* G (Charbonneau and MacGregor, 1996) is not enough to make the buoyancy force
dominate over the Coriolis and convection forces. Moreover, simulations of Caligari et al.
(1995) show that tubes with initial equipartition field strength are unstable and that
the Coriolis force deflects such tubes, so that they emerge at high latitudes. Also the
emergence tilt of the pair of spots produced by a flux tube, is not in agreement with
Joy’s law ? (Hale et al., 1919) and the flux tube is unable to maintain its identity against

"Which is a measure of the kinetic energy of the turbulent convective flow available

2 Sunspots usually form in pairs or groups. The preceding, western, spot (usually larger and more
concentrated) is normally the first to form. Thus it is referred to as the leading spot. Joy’s law describes
the systematic tilt observed in the alignment of pairs of sunspots with the east-west direction. This tilt
is about 4° with respect to the solar equator with the leading spot nearer to the equator.
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dynamical effects of convective flows.

The minimum initial field strength necessary for the buoyancy force to dominate and
to lead to flux tubes that erupt roughly along radial paths is around 10° G, i.e., 10 times
bigger than the equipartition value in the overshoot region (D’Silva and Choudhuri, 1993).
This sets the threshold for the instability that makes the flux tubes erupt.

Getting and maintaining such a super-equipartition field strength is still a puzzle for
dynamo theorists. Simulations by Guerrero and Képyla (2011) suggest that it is very
hard to get shear-generated magnetic flux tubes to reach the surface without losing too
much of their initial coherence and orientation.

Role of the overshoot layer: The role of the overshoot layer is unclear. Studies of
the magnetic field of fully convective stars, i.e. stars without a radiative interior and
therefore no overshoot region, also show the presence of magnetic fields (Mohanty and
Basri, 2003; Dobler et al., 2006; Johns-Krull, 2007). One is therefore tempted to suggest
that the overshoot layer is not an essential part of the dynamo.

Thickness of the tubes: The thickness of the flux tubes is also important. During
their rise they expand. A simulation that generates tube-like structures from just shear
was presented by Cline et al. (2003). This model would suggest that, on theoretical
grounds, the thickness of flux tubes would be comparable to the thickness of the shear
layer, i.e., the tachocline, which is about 13 Mm (Elliott and Gough, 1999).

Helioseismology: In the work by Zhao et al. (2010), sunspots appear to be shallow,
with converging inflows about a megameter below the surface. This would be compatible
with the picture that sunspots are produced by local surface effects leading to mag-
netic flux concentrations. However, the helioseismic technique used measures just purely
acoustic waves, not magnetosonic ones, which would be the relevant waves in magneti-
cally dominated sunspots. Although helioseismology is currently the only technique that
allows us to dig into the solar interior, it fails in the areas of strong magnetic flux con-
centrations. So any conclusions derived from this technique must be examined carefully.

Dynamo mechanism: Dynamo solutions of convection with a lower shear layer have
been performed by Guerrero and Képylda (2011), who find the production of magnetic
flux tubes, but they are only of equipartition strength. This is simply because the energy
needed to produce both shear and magnetic fields comes ultimately from the convection
itself, and is therefore limited.

Horizontal-velocity maps: Using a technique based on velocity maps and local-
correlation-tracking methods, Getling et al. (2014) computed the horizontal-velocity field
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of a bipolar magnetic structure. These maps show some features hard to match with the
flux-tube model: the scale of the moving structures corresponds to mesogranules, not big
enough for the flux tube expectation, not small enough to fit into the convective scale;
the magnetic field lacks the typical imprint on the velocity map expected from flux tubes
and the vertical velocity shows a different direction inside regions of a given magnetic
polarity.

3.2 Turbu-thermomagnetic instability

For completeness, another potentially important mechanism should be mentioned here:
an instability resulting from the local suppression of turbulent heat flux by magnetic fields
(Kitchatinov and Mazur, 2000). The idea is that a local increase of the magnetic field
suppresses the turbulent heat flux, so the gas cools and the density increases to maintain
pressure equilibrium. This means that the gas contracts, so more magnetic field lines
will be drawn together and, as a result, the magnetic field increases further, leading to
even more heat suppression, etc. Not much work has been done on this since the original
paper by Kitchatinov and Mazur (2000), but preliminary investigations by Matthias
Rheinhardt (personal communication) suggest that this instability exists only because of
the assumption of a radiative boundary condition. Such a boundary condition sets the
turbulent diffusive flux at the top equal to the value of the radiative flux that would occur
if all the energy was removed by radiation at the surface. While such a condition captures
the essence of radiation, it is only an approximation to a more complete treatment that
would involve radiative transfer. So far, there are no successful simulations involving such
a more complete description.

3.3 Negative effective magnetic pressure instability

Another possible mechanisms for a local concentration of magnetic field is the negative
effective magnetic pressure instability (NEMPI), see Kleeorin et al. (1989, 1990); Kleeorin
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and Rogachevskii (1994); Kleeorin et al. (1996); Rogachevskii and Kleeorin (2007). This
mechanism would concentrate the otherwise turbulent distributed magnetic field at the
top of the convection zone. Similarly to the turbu-thermomagnetic instability, the field
can be concentrated by the suppression of turbulent pressure by a weak magnetic field.
In this case the source of free energy would be the small-scale turbulence instead of the
gravity field in the flux tubes theory; see Table 3.1.

The local reduction of turbulent pressure combined with strong stratification (corre-
sponding to small density scale height, H,) can lead to an instability that concentrates
the magnetic field. Basically, the effective magnetic pressure, i.e. combination of mean
magnetic pressure and turbulent pressure, can add a negative contribution to the total
pressure. Since the total pressure (gas + effective magnetic pressure) is assumed to be
constant in the system, the gas pressure must increase to balance the total pressure. This
inequilibrium in the different pressures changes the density and causes a flow movement.
Gas density is increasing, dragging and concentrating the otherwise disperse magnetic
field towards the point where the turbulence is suppressed.

Although NEMPI and the Parker instability are very different in nature, see Table 3.1,
it is also possible that both instabilities operate together somehow in the Sun. For
example, we can imagine a scenario of flux tube formation in the bulk of the convection
zone, where the flux tubes are concentrated locally by NEMPI near the surface.

Table 3.1: Comparison between different aspects of NEMPI and the Parker Instability

NEMPI Parker Instability
Turbulence turbulent non turbulent
Scale sufficiently many eddies small
B stratification continuous stratified B non-uniform and initially

separated flux tubes

Energy source turbulent energy gravitational field
Initial field smooth: Hz' = |[VIn B| small structured: |V In B| large
Density variation H,' = |Vinp| large H,' =|VInp| small
Instability criterion | Hg/H, > 1 Hp/H, < 1

The following subsections describe the mathematical model of the negative effective
magnetic pressure instability, the mean-field parameterization, some results from previous
works, as well as some useful quantities used in the present thesis.

3.3.1 Total pressure

In order to study the mathematical nature of this pressure instability we have to study
the pressure in the system. The total pressure in a turbulent magnetic system is a
combination of the kinetic pressure of the gas, the turbulent pressure and the magnetic
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pressure of the large-scale field.
Ptotal :PK,gas+P‘c+PB- (31)

The combination of magnetic pressure and turbulent pressure is the effective magnetic
pressure:

P =P +Ps. (3.2)

If this effective magnetic pressure becomes negative through the suppression of the turbu-
lent pressure, the gas pressure must compensate this keep to maintain the total pressure
constant. This is the first condition to trigger the instability. We can now study fur-
ther the different pressure terms either by global considerations or using the mean-field
approach.

Global considerations: We can compute the total stress tensor from the momentum

equation:
DU

Dt
The Lorentz force Fy and the Reynolds stresses Fk defines the total stress tensor:

= —AVinp+g+ Fu+ Fx. (3.3)

1
Fu+Fk = —;V'H- (3.4)
In the case of isotropic turbulence, the isotropic part of this tensor, II = d;;11;;, is:
3
H = 51']' (pU,LU] — BlBJ + %dLJBQ) ~ pU2 — B2 + 582 = pU2 + BZ — %Bz . (35)

The energy is approximately conserved in the system, so it is useful to rewrite this
expression as:

3
2 _p2 2p2 _ 172 2 112
pU — B+ DB = pU* + B~ B*, (3.6)

const

Thus, any increase in the magnetic field will reduce the turbulent pressure in the system.

Mean-field considerations: This approach is useful for the study of NEMPI because
it allows us to split the problem into large-scale, mean quantities and fluctuations, or
a turbulent part. Therefore, we can use this approach to parametrize the system and
isolate the essential contributions that trigger the instability.
Using the mean momentum equation:
DU _
o = —2VInp+ g+ Fu+ Fxk, (3.7)

it is possible to compute the magnetic stress tensor from the Lorentz force, Fy and the
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kinetic stress tensor form the Reynolds stresses, F:

Magnetic stress tensor: it is derived from the Lorentz Force, Fy;. The total magnetic
stress tensor from the momentum equation takes the form:

F = (I xB)=—-iV,B*+ (B-V)B = -V, [LB%,, — BiB;] = V,II;, (3.8)

where the subscript f means fluctuating field.

The mean equation counterpart iSI
—=(f) <b2> M (f
‘FDI - —Vj |:T§Z] - <bzb]> - V]II” ( ), (39)

where 077 is the magnetic stress tensor. In the presence of isotropic turbulence, the
magnetic stress tensor is reduced to:

v _ (0% _ ) U A 0 W 6
Hij - _T5ij + <bibj> = __5ij + T(Sij = —g T 5z’j = —T, (3.10)

where W, is the magnetic energy density.

Kinetic stress tensor: In the same fashion, we can compute the kinetic stress ten-
sor from the Reynolds stresses in the momentum equation, and considering also
isotropic turbulence, we get:

(pv?) 2 (pv?) 2
0ij 0;

5 g 0 = 3 Widy. (3.11)

(pvivj) =

Here, Wi is the kinetic energy density.
The total turbulent pressure is then the sum of the kinetic and magnetic contributions:

2 1
Pturb = gWK + gWM (312)

To understand the suppression of total pressure by a mean magnetic field, we note that
an increase in the mean magnetic field usually implies also an increase in the fluctuating
field, i.e., in Wy;. However, as Wy increases, and since Wy + Wy is approximately
constant, we see that the turbulent pressure,

2 1 2 1
wb = =Wk + =Wy = = Wk + Wy —= W)y, 3.13
Dturb 3 K+3 M= g K+ Wnm 3V ( )

~const

decreases with increasing values of Wy:

1
o = W (3.14)
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This idea is at the heart of NEMPI.

Now, using this mean-field approach we can parametrize the system. We have seen
that the turbulent pressure decreases with increasing values of Wy = $(b?). Here (b?)
represents the magnetic fluctuations of the mean magnetic field, thus mathematically will
be related with this mean field through an, a priori, unknown function f(B). From now

on, instead, we will use a proportional function g,(B):
(v*y = f(B)B* = ¢, 3 B? (3.15)

One of the goals of the present thesis is the characterization of this function g, which is
a basic parameter in the definition of the effective magnetic pressure in the system:

2

x|

P = (1 - ¢(B)) (3.16)

DO

Ho

3.3.2 Computation of the effective magnetic pressure.

Basically, the effective magnetic pressure measures the effects of the mean magnetic fields
on the turbulence which is some function of the mean magnetic field B, on the big scales
of the system. Thus, we need to quantify the effects of B on the system pressure. This
effective magnetic pressure is defined in mean-field theory through the function qp(E).
We can compute this function by running two simulations: one without imposed field
and one where the long-scale structures are not developed and another one with a fully
developed instability. Mathematically:

ATL, = p(u2 — ) + 582 — B2) — (B2 — 12,), (3.17)

T

where the subscript 0 refers to the case with By = 0. We then calculate (Brandenburg
et al., 2012a)

g, = —2ATL, /B2, (3.18)

Here, q,(B3) is a function of 3 = B/Be(z). This allows us then to calculate Py =
%( 1 — ¢,)/3?, the normalized effective magnetic pressure.

3.3.3 Parameterization

Following Kemel et al. (2012b), the function ¢,(8) is approximated in an ad-hoc fashion
by:

2

4w(8) = 7 J:ﬁy (3.19)

where 3, and 3, are constants, 3 = B/B,, is the modulus of the normalized mean
magnetic field.
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According to Brandenburg et al. (2012a), the following approximate formulae apply:
B, ~ 1.05Rey;, B.=0.33 (for Rey < 30), (3.20)

and
Bp =~ 0.035, [, =0.23 (for Rey > 60), (3.21)

where Reys = upms/nks is the magnetic Reynolds number. Similar values for f, and
B, have also been confirmed in Paper II as well as various other subsequent papers
(Brandenburg et al., 2014; Jabbari et al., 2014). This will be explained in more detail in
Section 4.1.2.1.



Effects of rotation and variable stratification on
NEMPI

“I had nothing to do, so I started to figure out
the motion of the rotating plate.”

Richard P. Feynman

This chapter focuses on the papers included in this thesis. The first section highlights
the effects of rotation on NEMPI (Paper I; Paper I1) while the second section describes
the effects of changing the type of stratification (Paper III).

4.1 Effects of rotation

We undertake the study of rotation on NEMPI by adding the effects of the Coriolis
force in the MHD equations. We perform both DNS and MFS. To put our results into
perspective, we consider relevant timescales that need to be compared with the rotational
timescale (Paper I; Paper II).

4.1.1 The Model

Since we are interested in quantifying the effects of rotation in the system, we consider
in this section the simplest case of an isothermal stratification. This allows for the
comparison with and the use of previous results (e.g. Brandenburg et al., 2012a; Kemel
et al., 2012b). In this setup we use an isothermal equation of state, so the sound speed c¢g
is constant and the gas pressure is given by p = pc?. We use the MHD equations described
in Chapter 1 and Section 3.3, but we include the Coriolis force in the momentum equation:

aa_ltj =..—2x U (in DNS, Paper II) (4.1)
or _
aa_lt] = ...—2Qx U (in MFS, Paper I). (4.2)

31
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The angular velocity vector €2 is quantified by its scalar amplitude €2 and colatitude 6,

such that
Q=Q(—sinf,0,cos0). (4.3)

In our Cartesian model, the z coordinate corresponds to radius, x to colatitude, and y to
azimuth.

We use the solar angular velocity measurements from helioseismology to see how the
effect of the Coriolis force on the turbulence varies throughout the solar convection zone.
Helioseismology provides the angular velocity versus depth, latitude and time, giving the
characteristic solar differential rotation shown in Figure 4.1 (time averaged). This implies
an angular velocity range in the Sun from around 2.8 x 107%s™! at the equator at a depth
of 0.91R;, to around 2.3 x 107%s7! at 60° latitude and near the surface.

500
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Figure 4.1: Internal rotation of the Sun. Comparison of data from GONG
and MDI. In the right panel, black denotes GONG data, red denotes MDI
data. The rotation profile is the result of the inversion of helioseismological
data. Taken from R. Howe, National Solar Observatory, Tucson; more at
http://nsokp.nso.edu/ (image added 2003-09-12)

It is important to note the drop of angular velocity in the near-surface shear layer
(NSSL). The different angular velocities spanned within this layer have certain surface
manifestations. We measure different velocities using the Doppler effect and when track-
ing surface features. The Doppler technique measures the velocity at the slower surface
layer; whereas sunspots rotate faster, therefore they may be rooted at a faster-rotating
layer deeper down (Howe, 2009).

Instead of using the dimensional angular velocity, it can be useful to express the rota-
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10% : : : ‘ Figure 4.2: Turnover time 7 versus depth
computed from the solar interior model of
Spruit (1974).
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tional dependence in terms of the local turnover time as a position-dependent Coriolis
number, Co. To understand its definition and meaning, we describe first the turnover
time and its depth dependence.

Turnover time 7: The turnover time is a characteristic timescale of the system. Its
value depends on the system scale and the relevant velocities we are interested in.

In a convective medium, the convective turnover time 7. is a dynamical timescale of
a flow parcel of the turbulent eddies moving over a correlation length. It represents
therefore a small-scale characteristic of the system, which depends on the typical velocity
and length scales of the convective eddies:

le 1

e = — & , 4.4
T Ve urmskf ( )

where we have not included a 27 factor in the relation between [. and k¢. In the deeper
layers of the convection zone, the turnover time can range between a week and a month
(Schrijver and Zwaan, 2000).

Figure 4.2 shows the 7 dependence with depth, computed from a solar convection model
of Spruit (1974). It uses mixing length theory and tries to match an empirical model for
the solar atmosphere with an interior model. In the Sun, 7 cannot be measured directly,
it depends strongly on the solar convection model used. For example, Landin et al. (2010)
compares for different models the value of 7 at a distance of one-half the mixing length
above the bottom of the convection zone, for different models and shows that it can vary
by up to 150% due to details in the convection model around 50% due to the inclusion
of rotation and another 70% due to the upper boundary atmosphere chosen (gray or
non-gray).
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Figure 4.3: Coriolis number ver- 10? —10*
sus depth. 7 is computed from 200
the mixing length model of Spruit oo

. 10! i 00° 1103
(1974) (also shown in the figure)

and €2 is computed from a simple
expansion of the form

10°

Q(r,0) = wo(r) —wa(r)Cy* (cos ), 8107

where the CS/ ? is the Gegenbauer \

) 1072 10°
polynomial:
Pi(cosf) 3 103 10
32 )= —3"" — = (5co
> (cos0) sin 0 2 ( €0
and w, (r) are fits to the helioseis- 10" 0.8 I 0.9 10?

mic observations.

In the solar convection zone, we can also define another timescale due to turbulent
resistive processes, which measures the typical time of decay of a magnetic field in the
domain:

1
’fltk%'

This timescale is now associated a large scale characteristic time of the system.

Td

(4.5)

We will see that yet another timescale arises in the study of the effects of rotation on

NEMPI: 1
TNEMPI = 7 (4.6)
)\*0

where Ao = [, ums/ H, represents the theoretical growth rate of structures in the presence
of rotation, and we remind that [, is a non-dimensional parameter of the order of unity
associated with NEMPI (Section 3.3.3). It turns out that NEMPI is suppressed when
202 > A\, (Paper I). Since 7. < A,y < 7, this is an intermediate time scale in the system.

Coriolis number Co: Co is a non-dimensional parameter that measures the relative
importance of rotation and convection:

2Q)
=207. = . 4.
Co Te — (4.7)

Using kf = tms/31; and the parameter Cq = Q/nck?, which is often used in mean-field
dynamo theory, Co can also be expressed as

Co = 6nQ/u? . = 6 (nek1/Ums)*Ca. (4.8)

rms
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In the Sun, Co has a strong radial dependence, varying from 10~% at the surface to 10 at
the bottom of the convection zone.

A radial dependence of Co is shown in Figure 4.3. The values of the Coriolis number are
computed using the model of Figure 4.2 and a simple model for the angular velocity, where
the solar like profile arises from the superposition of contributions from the tachocline, a
small positive differential rotation throughout the convection zone and a sharp negative
contribution in the near surface layer. One should notice here that the angular velocity
throughout the solar interior varies by 30%, whereas the corresponding turnover time
varies by more than four orders of magnitude. This implies that Co will be much more
sensitive to the variation of the turnover time than to the Sun’s differential rotation. In
fact, Figure 4.3 shows that the change in the angular velocity between different latitudes
is unimportant for Co, but it shows a strong similarity with the turnover time profile,
specially if we show it in the same depth units, see the solid line in Figure 4.3.

Mean field parameters: As mean field parameters for Equation (3.19) we primarily
use ¢po = 20 and B, = 0.167, which corresponds to 8, = 0.75.

