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Abstract

In both hydrodynamics as well as in magnetohydrodynamics (MHD) con-
served quantities plays a governing role in the evolution of the fields. We
investigate these quantities and their role in the decay of magnetic turbulence.
We present the underlying theory of chiral MHD as well as the non-helical
cases when the total averaged helicity is zero. We discuss the newly intro-
duced Hosking integral and its consequences. The MHD equations are solved
by using Shell models which can cover enormous ranges using logarithmically
spaced wave numbers. From the scaling of the decay we can test the precision
of the shell models by comparing them with direct numerical simulations.
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1. Introduction

In magnetohydrodynamic (MHD) turbulence, the presence of certain conser-
vation laws explains the phenomenon of an inverse cascade which causes a
growth of magnetic energy to larger scales as energy decays [3]. In the pres-
ence of chiral fermions with a chiral chemical potential µ5, there is an instabil-
ity that leads to the inverse cascade. The chiral chemical potential is a quan-
tum effect which occurs due to an asymmetry between left and right-handed
fermions. This leads to a proportionality between the current density and the
magnetic field which adds an additional term proportional to µ5 to the induc-
tion equation and leads to a dynamo effect [5]. The range of the subinertial
inverse cascade is often several orders of magnitudes apart. This requires nu-
merical methods. We are here dealing with partial differential equations with
no possibility to analytical solutions. Therefore we solve the MHD equations
through the shell model of turbulence which couples the evolution of each k to
its nearest neighbour. This enables us to do numerical calculations of enor-
mous wavenumbers using logarithmically spaced wave numbers kn = k1 2n

with 0 ≤ n ≤ 30. With N = 30, we can obtain ranges up to ten orders of
magnitude in wavenumber [4]. The shell model is not an approximation and
should rather be treated as a TOY model that has similar conservation laws as
the MHD equations [6].

In hydrodynamics there is no inverse cascade of energy due to the conser-
vation of certain invariants. This is not the case in MHD where the conserved
magnetic helicity can lead to a cascade of energy to larger length scales as en-
ergy decays. In the absence of total averaged helicity it was believed that there
should be no inverse cascade. But numerical simulations showed the opposite
[4]. The explanation of an inverse cascade in the absence of total averaged he-
licity became clear in 2021 when the Hosking integral was introduced [7]. In
this report we explain the arguments leading to an inverse cascade both in the
case of finite chirality and when the total averaged helicity is zero. The decay
behaviours of turbulent magnetic fields are determined by these quantities. We
present dimensional arguments that allows us to determine the scaling of their
decay behaviours and from these scaling we can test the shell models[4].
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2. Theoretical background

In different astrophysical scenarios the plasma is considered fully ionized [1].
Due to the movement of charged particles this leads to the creation of magnetic
fields. The interaction between the ionized plasma and the magnetic fields is
what is studied in magnetohydrodynamics. The MHD equations are derived
from Maxwell’s equations,

∂BBB
∂ t

=−∇∇∇×EEE, (2.1)

1
c2

∂EEE
∂ t

= ∇∇∇×BBB−µ0J, (2.2)

∇∇∇ ·EEE =
ρe

ε0
. (2.3)

Usually Ohm’s law tells us how the current density is related to the force acting
on free charges in a medium and is given by, JJJ = σEEE [8]. This is also true in
MHD but only that here we need to consider the electric field in a co-moving
frame with the velocity of the plasma, which leads to Ohm’s law written on the
form,

JJJ = σEEEcomov = σ(EEE +uuu×BBB), (2.4)

where EEEcomov is denoting that it is co-moving with the frame and is given by,

EEEcomov = EEE +uuu×BBB. (2.5)

In the situations consider in this report the Maxwell displacement current
in Equation (2.2) can be neglected. This is because in the cases we consider
the velocities are small compared to the speed of light [8]. To demonstrate this
we can look at the charge conservation [8],

∇∇∇ · JJJ =−∂ρe

∂ t
, (2.6)

and the divergence of Equation (2.4) together with Gauss’ law applied on
Equation (2.6),

∂ρe

∂ t
+

ρe

τe
+σ∇∇∇ · (uuu×BBB) = 0. (2.7)

13



The quantity τ = ε0/σ is the relaxation time and is very small, approximately
10−18s which allows us to neglect the first term in Equation (2.7) These argu-
ments also implies that the Faraday displacement current in Equation (2.2) can
be neglected since,

ε0
∂EEE
∂ t

∼ ε0

σ

∂JJJ
∂ t

∼ τe
∂JJJ
∂ t

≪ JJJ. (2.8)

This gives us JJJ = ∇∇∇×BBB/µ , which together with Ohms law can be substituted
in Equation (2.1)[8],

∂BBB
∂ t

= ∇∇∇× (uuu×BBB)+η∇
2BBB. (2.9)

Which is the induction equation and it tells us about the evolution of the mag-
netic field and the velocity of the conducting plasma [1]. Here we use Heavi-
side–Lorentz units so that, µ and c = 1, η is the magnetic diffusivity, η = 1