We computed the actual best-fit values of these parameters in Paper II, and arrived at
the conclusion that they might be not accurate enough, see Sections 4.1.2.1 and 4.2.3.1,
but NEMPI develops even for this set of parameters and their use allows us a direct com-
parison with the results of Kemel et al. (2013b). Moreover the results seem independent
of the set of parameters chosen, see Figure 4.4.

4.1.2 Numerical results
4.1.2.1 Effective magnetic pressure

Using DNS, we can compute directly the effective magnetic pressure, Peg(3), and hence
¢p(B) in the system (see Section 3.3.2.) We have checked that Peg (/) is indeed negative
and independent of Co in the range considered. We also computed the best fit parameters
for the MFS coefficients, which turn out to be 3, = 0.44 and /3, = 0.058, and therefore
gpo = 07, see Figure 1 in Paper II.

However, in Paper I we use a different set of parameters: ¢ = 20 and 3, = 0.167
(corresponding to S, = 0.75), hereafter MFS(i), based on a fit by Kemel et al. (2013b)
and compare with the set g0 = 32 and 3, = 0.058 (corresponding to f, = 0.33), hereafter
MFS(ii), based on the results by Brandenburg et al. (2012a). Despite these different sets of
parameters, the fact that an increase of 3, deepens the minimum of P.gz and increases the
growth rate of the resulting structure (Brandenburg et al., 2014), the effects of rotation
on the growth rate are the same in all the cases, see Figure 4.4. Therefore, we can
conclude that, qualitatively, the response of NEMPI to rotation is independent of the set
of parameters chosen as long as the instability develops.
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Figure 4.4: Dependence of A/A. on 22/, for DNS (red dashed line), compared with
MFS (i) where gy = 20 and /3, = 0.167 (black solid line), and MFS (ii) where ¢,0 = 32
and f, = 0.058 (blue dash-dotted line). In this case no growth was found for Co > 0.03.
In all cases we have By/Beq = 0.05 (Paper II).

4.1.2.2 Co dependence

Surprisingly, we find that, both in DNS and MFS, NEMPI gets strongly suppressed even
with slow rotation at values of Co around 0.014, see Figure 4.4. Applied to the Sun with
Q2 ~2x107%s7!, we find for the corresponding correlation time 7 = 2h. This suggests
that NEMPI can explain the generation of structures only if they are confined to the
uppermost layers. Basically, Figures 4.3 and 4.4 constrain the depth where NEMPI can
develop. In the case of the Sun, this corresponds to the NSSL.

The suppression of NEMPI is similar in both types of simulations and for different
sets of MF'S parameters until a Coriolis number of about 0.13, where we see a recovering
in the growth rate for the DNS. First of all, at this point it is important to note the
high degree of predictive power of the much less expensive MF'S, provided we include the
physics relevant to the problem. Secondly, we show that testing the results with DNS
is important, since we can be missing some of the crucial aspects of the problem. In
this case, we link the recovery of the instability for large enough Co to the onset of the
dynamo, as we discuss further in Section 4.1.2.6.

We emphasize that the value of the turnover time and the NEMPI structures developed
in the simulations are very sensitive to the value of Co. Therefore, they have a strong
dependence on the size of the turbulent eddies, see Equation (4.4).
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4.1.2.3 6 dependence

The study of the # dependence was done in MFS. The colatitude is included in the
definition of the angular velocity vector, and since gravity and rotation are important,
the dot product g - £ might change the growth rate of the instability according to the

value of 6:
Q =Q(—sind,0,cosb)

g = (0707_9)7

However, g - €2 changes sign about the equator, but the growth rate is independent of the
hemisphere. Therefore, the growth rate depends only on (g - £2)?. A detailed calculation
presented in Paper I shows that the growth rate increases when (g - 2)? increases. Thus,
a larger growth rate is expected at the poles and NEMPI is strongly suppressed at the
equator, see Figure 4.5, where we perform MFS for different values of colatitude, 6.

} Q-g=—¢Qcosh. (4.9)

We note a similar behaviour between 2D and 3D MF'S simulations, although the growth
rate in the 2D case is about twice smaller than in the 3D counterpart. This is true even in
the absence of rotation. Thus, this difference in the growth rate represents a 3D feature
on the solution, as we can see in the next section.

0.20F ' ' ' ' ' 1 Figure 4.5: Dependence of A/\.
° 0.15 ; 20/)\*0=027 1 on 9 fOI' two values Of 29/)\*0 ln
< - 2-D (upper panel) and compari-
~ 0'10;_ _____ son of 2-D and 3-D cases (lower
< 005F panel) (MFS, paper I).
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4.1.2.4 Spatial structure

Figures 4.6 and 4.7 show the spatial structure of the simulations in the MFS and DNS.
The MFS show a dependence on y (expanding to the azimuthal direction) that changes
with the colatitude. The structure shifts by 90° at the south pole, see Figure 4.6. By
contrast, this dependence is totally absent in the DNS, see Figure 4.7, right-most panel.
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Figure 4.6: Visualization of B, on the periphery of the computational domain during
the nonlinear stage of the instability for # = 0° (corresponding to the north pole) and
Co = 0.03 (left figure) and Co = —0.03 (Paper I).
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Figure 4.7: Visualization of B, on the periphery of the computational domain for § = 0°
and Co = 0.03 in MFS (i) (gpo = 20, B, = 0.167)(left figure), MFS(ii) (g0 = 32,
Bp = 0.058) (center) and DNS (right figure) (Paper II).

Also, the DNS structures are much more confined to the uppermost layers with increas-
ing Coriolis number. These differences in the structures might be related to the neglect
of additional mean-field transport coefficients (gs, ¢q, ¢a), although they were previously
shown to have a very small contribution (Brandenburg et al., 2012a; Képylé et al., 2012).
In these simulations, we are just including ¢, 7, and 14 in the mean-field equations.
However, the agreement between DNS and MFS is still remarkably good.

4.1.2.5 Dynamics

Dynamically, we find the typical “potato-sack” structure of previous papers (Brandenburg
et al., 2011, 2012a; Kemel et al., 2012b,a): the magnetic field gets concentrated and sinks,
since the effective magnetic pressure is negative so magnetic structures are negatively
buoyant and sink. However, this effect is less prominent in DNS as the Coriolis number
increases.

Besides, in MFS we found two structures in the computational domain that begin to
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Figure 4.8: Visualization of B, on the periphery of the computational domain for four
times (normalized in terms of 7},) during the nonlinear stage of the instability for § = 90°
(corresponding to the equator) and Co = 0.013, corresponding to 22/ Ao =~ 0.5 (Paper I).

oscillate in the saturated regime. At angles # # 0, we note a slow migration of the
magnetic pattern to the left and for § = 90° (equator) the magnetic pattern shows a
prograde motion, see Figure 4.8.

4.1.2.6 Interaction with the dynamo

Since we have rotation and stratification in the simulation, we expect to find kinetic
helicity and the onset of dynamo for high enough Coriolis number.

Actually, in these MFS a dynamo is not possible, since we have not included the
necessary ingredients, but in DNS we note the recovery of the growth rate at around
Co = 0.13 and we argue that this is a growth rate corresponding to the coupled system
consisting of NEMPI-dynamo instability (Jabbari et al., 2014).

Indeed, in our system the threshold of the dynamo instability is reached at the largest
Coriolis number, see Figure 4.9. However, it is important to note that the recovery of
the growth starts before a dynamo without NEMPI could be possible.

This idea is further studied in Jabbari et al. (2014), where we confirm the onset of a
dynamo with a Beltrami-like magnetic field and relax the constraints on the maximum
value of Co where NEMPI can still form till Co ~ 0.1, which corresponds to 7 = 5 h.

4.2 Effects of stratification

Despite the relative success of previous NEMPI studies in forming magnetic flux concen-
trations, in order to apply this theory to the Sun, we need to implement more realistic
setups. For this purpose, we study the effects of a polytropic stratification on NEMPI
(Paper III).

The density scale height, H,, is constant in an isothermal stratification, i.e., the density
variation is uniformly distributed over the entire domain depth. On the other hand, in
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Figure 4.9: Relative kinetic helicity spectrum as a function of Gr Co for Gr = 0.03 with
Co = 0.03, 0.06, 0.13, 0.49, and 0.66 (red and blue symbols) compared with results from
earlier simulations of Brandenburg et al. (2012b) for Gr = 0.16 (small dots connected by
a dotted line). The solid line corresponds to ¢, = 2Gr Co. The two horizontal dash-dotted
lines indicate the values of €f = ky/k¢ for which dynamo action is possible for k¢/ky = 5
and 30. Runs without an imposed field (blue filled symbols) demonstrate dynamo action
in two cases. The blue open symbol denotes a case where the dynamo is close to marginal
(Paper II).

a polytropic stratification, H, has a minimum in the upper layers, so the stratification is
very high in these layers and decreases sharply towards the bottom of the domain.

Stratification is essential in triggering NEMPI, since a fundamental requirement is
that the density scale height must be much smaller than the scale of the system, L
(H, < L). Therefore, including a polytropic stratification might have dramatic impacts
on the instability development.

Previous MFS studies have already shown already the effects of an isentropic stratifi-
cation, with an isothermal equation of state with constant sound speed ¢, (Brandenburg
et al., 2010). However, while their DNS studies showed signs of negative contributions to
the effective magnetic pressure, they could not find the onset of the instability, probably
because of insufficient scale separation. In turbulent convection, this is a parameter that
is very difficult to control with turbulent convection (Képyla et al., 2012).



4.2. EFFECTS OF STRATIFICATION 41

4.2.1 Brief notes about thermodynamics

We would like to remind the reader of some basic thermodynamic' equations relevant for
the further discussion in this chapter. The equations and definitions are adapted from
Chandrasekhar (1939) and Fitzpatrick (2006).

4.2.1.1 Ideal gas equation of state

An ideal gas is the simplest theoretical approximation to a real gas, governed by the
following equation of state:”
PV =nRT, (4.10)

where P is the pressure, V is the volume, n is the amount of substance (measured in
moles), R is the gas constant, and T is the temperature.

However, Equation (4.10) is not well defined in the case of the Sun. How can we define
the volume there? Volume of the entire Sun? Of the convection zone? So, in general,
instead of expressing the ideal gas equation of state in units of volume, we use density:

Y (4.11)
7

where p is the molar mass.

4.2.1.2 Gas laws

We can consider the expansion of the ideal gas under constant temperature (isothermal
expansion) or without exchange of heat (adiabatic expansion).

Isothermal expansion: If the temperature of the gas is kept constant during the
expansion, from the ideal gas equation of state, we can derive the isothermal gas law:

PV = const. (4.12)

Adiabatic expansion: If the system is insulated, i.e., there is no flow of energy in or
out of the system, the process takes place under constant heat conditions and we can
derive the adiabatic gas law:

PV7 = constant . (4.13)

! How heating and temperature affect physical processes.
2 An equation of state is a relation between thermodynamical variables, such as pressure, temperature,
volume or density; assuming that there are no independent quantities. In general: f(p,V,T) =0
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Here, v = ¢,/c, is the ratio of specifics heats at constant pressure, ¢,, and constant
volume, ¢,. It is also useful to write this expression in terms of pressure and temperature:

P'"7T7 = constant . (4.14)

4.2.1.3 Stratification of the atmosphere

The equation of hydrostatic equilibrium for an atmosphere describes how pressure (or
density) changes with height in the absence of net movement of the gas:

dp _

— —pg. 4.1
= pg (4.15)

We can combine this equation with the ideal gas equation of state (Equation (4.10)), and
write this variation of pressure with height in the form:
dp

= —%dz (4.16)

Isothermal atmosphere: In this case, we assume that the temperature is uniform,
then the solution of Equation (4.15) is simply:

z
P = po exp (——) (4.17)
20
where zy = &L is the isothermal scale height of the atmosphere. Thus the pressure varies

exponentially with height. Since the density is proportional to the pressure p < p/T, its
variation is also exponential with height:

20

p = poexp (—ﬁ) . (4.18)

Adiabatic atmosphere (polytropic stratification): Now, the specific heat is uni-
form throughout the atmosphere. Since P'™7T7 = const, we can use the hydrostatic
equilibrium equation (Equation (4.16)), to see that the temperature is proportional to

the height:

dP ~ dalr ~v—1pg

P ~v-1 T v R ( )
Therefore, the variation of temperature is proportional to the height, T" o< z. Using the
adiabatic gas law (Equation (4.14)), we also see that the pressure and the density are
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proportional to the temperature:

P o T" (4.20)
p o< Tm (4.21)

Where n = 1/(y—1). Now, the dependence of the density and pressure with height is very
different than in the isothermal case. Instead of the isothermal exponential dependence,
we have now a power law. So in the cases where z — 0, the temperature will drop to
zero, and thus the density and the pressure. This atmosphere presents a sharp boundary
for the thermodynamic variables, as can be seen in Figure 4.10.

In terms of the speed of the process, an isothermal change must be slow to keep the
temperature constant and an adiabatic process must be very rapid to avoid flows of
energy.

4.2.2 The model of polytropic stratification

We will now solve the MHD equations in the case of an isentropic atmosphere (the
entropy is held constant, so we do not need to solve the entropy equation) and the two
different stratifications described in the previous section. The solar convection zone is
nearly isentropic, mixing any entropy inhomogeneities, so for the purpose of studying the
effects of different stratification on NEMPI, we consider this a good approximation. Also,
this simplification was already used in the model described in Brandenburg et al. (2010),
where the DNS uses isothermal stratification and the MFS and adiabatic one.

In the previous section we showed that the isothermal and adiabatic atmospheres have
a very different change of density with height. In particular, there is a priori no obvi-
ous way of going from an isothermal atmosphere to an adiabatic one in a continuous
fashion. Therefore, instead of these usual stratification equations, we will use a general-
ized exponential function that allows us to show the variation in density of the different
atmospheres in a continuous way, see Figure 4.11.

Using the generalized “g-exponential”, the density stratification is now given by:

-feon()] () e

and the density scale height is:

Hy(=) = Hy — (v — 1)z = Hy — 2/n, (4.23)

allowing the change between different stratification to be a continuous one. Here H
is the density scale height at some reference position, which we chose to be z = 0, so
H, = H,(z = 0). In an isentropic stratification, the density scale height is give by
H,=c%/g.

p S
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lations for different values of v using p oc ’

(200 — 2)" With n = 1/(y — 1). Figure 4.11: p and H, from poly-
tropes computed as g-exponentials
(Paper III).

Actually, with this model we are choosing an arbitrary z = 0, such that the scale
height is the same at this reference point, but the top of the polytropic layer shifts with
different polytropic index, i.e. zo = nH, = Hy /(7 —1). Whereas in the usual model,
Zoo 18 chosen such that p = pg and ¢, = cy9 at 2 = 2, which implies 2o, = 2z in the
isothermal case, while zo, = z.f + (m + 1)7(% 3 in the polytropic one. Now, the total
density contrast is similar in the different cases chosen, but the vertical density gradient
increases in the upper layers with the increase of ~.

4.2.3 Numerical results

We will solve the MHD equations for different kinds of stratification (depending on the
parameter v) in DNS and MFS. We will also use a horizontal and a vertical initially
imposed field By.

4.2.3.1 Effective magnetic pressure

Also in this case we use DNS to compute the value of the effective magnetic pressure and
MFS parameters. We study different values of the polytropic index and the two types of
imposed field. The results are plotted in Figures 4.12 and 4.13.

Similar to Paper II, the values of the mean-field parameters, ¢,,5, and 3., depend also
on the stratification and on the initially imposed field. P.g becomes much more negative
for a vertical field and for v = 5/3, where ¢, is smaller and £, larger. On the other hand,
the variation of (3, is small in all cases, so we expect that the growth rate is similar in the
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Figure 4.12: Effective magnetic pressure obtained
from DNS in a polytropic layer with different ~
for horizontal (H, red curves) and vertical (V, blue
curves) mean magnetic fields (Paper I11)

different cases. To address this different range of parameters, we will solve the MFS for

two models, chosen such as to represent a strong (large (3,) and weak (small 5,) effect of
NEMPI:

e Model I (weak): 5, = 0.33, ¢, = 32 and 3, = 0.058,
e Model II (strong): f, = 0.63, ¢, =9 and 5, = 0.021.

As we will see, both models result in NEMPI and the overall results are similar, even
though ¢, and 3, appear to be rather different.

4.2.3.2 Structures

The DNS and MF'S show the growth of structures both for horizontal and vertical initially
imposed fields and for different polytropic indexes. While in the case of horizontal field
the structures sink after saturation (referred to as “potato-sack effect” owing to rapid
downward sinking of gas), in the case of vertical fields these structures no longer sink
and are therefore able to lead to a greater growth rate. As we see in Figure 4.14, nice
spot-like structures can be produced near the surface. The magnetic field lines tend to
concentrate at the surface and broaden out in deeper layers.

The stratification decreases with depth faster in the case of a polytropic atmosphere in
such a way that the instability cannot operate any further. This is because the stratifica-
tion becomes so small that NEMPI cannot be excited. Therefore, in the case of polytropic
stratification, the structures are more confined to the upper layers of the simulations. We
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Figure 4.14: Cuts of B,/Bey(2) in (a) the zy plane at the top boundary (z/H, = 1.2)
and (b) the zz plane through the middle of the spot at y = 0 for v = 5/3 and S, = 0.05.
In the zz cut, we also show magnetic field lines and flow vectors obtained by numerically
averaging in azimuth around the spot axis (Paper I1I).

can see this by comparing the DNS results shown in Figure 3 of Brandenburg et al. (2013)
with Figure 4.14: in our case the depth of the structure is less than 3H ,5, whereas in the
former one it extends over more than 4H .

4.2.3.3 Dynamics

Two-dimensional MFS have displayed tremendous surface dynamics of the generated
magnetic structures. Generally, and in the case of polytropic stratification, smaller struc-
tures tend to merge into bigger ones, as can be seen in Figure 4.15. The bigger the
structure, the stronger are the downflows generated in the center of the structure.

The instability is excited at some depth near the surface, and starts sucking material.
This triggers an overall movement of the flow towards the point of decreased magnetic
pressure. This flow drags the magnetic field lines with it and increase the gas pressure,
generating the final flux concentration. The movement can be clearly seen in Figure 4.15,
where the vector field traces velocities.

Although the different setups vary, the specific properties of the final flux concentra-
tion, such as horizontal extend, maximum value of the magnetic field and depth extension
remain similar in all cases. We confirm that the instability survive the change of strati-
fication, imposed field direction and even the addition of rotation. It is clear that all the
simulation results shown here display strong field concentrations just at the surface of
the computational domain. In reality, the magnetic fields continue into the gas above the
photosphere, which is ignored in the present simulations. This has now been included
in subsequent simulations together with J. Warnecke and collaborators (Warnecke et al.,
2013), which is however beyond the scope of the present thesis.
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Figure 4.15: Merging of two smaller flux concentrations into a larger one, as shown by
B./Beq(z) in the xz plane for v = 5/3 and y = 0.02. The arrows represent the velocity
field.






Past, present and future

“Th-th-th-that’s all folks!””
Porky Pig

The present thesis was focused on the effects of rotation and stratification on the
formation of magnetic flux concentrations. In the beginning of our work, we expected
that rotation might lead to a migration of magnetic fields, which turned out to be indeed
the case, but more important is actually a remarkably strong effect on the survival of
the instability altogether. Indeed, the present work has shown for the first time that the
negative effective magnetic pressure instability can only operate in the top-most layers
of the Sun, where the local turnover time is shorter than a day or perhaps just several
hours. This was a big surprise to us, but it now reinforces our idea that alternative
theories for the formation of active regions and perhaps sunspots might be connected
with the remarkable properties of strongly stratified hydromagnetic turbulence.

In the Sun, the surface layers are characterized by a remarkable drop in temperature.
Since the pressure and density scale heights are proportional to the temperature, this
means that the assumption of an isothermal stratification becomes poor. However, Pa-
per 11T of this thesis now shows that much of our earlier understanding from isothermal
models carries over to the more complicated case of a polytropic stratification, provided
one applies these ideas locally. Eventually, however, the scale height becomes so short
that it is below the scale of the generated magnetic structures. This is when the local
approximation becomes questionable. However, the basic conclusion that the structures
are forced to become smaller near the surface is indeed borne out by the simulations
presented in Paper III.

In future work, I plan to focus on the effects of an outer corona, especially in the presence
of rotation. Some of this work is already in progress and shows that the presence of such a
layer is important in making the resulting magnetic flux concentrations more pronounced
and thus more easily detectable.
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ABSTRACT

Context. The surface layers of the Sun are strongly stratified. In the presence of turbulence with a weak mean magnetic field, a large-
scale instability resulting in the formation of nonuniform magnetic structures, can be excited on the scale of many (more than ten)
turbulent eddies (or convection cells). This instability is caused by a negative contribution of turbulence to the effective (mean-field)
magnetic pressure and has previously been discussed in connection with the formation of active regions.

Aims. We want to understand the effects of rotation on this instability in both two and three dimensions.

Methods. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic
pressure instability have previously been found to agree with properties of direct numerical simulations.

Results. We find that the instability is already suppressed for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby
numbers) around 0.2. The suppression is strongest at the equator. In the nonlinear regime, we find traveling wave solutions with
propagation in the prograde direction at the equator with additional poleward migration away from the equator.

Conclusions. We speculate that the prograde rotation of the magnetic pattern near the equator might be a possible explanation for
the faster rotation speed of magnetic tracers relative to the plasma velocity on the Sun. In the bulk of the domain, kinetic and current

helicities are negative in the northern hemisphere and positive in the southern.
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1. Introduction

In the outer parts of the Sun, energy is transported through turbu-
lent convection. The thermodynamic aspects of this process are
well understood through mixing length theory (Vitense 1953).
Also reasonably well understood is the partial conversion of ki-
netic energy into magnetic energy via dynamo action (Parker
1979; Zeldovich et al. 1983). Most remarkable is the possibility
of generating magnetic fields on much larger spatial and tem-
poral scales than the characteristic turbulence scales. This has
now been seen in many three-dimensional turbulence simula-
tions (Brandenburg 2001; Brandenburg & Subramanian 2005),
but the physics of this is best understood in terms of mean-field
theory, which encapsulates the effects of complex motions in
terms of effective equations for mean flow and mean magnetic
field (Moftatt 1978; Parker 1979; Krause & Ridler 1980).

The effects of stratification are usually only included to lead-
ing order and often only in connection with rotation, because the
two together give rise to the famous « effect, which is able to
explain the generation of large-scale magnetic fields (Krause &
Rédler 1980). In recent years, however, a completely different
effect arising from strong stratification alone has received atten-
tion: the suppression of turbulent pressure by a weak mean mag-
netic field. This effect mimics a negative effective (mean-field)
magnetic pressure owing to a negative contribution of turbu-
lence to the mean magnetic pressure. Under suitable conditions,
this leads to the negative effective magnetic pressure instability
(NEMPI), which can cause the formation of magnetic flux con-
centrations. In turbulence simulations, this instability has only
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been seen recently (Brandenburg et al. 2011), because signifi-
cant scale separation is needed to overcome the effects of turbu-
lent diffusion (Brandenburg et al. 2012). Mean-field considera-
tions, however, have predicted the existence of NEMPI for a long
time (Kleeorin et al. 1989, 1990, 1996; Kleeorin & Rogachevskii
1994; Rogachevskii & Kleeorin 2007; Brandenburg et al. 2010).

One of the remarkable insights is that NEMPI can occur at
any depth, depending just on the value of the mean magnetic
field strength. However, for a domain of given depth the insta-
bility can only occur in the location where the dependence of ef-
fective turbulent pressure on the ratio of field strength to equipar-
tition value has a negative slope. Once this is obeyed, the only
other necessary condition for NEMPI to occur is that the turbu-
lent diffusivity is low enough. In practice this means that there
are enough turbulent eddies within the domain of investigation
(Brandenburg et al. 2012; Kemel et al. 2012c¢).

Despite the potential importance of NEMPI, many additional
effects have not yet been explored. The idea is that NEMPI
would interact with the global dynamo producing the large-scale
magnetic field for NEMPI to act upon. Thus, the field needs to be
self-consistently generated. Ideally, global geometry is needed,
and such calculations should be three-dimensional (3D), be-
cause one expects flux concentrations not to be two-dimensional
(2D) or axisymmetric. New mean-field coefficients will appear
in such a more general case, and not much is known about them.
Nevertheless, although other terms may appear, it will be inter-
esting to investigate the evolution of NEMPI in more realistic
cases with just the leading term responsible for the instability.
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The goal of the present paper is to include the effects of rota-
tion in NEMPI in a local Cartesian domain at a given latitude in
the Sun. To this end we determine the dependence of growth rate
and saturation level of NEMPI on rotation rate and latitude, and
to characterize rotational effects on the resulting flux concentra-
tions. We restrict ourselves to a mean-field treatment and denote
averaged quantities by an overbar. Furthermore, we make the as-
sumption of an isothermal equation of state. This is of course
quite unrealistic, as far as applications to the Sun are concerned.
However, it has been found earlier that NEMPI has similar prop-
erties both for an isothermal layer with an isothermal equation
of state and a nearly isentropic one with the more general per-
fect gas law (Képyld et al. 2012). Given that our knowledge of
NEMPI is still rather limited, it is useful to consider the new ef-
fects of rotation within the framework of the conceptually sim-
pler case of an isothermal layer.

We begin with the model equations, discuss the linear the-
ory of NEMPI in the presence of rotation, and consider 2D
and 3D numerical models.

2. The model

We consider here an isothermal equation of state with constant
sound speed cg, so the mean gas pressure is p = pc2. The evo-

lution equations for mean velocity U, mean density p, and mean
vector potential A, are

DU

o - 20U -cAVInp+g+Fu+Fx. (D
Dp e

— = —pV-U, 2
o 5 (2)
A — — -

where D/Dt = 8/0t+U-V is the advective derivative, 1y and ny are
turbulent and microscopic magnetic diffusivities, g = (0,0, —g)
is the acceleration due to the gravity field,

Fx =0 +v) (VU +1VV-U+28Vinp) (4)

is the total (turbulent plus microscopic) viscous force with v
being the turbulent viscosity, and S;; = %(ﬁ,-,j + Uj.,-) - %6,-1-V -U
is the traceless rate of strain tensor of the mean flow. The mean
Lorentz force, ¥, is given by

pFwm=J x B+ 1V(g,B), (5)

where J = V X B/uo the mean current density, 1 is the vac-
uum permeability, and the last term, %V(quz), on the righthand
side of Eq. (5) determines the turbulent contribution to the mean
Lorentz force. Following Brandenburg et al. (2012) and Kemel
et al. (2012a), the function g(B) is approximated by:

ﬁZ
QP(ﬂ) = ﬁgT*ﬁz, (6)

where g, and §, are constants, 8 = B/ Beq is the modulus of
the normalized mean magnetic field, and Beq = +/lop Ums the
equipartition field strength. The angular velocity vector Q is
quantified by its scalar amplitude Q and colatitude 6, such that

Q =Q(-sinb,0,cosb). (7
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In this arrangement, z corresponds to radius, x to colatitude,
and y to azimuth.

Following the simplifying assumption of recent direct nu-
merical simulations of NEMPI (Brandenburg et al. 2011), we
assume that the root-mean-square turbulent velocity, unys, is con-
stant in space and time. For an isothermal density stratification,

P = poexp(—z/H,), 3)

where H, = ¢2/g is the density scale height, we then have Bey(2).
To quantify the strength of the imposed field, we also define
Beqo = Beg(z = 0). The value of uys is also related to the val-
ues of 7; and v;, which we assume to be equal, with n; = v; =
s/ 3ks, where ke is the wavenumber of the energy-carrying ed-
dies of the underlying turbulence. This formula assumes that the
relevant correlation time is (u;msk¢) ', which has been shown to
be fairly accurate (Sur et al. 2008).

3. Linear theory of NEMPI with rotation

In this section we study the effect of rotation on the growth
rate of NEMPI. Following earlier work (e.g., the appendix of
Kemel et al. 2012c), and for simplicity, we neglect dissipation
processes, use the anelastic approximation, V - pU = 0, and as-
sume that the density scale height H, = const. We consider the

equation of motion, ignoring the U - VU nonlinearity,

oU(t, x, — 1
WD) o T- Lvpy+g. )
ot 0

where pior = P + pesr is the total pressure consisting of the sum
of the mean gas pressure p, and the effective magnetic pres-

sure, peg = (1 — qp)ﬁz/ 2, where B = |§|. Here and elsewhere
the vacuum permeability is set to unity. We assume for simplic-
ity that 9, = 0, and that the mean magnetic field only has a

y-component, B= (0, Ey(x, 2), 0), so the mean magnetic tension,
B-VBin Eq. (9) vanishes.

Taking twice the curl of Eq. (9), and noting further that £ -
VXV xU=-AU. + V.V - U, we obtain

% [AU. + V.(U-ViInp)| = —2Q- V(V x V),

( ptol)vxﬁ_(v ptot)E}
“p) P “p)el

+V,

(10)

where we have used the anelastic approximation in the form
V -U = -U - Vinp and the fact that under the curl the gradient
can be moved to p. We have also taken into account that Q, = 0
and have used Eq. (30) of Kemel et al. (2012c¢) to relate the dou-
ble curl of (Vpyo)/p to the last term in Eq. (10). The first term on
the righthand side of Eq. (10) for U. is proportional to (V x U)..
Taking the z component of the curl of Eq. (9) we obtain the fol-
lowing equation for (V x U).:

0 — Q. \—
—(VxU),=2(Q-V-—|U.. 11
(VX D) ( Hp) U (1)
The induction equation for E_L,(x, 7) is given by

DB, —_ —

o =BV U (12
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where D/Dt = /8 + U - V is the advective derivative. For a
magnetic field with only a y-component, but d/dy = 0, there is
no stretching term, so there is no term of the form B - VU.

We linearize Eqgs. (10)—(12), indicating small changes by 6.
We consider an equilibrium with a constant magnetic field of
the form (0, By, 0), a zero mean velocity, and the fluid density
as given by Eq. (8). We take into account that the function g, =

qp(B) depends both on B and on p, which implies that (Kemel
et al. 2012c¢)

Prot |2 dgp 6B, &p
— 12 1=y - 2|22 _ %P 1
‘5(5) 2”"( % dlnﬁZ)( By ) (4
while
v [Po) 2122 _& 1 (14)
A7) 220 TP anp ) E,

The linearized system of equations reads as

0

o A—iV §U. = 2”% dPesr V%5§y
o\ H, )

—2Q-V(V x 6U),, (15)

H, 48> By
0 — Q\ —
—(VxoU), = 2(Q~V— ”)6Uz, (16)
ot H,
36B, oU,
- = —By——, 17
ot 0 H, (tn

where Peg(B) = % [1 - qp(ﬂ)] /32 is the effective magnetic pres-
sure normalized by the local value of ng.

Introducing a new variable V, = \/ﬁéﬁz in Eqgs. (15)—(17)
and after simple transformations we arrive at the following equa-
tion for one variable V:

L N N IV Q- V)3 - o V.= 2V2V, (18)
ar 4H2)* HZ) OO
where
i (2) dP,
B = 222 Pt (19)

H 4B

In the WKB approximation, which is valid when k; H, > 1, i.e.,
when the characteristic scale of the spatial variation of the per-
turbations of the magnetic and velocity fields are much smaller
than the density height length, H,,, the growth rate of the large-
scale instability (NEMPI) is given by

2 1/2
A= |:/l% k_g - wiznen] ’ (20)

where winer = 2Q - k is the frequency of the inertial waves.

Here, k = k/k is the unit vector of k. A necessary condition for
the instability is
dPesr
dp?
NEMPI can be excited even in a uniform mean magnetic field,
and the source of free energy of the instability is provided by the
small-scale turbulence. In contrast, the free energy in Parker’s
magnetic buoyancy instability (Parker 1966) or in the inter-

change instability (Tserkovnikov 1960; Priest 1982) is drawn
from the gravitational field. Both instabilities are excited in a

<0. @21

I S s v

plasma when the characteristic scale of variations in the original
horizontal magnetic field is smaller than the density scale height.
As seen from Eq. (20), A is either real or purely imaginary, so
no complex eigenvalues are possible, as would be required for
growing oscillatory solutions.

Without rotation the growth rate of NEMPI is (Kleeorin et al.
1993; Rogachevskii & Kleeorin 2007; Kemel et al. 2012d)

k
A==

T (22)

The rotation reduces the growth rate of NEMPI, which can be
excited when k,/k > Winerr/do and dPeg/dB*> < 0. In the op-
posite case, ky/k < Winert/ Ao, the large-scale instability is not
excited, while the frequency of the inertial waves is reduced by
the effective negative magnetic pressure.

For an arbitrary vertical inhomogeneity of the density, we
seek a solution to Eq. (18) in the form V_ (7, x, z) = V(z) exp(Ar +
ik, x) and obtain an eigenvalue problem

80,0, 1
V24— 5k V.- A - — V() =0, 23
A A @ 23)
where
22— 22(2) + 402
a2 L@ AE (24)

A +402 7

and A is the eigenvalue. Equation (23) can be reduced to

the Schrodinger type equation, ¥’ — UR)Y = 0, via the
transformation
4Q,Q,
Y(R) = VRV i——=k.z|, 25
(R) = VRV(2) eXp(l/12+4Q§ z) (25)
)
R(z) = 2% el (26)

rmsip

where vpg = By/ \/570 is the Alfvén speed based on the averaged
density, the potential U(R) is

2
~ x

2
UR) £

TR +4Q2)

’

U3 (1
H;

2 (A2 +402
R\ A% +4Q2

40 )
(1+R)?
(27)

and we have used Eq. (6) for g, with B, = B, /gpo and gpo =
qp(B = 0). As follows from Eq. (27), the potential, U(R), is pos-
itive for R — 0 and R — oo. Therefore, for the existence of the
instability, the potential should have a negative minimum. This
is possible when gpo > (1 + R)?. When the potential U(R) has
a negative minimum, there are two points R; and R, (the so-
called turning points) in which U(R = R; ) = 0. Figure 1 shows
tanh U(R) for different values of Q. This representation allows
us to distinguish the behavior for low values of U(R).

Using Eq. (27) and the condition UR = R;») = 0, we esti-
mate the maximum growth rate of the instability as

| 5 121172
1= 7 [/lf —40% + [(af - 492) + 8(222/13] ] , (28)
where

1/2
A = ﬁ* Urms [R1R2(2 + Rl + RZ)] . (29)

H, (1+R)(1+Ry)
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Fig. 1. tanh U(R) for A = 1/A, = 0.02, 0 = 0, and Q = 0.01 (dotted
line), 0.1 (dashed-dotted line), and 1 (solid line).
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Fig. 2. Theoretical dependence of 1/1. on 6 for different values of o
using Eq. (30). The inset shows the dependence of 1/1. on 2Q/A, =
o'/ for 6 = 0° (solid), 45° (dotted), and 90° (dashed).

By defining o = 4Q?/12, Eq. (28) can also be written as

1 1/211/2
Al A, = —[1—0’+(1—2(rsin26+o—2) /} .

V2

For o > 1, we obtain /1, = cosé/ V2, which is independent of
the value of . In Fig. 2 we plot the dependence of 1/A.. on 6 for
different values of o and on 2Q/1, = o'/? for different values
of 6 (inset).

Unfortunately, the asymptotic analysis does not allow full
information about the system. Therefore we turn in the follow-
ing to numerical simulations of the full 2D and 3D mean-field
equations.

(30)

4. Numerical results

In this section we discuss numerical mean-field modeling. We
consider computational domains of size L? or L? with periodic
boundary conditions in the horizontal direction(s) and stress-free
perfect conductor boundary conditions in the vertical direction.
The smallest wavenumber that fits horizontally into the domain
has the wavenumber k; = 27/L. The numerical simulations are
performed with the PENCIL CODE', which uses sixth-order ex-
plicit finite differences in space and a third-order accurate time
stepping method (Brandenburg & Dobler 2002). As units of
length we use k7!, and time is measured in units of (csk{)™'.

I http://pencil-code.googlecode.com
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Fig. 3. Dependence of 1/1.o on 2Q/ A, for three values of € for 2D sim-
ulations with By/B.q = 0.1.

An important nondimensional parameter is the Coriolis num-
ber, Co = 2Q/umske. Using ke = s /31, we can express this
in terms of the parameter Cq = Q/ r]tk%, which is often used in
mean-field dynamo theory. Thus, we have
Co = 671/ tgs = 6 (1tk1 /ttns)*Cor. (31)
Motivated by the analytic results of the previous section we nor-
malize the growth rate of the instability alternatively by a quan-
tity Advo = Baltms/H,. In the following we take uymgs/cy = 0.1.
Furthermore, we use v¢ = 1y = 1073¢s/ks, so that keH, ~ 33
and nky /ums = 1072. This also means that for Q = 0.01, for
example, we have 2Q /1.9 = 0.27 and Co = 0.006.

For the models presented below, we use gpo = 20 and
Bp = 0.167, which corresponds to 5, = 0.75, and is appropri-
ate for the parameter regime in which R, ~ 18 and k¢/k; = 30
(Kemel et al. 2012d). We use either By/Bego = 0.1 or 0.05. We
recall, however, that the growth rate does not depend on this
choice, provided the bulk of the eigenfunction fits into the do-
main, which is the case here for both values of Bj. For the lower
value of By the maximum of the magnetic structures (i.e., the
maximum of the eigenfunction in z) is slightly higher up in
the domain, but in both cases the maximum is contained within
the domain.

We discuss first the Q and 6 dependence of 2D and 3D solu-
tions. Using 6 = 0°, 45°, and 90°, corresponding to 90°, 45°,
and 0° latitude, we find that NEMPI is suppressed for rota-
tion rates around Q =~ 0.0lcsk; and 0.025 in 2D and 3D, as
can be seen in Figs. 3 and 4. This corresponds to Co = 0.006
and 0.015, which are remarkably low values. We note a similar
behavior in 2D and 3D: NEMPI is suppressed for even lower
values of 2Q/ A,y as 6 increases. Moreover, there is qualitative
agreement between the results of mean-field simulations and the
predictions based on asymptotic analysis, even though in the for-
mer case we normalized by A.9, while in the latter we normalized
by A,; see Eq. (30).

Next, we vary 6. As expected from the results of Sect. 3,
and as already seen in Figs. 3 and 4, the largest growth rates
occur at the poles (8 = 0°), and NEMPI is the most strongly
suppressed at the equator. The growth rate as a function of 6 is
given in Fig. 5 for two values of 2Q/ 1, showing a minimum
at @ = 90° (i.e., at the equator). In the upper panel of Fig. 5,
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per panel) and comparison of 2D and 3D cases (lower panel).

we have used 2D results, i.e. we restricted ourselves to solutions
with /0y = 0, as was also done in Sect. 3. However, this is
only an approximation of the fully 3D case. The usefulness of
this restriction can be assessed by comparing 2D and 3D results;
see the lower panel of Fig. 5. While the 6 dependence is roughly
similar in the 2D and 3D cases, the growth rates are by at least a
factor of two lower in the 2D case.