µ0σ

and uuu is the velocity field of the plasma. One could argue that a better name
for the induction equation would be the advection-diffusion equation. To un-
derstand this we need to go back to fluid mechanics. In fluid mechanics dif-
ferent flows are studied depending on the viscosity and the speed of the field
flow [8]. High viscosity and low speed flows is categorized in what is called
laminar flow, meaning organized. In this report and in most of the realistic
scenarios, with flows of normal speed, the flows are very sensitive to perturba-
tions which causes the flow to be chaotic or turbulent [8]. The different flows
are determined by the so called Reynolds number. Here we are interested in
the magnetic Reynolds number Rm which is given by the ratio of the two terms
in Equation (2.9). The first term is the convective term of the magnetic field
by the velocity field and the second term is the diffusive term. Where the ratio
between the two terms is defined as the magnetic Reynolds number Rm and is
a measure of the induction. From dimensional arguments we get,

Rm =
Lu
η
. (2.10)

In this report we consider magnetic Reynolds numbers around the order of
1000 [1]. The seed magnetic fields can be amplified exponentially by dynamo
effects as in the alpha effect where an instability in the induction equation
occurs due to the helicity of magnetic fields [1].

2.1 Helicity

Magnetic helicity is defined as,

H =
∫

V
AAA ·BBB dV. (2.11)
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Where AAA is the vector potential and BBB the magnetic field. The integral is de-
fined as the volume over a closed box. The physical meaning of helicity is the
twisting and linkage of the magnetic fields [1]. This can be seen by looking at
the net helicity of two interlocked flux tubes φ1 and φ2 shown in Figure 2.1.

Figure 2.1: Two interlocked helicity flux tubes. Figure credit [1].

Here C1 and C2 is tube 1 and 2 respectively and V1 and V2 is their volumes.
We can now calculate the flux through the cross section of the flux tubes by
splitting the integral in Equation (2.11) and add their contributions,

H =
∫

L1

AAA ·dl
∫

S1

BBB ·ds+
∫

L2

AAA ·dl
∫

S2

BBB ·ds, (2.12)

by using Stokes theorem we can rewrite Equation (2.12) as,∮
C1

AAA ·dl =
∫

S(C1)
BBB ·ds ≡ φ2, (2.13)

which leads to,

H = φ1

∮
C1

AAA ·dl +φ2

∮
C2

AAA ·dl =±2φ1φ2. (2.14)

Magnetic helicity is conserved in ideal MHD. This can be seen by looking at
the evolution equation which is derived from the uncurled version of Faraday’s
law,

∂AAA
∂ t

=−EEE −∇∇∇φ , (2.15)

where ∇∇∇φ is the scalar potential which is needed for gauge invariance. By
using Equation (2.15) we can find the evolution of H as,

∂ (AAA ·BBB)
∂ t

= (−EEE +∇∇∇φ) ·BBB+AAA · (−∇∇∇×EEE) =−2EEE ·BBB+∇∇∇ · (φBBB+AAA×EEE).
(2.16)
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Now by integrating Equation (2.16) over a volume V and using Stokes theorem
we get,

dH
dt

=−2
∫

V
EEE ·BBB dV +

∮
∂V
(AAA×EEE +φBBB) · n̂nndS =−2ηC. (2.17)

Here we have assumed that the second term is zero and C =
∫

V J ·B dV is
defined as the current helicity. In ideal MHD the diffusivity, η = 0. This might
seem non-realistic. But it turns out that in cases with high magnetic Reynolds
number, the diffusivity is negligible and helicity is therefore conserved [1].

2.2 Helicity spectra

The normalized spectra of the magnetic energy and helicity is obtained by
Fourier transforming the correlation functions. This applies to all the spectra
presented in this paper (See [8] for more details). The different spectra is given
by, ∫

∞

0
EM(k) dk = ⟨1

2
BBB2⟩V ≡ EM, (2.18)∫

∞

0
HM(k) dk = ⟨AAA ·BBB⟩V ≡ HM. (2.19)

Where V is the volume of integration [1]. The normalized spectra can be writ-
ten as,

EM(k) =
1
2
⟨BBB222

kkk⟩V
δk

, (2.20)

HM(k) =
⟨AAAkkk ·BBBkkk⟩V

δk
. (2.21)

The different spectra is often rewritten by a decomposing the Fourier trans-
formed magnetic vector potential and complex coefficients a±k , which leads to
(See [1] for more details),

EM(k) = 1
2 k2(|a+k |2 + |a−k |2)V, (2.22)

HM(k) = k(|a+k |
2 −|a−k |

2)V. (2.23)

By multiplying Equation (2.23) with k/2 and applying a Cauchy-Schwarz type
inequality on Equation (2.22) and Equation (2.23) we obtain,

1
2 k2(|a+k |2 + |a−k |2)V ≥ 1

2 k2(|a+k |2 −|a−k |2)V, (2.24)

which leads to,
1
2

k|H(k)| ≤ EM(k). (2.25)
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This is the so called realizability condition [1]. In the fully helical case it is
given by,

EM(k) =±1
2

k|H(k)|. (2.26)

This argument is crucial for the inverse cascade which transfers energy from
smaller to larger scales and will be demonstrated later [1].

2.3 Forward cascade

As mentioned above, a possibility to produce large scale magnetic fields is by
a so called inverse cascade [1]. A forward cascade was explained by Richard-
son and Kolmogorov and tells us how larger eddies transport energy to larger
wavenumbers via smaller and smaller eddies [8]. In this case the energy spec-
tra is given by,

1
2
⟨uuu2⟩=

∫
E(k)dk, (2.27)

where uuu is the velocity field.
In the inertial subrange shown in Figure 2.2 Kolmogorov came up with an

energy spectra on the form,

E(k) =CE
2
3 k

−5
3 , (2.28)

where C is the kolmogorov constant, which numerically has been showed to
be C ≈ 1.5 [8].