To determine the oscillatory frequency, we consider the
values of ﬁy(xl, t) and E,,(xl, t) at a fixed point x| within the
domain. As can be seen in Figs. 6 and 7, their frequency and
amplitude depend on both Q and 6. The oscillations are not al-
ways harmonic ones, and can be irregular with variable periods,
making the period determination more difficult. Nevertheless,
the frequencies for U, and B, are similar over broad parame-
ter ranges. For Qy/1,0 > 0.25 at 8 = 60°, NEMPI is no longer
excited, but there are still oscillations in U,(x, f), which must
then have some other cause. We find a substantial variation in
the amplitude for the maximum growth rate for Q = 0.01 and
Q = 0.02. (The high frequency in Uu and Ey in Fig. 6 corre-
sponds to a random small-amplitude change.) The frequency of
the oscillations is very low at the poles, but it reaches a maxi-
mum at § = 45 and decreases again toward the equator.
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Fig. 6. Frequency and amplitude as a function of Q for 6 = 60° and
By/Bq = 0.1 in the saturated regime.
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Fig.7. Frequency and amplitude 6 dependence for Q = 0.01 and

Bo/cho =0.1.

In summary, the oscillation frequency decreases (and the pe-
riod increases) for faster rotation as the growth rate diminishes.
Furthermore, the oscillation frequency is systematically lower at
low latitudes (below 45°) and higher closer to the poles. We re-
call that these oscillations occur only in the nonlinear regime, so
no meaningful comparison with linear theory is possible.

Given the combined presence of rotation and stratification,
we expect the resulting velocity and magnetic fields to be heli-
cal. We plot relative kinetic, current, and cross helicities in the
upper panel of Fig. 8. These are here abbreviated in terms of the
function

Hp.q) ={p- @)/{P*Xq?), (32)

where p and ¢ are two arbitrary vectors. Here, {-) denotes xy
averaging. The relative kinetic helicity, H (W, ﬁ), where W =
V x U is the mean vorticity, varies between nearly +1 in the
lower part and —1 in the upper part. This change of sign is famil-

iar from laminar convection where upwellings expand to pro-
duce negative helicity in the upper parts, and downwellings also

A49, page 5 of 8
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Fig. 8. Dependence of various relative helicities and relative amplitudes
on z for the case with 6 = 0° and Co = 0.03.

expand as they hit the bottom of the domain (e.g. Brandenburg
et al. 1990). However, in the lower part of the domain both U
and W are relatively small, as can be seen by considering their
relative amplitudes, A(U) and A(W), where

Ap) = (P PP, (33)

with ((-)) being defined as volume averages.

It will be important to compare the present predictions of
large-scale kinetic and magnetic helicity production with results
from future DNS. One might expect differences between the two,
because our current mean-field models ignore turbulent transport
coefficients that are associated with helicity; see the discussion
at the end of Kemel et al. (2012b).

We finally turn to the spatial structure of NEMPL. In Fig. 9

we compare By, at different times and latitudes for the 2D runs.
In the exponentially growing phase of NEMPI, the structures do
not propagate (or move only very slowly). Traveling wave solu-
tions occur mainly in a later stage of NEMPI, i.e., in the satu-
rated regime. Next, we consider the 3D case. In Fig. 10 we show
visualizations of the magnetic field on the periphery of the com-
putational domain for four different times for 6 = 0. Magnetic
structures are inclined in the xy plane. This is a direct result of
rotation. As expected, the inclination is opposite for negative val-
ues of Q; see Fig. 11. The modulus of the inclination angle is
about 30°, corresponding to 0.5 radians, which is not compat-
ible with the value of Co ~ 0.03, but it is closer to the value
of Q/A.0 =~ 0.65. However, in this connection we should stress
that we have imposed periodic boundary conditions in the y di-
rection, which means that the inclination angles only change in
discrete steps. In the 2D runs, shown in Fig. 9, no inclination in
the xy plane is possible at all.

Returning to the case of positive values of Q, but 8 # 0, we
note a slow migration of the magnetic pattern to the left (here
for § = 45°), corresponding to poleward migration; see Fig. 12.
Also the field is still tilted in the xy plane. Finally, for 6 = 90°
we see that the pattern speed corresponds to prograde motion;
see Fig. 13.
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Fig. 9. Evolution of Fy in the xz plane in a 2D simulation for Qy = 0.01
(corresponding to Co = 0.006) and By/B.y = 0.1 for 8 = 0°, 8 = 45°,
and 6 = 90° near the time when the instability saturates. The direction
of Q is indicated in the last row.

5. Conclusions

Although the physical reality of NEMPI has recently been con-
firmed by direct numerical simulations, its potential role in pro-
ducing large-scale magnetic structures in the Sun is still unclear.
This paper begins the task of investigating its properties under
conditions that are astrophysically important. Rotation is ubiq-
uitous and clearly important in the Sun. The present work has
now shown that the instability is suppressed already for rather
slow rotation. This is rather surprising, because rotational ef-
fects normally become significant only when Q is comparable
to the inverse turnover time, which is defined here as uypsks.
The instability growth rate scale might explain this behaviour,
since it is closer to the turbulent diffusive time than to the in-
verse turnover, which is faster by the square of the scale sepa-
ration ratio (Brandenburg et al. 2011). However, our work now
suggests that this is not quite right either and that the correct an-
swer might be something in between. Indeed, we find here that
growth rate and critical rotation rate are close to the parameter
A+0 = Bxttims/H,, which can be smaller than the aforementioned
turnover time by a factor of 40, although in solar convection,
where ksH, ~ 2.4 (Kemel et al. 2012d) and B, = 0.23 (Kemel
et al. 2012c¢), it is estimated to be only ~10 times smaller.

The suppression is strongest at the equator, where € is per-
pendicular to the direction of the gravity field, i.e., Q-¢g = 0, and
less strong at the poles where  and g are either parallel (south
pole) or antiparallel (north pole). In the absence of rotation, the
mean magnetic field only varies in a plane that is normal to the
direction of the imposed mean magnetic field, i.e., k - By = 0,
where k stands for the wave vector of the resulting flow and mag-
netic field. However, in the presence of rotation the orientation
of this plane changes such that now k - (B + /I;OIQ X Bg) = 0.



Fig. 10. Visualization of B, on the periphery of the computational domain for 4 times (normalized in terms of 7},) during the nonlinear stage of the
instability for @ = 0° (corresponding to the north pole) and Co = 0.03, corresponding to 2€/1.o ~ 1.3. Time is here given in units of 7,, = (57:&3)".
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Fig. 11. Same as Fig. 10, but for a negative value of Q, i.e., Co = —0.03, corresponding to 2Q/1,y =~ —1.3.
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Fig. 12. Visualization of B, on the periphery of the computational domain for 4 times (normalized in terms of 7},) during the nonlinear stage of the

instability for 8 = 45° and Co = 0.03, corresponding to 2Q/1,o = 1.3.

0.00 0.00

0.00 0.00

Fig. 13. Visualization of B, on the periphery of the computational domain for 4 times (normalized in terms of 7},) during the nonlinear stage of the
instability for 6 = 90° (corresponding to the equator) and Co = 0.013, corresponding to 2Q/ .o = 0.5.

At intermediate latitudes, i.e., when the angle spanned by Q
and ¢ is in the range of 0° to 90° colatitude, the magnetic field
pattern propagates slowly in the negative x direction, corre-
sponding to poleward migration. The significance of this result
is unclear. Had it been equatorward migration, one might have
been tempted to associate this with the equatorward migration of
the magnetic flux belts in the Sun from which sunspots emerge.
On the other hand, at the equator this migration corresponds

to prograde rotation, which is a clear effect seen in the Sun
where magnetic tracers are seen to rotate faster than the ambient
plasma, i.e., in the prograde direction (Gizon et al. 2003). Even
sunspots rotate faster than the gas itself (Pulkkinen & Tuominen
1998).

One of our goals for future work is to verify the present find-
ings in direct numerical simulations. Such simulations would
also allow us to determine new turbulent transport coefficients,
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similar to the g, parameter invoked in the present study. Such
additional parameters yield new effects, some of which could be
important for applications to the Sun.

Finally, we end with a comment on the issue of scale separa-
tion. As discussed above, in solar mixing length theory, the cor-
relation length of the turbulent eddies is expected to scale with
the pressure scale height such that k¢ H,, is constant and about 2.4
(Kemel et al. 2012d). Theoretical considerations have shown fur-
ther that the growth rate of NEMPI is proportional to k¢H,,. Since
rotation is known to decrease the size of the turbulent eddies,
i.e., to increase the value of k¢, one might be tempted to specu-
late that rotation could even enhance the growth rate of NEMPL
However, in view of the present results, this now seems unlikely.
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ABSTRACT

Context. In a strongly stratified turbulent layer, a uniform horizontal magnetic field can become unstable and spontaneously form local
flux concentrations due to a negative contribution of turbulence to the large-scale (mean-field) magnetic pressure. This mechanism,
which is called negative effective magnetic pressure instability (NEMPI), is of interest in connection with dynamo scenarios in which
most of the magnetic field resides in the bulk of the convection zone and not at the bottom, as is often assumed. Recent work using
mean-field hydromagnetic equations has shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis numbers
as low as 0.1.

Aims. Here we extend these earlier investigations by studying the effects of rotation both on the development of NEMPI and on the
effective magnetic pressure. We also quantify the kinetic helicity resulting from direct numerical simulations (DNS) with Coriolis
numbers and strengths of stratification comparable to values near the solar surface and compare it with earlier work at smaller scale
separation ratios. Further, we estimate the expected observable signals of magnetic helicity at the solar surface.

Methods. To calculate the rotational effect on the effective magnetic pressure we consider both DNS and analytical studies using
the 7 approach. To study the effects of rotation on the development of NEMPI we use both DNS and mean-field calculations of the
three-dimensional hydromagnetic equations in a Cartesian domain.

Results. We find that the growth rates of NEMPI from earlier mean-field calculations are well reproduced with DNS, provided
the Coriolis number is below 0.06. In that case, kinetic and magnetic helicities are found to be weak and the rotational effect on
the effective magnetic pressure is negligible as long as the production of flux concentrations is not inhibited by rotation. For faster
rotation, dynamo action becomes possible. However, there is an intermediate range of rotation rates where dynamo action on its own
is not yet possible, but the rotational suppression of NEMPI is being alleviated.

Conclusions. Production of magnetic flux concentrations through the suppression of turbulent pressure appears to be possible only in

the uppermost layers of the Sun, where the convective turnover time is less than two hours.

Key words. magnetohydrodynamics (MHD) — hydrodynamics — turbulence — Sun: dynamo

1. Introduction

In the Sun, magnetic fields are produced by a large-scale dy-
namo (see, e.g., Moffatt 1978; Parker 1979; Krause & Rédler
1980; Zeldovich et al. 1983; Ossendrijver 2003; Brandenburg
& Subramanian 2005a). Although many details of this process
remain subject to debate, it seems relatively clear that rotation
enhances the efficiency of the dynamo if the Coriolis parameter
is not very large. In the absence of rotation and shear, only small-
scale magnetic fields are generated by what is often referred to
as small-scale dynamo action (see, e.g., Zeldovich et al. 1990;
Brandenburg & Subramanian 2005a). Rotation leads to an « ef-
fect (Steenbeck et al. 1966) if there is also stratification in den-
sity or turbulent intensity. The a effect can produce mean mag-
netic field and net magnetic flux.

Stratification leads to yet another effect that does not produce
magnetic flux but merely concentrates it locally by what is now
referred to as negative effective magnetic pressure instability
(NEMPI). Direct numerical simulations (DNS) of Brandenburg
et al. (2011a) have shown in surprising detail many aspects
of NEMPI that were previously seen in mean-field simulations

Article published by EDP Sciences

(MFS) of Brandenburg et al. (2010) and that have been an-
ticipated based on analytical studies for some time (Kleeorin
et al. 1989, 1990, 1993, 1996; Kleeorin & Rogachevskii 1994;
Rogachevskii & Kleeorin 2007).

The main physics of this effect is connected with the sup-
pression of turbulent pressure by a weak mean magnetic field
that is less than the equipartition field. At large Reynolds num-
bers, the resulting reduction of the turbulent pressure is larger
than the added magnetic pressure from the mean magnetic field
itself, so that the effective magnetic pressure that accounts for
turbulent and nonturbulent contributions becomes negative. In a
strongly stratified layer, i.e., a layer in which the density varies
much more rapidly with height than the magnetic field does,
this leads to an instability that is analogous to Parker’s mag-
netic buoyancy instability, except that there the magnetic field
varies more rapidly with height than the density does. Because
the effective magnetic pressure is negative, magnetic structures
are negatively buoyant and sink, which has been seen in the DNS
of Brandenburg et al. (201 1a).

One of the main successes of recent comparative work be-
tween DNS and MFS is the demonstration of a high degree of
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predictive power of MFS. The examples include details regard-
ing the shape and evolution of structures, the dependence of their
depth on the magnetic field strength, and the dependence of the
growth rate on the scale separation ratio. Recent MFS of Losada
et al. (2012; hereafter LBKMR) have shown that in the pres-
ence of even just weak rotation the growth rate of NEMPI is
significantly reduced. Expressed in terms of the Coriolis num-
ber, Co = 2Q/umsks, where Q is the angular velocity, uyy,s is the
rms velocity of the turbulence, and k; is the wavenumber of the
energy-carrying eddies, the critical value of Co was predicted to
be as low as 0.03. Although this value does not preclude the op-
eration of NEMPI in the upper parts of the Sun, where Co is in-
deed small (about 10~ at the surface), it does seem surprisingly
low, which raises questions regarding the accuracy of MFS in
this case. The purpose of the present paper is therefore to com-
pare MFS of LBKMR with DNS of the same setup. It turns out
that, while we do confirm the basic prediction of LBKMR, we
also resolve an earlier noticed discrepancy in the growth rates
between DNS and MFS in the absence of rotation (see the ap-
pendix of Kemel et al. 2012a). Indeed, in the particular case of
a magnetic Reynolds number of 18 and a scale separation ratio
of 30, the formation of structures is unusually strong and the av-
eraged stratification changes significantly to affect the determi-
nation of the effective magnetic pressure. However, by restrict-
ing the analysis to early times, we obtain coefficients that are not
only in better agreement with an earlier formula of Brandenburg
et al. (2012a) with a smaller scale separation ratio but also give
MES results that agree better with our new DNS.

The DNS are used primarily to compute the growth rates
and magnetic field structures during the saturated state with-
out invoking the mean-field concept. By contrast, the 7 ap-
proach (Orszag 1970; Pouquet et al. 1976; Kleeorin et al. 1990;
Rogachevskii & Kleeorin 2004) is used to determine the depen-
dence of mean-field coefficients on the rotation rate. This can
also be done with DNS (Kemel et al. 2012a). Here we apply
those calculations to the case with rotation.

We recall that we adopt here an isothermal stratification
and an isothermal equation of state. This is done because the
effect that we are interested in exists even in this simplest
case, where temperature and pressure scale height are constant.
Nonisothermal setups have been studied at the mean-field level
both with (Képyld et al. 2012, 2013) and without (Brandenburg
et al. 2010) entropy evolution included. In a stably stratified
layer, entropy evolution leads to an additional restoring force
and hence to internal gravity waves (Brunt-Viisilid oscillations)
that stabilize NEMPI (Kipyli et al. 2012). Thus, by using both
isothermal stratification and an isothermal equation of state, we
recover a situation that is similar to an adiabatic layer, except
that the temperature and hence the pressure scale height decrease
with height.

The system we are thus dealing with is governed by the com-
bined action of rotation and stratification. In principle, such sys-
tems have been studied many times before, for example, to deter-
mine the @ effect in mean-field dynamo theory (Krause & Rédler
1980; Brandenburg & Subramanian 2005a). The difference to
earlier work is the big scale separation ratio, where the domain
is up to 30 times larger than the scale of the energy-carrying ed-
dies. As mentioned, stratification and rotation lead to kinetic he-
licity and an « effect. We therefore also quantify here the amount
of kinetic helicity produced and ascertain whether this leads to
observable effects in the resulting magnetic structures. We use
here the opportunity to explore the feasibility of determining the
magnetic helicity spectrum from measurements of the magnetic
correlation tensor along a longitudinal strip.
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We begin by discussing first the basic equations to determine
the effective magnetic pressure from DNS and the 7 approach
(Sect. 2), compare growth rates for MFS and DNS (Sect. 4),
and turn then to the measurement of kinetic and magnetic he-
licity from surface measurements (Sect. 5) before concluding in
Sect. 6.

2. The model

We consider DNS of an isothermally stratified layer
(Brandenburg et al. 2011a; Kemel et al. 2012a) and solve
the equations for the velocity U, the magnetic vector poten-
tial A, and the density p in the presence of rotation €,

D 1
—U=—2Q><U—c3v1np+—J><B+f+g+FV, (1)
Dt ’ P

A

oA _ U x B +nV°A, (2)
ot

dp

= =_V.pU, 3
ot P ©

where D/Dr = /0t + U - V is the advective derivative, v is the
kinematic viscosity, 7 is the magnetic diffusivity due to Spitzer
conductivity of the plasma, B = By+ VX A is the magnetic field,
By = (0, By, 0) is the imposed uniform field, J = VX B/uy is the
current density, yo is the vacuum permeability, F, = V - (2vpS)
is the viscous force, S;; = %(6jU,- + 0;U;) — %6,-,-V - U is the
traceless rate-of-strain tensor. The angular velocity vector Q is
quantified by its scalar amplitude Q and colatitude 6, such that
Q =Q(-sind,0,cosb). Asin LBKMR, z corresponds to radius,
X to colatitude, and y to azimuth. The forcing function f con-
sists of random, white-in-time, plane, nonpolarized waves with
a certain average wavenumber k¢. The turbulent rms velocity is
approximately independent of z with ums = @?)'/? ~ 0.1¢.
The gravitational acceleration g = (0,0, —g) is chosen such that
kiH, = 1, so the density contrast between bottom and top is
exp(2r) = 535 in a domain —r < kyz < 7. Here, H, = cg/g is the
density scale height and k; = 27r/L is the smallest wavenumber
that fits into the cubic domain of size L. In most of our cal-
culations, structures develop whose horizontal wavenumber k,
is close to k;. We adopt Cartesian coordinates (x,y,z), with
periodic boundary conditions in the x- and y-directions and
stress-free, perfectly conducting boundaries at the top and bot-
tom (z = +L;/2). In all cases, we use a scale separation ra-
tio k¢/k; of 30, a fluid Reynolds number Re = uy,s/vks of 36,
and a magnetic Prandtl number Pry; = v/n of 0.5. The mag-
netic Reynolds number is therefore Rey; = PryRe = 18. The
value of By is specified in units of the volume-averaged value
Beqo = +Hopo Urms, Where pg = {p) is the volume-averaged den-
sity, which is constant in time. As in earlier work, we also define
the local equipartition field strength Beq(2) = /{0 trms. In our
units, k; = ¢s = o = po = 1. In addition to visualizations of the
actual magnetic field, we also monitor B,, which is an average
over y and a certain time interval Az. Time is sometimes specified
in terms of turbulent-diffusive times tntokf, where 1y = Ums/ 3kt
is the estimated turbulent diffusivity.

The simulations are performed with the Pencil Code!, which
uses sixth-order explicit finite differences in space and a third-
order accurate time-stepping method. We use a numerical reso-
lution of 256° mesh points.