Figure 2.2: A schematic picture of the forward cascade. Energy is injected at
small wavenumbers and transfers its energy via the eddies to smaller length scales
until viscous forces dissipate the energy.
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In the case of an inverse cascade the opposite happens, energy is transferred
from smaller to larger scales [3]. The reason for this will be shown in the
next section. It should be noted that we will talk about two different types
of inverse cascades in this report which often is present together. In order to
prevent confusion we refer the inverse cascade that is a direct counterpart to the
forward cascade presented in Figure 2.2 as an inverse cascade in the subinertial
range and the other type simply as an inverse cascade. In order for the magnetic
field to grow an amplification of the seed magnetic field is needed. This can be
explained by the contribution of the chiral chemical potential in the induction
equation.

2.4 Asymmetry and Chiral chemical potential

The chiral chemical potential µ5 is a quantum effect that arises from the asym-
metry between left- and right-chiral fermions. A seed magnetic field aligns
the fermions magnetic moments and in the presence of an asymmetry between
the chiral fermions an electric current along the magnetic field is induced [9].
The chiral magnetic effect is illustrated in Figure 2.3, where an asymmetry of
massless quarks of positive charge gives rise to the CME current. The setup
in this report is somewhat different from the figure but the principles are the
same.

Figure 2.3: Illustration of the chiral magnetic effect. From the left we have an
equal number of left-handed and and right-handed massless quarks of positive
charge. The two figures on the right shows an asymmetry between left-handed
and right-handed quarks which gives rise to a current flowing in the direction of
the magnetic field. (Figure credit [2]).

The chiral magnetic effect introduces an additional term in the total current
density which leads to a current flowing along the magnetic field, known as
the chiral magnetic effect (CME) [9],[3]. The chiral current has the following
proportionality,

JJJCME ∝ µ5BBB. (2.29)
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The standard MHD equtations needs to be modified by the chiral chemical
potential which contains another degree of freedom in the form of the number
density between the left- and right-chiral fermions[10]. The chiral chemical
potential is here defined as,

µ5 = 24αem(nL −nR)(ℏc/kBT )2. (2.30)

Where nL and nR are the number densities of the fermions, αem ≈ 1/137 is
the fine structure constant. It is important to note that this is not a universal
definition. Other definitions can be different in sign and in units [11][9][12].
This does not affect our calculations [4]. The chiral induction equation are
derived in a similar way as in the standard induction equation. By rewriting
and curling Equation (2.4) we obtain,

∇∇∇×EEE = σ∇∇∇× JJJ−∇∇∇× (uuu×BBB). (2.31)

Now by inserting Faraday’s law, Equation (2.1) we get,

−∂BBB
∂ t

= σ∇∇∇× JJJ−∇× (uuu×BBB). (2.32)

It is often convenient for numerical purposes to work with the uncurled version
of the induction equation,

∂AAA
∂ t

= uuu×BBB−ηJJJohm. (2.33)

We also have Ampere’s law with the total current as,

∂EEE
∂ t

= ∇∇∇×BBB− JJJtot, (2.34)

where we can neglect the change in the electric field as mentioned above. This
leads to,

∇∇∇×BBB = (JJJohm + JJJCME), (2.35)

which we can solve for JJJohm and insert in Equation (2.33),

∂AAA
∂ t

= uuu×BBB−η(∇∇∇×BBB− JJJCME), (2.36)

is the uncurled version of the induction equation [3]. The current is propor-
tional to the magnetic field JCME ∝ µ5B, as shown in Equation (2.29), which
leads to the chiral induction equation on the form [3],

∂AAA
∂ t

= uuu×BBB+η(µ5BBB−∇∇∇×BBB). (2.37)
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The evolution equation of µ5 is given by

∂ µ5

∂ t
=− 2

λ
η(µ5BBB−∇∇∇×BBB) ·BBB−∇∇∇ · (µ5uuu)+D5∇∇∇

2
µ5 −Γ f µ5 , (2.38)

where λ = 3ℏc(8αem/kBT )2, is the feedback of the magnetic field on µ5, D5 is
the chiral diffussion and Γ f µ5 is the spin flipping rate and will be neglected in
this report [13].

In ideal chiral MHD the total volume averaged chirality is conserved and
is given by the relationship,

1
2

λ ⟨AAA ·BBB⟩+ ⟨µ5⟩= const ≡ µ50. (2.39)

This means that when helicity increases, the chiral chemical pontential has to
decrease [10]. Equation (2.39) gives us the relationship,

⟨BBB2⟩ξM ≲ µ50/λ , (2.40)

where ξM is the magnetic correlation length. This puts an upper limit on the
growth of the magnetic field. The magnetic field saturates due to the feed-
back of the magnetic field to µ5, depending on the values of µ50 and λ . The
dispersion relation is given by [10],

γ(k) = ηk(µ5 − k). (2.41)