' http://pencil-code.googlecode.com
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We compare with and extend earlier MFS of LBKMR, where
we solve the evolution equations for mean velocity U, mean den-
sity p, and mean vector potential A, in the form

%_‘t’:_v.vﬁ_zng_c§v1np+g+s?m, )
0A  — =

6—:UXB—(Th+n)J, (5)
t

B GNG-pv.T (6)
ar PPy

where ?MK = ?M + ?K, with

pFu=—3V[(1-gpB’] (7
being the mean-field magnetic pressure force, and

Fx = (n+v) (VU + 1VV - U +28VInp) (8)

is the total (turbulent plus microscopic) viscous force. Here,
Sij = %(U,-‘j +Uj) — %6,-.,-V - U is the traceless rate-of-strain
tensor of the mean flow and g, is approximated by (Kemel et al.
2012b)

B
B+ B

which is only a function of the ratio § = |B|/Beq(z). Here, By«
and g3, are coefficients that have been determined from previous
numerical simulations in the absence of rotation (Brandenburg
etal. 2012a). In Eq. (7) we have taken into account that the mean
magnetic field is independent of y, so the mean magnetic tension
vanishes.

The strength of gravitational stratification is characterized
by the nondimensional parameter Gr = g/ cfkf = (H,,kf)‘l
(Brandenburg et al. 2012b). Another important nondimen-
sional parameter is the Coriolis number, Co = 2Q/uynks.
Alternatively, we normalize the growth rate of the instability by
a quantity

/1*0 = ﬁ*urms/H )

which is motivated by the analytic results of LBKMR and the
finding that NEMPI is suppressed when 2Q 2 A,9.

2B = €)

(10)

3. Effective magnetic pressure

In this section we study the effect of rotation on the func-
tion g,(B). We consider first the results of DNS and turn then
to an analytical treatment.

3.1. Numerical results

In the MFS of LBKMR, we assumed that () does not change
significantly with Co in the range considered. With DNS we
can compute P.g(B) by calculating the combined Reynolds and
Maxwell stress for a run with and a run without an imposed mag-
netic field. This allows us to compute g,() using Eq. (17) of
Brandenburg et al. (2012a):

4 =2 [p62 -+ 15 - 5| [ (1)
where the subscripts 0 indicate values obtained from a reference
run with By = 0. This expression does not take into account

0.00 [~~~
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Fig. 1. Normalized effective magnetic pressure, P.(f), for three values
of Co, compared with Eq. (9) for different combinations of 3, and 3,
as discussed in the text.

small-scale dynamo action, which can produce finite background
magnetic fluctuations by. The effective magnetic pressure is then
determined using the equation Peg(8) = %[1 — gp(B)1B*. The re-
sult is plotted in Fig. 1 for three values of Co during an early time
interval when structure formation is still weak, and the back-
ground stratification remains unchanged, so that the result is not
yet affected. We note that even in the Co = 0.13 case, in which
the instability is no longer so prominent, we have to restrict our-
selves to early times, since the negative effective magnetic pres-
sure affects the background stratification and hence the pressure
changes at later times. The resulting profiles of P.g(B) are vir-
tually the same for all three values of Co. We also compare the
resulting profiles with those from Eq. (9) for different combina-
tions of B4 and 3. It turns out that the curves for different values
of Co are best reproduced for 8, = 0.44 and 3, = 0.058.

3.2. Theoretical predictions

We now compare the values with theoretical predictions
for gp(B). We take into account the feedback of the magnetic
field on the turbulent fluid flow. We use a mean-field approach,
whereby velocity, pressure, and magnetic field are separated into
mean and fluctuating parts. We also assume vanishing mean
motion. The strategy of our analytic derivation is to determine
the Q dependencies of the second moments for the velocity
u;(t, x) u;(t, x), the magnetic field b;(t, x) bj(t, x), and the cross-
helicity tensor b(t, x) u(t, x), where b are fluctuations of mag-
netic field produced by tangling of the large-scale field. To this
end we use the equations for fluctuations of velocity and mag-
netic field in rotating turbulence, which are obtained by subtract-
ing equations for the mean fields from the corresponding equa-
tions for the actual (mean plus fluctuating) fields.

3.2.1. Governing equations

The equations for the fluctuations of velocity and magnetic fields
are given by

ou(x,t)

1 ,— — .
==(B-Vb+b-VB-Vp)+2uxQ+N".  (12)
or o
PED _ B Vu—u-VB+ A", (13)
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where Eq. (12) is written in a reference frame rotating with con-
stant angular velocity , p = p’ + (B - b) are the fluctuations of
total pressure, p” are the fluctuations of fluid pressure, B is the
mean magnetic field, and p is the mean fluid density. For simplic-
ity we neglect effects of compressibility. The terms A and A/,
which include nonlinear and molecular viscous and dissipative
terms, are given by

N“:u-Vu—u-Vu+i(ij—ij)+fv(u), (14)
P

(15)

where pf,(u) is the molecular viscous force and j = V X b/ug
is the fluctuating current density. To eliminate the pressure term
from the equation of motion (12), we calculate VX (V X u). Then
we rewrite the obtained equation and Eq. (13) in Fourier space.

NP =V x(uxb—uxb-nVxb),

3.2.2. Two-scale approach

We apply the two-scale approach and express two-point correla-
tion functions in the following form:

u(x)u;(y) = f dky dko ui(ky)u (ko) expli(k; - x + ka - y)}
:fddef,-j(k, K)exp(k - r +iK - R)

=fdkf,-j(k,R)exp(ik-r) (16)

(see, e.g., Roberts & Soward 1975). Here and elsewhere, we drop
the common argument ¢ in the correlation functions, f;;(k,R) =

Fu;: u;), where

ia;c) = f a(k + K/2)c(—k + K/2) exp (iK - R) dK,

with the new variables R = (x +y)/2, r=x -y, K = k| + k»,
k = (k| — k2)/2. The variables R and K correspond to the large
scales, while r and k correspond to the small scales. This implies
that we have assumed that there exists a separation of scales,
that is, the turbulent forcing scale ¢¢ is much smaller than the
characteristic scale Ly of inhomogeneity of the mean magnetic
field.

3.2.3. Equations for the second moments

We derive equations for the following correlation functions:
fiik.R) = L(uisup), hijk,R) = ' L(bis b)), and g;j(k, R) =
L(b;; uj). The equations for these correlation functions are given
by

afij(k)

al - (k B)(Dt/ + Ll%mnfmn + If +A(Il;, (17)
Oh;j(k) o ) h
T = —l(k . B)(D,/ 4 [ N,j, (18)
9gij(k _
%() = i(k - B)fij(k) — h;j(k) - h(H)]

D?m(kz)glm(k) + ]g + A{lgj’ (19)

where
O; (k) = o [911(K) — 91—,

DQ(k) = 28ijn1Qr1ka1’

LQ = DQ (kl)(sjn +D%(k2)6im-

rymn m
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Hereafter we have omitted the R- argument in the correlation
functions and neglected terms ~0(V ), and g;, is the fully anti-

symmetric Levi-Civita tensor. In Egs. (17)—(19), the terms N/ ,
N, and A/ are determined by the third moments appearing due
to the nonlinear terms; the source terms I}.c., Iihj, and I?j, which
contain the large-scale spatial derivatives of the mean magnetic
and velocity fields, are given by Egs. (A3)—(A6) in Rogachevskii
& Kleeorin (2004). These terms determine turbulent magnetic
diffusion and effects of nonuniform mean velocity on the mean
electromotive force.

For the derivation of Eqgs. (17)—(19) we use an approach that
is similar to that applied in Rogachevskii & Kleeorin (2004). We
take into account that in Eq. (19) the terms with tensors that are
symmetric in i and j do not contribute to the mean electromotive
force because &,, = &,,j; gij. We split all tensors into nonhelical,

h;j, and helical, h( ), parts. The helical part of the tensor of mag-
netic fluctuations h( ) depends on the magnetic helicity, and the

equation for h( ) follows from magnetic helicity conservation ar-

guments (see, e g., Kleeorin & Rogachevskii 1999; Brandenburg
& Subramanian 2005a, and references therein).

3.2.4. The r-approach

The second-moment Egs. (17)—(19) include the first-order
spatial differential operators applied to the third-order mo-
ments M To close the system, we express the set of the third-
order terms A” = NAM™ through the lower moments M.
We use the spectral 7 approximation, which postulates that the
deviations of the third-moment terms, NM (D (k), from the con-
tributions to these terms afforded by the background turbu-
lence, N MM (k). are expressed through similar deviations of
the second moments:

M(II) (k) _ M(II.O) (k)
7(k)

(Orszag 1970; Pouquet et al. 1976; Kleeorin et al. 1990;
Rogachevskii & Kleeorin 2004), where (k) is the scale-
dependent relaxation time, which can be identified with the cor-
relation time of the turbulent velocity field for large Reynolds
numbers. The quantities with the superscript (0) correspond to
the background turbulence (see below). We apply the spectral T
approximation only for the nonhelical part &;; of the tensor of
magnetic fluctuations. A justification for the T approximation in
different situations has been offered through numerical simula-
tions and analytical studies (see, e.g., Brandenburg et al. 2004;
Brandenburg & Subramanian 2005b, 2007; Rogachevskii et al.
2011).

NM™ (k) - NM™O (k) = — (20)

3.2.5. Solution of equations for the second moments

We solve Eqgs. (17)=(19) neglecting the sources Ilf, . Il”,, [zg; with
the large-scale spatial derivatives. The terms with the large-scale
spatial derivatives, which determine the turbulent magnetic dif-
fusion, can be taken into account by perturbations. We subtract
from Egs. (17)—(19) the corresponding equations written for the
background turbulence using the spectral T approximation. We
assume that the characteristic time of variation of the second
moments is substantially larger than the correlation time (k)
for all turbulence scales. This allows us to get a stationary so-
lution for the equations for the second-order moments, M.
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Thus, we arrive at the following steady-state solution of
Egs. (17)—(19):

£ = Ly, [ £ ) + izl - BYD ()|, 1)
hij(k) = —it(k - B)D;;(k), (22)
gij(k) = itk - BYD;! [ fouj k) = hnj(K)] (23)

We have assumed that there is no small-scale dynamo in the
background turbulence. Here, the operator D" is the inverse of

TDQ (Rédler et al. 2003) and the operator L)

ijmn

(Elperin et al. 2005).

the operator 0;;
is the inverse of the operator OimOjn—T )5
These operators are given by

D' = x() (i + i ko + 97 ki)
_61J+w81ﬂ11 m !ﬁ Pt,+0(tﬁ)
L_l (Q) [Bl 61'7716/‘!1 + B2 kijmn + B3 (Simp(sjn

ijmn
+ 8jnpé‘im)]%p + B4 (6imkjn + ajnkim)

ijmn

(24)

+ BS 8i17mgjanpq + B6 (8impkjpn + Ejnpkipm)]
7 2
= 6[/176jn + lp(simpé‘jn + 8jrl]16im)kp - lﬁ (6il7le!l

+ 8 jnPin = 28imp€ jgnkpg) + OWY), (25)
where k; = ki/k, x(¥) = 1/(1 +y?), ¢ = 27(k) (k - Q)/k, B, =
L+x(2y), By = Bi+2-4x(¥), B3 = 2y x(2¢), Bs = 2x(¥)- By,
Bs =2~ By and Bs = 24 [x()) — x )], Pij(k) = 6ij — kik; /I,
0;; is the Kronecker tensor.

We use the following model for the homogeneous and
isotropic background turbulence: fl.(jo)(k) = (W?) P;j(k) W(k),
where W(k) = E(k)/87k?, the energy spectrum is E(k) = (g —
l)ka Yk/ko)™2, ko = 1/¢;, and the length ¢ is the maximum scale
of turbulent motions. The turbulent correlation time is 7(k) =
C 7 (k/ko)™, where the coefficient C = (¢ — 1 +@)/(g — 1). This
value of the coefficient C corresponds to the standard form of
the turbulent diffusion coefficient in the isotropic case, i.e., 7, =
@?) [ (k) E(k) dk = = C/\u?)
and +/{u?) is the characteristic turbulent velocity in the scale ¢;.
For the Kolmogorov’s type background turbulence (i.e., for a
turbulence with a constant energy flux over the spectrum), the
exponent u = g — 1 and the coefficient C = 2. In the case of a
turbulence with a scale-independent correlation time, the expo-
nent u = 0 and the coefficient C = 1. Motions in the background
turbulence are assumed to be nonhelical.

Equations (21)—(25) yield

itk = £9(k) = hij(k),

hij(k) =

70{u?)/3. Here the time T

(26)
2+Y¥

_ 2 (0)
T +2‘P))fif @, @7

1+2¥ (
where ¥ = 2‘1'2(k -cp)?, e = E/\/;:), and we have taken into
account that L7} (k) = P;j(k). After the integration in k

i jmn mn
space, we obtain the magnetic tensor /;; in physical space:

hij(B) = q1(B)d;; + q2(B)Bijs

where 8 = E/Beq, and the functions g;(8) and g»(B) are given
in Appendix A. We consider the case in which angular velocity
is perpendicular to the mean magnetic field. The results can eas-
ily be generalized to the case of the arbitrary angle between the
angular velocity and the mean magnetic field.

(28)

0.001
0.100 1100
2 <] {:
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= 0.010¢ 7 T
[ ~<
0.001 0.1
0.1 1.0 10.0
20/}\*0

Fig. 2. Dependence of 1/1,9 on 2Q/ 1, for DNS (red dashed line), com-
pared with MFS (i) where g, = 20 and 8, = 0.167 (black solid line),
and MFS (ii) where ¢, = 32 and 8, = 0.058 (blue dash-dotted line).
In this case no growth was found for Co > 0.03. In all cases we have
B()/cho =0.05.

The contribution of turbulence to the mean-field magnetic
pressure is given by the function g,(8) = [¢1(B) — ¢2(B)] /8%

B = AV©0) - AV p) - AV 4p)

1252 [
- 2(970)2(/4(2)(0) —4C(0) - 1047 4p)

+40C'?(4B) * oo [A1(16ﬁ )-4Cia68M])], 29)
where the functions Agj)(x), Cf” (x), Ai(y), Ci(y), and their
asymptotics are given in Appendix A. Following earlier work
(Brandenburg et al. 2012a), we now define a magnetic Reynolds
number based on the scale {¢ = 27/k¢, which is related to the
Re)y defined earlier via Rm = 27Rey;. For B < Beg JARm'/4, the

function qp(,B) is given by

8
ln Rm — —Co

30

4GB = 35 (30)

and for Beq /4Rm'* <« B < Beq/4 the function g, () is given by
8

0(P) = (1 +5/In(4g)] + 328°) - = Co’, (31)

where Co = 2Qr. This shows that for the values of Co of inter-
est (Co < 0.06), the correction to g, is negligible (below 1073),
which is in agreement with the numerical findings in Fig. 1.

4. Coriolis effects of NEMPI in DNS and MFS
4.1. DNS and comparison with MFS

We have performed DNS for different values of Co and calcu-
lated the growth rate A; see Fig. 2. It turns out that A shows a
decline with increasing values of Co that is similar to the one
seen in the MFS of LBKMR, who used g0 = 20 and 8, = 0.167
(corresponding to B, = 0.75). While some growth is still possi-
ble for Co = 0.13 and 0.66, the field begins to attain systematic
variations in the z direction that are more similar to those in a
dynamo. In that case, we would have to deal with a coupled sys-
tem, and a direct comparison with the NEMPI growth rate would
not be possible. We return to this issue later in Sect. 5.1.

In Fig. 2 we compare the growth rate with the MFS of
LBKMR, who used g0 = 20 and g, = 0.167 (correspond-
ing to B, = 0.75). This set of parameters is based on a fit by
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Fig. 3. yt-averaged Ey for Co = 0.006 (left), 0.03 (middle), and 0.06 (right) at different times.

Kemel et al. (2012a) for k¢/k; = 30 and Rey, = 18. We note that
the growth rates for the MFS are about three times larger than
those of the DNS. As explained in the introduction, this might be
caused by an inaccurate estimate of the mean-field coefficients
for these particular values of k¢/k; and Rey,. Indeed, according
to Eq. (22) of Brandenburg et al. (2012a), who used k¢/k; = 5,
these parameters should be g0 = 32 and B, = 0.058 (corre-
sponding to B, = 0.33) for Rey; = 18. This assumes that these
parameters are independent of the value of k¢, which is not true
either; see Kemel et al. (2012a). To clarify this question, we now
perform 3D MFS with this new set of parameters. Those results
are also shown in Fig. 2. It turns out that with these parameters
the resulting growth rates are indeed much closer to those of the
DNS, suggesting that the former set of mean-field coefficients
might indeed have been inaccurate. As alluded to in the introduc-
tion, this could be because NEMPI is very strong for k¢/k; = 30
and leads to inhomogeneous magnetic fields. For these fields,
the usual determination of mean-field coefficients, as used by
Brandenburg et al. (2012a), is no longer valid because for in-
homogeneous magnetic fields there would be additional terms
in the parametrization for the mean Reynolds-Maxwell stress
(cf. Kemel et al. 2012c). We note that for this comparison we
have kept the value of A.g in the normalization of both axes un-
changed. However, if we accept that the correct value of B, is not
0.75, but 0.33, the graphs for DNS and MFS (ii) would almost
coincide with that for DNS (i).

In Fig. 3 we show the yr-averaged Ey for Co = 0.006, 0.03,
and 0.06 at different times. When comparing results for different
rotation rates, one should take into account that the growth rates
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Fig.4. Evolution of B;/B. for runs of which three are shown in
Fig. 3. The three horizontal lines correspond to the approximate values
of B/Beq in the three rows of Fig. 3.

become strongly reduced. Indeed, in the last row of Fig. 3 we
chose the times such that the amplitude of NEMPI is compara-
ble for Co = 0.006 and 0.03. However, for Co = 0.06 we ran
much longer and the amplitude of NEMPI is here even larger;
see Fig. 4, where we show B;/B.q, which is the normalized
magnetic field strength for the horizontal wavenumber k = k;
in the top layers with 2 < k;z < 3. It is clear that the forma-
tion of structures through NEMPI remains more strongly con-
fined to the uppermost layers as we increase the value of Co.



Fig.5. B, at the periphery of the computational domain for Co = 0.006 (left), 0.03 (middle), and 0.06 (right) at the same times as in Fig. 3.
The x, y, z coordinates are indicated in the middle frame. We note the strong surface effect for Co = 0.03 in the last time frame.

Even for Co = 0.13, there is still noticeable growth of structures,
which is different from what is seen in MFS; see Fig. 2.

These figures show the generation of structures that begin
to sink subsequently. However, for Co = 0.03 and larger, this
sinking is much less prominent. Instead, the structures remain
confined to the surface layers, which is seen more clearly in vi-
sualizations of B, at the periphery of the computational domain
for Co = 0.03; see Fig. 5, which is for approximately the same
times as Fig. 3.

To our surprise, the large-scale structures still remain inde-
pendent of the y-direction, which is clearly at variance with re-
sults of the corresponding MFS. In Fig. 6 we reproduce a result
similar to that of LBKMR for Co = +0.03. Even at other angles
such as 6 = 45° and 90°, no variation in the y-direction is seen;
see Fig. 7. The reason for this discrepancy between DNS and
the corresponding MFS is not yet understood. Furthermore, the
confinement of structures to the surface layers, which is seen so
clearly in DNS, seems to be absent in the corresponding MFS.

4.2. Comparison of the 2D and 3D data of LBKMR

The apparent lack of y dependence of the large-scale magnetic
field in the DNS shows that this contribution to the magnetic

t/T, = 6.0Q By/}!g??z t/T, = 6.00

B,/8,
8 doosx10®

0.04

15.0000x10

—0.04

4 so05x10

Fig. 6. Results of MFS of LBKMR showing B, at the periphery of the
computational domain for Co = +0.03 in the LBKMR case (left) and
with the new set of parameters (right) at the same time. (The range
in B, /B, shown here is larger than that shown in LBKMR.)

field is essentially two-dimensional. In the lower panel of Fig. 5
of LBKMR, a comparison between 2D and 3D MFS was shown
for Co ~ 0.01 as a function of latitude. At the pole, the nor-
malized growth rates were 1/1,9 ~ 0.07 and 0.14 for 2D and
3D MFS, respectively. This difference is smaller for smaller val-
ues of Co, but it increases with increasing values of Co; see
Fig. 8. We note that the 2D result in this figure supersedes that

A83, page 7 of 12



Fig.7. B, at the periphery of the computational domain for Co = 0.006 and € = 45° (upper row) and 90° (lower row), at three different times (from

left to right). The x, y, z coordinates are indicated in the middle frame.

/\/)‘*0
)‘H;? o

0.1
2Q/ /\*0
Fig. 8. Dependence of 1/A.o on 2Q /A, in the 3D and 2D cases for 6 =
0° (corresponding to the pole).

of Fig. 3 of LBKMR, here A was determined from the amplifi-
cation of the total magnetic field (which includes the imposed
field) rather than from the deviations of the magnetic field from
the imposed one. This resulted in a four times smaller estimate
of A. Furthermore, the critical value of Co, above which NEMPI
shuts off, is now delayed by a factor of about 2—3.

The plot in Fig. 8 has been done for the more optimistic set
of mean-field parameters (g0 = 20 and B, = 0.167), but the
essential conclusions that the growth rates in 2D and 3D are
similar should not depend on this. The remaining differences be-
tween DNS and MFS regarding the lack of y dependence of the
mean field and the confinement of structures to the surface lay-
ers might be related to the absence of mean-field transport co-
efficients other than g, 1;, and v. By and large, however, the
agreement between DNS and MFS is remarkably good in that
the predicted decline of NEMPI at rather modest rotation rates
is fully confirmed by DNS.
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5. Kinetic and magnetic helicity

By adding rotation to our strongly stratified simulations, we au-
tomatically also produce kinetic helicity. In this section we quan-
tify this, compare the helicity with earlier work, and address the
question whether this might lead to observable effects. All re-
sults presented in this section are based on time series, with error
bars being estimated as the largest departure from any one-third
of the full time series.

5.1. Helicity production

In turbulence, the presence of rotation and stratification gives
rise to kinetic helicity and an a effect (Krause & Rédler 1980;
Brandenburg et al. 2013). As a measure of kinetic helicity, we
determine the normalized helicity as
& = o u/kul . (32)
In Fig. 9 we compare our present runs at k¢/k; = 30 with those
of Brandenburg et al. (2012b) at k¢/k; = 5 showing & versus
Gr Co. For our present runs (red filled symbols), kinetic helic-
ity is clearly very small, which is a consequence of the small
value of Co. Compared with earlier runs at k¢/k; = 5, which
gave ¢ ~ 2 GrCo, the present ones show about twice as much
helicity. Interestingly, for rapid rotation the relative kinetic he-
licity declines when the product Gr Co is larger than about 0.5.
The maximum value of ¢ that can be reached is about 0.3. In a
fully periodic domain, dynamo action would be possible when
e > (ki/k))~', which is 0.2 in this case. However, because of
stratification and boundaries, the onset is delayed and no dynamo
action has been found in the simulations of Brandenburg et al.
(2012b). However, in the present case, dynamo action is possible
for & > 1/30, which leads to a Beltrami-like magnetic field with
variation in the z direction. Dynamo action is demonstrated in
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Fig. 9. Relative kinetic helicity spectrum as a function of GrCo for
Gr = 0.03 with Co = 0.03, 0.06, 0.13, 0.49, and 0.66 (red and blue sym-
bols) compared with results from earlier simulations of Brandenburg
et al. (2012b) for Gr = 0.16 (small dots connected by a dotted line).
The solid line corresponds to & = 2Gr Co. The two horizontal dash-
dotted lines indicate the values of € = k;/k; for which dynamo action
is possible for k¢/k; = 5 and 30. Runs without an imposed field (blue
filled symbols) demonstrate dynamo action in two cases. The blue open
symbol denotes a case where the dynamo is close to marginal.
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Fig. 10. Visualization of B, and B, for the run with Co = 0.5 showing
dynamo action. We note the clear signature of a Beltrami field showing
variation in the z direction.

the absence of an imposed field, which leads to slightly smaller
values of & for the same value of GrCo (see blue symbols in
Fig. 9). The case Co = 0.33 is close to marginal and the field is
slowly decaying, which is in agreement with the expected posi-
tion of the marginal line.

In Fig. 10 we show visualizations of By and B, for a run
with Co = 0.5 showing dynamo action. We note the approxi-
mate phase shift of 90° between B, and B, which has been seen
in earlier simulations of *-type dynamo action from forced tur-
bulence (Brandenburg 2001). As alluded to in Sect. 4.1, the pos-
sibility of dynamo action might be responsible for the contin-
ued growth found in DNS for Co > 0.13. Visualizations of the
yt-averaged Ey for Co = 0.13 and 0.31 show that structures with
variation in the x direction still emerge in front of a new com-
ponent that varies strongly in the z direction and that becomes
stronger as the value of Co is increased.

Our results for Co = 0.13 and 0.31 might be examples of
a dynamo coupled to NEMPI. Such coupled systems are ex-
pected to have an overall enhancement of growth. This possi-
bility, which is not included in the present mean-field model,
has recently been demonstrated in spherical geometry (Jabbari
et al. 2013) by coupling an a? dynamo to NEMPI. Looking at
Fig. 2, we conclude that for Co > 0.13 the coupled system with
NEMPI and dynamo instability is excited in a case where the dy-
namo alone would not be excited and that the growth rate begins

0.610
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0.000
Ve

-3 -2 -1 0 1 s 3

B,/

Fig. 11. Comparison of yr-averaged Ey for Co = 0.13 and 0.31.

to be larger than that of NEMPI alone. Obviously, more work in
that direction is necessary.

5.2. Surface diagnostics

As a consequence of the production of kinetic helicity, the mag-
netic field should also be helical. However, since magnetic he-
licity is conserved, and was zero initially, it should remain zero,
at least on a dynamical time scale (Berger 1984). This condition
can be obeyed if the magnetic field is bi-helical, i.e., with oppo-
site signs of magnetic helicity at large and small wavenumbers
(Seehafer 1996; Ji 1999). We now ask whether signatures of this
could in principle be detected at the solar surface. To address this
question, we use our simulation at intermediate rotation speed
with Co = 0.03, where magnetic flux concentrations are well
developed at the surface of the domain, and compare the helicity
with a larger value of 0.13.

Measuring magnetic helicity is notoriously difficult because
it involves the magnetic vector potential, which is gauge de-
pendent. However, under the assumption of homogeneity and
isotropy, the Fourier transform of the magnetic correlation ten-
sor is

A~ poEm(k
M;i(k) = (6;; — kik;)) ,u4ﬂk§ ) _ €ijk

ik Hyi (k)
8nk2

(33)

where k = k/k is the unit vector of k and En(k) and Hyi(k)
are magnetic energy and magnetic helicity spectra, which obey
the realizability condition 2uyEn(k) > k|Hy(k)|. Here, the fac-
tor 2 in front of Ey(k) is just a consequence of the factor 1/2 in
the definition of energy. Matthaeus et al. (1982) used the solar
wind data from Voyager II to determine Hy(k) from the in situ
measurements of B, while Brandenburg et al. (2011b) applied
the technique to measuring Hyy(k) at high heliographic latitudes,
where Hy (k) is finite and turned out to be bi-helical. We now
adopt the same method using Fourier transforms in the y direc-
tion. In the Sun, this corresponds to measuring B along a 27 ring
at a fixed polar latitude, where one might have a chance to ob-
serve the full circumference at the same time. In Fig. 12 we show
the result for three values of Co.

It turns out that Hyi(k) is compatible with zero for our inter-
mediate value of Co. For faster rotation (Co = 0.13), Hu(k)
is negative at large wavenumbers (k > k¢) and positive (but
still compatible with zero within error bars) at intermediate
wavenumbers (0.15 < k/ks < 0.6). For k/ks < 0.15, the magnetic
helicity is again negative. However, the error bars are large and
rotation is already so fast that structure formation via NEMPI is
impossible. It is therefore unclear whether meaningful conclu-
sions can be drawn from our results.

In the northern hemisphere of the Sun, a bi-helical spectrum
is expected where magnetic helicity is negative on all scales ex-
cept the largest ones, where the a effect operates. This sense
is reversed in the solar wind far from the Sun (Brandenburg
et al. 2011b). This has also been seen in simulations of mag-
netic ejecta from a dynamo-active sphere (Warnecke et al. 2011),
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Fig. 12. Normalized magnetic helicity spectra for different values of
the Coriolis number, Co. In all panels, the same range is shown,
but for Co = 0.66 the normalized helicity exceeds this range and
reaches —0.05.
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Fig. 13. Kinetic and magnetic energy and helicity spectra computed
from the full 3D data set for Co = 0.03. Positive (negative) values
of spectral helicity are indicated with filled (open) symbols. We note
the enhancement of spectral power at the smallest wavenumber of the
domain, k;.

which may be explained by a diffusive magnetic helicity trans-
port (Warnecke et al. 2012).

5.3. Energy and helicity spectra

To put the above considerations in relation to the actual helicity
content, we now compare with the magnetic and kinetic energy
and helicity spectra computed from the fully 3D data set; see
Fig. 13. The magnetic and kinetic helicity spectra are normal-
ized by k/2 and 1/2k, respectively, so that one can estimate how
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much the absolute values of these spectra are below their max-
imum possible values given by the corresponding realizability
conditions, |Hylk/2 < Ey and |Hg|/2k < Ex, respectively.

The spectra show that, while the velocity and magnetic fields
have significant helicity only at the largest scale, they remain
clearly below their maximum possible values. At large scales
(small k), both helicities are negative (indicated by open sym-
bols), but the magnetic helicity is predominantly positive at
wavenumbers slightly below k¢. This is consistent with Fig. 12,
which also shows positive values, although only in the case of
faster rotation (Co = 0.13). Below the forcing scale, both en-
ergy spectra show a k*/? spectrum, which is shallower than the
white noise spectrum (k%) and similar to what has been seen in
helically driven dynamos (Brandenburg 2001). We also note the
uprise of magnetic and kinetic power at the smallest wavenum-
ber (k = ki), which is again similar to helically driven dynamos.
However, it is here not as strong as in the dynamo case.

6. Conclusions and discussion

The present work has confirmed the rather stringent restrictions
of LBKMR, showing that NEMPI is already suppressed for
rather weak rotation (Co 2 0.03). This demonstrates the pre-
dictive power of those earlier MFS. On the other hand, it also
shows that the consideration of the mere existence of a negative
effective magnetic pressure is not sufficient. We knew already
that sufficiently strong stratification and scale separation are two
important necessary conditions. In this sense, the existence of
NEMPI might be a more fragile phenomenon that the existence
of a negative magnetic pressure, which is fairly robust and can
be verified even in absence of stratification (Brandenburg et al.
2010). For the rather small Coriolis numbers considered here, no
measurable change of g, was seen in the simulations, which is
in agreement with our theory predicting that the change is of the
order Co?.

Applied to the Sun with Q = 2 x 107°s~!, the strong sensi-
tivity of the instability to weak rotation implies that NEMPI can
only play a role in the uppermost layers, where the correlation
time is shorter than Co/2Q ~ 2 hours. Although this value might
change with a changing degree of stratification, this would be
surprising as it would exclude even the lower parts of the super-
granulation layer, where 7 is of the order of one day. On the other
hand, we have to keep in mind that our conclusions, which are
based on isothermal models, should be taken with care. It would
therefore be useful to extend the present studies to polytropic
layers where the scale height varies with depth. We also note that
weak rotation (Co = 0.03) enhances the surface appearance. At
the same time, as we argued in Sect. 4.1, the sinking of structures
becomes less prominent, which suggests that they might remain
confined to the surface layers. However, preliminary MFS do not
indicate a significant dependence of the eigenfunction on Co for
values below 0.1. Our interpretation, if correct, would therefore
need to be a result of nonlinearity.

If we were to apply NEMPI to the formation of active regions
in the Sun, we should keep in mind that the scale of structures
would be 6-8 pressure scale heights (Kemel et al. 2012a). At
the depth where the turnover time is about two hours, we esti-
mate the rms velocity to be about 500 m/s, so the scale height
would be about 3 Mm, corresponding to a NEMPI scale of at
least 20 Mm. This might still be of interest for explaining plage
regions in the Sun. Clearly, more work using realistic models
would be required for making more conclusive statements.

Regarding the production of kinetic helicity and the possible
detection of a magnetic helicity spectrum, our results suggest
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that the relative magnetic helicity cannot be expected to be
more than about 0.01. This is a consequence of correspondingly
low values of kinetic helicity. We find that the normalized ki-
netic helicity is given by & =~ 2GrCo. For the Sun, we ex-
pect Gr = (kap)_l ~ (.16, which agrees with what is used
in our simulations; thus there is not much room for more op-
timistic estimates. In this connection we should note that in
Kemel et al. (2012a) the value of ktH,, (= Gr ') was estimated
based on stellar mixing length theory, using €nix = amixH, for
the mixing length with ap,ix ~ 1.6 being an empirical param-
eter. For isentropic stratification, the pressure scale height H,
is related to H, via yH, =~ H,. With kf = 2n/{nx we obtain
kiH, = 21y amix = 27, so Gr = (keH,)™' ~ 0.16. We note here
that, owing to a mistake, we underestimated the value of k¢H,,
by a factor of 2.6. This factor also has an enhancing effect on the
growth rate of NEMPI. The correct value should then be larger
and would now be clearly faster than the turbulent—diffusive rate.
Furthermore, as we have shown here, at the point where NEMPI
begins to be suppressed by rotation, effects related to dynamo
action reinforce the concentration of flux, even though the dy-
namo alone would not yet be excited. In this sense, the stringent
restrictions of LBKMR from MFS appear now less stringent in
DNS. It might be hoped that this new feature can eventually be
reproduced by MFS, such as those of Jabbari et al. (2013) that
take the « effect into account.
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Appendix A: The identities used in Sect. 3.2
for the integration in k-space

To integrate over the angles in k-space in Sect. 3.2, we used the
following identities (Rogachevskii & Kleeorin 2004, 2007):

I3 f kiSO pdg = A6+ A
ij = —_— = ijt ij»
/ T+acos2 = A0 i

_ kijmn sin @
Kijnn = f 1 +acos2d d

+ §in5jm) + CZﬁijmn + C_v3 (&'}ﬂmn + csimﬁjn + 6inﬁjm
+ 6./'111,81"1 + 6jnﬂim + 6nzr1,8ij)’

(A.1)

Ode = 61(61',/'517”1 + 6iln6jn

(A.2)
kijmn sin 6

(1 + acos?6)?

0 ki jmn sin 6

- (& [ LZim BT 4
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I_(ijmn(a) +a
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In the case of a < 1 these functions are given by
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In the case of a > 1 these functions are given by
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The functions A (B) are given by
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and similarly for C™ @), where a = [Buokt(k)/21%, B =
V8 B/Beg, and X? = B (k/ko)** = B2/ = a. The explicit form
of the functions A" (B) and C™(B) for m = 0; 2 are given by
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where M(B) = 1 — 25 + 23" In(1 + 372). Here we have taken into
account that Rm > 1. For B < Beg/4 Rm'/*, these functions are
given by

- 1~
AV@) ~ 2~ gﬁz InRm,

~ 2. 2
)
A2 B ~ Sﬁ [lan+ 15]

~ 2 3. ~ 2.
@ L 21 _ 2@ @y 272
APP ~ S(1- B ADB) ~ 2P

2(1 3~)
15 14

For Beq/4Rm'/*

Y@ ~
<B< Beq/4, these functions are given by
AY@) ~2 2Inf - —

1B~ 2+ ﬁ np + ﬁ

AV @) ~ [4 Injg - — —3p ]

Other functions in this case have the same asymptotics as in the

case of B < Beq/4le/4. For B > Bey/4, these functions are
given by

AO@) ~ /3 ; B~ +B%’
3 ~ 3 3

AP@) ~ 7/3 3 A§2’<ﬂ>~—7—g+ﬁ—2,
1

The functions g;(8) and ¢»(B) are given by

71 = [A‘°>(0> AP @Ep) - 3AT4B)

- (QTO)Z(A(IZ)(O) ~2C7(0) - 1047 (4B)

+2oc<2)(4/3)+ [A1(16ﬂ)—2C1(16,8 ] a2
P(B) = [‘A(O)(4/3) + (Qro)X(AP(0) - 6C(0)

- 104PB) + 60C'V(4pB) + %[A 1(168%)
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ABSTRACT

Context. Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous
formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has
been done for isothermal layers, in which the density scale height is constant throughout.

Aims. We now want to know whether earlier conclusions regarding the size of magnetic structures and their growth rates carry over
to the case of polytropic layers, in which the scale height decreases sharply as one approaches the surface.

Methods. To allow for a continuous transition from isothermal to polytropic layers, we employ a generalization of the exponential
function known as the g-exponential. This implies that the top of the polytropic layer shifts with changing polytropic index such
that the scale height is always the same at some reference height. We used both mean-field simulations (MFS) and direct numerical
simulations (DNS) of forced stratified turbulence to determine the resulting flux concentrations in polytropic layers. Cases of both
horizontal and vertical applied magnetic fields were considered.

Results. Magnetic structures begin to form at a depth where the magnetic field strength is a small fraction of the local equipartition
field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic
flux concentrations at larger depths, in the polytropic case the growth rate of NEMPI decreases for structures deeper down. Moreover,
the structures that form higher up have a smaller horizontal scale of about four times their local depth. For vertical fields, magnetic
structures of super-equipartition strengths are formed, because such fields survive downward advection that causes NEMPI with hori-
zontal magnetic fields to reach premature nonlinear saturation by what is called the “potato-sack” effect. The horizontal cross-section
of such structures found in DNS is approximately circular, which is reproduced with MFS of NEMPI using a vertical magnetic field.
Conclusions. Results based on isothermal models can be applied locally to polytropic layers. For vertical fields, magnetic flux con-
centrations of super-equipartition strengths form, which supports suggestions that sunspot formation might be a shallow phenomenon.

Key words. magnetohydrodynamics (MHD) — hydrodynamics — turbulence — Sun: dynamo

1. Introduction

In a turbulent medium, the turbulent pressure can lead to dynam-
ically important effects. In particular, a stratified layer can attain
a density distribution that is significantly altered compared to
the nonturbulent case. In addition, magnetic fields can change
the situation further, because it can locally suppress the turbu-
lence and thus reduce the total turbulent pressure (the sum of
hydrodynamic and magnetic turbulent contributions). On length
scales encompassing many turbulent eddies, this total turbulent
pressure reduction must be compensated for by additional gas
pressure, which can lead to a density enhancement and thus to
horizontal magnetic structures that become heavier than the sur-
roundings and sink (Brandenburg et al. 2011). This is quite the
contrary of magnetic buoyancy, which is still expected to op-
erate on the smaller scale of magnetic flux tubes and in the ab-
sence of turbulence. Both effects can lead to instability: the latter
is the magnetic buoyancy or interchange instability (Newcomb
1961; Parker 1966), and the former is now often referred to as
negative effective magnetic pressure instability (NEMPI), which
has been studied at the level of mean-field theory for the past
two decades (Kleeorin et al. 1989, 1990, 1993, 1996; Kleeorin
& Rogachevskii 1994; Rogachevskii & Kleeorin 2007). These
are instabilities of a stratified continuous magnetic field, while
the usual magnetic buoyancy instability requires nonuniform and
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initially separated horizontal magnetic flux tubes (Parker 1955;
Spruit 1981; Sch ssler et al. 1994).