A dynamo growth occurs when k < µ5. From the dispersion relation we can
find the k-value of maximum growth, which occurs when k = µ5/2. The dis-
persion relation holds as long as the field is weak. There will therefore be a
limit of the exponential growth, and an inverse transfer of energy is forced. To
understand this inverse transfer of energy that occurs in the subinertial range
we introduce two waves with wavenumbers p and q that interacts and produces
a new wave k as the corresponding wavenumber[1]. We assume conservation
of magnetic energy and magnetic helicity which yields,

Mp +Mq = Mk, (2.42)

and for magnetic helicity,

|Hp|+ |Hq|= |Hk|. (2.43)

If the field is fully helical we see from Equation (2.26) that we can rewrite
Equation (2.42) and eq. (2.43) as,

2Mp = p|Hp|, 2Mq = q|Hq|. (2.44)
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Now the sum of the two yields,

|Hp|p+ |Hq|q = 2Mk ≥ k|Hk|. (2.45)

Now by substituting Equation (2.43) in Equation (2.45) we have,

|Hp|p+ |Hq|q ≥ k(|Hp|+ |Hq|), (2.46)

and by solving for k we get the inequality,

k ≤
|Hp|p+ |Hq|q
(|Hp|+ |Hq|)

. (2.47)

This is the weighted mean of the two waves and we can apply the following
inequality,

min(p,q)≤
|Hp|p+ |Hq|q
(|Hp|+ |Hq|)

≤ max(p,q), (2.48)

leading to,
k ≤ max(p,q). (2.49)

If p = q, then k ≤ p = q. This means that the produced wavenumber always
is less or equal to the initial wavenumbers and that the new wavenumber k has
to inversely transfer magnetic energy to larger scales, hence the name inverse
cascade in the subinertial range[1]. Going back to the initial growth of the
magnetic field we can introduce two new characteristic velocities based on µ5
and λ . We can see that λ−1 has dimensions of energy per unit length and
µ5 has dimensions of inverse length. From these velocities we can introduce
two regions which will determine the evolution of the magnetic field [3]. The
regions are given by,

ηk1 < vµ5 < vλ < cs Regime I, (2.50)

ηk1 < vλ < vµ5 < cs Regime II. (2.51)

where,
vλ = µ5/(ρ̄λ )1/2, (2.52)

vµ5 = µ5η . (2.53)

The regimes are separated depending on whether the ratio vλ/vµ5 is small or
large. In the first regime the ratio is large. This means that the feedback λ ,
of the magnetic field on to µ5 is negligible. This means that the field will be-
come turbulent for high magnetic Reynolds numbers and a growing subinertial
inverse cascade will occur due to the realizability condition, Equation (2.25).
This will continue until the saturation values is reached and magnetic energy

21



Figure 2.4: The different scales of magnetic energy spectrum driven by the chiral
chemical potential. The first region at large wavenumbers is the instability scale
where exponential growth occurs followed by the turbulent scale of subinertial
inverse cascading and the saturation scale. (Figure credit [3]).

must decay, which can be seen from Equation (2.40). In regime II the ratio will
be small, so the feedback on to µ5 plays an important role and it will prevent
the turbulent inverse cascade from growing [3].

From Figure 2.4 we can see the growing turbulent subinertial inverse cas-
cade. The range of turbulent scales, from the instability which occurs at large
wavenumbers, to saturation at small k or large lengthscales are often different
by many orders of magnitude [3]. This requires models of numerical methods
which will be disscussed later.

The energy spectra shown in Figure 2.4 is somewhat different from the
standard Kolmogorov theory. The spectrum is here defined as,∫

EM(k, t)dk = ⟨BBB2⟩/2. (2.54)

By expressing the magnetic field as an Alfvén velocity [4], vA = B/ρ1/2

and using that EM(k, t) ∝ dEM/dk, has the dimensions EM(k, t) = [ρ][VA]
2[L],

gives us EM(k, t) = ρµ5η2 for the initial stage. As opposed to the Kolmogorov
spectrum of k−5/3 we expect a subinertial range spectrum as k−2 as shown in
Figure 2.4. In order to obtain the spectra in the subinertial range we can now
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use the same arguments as before which leads to,

EM(k, t) =Cµ5ρη
2
µ

3
5 k−2. (2.55)

Where Cµ5 ≃ 16 is a Kolmogorov constant obtained from simulations [3]. As
stated above, the magnetic field must eventually saturate due to the feedback
of the magnetic field on the evolution of µ5. This can also be realized from
Equation (2.40) which leads to,

EM(k, t)≤Cλ µ5/λ (2.56)

where Cλ , like above is another Kolmogorov constant obtained from simula-
tions. In this report we are mostly interested in regime I so we need to find
a crossover between the two regions. This can be obtained by introducing a
critical value kλ and by setting Equation (2.55) equal to Equation (2.56),

kλ =
√

ρCµ5/Cλ µ5η , (2.57)

which gives us a crossover when kλ = µ5/2.

2.5 The Hosking integral and Non-helical MHD

The understanding of the decay behaviours of turbulence in hydrodynamics
and magnetohydrodynamics has been one of the big challenges in the fields.
Kolmogorov formulated the governing invariants that governs the decay be-
haviour of turbulence in hydrodynamics [7]. Here the conserved quantity is
the so called Loitsyansky integral,

ILLL =−
∫

r2⟨uuu(xxx) ·uuu(xxx+++ rrr)⟩d3rrr, (2.58)

and it tells us how angular momenta is conserved in the eddies. From dimen-
sional arguments we can obtain the decay law for the kinetic energy. From the
Loitsyansky integral we get the dimensions as, U2L5. Where U is the velocity
and L correlation length. We note that τ = L/U and in order for Equation (2.58)
to be constant, U2 ∝ L−5 and E ∝ U2/2. By looking at the time evolution of
EK we get,

dEK

dt
∼ −EK

τ
∼ −E3/2

K
L

∼−E3/2
K E2/10

K ∼−E17/10
K , (2.59)

leading to [7],
EK ∼ t−10/7. (2.60)
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Which is the decay law of hydrodynamic turbulence. In general we want to
find the scaling of the kinetic energy spectrum in terms of power laws in such
a way that the decay develops under the an envelope given by,

EK(k, t)≤CLILkβ . (2.61)

By dimensional arguments in cgs-units, we can find the scaling of the kinetic
energy spectrum EK . We have EK = dEK/dk, where EK is the kinetic en-
ergy with dimensions as cm2s−2. Therefore EK has dimensions of cm3

s2 . From

Equation (2.61) we therefore have, cm3

s2 ≤ cm7

s2
1

cmβ
, which leads to a scaling as

EK(k, t)≤CLILk4. These arguments will be used later in order to determine the
decay behaviours of the magnetic field. The Loitsyansky integral determines
the decay and the spectra in the absence of strong correlations. If the long
range correlations are present the Saffman integral is the invariant,

ISSS =
∫
⟨uuu(xxx) ·uuu(xxx+++ rrr)⟩d3r. (2.62)

Here the physical quantity associated with the Saffman integral is linear mo-
menta. The kinetic energy spectra of the hydrodynamic turbulence will depend
on the dominating correlation scales [7]. The kinetic energy spectra is defined
as,

EK(k) =
k2

4π2

∫
⟨uuu(xxx) ·uuu(xxx+++ rrr)⟩e−ikkk·rrrd3rrr, (2.63)

and by Taylor expanding the spectrum in the limit Ek(k → 0) we obtain the
spectrum as,

EK(k → 0) =
ISSS

4π2 k2 +
ILLL

24π2 k4 + .., (2.64)

we can see that if ISSS = 0 we obtain a batchelor spectrum proportional to k4 and
if ISSS ̸= 0 we obtain a Saffman spectrum k2 (See [8] for more details). Since
the quantities are conserved the energy spectrum cannot change in the small-
k limit, meaning that an inverse transfer of energy is impossible. This was
also thought to be the case in non-helical MHD, but recent studies shows that
this is not the case. Its important to point out that non-helical MHD does not
exclude any helicity, it is the total averaged helicity that is zero, ⟨htot⟩ = 0.
This means that helicity fluctuations still can be present. Helicity is not a sign
definite quantity and if helicity structures with opposite signs merge they will
annihilate each other [7].

The evolution of these neutral helical structures is what is conserved in
non-helical MHD. A new conserved and finite quantity which is similar to the
Loitsyansky and Saffman integral has been introduced and governs the decay
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behaviour of magnetic fields in the absence of helicity. The Hosking integral,
defined as,

IH =
∫
⟨h(xxx)h(xxx+++ rrr)⟩d3rrr. (2.65)

The Hosking integral tells us how the evolution of the localized magnetic he-
lical collective structures are conserved. The helicity density h is defined as
h = A ·B. From dimensional arguments we can find the magnetic energy de-
cay law in a similar argument as for the hydrodynamical case. From Equa-
tion (2.65) we obtain the dimensions as h2L3, where h = A ·B and B = ∇×A
which implies, A = BL. This gives us the new scaling (LB2)2L3. Finally,
B4L5 ∼ constant. Using that EM ∼ B2, B4 ∼ L−5 and τ = L/B we obtain [7],

dEM

dt
∼ B2

L/B
∼ B3

L
∼ B3

B−4/5 ∼ B19/5 ∼ E19/10
M . (2.66)

This gives us the decay law of magnetic energy in the absence of total averaged
helicity,

EM ∼ t−10/9. (2.67)

We can also use the same arguments as before in order to get the scaling of
the magnetic energy spectrum. From the Hosking integral Equation (2.65)
we know that the helicity density has the dimensions [h] = [B]2[L]. From the
relationship EM = dEM/dk, where EM is the magnetic energy and has the di-
mensions B2. The magnetic field can again be expressed in terms of an Alfvén
velocity. We get the dimensions of the magnetic energy spectra as cm3s−2.
This leads to the dimensions of helicity density as [h] = [cm]3[s]−2. Now the
Hosking integral has dimensions as IH = [cm]9[s]−4 [7]. Therefore the dimen-
sions of the magnetic energy spectrum, EM ≤CIH IHkβ is on the followig form,
[cm]3[s]−2 ≤ [ cm9

s4 ]1/2 1
cmβ

, which gives us β = 3/2. In order to understand the
behaviours of the magnetic energy spectra two new quantities is introduced,
the magnetic counterpart to the Loitsyansky integral,

ILLLMMM ≡−
∫

r2⟨BBB(xxx) ·BBB(xxx+++ rrr)⟩d3rrr, (2.68)

where LLLMMM ≡ rrr×BBB and the magnetic Saffman integral is defined as,

ISSSMMM ≡
∫
⟨BBB(xxx) ·BBB(xxx+++ rrr)⟩d3rrr, (2.69)

which tells us about the local conservation of magnetic flux. We expect the
Saffman integral to be conserved. A similar expansion for the energy spectra
as for the hydrodynamic Loitsyansky and Saffman integral can be done, which
leads to,