Unlike the magnetic buoyancy instability, NEMPI occurs at
the expense of turbulent energy rather than the energy of the
gravitational field. The latter is the energy source of the mag-
netic buoyancy or interchange instability. NEMPI is caused by
a negative turbulent contribution to the effective mean magnetic
pressure (the sum of nonturbulent and turbulent contributions).
For large Reynolds numbers, this turbulent contribution to the
effective magnetic pressure is larger than the nonturbulent one.
This results in the excitation of NEMPI and the formation of
large-scale magnetic structures — even from an originally uni-
form mean magnetic field.

Direct numerical simulations (DNS) have recently demon-
strated the operation of NEMPI in isothermally stratified layers
(Brandenburg et al. 2011; Kemel et al. 2012b). This is a partic-
ularly simple case in that the density scale height is constant;
i.e., the computational burden of covering large density varia-
tion is distributed over the depth of the entire layer. In spite of
this simplification, it has been argued that NEMPI is important
for explaining prominent features in the manifestation of solar
surface activity. In particular, it has been associated with the
formation of active regions (Kemel et al. 2013; Warnecke et al.
2013) and sunspots (Brandenburg et al. 2013, 2014). However, it
is now important to examine the validity of conclusions based on
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such simplifications using more realistic models. In this paper,
we therefore now consider a polytropic stratification, for which
the density scale height is smallest in the upper layers, and the
density variation therefore greatest.

NEMPI is a large-scale instability that can be excited in strat-
ified small-scale turbulence. This requires (i) sufficient scale sep-
aration in the sense that the maximum scale of turbulent mo-
tions, ¢, must be much smaller than the scale of the system, L;
and (ii) strong density stratification such that the density scale
height H,, is much smaller than L; i.e.,

(< H, < L. ()

However, both the size of turbulent motions and the typical size
of perturbations due to NEMPI can be related to the density
scale height. Furthermore, earlier work of Kemel et al. (2013)
using isothermal layers shows that the scale of perturbations due
to NEMPI exceeds the typical density scale height. Unlike the
isothermal case, in which the scale height is constant, it de-
creases rapidly with height in a polytropic layer. It is then un-
clear how such structures could fit into the narrow space left by
the stratification and whether the scalings derived for the isother-
mal case can still be applied locally to polytropic layers.

NEMPI has already been studied previously for polytropic
layers in mean-field simulations (MFS; Brandenburg et al. 2010;
K pyl etal. 2012; Jabbari et al. 2013), but no systematic com-
parison has been made with NEMPI in isothermal or in poly-
tropic layers with different values of the polytropic index. This
will be done in the present paper, both in MFS and DNS.
Those two complementary types of simulations have proved
to be a good tool for understanding the underlying physics of
NEMPI. An example are the studies of the effects of rotation
on NEMPI (Losada et al. 2012, 2013), where MFS have been
able to give quantitatively useful predictions before correspond-
ing DNS were able to confirm the resulting dependence.

2. Polytropic stratification

We discuss here the equation for the vertical profile of the fluid
density in a polytropic layer. In a Cartesian plane-parallel layer
with polytropic stratification, the temperature gradient is con-
stant, so the temperature goes linearly to zero at z.. The tem-
perature, T, is proportional to the square of the sound speed, ¢?,
and thus also to the density scale height H,(z), which is given
by H, = c2/g for an isentropic stratification, where g is the ac-
celeration due to the gravity. For a perfect gas, the density p is
proportional to 7", and the pressure p is proportional to 7"*!,
such that p/p is proportional to 7, where n is the polytropic in-
dex. Furthermore, we have p(z) o p(z)r, whereI' = (n + 1)/nis
another useful coefficient.

For a perfect gas, the specific entropy can be defined (up to
an additive constant) as s = ¢, In(p/p”), where y = ¢,/c, is the
ratio of specific heats at constant pressure and constant density,
respectively. For a polytropic stratification, we have

exp(s/c,) = p/p” < p' 7, 2

so s is constant when I' = 7, which is the case for an isen-
tropic stratification. In the following, we make this assumption
and specify from now only the value of y. For a monatomic gas,
we have vy = 5/3, which is relevant for the Sun, while for a di-
atomic molecular gas, we have y = 7/5, which is relevant for air.
In those cases, a stratification with ' = y can be motivated by
assuming perfect mixing across the layer. The isothermal case
with ¥ = 1 can be motivated by assuming rapid heating/cooling
to a constant temperature.
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Fig. 1. Isothermal and polytropic relations for different values of y
when calculated using the conventional formula p « (z, — z)" with

n=1/(y - D).

Our aim is to study the change in the properties of NEMPI
in a continuous fashion as we go from an isothermally strati-
fied layer to a polytropic one. In the latter case, the fluid density
varies in a power law fashion, p o (zo — z)", while in the former,
it varies exponentially, p oc exp(ze — z). This is shown in Fig. 1
where we compare the exponential isothermal atmosphere with
a family of polytropic atmospheres with y = 1.2, 1.4, and 5/3.
Clearly, there is no continuous connection between the isother-
mal case and the polytropic one in the limit y — 1. This cannot
be fixed by rescaling the isothermal density stratification, be-
cause in Fig. 1 its values would still lie closer to 5/3 than to 1.4
or 1.2. Another problem with this description is that for poly-
tropic solutions the density is always zero at z = 7z, but finite in
the isothermal case. These different behaviors between isother-
mal and polytropic atmospheres can be unified by using the gen-
eralized exponential function known as the “g-exponential” (see,
e.g., Yamano 2002), which is defined as

eg(x) = [1+(1 —g)x]/" 2, 3)

where the parameter ¢ is related to y via ¢ = 2 — . This
generalization of the usual exponential function was originally
introduced by Tsallis (1988) in connection with a possible gener-
alization of the Boltzmann-Gibbs statistics. Its usefulness in con-
nection with stellar polytropes has been employed by Plastino &
Plastino (1993). Thus, the density stratification is given by

y-1 n
Z Z
1+ (y— D[ —(1- 4
Ho )( HPO)} ( ”HPO) ' @

which reduces to p/py = exp(—z/H,y) for isothermal stratifica-
tion with y — 1 and n — oo. The density scale height is then
given by

Hy(z) = Hyy — (y = D)z = Hyp — z/n. (5)

In the following, we measure lengths in units of Hy,o = H,(0).

In Fig. 2 we show the dependencies of p(z) and H, given by
Egs. (4) and (5) for different values of y. Compared with Fig. 1,
where z., is held fixed, in Fig. 2 it is equal to zo = nHy,y =
Hpo/(y — 1). The total density contrast is roughly the same in
all four cases for different y, but for increasing values of vy, the
vertical density gradient becomes progressively stronger in the
upper layers.

Assuming that the radius R of the resulting structures is pro-
portional to H,, we sketch in Fig. 3 a situation in which R is



p/po

Hp /Hp()

0.0

z/H 20
Fig. 2. Polytropes (Eq. (4)) with y = 1 (solid line), 1.2 (dash-dotted), 1.4
(dotted), and 5/3 (dashed) and density scale height (Eq. (5)) for —4 <
—z/Hy < 1.2. The total density contrast is similar for y = 1 and 5/3.
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Fig. 3. Sketch showing the expected size distribution of the nearly cir-
cular NEMPI eigenfunction structures at different heights.

half the depth. With p oc (z — 2)", the density scale height is
H,(z) = (2o — 2)/n. Thus, Fig. 3 applies to a case in which
R = (200—2)/2 = (n/2) Hy(2). The solar convection zone is nearly
isentropic and well described by n = 3/2. This means that the
structures of Fig. 3 have R = (3/4) H,(z). The results of Kemel
et al. (2013) and Brandenburg et al. (2014) suggest that the hori-
zontal wavenumber of structures, k, , formed by NEMPI, is less
than or about H[jl , so their horizontal wavelength is S27H,,. One
wavelength corresponds to the distance between two nodes, i.e.,
the distance between two spheres, which is 4 R. Thus, in the
isothermal case we have R/H, = 2n/4 ~ 1.5, which implies
that such a structure would not fit into the isentropic atmosphere
described above. This provides an additional motivation for our
present work.

3. DNS study

In this section we study NEMPI in DNS for the polytropic layer.
Corresponding MFES are presented in Sect. 4.

R SR S S

3.1. The model

We solve the equations for the magnetic vector potential A, the
velocity U, and the density p, in the form

A UxB =l ©
ar o

DU 1

— =-JxB+f—-vQ-VH, @)
Dt p

Dp

£ =_pv.u, 8
pr - ¥ ®

where D/Dt = 0/0t+U-V is the advective derivative with respect
to the actual (turbulent) flow, B = By + V X A is the magnetic
field, By the imposed uniform field, J = V X B/ug the current
density, yo the vacuum permeability, H = h + ® the reduced
enthalpy, & = ¢, T the enthalpy, @ is the gravitational potential,

~Q=VU+1iVV.-U+28Vinp 9)

is a term appearing in the viscous force —vQ, S is the traceless
rate-of-strain tensor with components
1 1
Sij=53(V;Ui +ViU;) = 30;;V - U, (10)
v is the kinematic viscosity, and 7 is the magnetic diffusion co-
efficient caused by electrical conductivity of the fluid. As in
Losada et al. (2012), z corresponds to radius, x to colatitude,
and y to azimuth. The forcing function f consists of random,
white-in-time, plane, nonpolarized waves with a certain average
wavenumber kg.

3.2. Boundary conditions and parameters

In the DNS we use stress-free boundary conditions for the ve-
locity at the top and bottom; i.e., V.U, = V.U, = U, = 0.
For the magnetic field we use either perfect conductor boundary
conditions, A, = A, = V.A, = 0, or vertical field conditions,
VA, = V. A, = A, = 0, again at both the top and bottom. All
variables are assumed periodic in the x and y directions.

The turbulent rms velocity is approximately independent of z
with ums = @?)"/?> ~ 0.1¢,. The gravitational acceleration
g = (0,0,—g) is chosen such that k{H,o = 1, where k; = 2n/L
and L is the size of the domain. With one exception (Sect. 3.5),
we always use the value k¢/k; = 30 for the scale separation ratio.
For By we choose either a horizontal field pointing in the y direc-
tion or a vertical one pointing in the z direction. The latter case,
By = (0,0, By), is usually combined with the use of the vertical
field boundary condition, while the former one, By = (0, By, 0),
is combined with using perfect conductor boundary conditions.
The strength of the imposed field is expressed in terms of Bego =
Bey(z = 0), which is the equipartition field strength at z = 0.
Here, the equipartition field Bey(z) = (0P(2))"/? ttrms. The im-
posed field is normalized by B.qo and denoted as By = By/Beqo,
while 5 = |B|/B.q is the modulus of the normalized mean mag-
netic field. Time is expressed in terms of the turbulent-diffusive
time, 7yq = H,%o /10, Where o = tms/3ks (Sur et al. 2008) is an
estimate for the turbulent magnetic diffusivity used in the DNS.

Our values of v and n are characterized by specifying the
kinetic and magnetic Reynolds numbers,

Re = tyms/Vks,

()

In most of this paper (except in Sect. 3.5) we use Re = 36 and
Ry = 18, which are also the values used by Kemel et al. (2013).

Ry = Usms /17K
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Fig. 4. Snapshots of E,, from DNS for y = 5/3 and By = 0.02 (upper row), 0.05 (middle row), and 0.1 (lower row) at different times (indicated in
turbulent-diffusive times, increasing from left to right) in the presence of a horizontal field using the perfect conductor boundary condition.

The DNS are performed with the PENCIL CODE, http://
pencil-code.googlecode.com, which uses sixth-order ex-
plicit finite differences in space and a third-order accurate time
stepping method. We use a numerical resolution of 256> mesh
points.

3.3. Horizontal fields

We focus on the case y = 5/3 and show in Fig. 4 visualiza-
tions of Ey at different instants for three values of the imposed
horizontal magnetic field strength. For 8y = 0.02, a magnetic
structure is clearly visible at #/7q = 1.43, while for 5y = 0.05
structures are already fully developed at #/7g = 0.42. In that case
(Bo = 0.05), at early times (#/1q = 0.42), there are two struc-
tures, which then begin to merge at #/7q = 1.38. The growth
rate of the magnetic structure is found to be A = 21/ HIQ)O for the
runs shown in Fig. 4. This is less than the value of 1 ~ 57 /Hg0
found earlier for the isothermal case (Kemel et al. 2012b).

For y = 5/3 and By < 0.02, the magnetic structures be-
come smaller (k H,0 = 2) near the surface. In the nonlinear
regime, i.e., at late times, the structures move downward due
to the so-called “potato-sack” effect, which was first seen in
MEFES (Brandenburg et al. 2010) and later confirmed in DNS
(Brandenburg et al. 2011). The magnetic structures sink in the
nonlinear stage of NEMPI, because an increase in the mean
magnetic field inside the horizontal magnetic flux tube increases
the absolute value of the effective magnetic pressure. On the
other hand, a decrease in the negative effective magnetic pres-
sure is balanced out by increased gas pressure, which in turn
leads to higher density, so the magnetic structures become heav-
ier than the surroundings and sink. This potato-sack effect has
been clearly observed in the present DNS with the polytropic
layer (see the right column in Fig. 4).

3.4. Vertical fields

Recent DNS using isothermal layers have shown that strong cir-
cular flux concentrations can be produced in the case of a verti-
cal magnetic field (Brandenburg et al. 2013, 2014). This is also
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observed in the present study of a polytropic layer; see Fig. 5,
where we show the evolution of B. on the periphery of the com-
putational domain fory = 5/3 and 8y = 0.05 at different times. A
difference to the DNS for y = 1 (Brandenburg et al. 2013) seems
to be that for y = 5/3 the magnetic structures are shallower than
for y = 1; see Fig. 6, where we show xy and xz slices of B,
through the spot. Owing to periodicity in the xy plane, we have
shifted the location of the spot to x = y = 0. We note also that the
field lines of the averaged magnetic field show a structure rather
similar to the one found in MFS of Brandenburg et al. (2014).
The origin of circular structures is associated with a cylindrical
symmetry for the vertical magnetic field. The growth rate of the
magnetic field in the spot is found to be 1 ~ 0.97 /Hgo, which
is similar to the value of 1.3 found earlier for the isothermal case
(Brandenburg et al. 2013).

3.5. Effective magnetic pressure

As pointed out in Sect. 1, the main reason for the formation
of strongly inhomogeneous large-scale magnetic structures is
the negative contribution of turbulence to the large-scale mag-
netic pressure, so that the effective magnetic pressure (the sum
of turbulent and nonturbulent contributions) can be negative at
high magnetic Reynolds numbers. The effective magnetic pres-
sure has been determined from DNS for isothermally stratified
forced turbulence (Brandenburg et al. 2010, 2012) and for turbu-
lent convection (K pyl etal.2012). To see whether the nature of
polytropic stratification has any influence on the effective mag-
netic pressure, we use DNS.

We first explain the essence of the effect of turbulence on the
effective magnetic pressure. We consider the momentum equa-
tion in the form

0 0

— U,’ = ——H," + is 12
where

I = p UiU; + 6 (p + BY2u0) — BiBj/o - 2vp S (13)

is the momentum stress tensor and d;; the Kronecker tensor.
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t/ry = 0.69

Fig. 5. Snapshots from DNS showing B. on the periphery of the computational domain for y = 5/3 and 8, = 0.05 at different times for the case of

a vertical field using the vertical field boundary condition.

Bz/Beq(z)

Tl 10

G 0.5
0.0
~0.5
~1.0
B./B.(?)

Fig. 6. Cuts of B./B(z) in (a) the xy plane at the top boundary (z/H,, = 1.2) and (b) the xz plane through the middle of the spot at y = 0 for
v =5/3 and B, = 0.05. In the xz cut, we also show magnetic field lines and flow vectors obtained by numerically averaging in azimuth around the

spot axis.

Ignoring correlations between velocity and density fluctua-
tions for low-Mach number turbulence, the averaged momentum
equation is

_—= 0= _
pUi=—-—1Ilj+pg,

14
ot Oxj (14)

.= =m —f .
where an overbar means xy averaging, IT;; = H;-T;+H,- ;1s the mean
momentum stress tensor, split into contributions resulting from
the mean field (indicated by superscript m) and the fluctuating

field (indicated by superscript f). The tensor ﬁ?; has the same
form as Eq. (13), but all quantities have now attained an overbar;

I, =5 U;U; + 6; (p + B*/2u0) — BiBj/pto — 2v5 Sij. (15)

f

ij» which result from the fluctuations u =

U-U and b = B—B of velocity and magnetic fields, respectively,

The contributions, I

are determined by the sum of the Reynolds and Maxwell stress
tensors:

Hij Z'BM,'MJ‘+(5,'jb2/2,u0—b,'bj/lu0. (16)
This contribution, together with the contribution from the mean
field, H;I;, comprises the total mean momentum tensor. The con-
tribution from the fluctuating fields is split into a contribution

. . —£0 .
that is independent of the mean magnetic field I1;; (which deter-
mines the turbulent viscosity and background turbulent pressure)

s . —f.B
and a contribution that depends on the mean magnetic field IT;; .

. —f —fB —f0 .
The difference between the two, AlIl;; = IT,; —TI,;, is caused by

the mean magnetic field and is parameterized in the form
—f _ I — A=
ATL; = 1ty (¢.BiB; - qp 6,iB°/2 — 42 §: 9;B°).

where the coeflicient g, represents the isotropic turbulence con-
tribution to the mean magnetic pressure, the coefficient g, repre-
sents the turbulence contribution to the mean magnetic tension,

7)
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Fig. 7. Effective magnetic pressure obtained from DNS in a polytropic
layer with different y for horizontal (H, red curves) and vertical (V, blue
curves) mean magnetic fields.

while the coefficient g, is the anisotropic turbulence contribu-
tion to the mean magnetic pressure, and it characterizes the ef-
fect of vertical variations of the magnetic field caused by the
vertical magnetic pressure gradient. Here, g; is the unit vector
in the direction of the gravity field (in the vertical direction).
We consider cases with horizontal and vertical mean magnetic
fields separately. Analytically, the coefficients gp, ¢,, and gs have
been obtained using both the spectral 7 approach (Rogachevskii
& Kleeorin 2007) and the renormalization approach (Kleeorin
& Rogachevskii 1994). The form of Eq. (17) is also obtained
using simple symmetry arguments; e.g., for a horizontal field,
the linear combination of three independent true tensors, 6;;, §:§ ;

and B;B;, yields Eq. (17), while for the vertical field, the linear

combination of only two independent true tensors, ¢;; and B;B;.

Previous DNS studies (Brandenburg et al. 2012) have shown
that gs and g, are negligible for forced turbulence. To avoid
the formation of magnetic structures in the nonlinear stage of
NEMPI, which would modify our results, we use here a lower
scale separation ratio, k¢/k; = 5, keeping k{H, = 1, and us-
ing Re = 140 and R, = 70, as in Brandenburg et al. (2012).
To determine gp(f), it is sufficient to measure the three diagonal

—=f . . . .
components of II;; both with and without an imposed magnetic

field using gp = ~24oATT,, /B .