EM(k → 0) =
ISSSMMM k2

4π2 +
ILLLMMM k4

24π2 + .... (2.70)
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If we assume ISM = 0 the Loitsyansky integral with a k4 spectra will be de-
termining the decay (See [7] for cases when it is different from zero). There
is no reason for the magnetic Loitsyansky integral to be conserved in MHD
since there is no direct magnetic counterpart to angular momenta. This is one
of key argument for the inverse cascade in non-helical MHD. Together with
the conserved Hosking integral we obtain,

ILLLMMM ∼ B2L5 ∼ IH

B2 . (2.71)

From Equation (2.71) we can see that when magnetic energy decays ILLLMMM has to
increase, leading to an inverse cascade with a k4 spectra [7]. If ISM is different
from zero the Saffman integral with a k2 spectra will determine the decay.
Whether we will see an inverse cascade will depend on if its conserved or not
which will be shown later.

We can also find the power law of the correlation length from the conserva-
tion of the hosking integral. In order to keep the Hosking integral constant we
see that since EM ∝ t−p, where p = 10/9, the correlation length has to increase
in a power law ξM ∝ tq. From the dimensions of Hosking cm9s−4 we get the
increase in the correlation length as ξM ∝ t4/9 [7].

2.6 Zero net chirality

In recent studies in the case of zero net chirality, where helicity is balanced by
chiral fermions to zero, an adapted version of the Hosking integral seems to
determine the decay behaviour of magnetic turbulence at scales large compared
to EM , the correlation length [13]. The adapted Hosking integral is defined as,

IH(R) =
∫

VR

⟨h(xxx)h(xxx+++ rrr)⟩d3rrr, (2.72)

where VR is the volume of a sphere with radius R and the brackets are denoting
an average over this volume [13]. Here the total helicity density is defined
as, htot ≡ A ·B+2µ5/λ which is replaces h in Equation (2.72), meaning h →
htot , which gives us the adapted Hosking integral. The spectra of h(x) is here
defined as,

∮
4π
|h̃|2k2dΩk/(2πL)3, where dΩk is the solid angle in Fourier space

and the tilde in, h̃ denotes Fourier space as well (See [13] for more details). The
definition of the spectra should satisfy

∫
Sp(h) dk = ⟨h2⟩. The magnetic energy

spectrum is defined as EM(k, t) = Sp(B)/2 which gives us the mean magnetic
energy density,

∫
EM dk = ⟨B2⟩/2. The mean magnetic helicity spectrum is

HM =
∫

HM dk, and the correlation length ξM = E−1
M

∫
k−1EM dk.

The growth rate and the dispersion relation is the same here as in the case
of finite chirality. The decay behaviour is once again determined from dimen-
sional arguments. But here the argument is somewhat different and a rescaling
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of the spectra is used so that, x → x′ = xℓ and time rescales as, t → t ′ = tℓ1/q.
This leads to a decay law of the magnetic correlation length as ξM ∝ tq where
q has to have the value q = 4/9 and EM ∝ t−p where p = 10/9. This means
that the HM(t) =−2µ5(t)/λ ̸= 0 has the same decay behaviours as the Hosk-
ing case. In order to understand the decay of helicity we use the real space
realazability condition defined as,

|HM| ≤ 2EMξM. (2.73)

We therefore have the proportionality |HM| ∝ µ5 ∝ t−r where r = p−q = 2/3.
In the case of zero net chirality we expect the Hosking integral to be con-

served which determines the behaviour of the magnetic field[13].

2.7 Shell model

To solve and analyse the cascade behavior the chiral MHD equations we use
a cascade or shell model [6]. In the cascade model we assume that the MHD
equations are local in Fourier space. The Fourier space is then divided into
N-numbers of shells. Where each shell has a coupling to its second nearest
neighbour, 2n ≤ k ≤ 2n+1, which allows us to conserve two conservation laws
as opposed to the nearest neighbour shell model which can obtain one. This
model should be seen as a TOY model and not an actual approximation. It
holds similar conservation laws as the MHD equations and has numerically
performed very well [14]. The Fourier transform of the velocity field on a
length scale of k−1

n is represented by the complex field un.
For a general complex velocity field the evolution equation is given by,

dun

dt
= i(anu∗n+1u∗n+2 +bnu∗n−1u∗n+1 + cnu∗n−1u∗n−2)−νk2

nun. (2.74)

The coefficients can be determined from conservation laws and boundary con-
ditions on the shells[6]. Since the model couples to its next nearest neighbours
a boundary condition needs to be set so that,

anun−2un−1 = 0,bnun−1un+1 = 0,cnun+1un+2 ̸= 0 (at n = 1)
anun−2un−1 = 0,bnun−1un+1 ̸= 0,cnun+1un+2 ̸= 0 (at n = 2)
anun−2un−1 ̸= 0,bnun−1un+1 ̸= 0,cnun+1un+2 = 0 (at n = N −1)
anun−2un−1 ̸= 0,bnun−1un+1 = 0,cnun+1un+2 = 0 (at n = N)

(2.75)
Together with energy and helicity conservation,

EK =
1
2 ∑|un|2,HK =

1
2 ∑(−1)nkn|un|2, (2.76)
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we receive the coefficients

a = 1/2,b = 1,c =−4. (2.77)

In this report we will consider two different cases of the shell model, they all
build on the same principle but depending on the formulations of the conser-
vation laws they will differ a bit.

The cascade model in three-dimensional magnetic turbulence has been
studied before [14] [15] [16]. The cascade model for a velocity field together
with the magnetic field introduces a new Fourier transform of the B-field, Bn

with a convolution as,

Nn(u,B) =
2

∑
i, j=−2

Ci jun+iBn+ j. (2.78)

Where the fields takes the form of discrete wave numbers kn = 2n where n =
1,2, ......,N. As mentioned above, the conserved quantities plays an important
role in both the chiral and non-chiral MHD and in the Shell models. In the first
case the shell model and the conserved quantities are defined as,

Etot =
∫
(
4
3

ρ0v2 +
1
2

B2R4)d3x = constant (2.79)

Now using the substitution b = BR2 we obtain

8
3

ρ0

N

∑
n=1

u∗n
dun

dt̃
+

N

∑
n=1

b∗n
dbn

dt̃
= 0. (2.80)

We can now define the evolution equations of the fields,

4
3

ρ0
dun

dt̃
+νk2

nun = Nn(u,b), (2.81)

dbn

dt̃
+ηk2

nbn = Mn(u,b). (2.82)

In the case of chiral MHD the shell model takes the following form,

[ηk(kn − (−1)n
µ5)+

d
dt
]Bn =

1
6

ikn[M(u,B)−M(B,u)]. (2.83)

The fluid density is constant in the shell models, and therefore it is neglected
in Equation (2.80) as well as the 4/3 factor. The shell models for the fields are
defined as following,
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2Nn(u,b) = ikn(A+C)(u∗n+1u∗n+2 −b∗n+1b∗n+2)

+ikn(B− 1
2

C)(u∗n−1u∗n+1 −b∗n−1b∗n+1)

−ikn(
1
2

B− 1
4

A)(u∗n−2b∗n−1 −b∗n−2u∗n−1),

(2.84)

Mn(u,b) = ikn(A−C)(u∗n+1b∗n+2 −b∗n+1u∗n+2)

+ikn(B+
1
2

C)(u∗n−1b∗n+1 −b∗n−1u∗n+1)

−ikn(
1
2

B− 1
4

A)(u∗n−2b∗n−1 −bnn−2∗u∗n−1).

(2.85)

And for chiral MHD we have,

M(x,y) = xn+1yn+2 + xn−1yn+1 + xn−2yn−1. (2.86)

Here magnetic helicity is conserved and defined as,

HM = ∑(−1)nk−1
n |Bn|2, (2.87)

and magnetic energy as,

EM =
1
2

N

∑
n=0

|Bn|2 (2.88)

In a similar procedure as above one obtains the coefficients, A = 7/5,B =
−1/10,C = 1. This model will be referred to as BEO96 model. Since mag-
netic helicity is not a sign definite quantity we need to account for this in the
calculations. In the BEO96 model positive and negative helicity is assigned to
odd and even wavenumbers respectively.

In the other case considered in this report, negative and positive helicity
splits and the shell models meaning that we have two separate evolution’s,
formulated as[17],

(dv+n /dt +νk2
nvn+)∗= ikn(v−n+1v+n+2 +

1− r
r2 v−n−1v−n+1 −

1
r3 v−n−1v+n−2

−b−n+1b+n+2 −
1− r

r2 b−n−1b+n−2),

(2.89)

(db+n /dt +ηk2
nb+n )∗= i

kn

r(1+ r)
(v−n+1b+n+2 −b−n+1v+n+2 + v−n−1b−n+1−

b−n−1v−n+1 − v−n−1b+n−2 +b−n−1v+n−2),

(2.90)
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and the model taking account for the negative helicity is defined similarly as,

(dv−n /dt +νk2
nvn−)∗= ikn(v+n+1v−n+2 +

1− r
r2 v+n−1v+n+1 −

1
r3 v+n−1v−n−2

−b+n+1b−n+2 −
1− r

r2 b+n−1b−n−2),

(2.91)

(db−n /dt +ηk2
nb−n )∗= i

kn

r(1+ r)
(v+n+1b−n+2 −b+n+1v−n+2 + v+n−1b+n+1−

b+n−1v+n+1 − v+n−1b−n−2 +b+n−1v−n−2).

(2.92)

The evolution of the chiral MHD equations of splitted equations takes the form,

[ηk(kn ∓ (−1)n
µ5)+

d
dt
]B±

n =
1
6

ikn[M±(u,B)−M±(B,u)], (2.93)

where,
M±(x,y) = x∓n+1y±n+2 + x∓n−1y∓n+1 + x±n−2y∓n−1. (2.94)

Here the conserved quantities, magnetic energy and magnetic helicity is de-
fined as,

EM =
N

∑
n=0

(|B+
n |2 + |B−

n |2), HM =
N

∑
n=0

(|b+n |2 −|b−n |2)/kn. (2.95)

In all of the cases defined above a second order Adams-Bashforth scheme
is used for solving the shell models. By rearranging Equation (2.74) and intro-
ducing an integrating factor eνk2

nt , we obtain,

dun

dt
+νk2

nun = e−νk2
nt d

dt
(uneνk2

nt). (2.96)