In Fig. 7 we present the results for forced turbulence in the
polytropic layer with different y for horizontal and vertical mean
magnetic fields. It turns out that the normalized effective mag-
netic pressure,

1
Peir = 5(1 - 4B (18)

has a minimum value Ppi, at Bmin. Following Kemel et al.
(2012a), the function g,(B) is approximated by:

qpo B

WO TR TR

(19)

where gpo, Bp, and By = ﬂpq:’ (/)2 are constants. This equation can

be understood as a quenching formula for the effective magnetic
pressure; see Jabbari et al. (2013). The coeflicients 5, and 3, are
related to Pmin at Bmin via (Kemel et al. 2012a)

Bo = Bin [N=2Pumin: B =Bp + \-2Prmin-
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(20)
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Fig. 8. Parameters gy, 3, and S, for the function g,(B) (see Eq. (19))
versus 7y for horizontal (red line) and vertical (blue line) mean magnetic
fields.

In Fig. 8 we show these fitting parameters for the function g,(3)
for polytropic layer with different y for horizontal and vertical
mean magnetic fields. The effects of negative effective magnetic
pressure are generally stronger for vertical magnetic fields (gpo
is larger and 3, smaller) than for horizontal ones (gpo is smaller

and B, larger), but the values S, = ﬁpq:)éz are similar in both

cases, and increasing from 0.35 (for y = 1) to 0.6 (for y = 5/3);
see Fig. 8.

4. Mean-field study

We now consider two sets of parameters that we refer to as
Model I (with g0 = 32 and B, = 0.058 corresponding to
Bx = 0.33) and Model II (g0 = 9 and 5, = 0.21 correspond-
ing to B, = 0.63). These cases are representative of the strong
(large B4 ) and weak (small B, ) effects of NEMPI. Following ear-
lier studies (Brandenburg et al. 2012), we find g5 to be compati-
ble with zero. We thus neglect this coefficient in the following.

4.1. Governing parameters and estimates

The purpose of this section is to summarize the findings for the
isothermal case in MFS. One of the key results is the prediction
of the growth rate of NEMPI. The work of Kemel et al. (2013)
showed that in the ideal case (no turbulent diffusion), the growth
rate A is approximated well by

A= ﬁ*urms /Hp

(no turbulent diffusion). 21



o - -

However, turbulent magnetic diffusion, 7, can clearly not be ne-
glected and is chiefly responsible for shutting off NEMPI if the
turbulent eddies are too big and 7, too large. This was demon-
strated in Fig. 17 of Brandenburg et al. (2012). A heuristic
ansatz, which is motivated by similar circumstances in mean-
field dynamo theory (Krause & R dler 1980), is to add a
term —n” to the righthand side of Eq. (21), where k is the
wavenumber of NEMPI.

To specify the expression for A4, we normalize the wavenum-
ber of the perturbations by the inverse density scale height and
denote this by k = kH,,. The wavenumber of the energy-carrying
turbulent eddies k¢ is in nondimensional form «¢ = k¢H,, and
the normalized horizontal wavenumber of the resulting mag-
netic structures is referred to as x, = ky H,. For NEMPI,
these values have been estimated to be k;, = 0.8-1.0, and can
even be smaller for vertical magnetic fields (Brandenburg et al.
2014). Using an approximate aspect ratio of unity for magnetic
structures, we have k = V2« 1 =~ L.1-1.4. In stellar mixing
length theory (Vitense 1953), the mixing length is {f = amixHp,
where an,ix ~ 1.6 is a nondimensional mixing length param-
eter. Since kf = 2nm/{r, we arrive at the following estimate:
K = 2my/amix = 6.5. [Owing to a confusion between pressure
and density scale heights, this value was underestimated by
Kemel et al. (2013) to be 2.4, although an independent calcu-
lation of this value from turbulent convection simulations would
still be useful.] Using n; = urms/3ks, the turbulent magnetic dif-
fusive rate for an isothermal atmosphere is given by

Urms K
K== 22
UK 3H, &t (22)
and the growth rate of NEMPI in that normalization is
A K
— =3B,— - 1. 23
e kz B * K2 ( )

Using B, = 0.23, which is the relevant value for high mag-
netic Reynolds numbers (Brandenburg et al. 2012), we find
A/nik? ~ 2.7-1.3 for k ~ 1.1-1.4. However, since Fig. 8 shows
an increase of (8, with increasing polytropic index, one might
expect a corresponding increase in the growth rate of NEMPI
for a polytropic layer, in which H,, varies strongly with height z.
Indeed, in a polytropic atmosphere, H,, is proportional to depth.
Thus, at any given depth there is a layer beneath, where the strat-
ification is less strong and the growth rate of NEMPI is lower. In
addition, there is a thinner, more strongly stratified layer above,
where NEMPI might grow faster if only the structures generated
by NEMPI have enough room to develop before they touch the
top of the atmosphere at z.,, where the temperature vanishes.

4.2. Mean-field equations

In the following, we consider MFS and compare it with
DNS. We also compare our MFS results with those of DNS
(Brandenburg et al. 2011; Kemel et al. 2013) using a similar
polytropic setup.

The governing equations for the mean quantities (denoted by
an overbar) are fairly similar to those for the original equations,
except that in the MFS viscosity and magnetic diffusivity are
replaced by their turbulent counterparts, and the mean Lorentz
force is supplemented by a parameterization of the turbulent con-
tribution to the effective magnetic pressure.

R SR S S

The evolution equations for mean vector potential A, mean
velocity U, and mean density p, are

0A — — _

B U X B - nruod, (24)
DU 1, — — _

— == [J xB+V(g,B*/2u0)| - rQ - VH, (25)
Dt P

B_

ZP_ —pV - U, (26)
Dt

where D/Dt = d/dt + U - V is the advective derivative with re-
spect to the mean flow, p the mean density, H = h + @ the mean
reduced enthalpy, # = c¢,T the mean enthalpy, T « 57*1 the
mean temperature, @ the gravitational potential, T = 7, + 1, and
vr = v + v are the sums of turbulent and microphysical values
of magnetic diffusivity and kinematic viscosities, respectively.
Also, J = V X B/uy is the mean current density, 1 is the vac-
uum permeability,

-0 =V*U+1VV-U+28Vinp 27)
is a term appearing in the mean viscous force —vrQ, where S is
the traceless rate-of-strain tensor of the mean flow with compo-
nents S;; = %(VJ-U,- + Viﬁj) - %5,-1-V - U, and finally the term
V(qu2 /2p0) on the righthand side of Eq. (25) determines the
turbulent contribution to the effective magnetic pressure. Here,
qp depends on the local field strength; see Eq. (19). This term
enters with a plus sign, so positive values of g, correspond
to a suppression of the total turbulent pressure. The net effect
of the mean magnetic field leads to an effective mean mag-
netic pressure that becomes negative for g, > 1. This can in-
deed be the case for magnetic Reynolds numbers well above
unity (Brandenburg et al. 2012); see also Fig. 7 for a polytropic
atmosphere.

The boundary conditions for MFS are the same as for DNS,
i.e., stress-free for the mean velocity at the top and bottom. For
the mean magnetic field, we use either perfect conductor bound-
ary conditions (for horizontal, imposed magnetic fields) or ver-
tical field conditions (for vertical, imposed fields) at the top and
bottom. All mean-field variables are assumed to be periodic in
the x and y directions. The MFS are performed again with the
PENCIL CODE, which is equipped with a mean-field module for
solving the corresponding equations.

4.3. Expected vertical dependence of NEMPI

To get an idea about the vertical dependence of NEMPI, we
now consider the resulting dependencies of P.g(z); see the left-
hand panels of Fig. 9. We note that Peg is just a function of 8
(Eqgs. (18) and (19)), which allows us to approximate the local
growth rates as (Rogachevskii & Kleeorin 2007; Kemel et al.
2013)

1
2
/10 = —UA (_zdpezﬂ’) N
Hpo dg

which are plotted in the righthand panels of Fig. 9 for Model L.

(28)

4.4. Horizontal fields

To analyze the kinematic stage of MFS, we measure the value of

the maximum downflow speed, |U|%"" at each height. We then
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Fig. 10. Dependence of growth rate and height where the eigenfunc-
tion attains its maximum value (the optimal depth of NEMPI) on field
strength from MFS for different values of y in the presence of a hori-
zontal field for Model 1.

0.02

determine the time interval during which the maximum down-
flow speed increases exponentially and when the height of the
peak is constant and equal to zz. This yields the growth rate of
the instability as 4 = dIn|U |$’3WX“/ dr.

In Figs. 10 and 11 we plot, respectively for Models I and I,
A (in units of 7,/ Hﬁo) and zp versus horizontal imposed magnetic

field strength, Bo/Beq. The maximum growth rates for y = 5/3
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Fig. 11. Same as Fig. 10 (horizontal field), but for Model II.
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Fig. 12. Snapshots of B, from MFS during the kinematic growth phase
for different values of y and By/B.y for y = 1 (top) and 5/3 (bottom)
with By = 0.02 (left) and 0.1 (right) in the presence of a horizontal field
for Model I.

and y = 1 are similar for both models (4-5 7,/ Hgo for Model I

and 16-20 nt/Hgo for Model II). It turns out that for y = 5/3,

the growth rate A attains a maximum at some value By = Bmax,
and then it decreases with increasing By, while in an isothermal
run A is nearly constant for greater field strength, except near
the surface where the proximity to the boundary is too small.
This close proximity reduces the growth rate. For Model I with
v = 1, the decline of A (toward weaker fields on the lefthand
side of the plot) begins when the distance to the top boundary
(ztop — 2B = 1.2 H,y for By = 0.02) is less than the radius of
magnetic structures (R = 2m/k, ~ 1.5 Hy using k1 Hyo = 1). In
Model II with y = 1, the decline of A occurs for stronger fields,
but the distance to the top boundary (1.0 H,) is still nearly the
same as for Model I.

In an isothermal layer, the height where the eigenfunction
peaks is known to decrease with increasing field strength; see
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Fig. 13. Dependence of growth rate and optimal depth of NEMPI on
field strength from MFS for different values of y in the presence of a
vertical field for Model L.
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Fig. 6 of Kemel et al. (2012a). One might have expected this de-
crease to be less steep in the polytropic case, because the optimal
depth where NEMPI occurs cannot easily be decreased without
suffering a dramatic decrease of the growth rate. This is however
not the case, and we find that the optimal depth of NEMPI is
now falling off more quickly in Model I, but is more similar for
Model IT; see the second panels of Figs. 10 and 11. This means
that in a polytropic layer, NEMPI works more effectively, and its
growth rate is fastest when the magnetic field is not too strong.
At the same time, the optimal depth of NEMPI increases, i.e.,
the resulting value of zp increases as By decreases.

The resulting growth rates are somewhat less for Model I
and somewhat higher for Model II than those of earlier mean-
field calculations of Kemel et al. (2012a, their Fig. 6), who found
/ngo/’h ~ 9.7 in a model with 8, = 0.32 and 8, = 0.05. These
differences in the growth rates are plausibly explained by differ-
ences in the mean-field parameters.

Visualizations of the resulting horizontal field structures are
shown in Fig. 12 for two values of y and By. Increase in the
parameter y results in a stronger localization of the instability at
the surface layer, where the density scale height is minimum and
the growth of NEMPI is strongest.

4.5. Vertical fields

In the presence of a vertical field, the early evolution of the in-
stability is similar to that for a horizontal field. In both cases,
the maximum field strength occurs at a somewhat larger depth
when saturation is reached, except that shortly before satura-
tion there is a brief interval during which the location of max-
imum field strength rises slightly upwards in the vertical field
case. In the saturated case, however, the flux concentrations from
NEMPI are much stronger compared to the case of a horizon-
tal field and it leads to the formation of magnetic flux con-
centrations of equipartition field strength (Brandenburg et al.
2013, 2014). This is possible because the resulting vertical flux
tube is not advected downward with the flow that develops as a
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Fig. 14. Same as Fig. 13 (vertical field), but for Model II.

\
t
\
'
\
f

L

o
0o
S
&)
(o0]
—
o

2 m/Hﬁo

Fig. 15. Comparison of ﬁrms from MFES for Models I (solid line) and II
(dashed line), showing exponential growth followed by nonlinear satu-

ration. In both cases we have y = 5/3 and an imposed vertical magnetic
field with 8y = 0.05.

consequence of NEMPI. The latter effect is the aforementioned
“potato-sack” effect, which acts as a nonlinear saturation mech-
anism of NEMPI with a horizontal field.

In Figs. 13 and 14 we plot the growth rates A and the heights
where the eigenfunction attains its maximum values for different
Bo = Bo/Bego for Models I and II, respectively. For y = 5/3, the
maximum growth rate is higher larger than for y = 1. This is
true for Models I and II, where they are 8—1017/ H,%o fory=5/3

and 5-7n,/ Hgo for y = 1. The nonmonotonous behavior seen in
the dependence of 1 on By is suggestive of the presence of differ-
ent mode structures, although a direct inspection of the resulting
magnetic field did not show any obvious differences. However,
this irregular behavior may be related to artifacts resulting from
a finite domain size and were not regarded important enough to
justify further investigation.

Next we focus on a comparison of the growth rates ob-
tained from MFS for horizontal and vertical fields. The values
of By, zp, and B(zp) = Bo/Bey(zp) for horizontal and vertical
fields are compared in Table 1 for both models. We see that
NEMPI is most effective in regions where the mean magnetic
field is a small fraction of the local equipartition field and typ-
ically slightly less for y = 5/3 than for y = 1. Indeed, for
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Fig. 16. Snapshots from MFS showing B. on the periphery of the computational domain for y = 5/3 and 8, = 0.05 at different times for Model I

for the case of a vertical field.
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Fig. 17. Similar to Fig. 16 of MFS, but for Model II at times similar to those in the DNS of Fig. 5. There are now more structures than in the earlier

MES of Fig. 16, and they develop more rapidly.

Table 1. Comparison of the optimal depth zz and the corresponding
normalized magnetic field strength B(zg) for three values of y for im-
posed horizontal and vertical magnetic fields of normalized strengths
Bo = Bo/Beqo, for Model 1.

Horizontal field Vertical field
Mod vy | Bo  zs/Hpw PBs) | Po  zs/Hp P(zp)
1 1 0.05 -0.76 0.034 | 0.04 0.76 0.058
1 1.4 | 0.03 0.34 0.035 | 0.03 0.75 0.043
1 5/3 | 0.02 0.85 0.029 | 0.02 1.0 0.031
I 1 020 -0.29 0.17 0.12 1.2 0.22
1I 5/3 | 0.08 0.94 0.12 0.05 1.0 0.08

Model 1, B(zp) is 3-4% for horizontal fields and 3—6% for ver-
tical fields, while for Model II, B(zp) is 12—-17% for horizon-
tal fields and 822% for vertical fields. Here, we have used
B(zp) = Poer—(zp/2H,0), where e4(x) is the g-exponential func-
tion defined by Eq. (3).

We expect that higher values of 8, will lead to greater growth
rates. To verify this, we compare in Fig. 15 the time evolutions
of Upms for Models I (with B, = 0.33) and Model II (with
B« = 0.63). The growth rate has now increased by a factor of 2.4
(from AH;O /1 = 3.9 t0 9.5), which is slightly more than what is
expected from S, which has increased by a factor of 1.9. This
change in the growth rate can also be seen in Fig. 11 and Fig. 14
for Model II (in comparison with Figs. 10 and 13 for Model I).
The dependence of the growth rate on the magnetic field strength
is qualitatively similar for Models I and II. In particular, it be-
comes constant for y = 1, but declines for y = 5/3 as the field
increases. The increase of zg with By is, however, less strong for
Model II.

Snapshots of B, from MFS for y = 5/3 and 8y = 0.05 at
different times for Model I are shown in Fig. 16. Comparison
with the results of MFS for Model II (see Fig. 17) shows that
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Model II fits the DNS better. This is also seen by comparing
Fig. 17 with Fig. 5. However, our basic conclusions formulated
in this paper are not affected.

5. Conclusions

The present work has demonstrated that in a polytropic layer,
both in MFS and DNS, NEMPI develops primarily in the upper-
most layers, provided the mean magnetic field is not too strong.
If the field gets stronger, NEMPI can still develop, but the mag-
netic structures now occur at greater depths and the growth rate
of NEMPI is lower. However, at some point when the mag-
netic field gets too strong, NEMPI is suppressed in the case of
a polytropic layer, while it would still operate in the isothermal
case, provided the domain is deep enough. The slow down of
NEMPI is not directly a consequence of a longer turnover time
at greater depths, but it is related to stratification being too weak
for NEMPI to be excited.

By and large, the scaling relations determined previously for
isothermal layers with constant scale height still seem to apply
locally to polytropic layers with variable scale heights. In par-
ticular, the horizontal scale of structures was previously deter-
mined to be about 6-8 H,, (Kemel et al. 2013; Brandenburg et al.
2014). Looking now at Fig. 4, we see that for 8y = 0.02 and
v = 5/3, the structures have a wavelength of ~3 H,, but this is
at a depth where H, ~ 0.3 H,o. Thus, locally we have a wave-
length of ~10 H,. The situation is similar in the next panel of
Fig. 4 where the wavelength is 6 H,o, and the structures are at
a depth where H, ~ 1.5 H,, so locally we have a wavelength
of ~9 H,. We can therefore conclude that our earlier results for
isothermal layers can still be applied locally to polytropic layers.

A new aspect, however, that was not yet anticipated at the
time, concerns the importance of NEMPI for vertical fields.
While NEMPI with horizontal magnetic field still leads to down-
flows in the nonlinear regime (the “potato-sack™ effect), our
present work now confirms that structures consisting of vertical
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fields do not sink, but reach a strength comparable to or in excess
of the equipartition value (Brandenburg et al. 2013, 2014). This
makes NEMPI a viable mechanism for spontaneously produc-
ing magnetic spots in the surface layers. Our present study
therefore supports ideas about a shallow origin for active re-
gions and sunspots (Brandenburg 2005; Brandenburg et al. 2010;
Kitiashvili et al. 2010; Stein & Nordlund 2012), contrary to com-
mon thinking that sunspots form near the bottom of the con-
vective zone (Parker 1975; Spiegel & Weiss 1980; D’Silva &
Choudhuri 1993). More specifically, the studies of Losada et al.
(2013) point toward the possibility that magnetic flux concentra-
tions form in the top 6 Mm, i.e., in the upper part of the super-
granulation layer.

There are obviously many other issues of NEMPI that need
to be understood before it can be applied in a meaningful way
to the formation of active regions and sunspots. One question is
whether the hydrogen ionization layer and the resulting H™ opac-
ity in the upper layers of the Sun are important in provid-
ing a sharp temperature drop and whether this would enhance
the growth rate of NEMPI, just like strong density stratifica-
tion does. Another important question concerns the relevance
of a radiating surface, which also enhances the density contrast.
Finally, of course, one needs to verify that the assumption of
forced turbulence is useful in representing stellar convection.
Many groups have considered magnetic flux concentrations us-
ing realistic turbulent convection (Kitiashvili et al. 2010; Rempel
2011; Stein & Nordlund 2012). However, only at sufficiently
large resolution can one expect strong enough scale separation
between the scale of the smallest eddies and the size of mag-
netic structures. That is why forced turbulence has an advantage
over convection. Ultimately, however, such assumptions should
no longer be necessary. On the other hand, if scale separation
is poor, our present parameterization might no longer be accu-
rate enough, and one would need to replace the multiplication

between ¢, and B? in Eq. (25) by a convolution. This possi-
bility is fairly speculative and requires a separate investigation.
Nevertheless, in spite of these issues, it is important to empha-
size that the qualitative agreement between DNS and MES is
already surprisingly good.
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