The equations for BEO96 and BEO97 are solved on the form,

dun

dt
+νk2

nun = Nn(t), (2.97)

with the modified Adam-Bashforth scheme as,

un(t +δ t) = knun(t)+
1
2

δ t[3Nn(t)−KnN(t −δ t)].
(2.98)

Here Kn = e−νk2
nδ t [14].
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3. Numerical results

In this report we have studied chiral MHD where we have finite chirality and
the volume averaged chirality is conserved. We have also studied the case
of zero-net chirality when helicity is balanced to zero by chiral fermions and
when the conserved quantity is the Hosking integral and determines the decay
behaviours of the magnetic fields. In this case we have used two different mod-
els of the shell model which are presented above. The equations of the shell
model together with the Navier-stokes equations are already implemented in
the PENCIL CODE where we solve the equations. The different decay be-
haviours are determined by the relevant conservation laws. We have seen their
different scaling which is determined from dimensional arguments. Therefore
we can test the shell models with similar conservation laws against the scaling
of the actual decay laws. In order to test how well the shell models reproduce
the decays of the magnetic fields we need to compare with direct numerical
simulations.

Figure 3.1: Magnetic energy spectra and magnetic helicity spectra plotted in (a),
in (b) the magnetic helicity variance spectra is shown for zero net chirality with
an initial k4 spectra. In (a) red and blue dots are positive and negative helicity.
The colors determine different times, 1500, 5000, 15 000, 50 000. (Figure credit
[4]).

From direct numerical simulations we can see from Figure 3.1 that the in-
verse cascade develops under the envelope of k3/2, indicated by the dashed
line. We also see the Loitsyansky integral with a k4 spectra increasing as mag-
netic energy decays indicated by the upward arrow. As mentioned earlier this
is what we expect when ISM = 0 which allows the not conserved Loitsyansky
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Figure 3.2: Magnetic energy spectra and magnetic helicity spectra plotted in (a),
in (b) the magnetic helicity variance spectra is shown for zero net chirality with
an initial k2 spectra. The times are the same as in Figure 3.1. (Figure credit [4]).

integral to push the spectra upwards. On the contrary when ISM ̸= 0, we expect
a k2 spectra as shown in Figure 3.2, with no inverse cascading. Nevertheless
there seems to be an inverse cascade indicated by the arrow. The reason for
this is probably due to the fact that there is still strong contributions from the
conservation of mean magnetic helicity. Before, we argued that the reason for
the absence of an inverse cascade with a k2 spectra is due to the conservation
of the Saffman integral. In Figure 3.3 (a) and (b), we can see that both the
Hosking and Saffman integral is indeed conserved.

Figure 3.3: Shows the conservation of the Saffman and Hosking integral. The
top left figure (a) has an initial k2 spectra and the right figure (b) has a k4 spectra.
Here ISM ≈ 0.23 and 0.09 for left and right respectively. The plots (c) and (d)
shows the conservation of the Hosking integral with (c) as IH ≈ 2× 10−3 and
5× 10−4 in (d) with a k2 and k4 spectra for left and right respectively. (Figure
credit [4])
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In the shell models we have fixed the initial field strength and consider
different values of µ50 and λ . When λ = 1010, we have µ50 = 0.97×105. The
decay behaviour of the different quantities are not yet in agreement with what
we expect from the Hosking integral. This can be seen from Figure 3.4 where
we have used the BEO96 shell model to calculate the slopes (The calculations
of the BEO97 model give the same slopes).

Figure 3.4: The left plot shows the time series of EM(t), ξM(t), and µM for a run with λ = 1013,
µ50 = 0.97× 105, η = 5× 10−11, EM(t)ξM(t)λ , BEO96 method, δ t = 10−8. The right figure
shows the time series of EM(t), ξM(t), and µM for runs with, λ = 1010, µ50 = 0.97× 105,
η = 5× 10−11, EM(t)ξM(t)λ , BEO96 method, δ t = 10−8. The slopes are p = 2/3, q = 2/3,
and r = 0 for λ = 1010 and p = 10/9, q = 4/9, r = 2/3 for λ = 1013.

Eventually when λ = 1013, µ50 = 0.97×108, the slopes are in agreement
with what we expect from the conservation of the Hosking integral. By looking
at the decay behaviours in Figure 3.4, of the specific parameters we can see
how the different values of λ affects the scaling and therefore the conservation
of the Hosking integral. So when λ = 1013 and ⟨htot⟩= 0 we have the scaling
as p = 10/9, q = 4/9 and r = 2/3 with a slope of β = 3/2. Here the shell
models is in agreement with the slopes that the conservation of the Hosking
integral implies.

From Figure 3.5 we use the shell model to calculate the evolution of the
magnetic fields. The fields are here initialized with a k2 spectrum and with
λ = 1013, N = 30 shells, ν = η = 5×10−11, and we compute the value of µ5
as µ5 = −µM. Here µM =HMλ/2 is the counterpart of helicity. Wtih the k2

we expect no inverse cascading. In both of the shell models we see that the
Hosking integral is not conserved as the spectra is raising when the magnetic
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Figure 3.5: Shows the evolution of the magnetic energy EM(k, t) with with λ = 1013, calculated
with BEO97 and BEO96 for left and right respectively. The different times are indicated by the
different colours. Red are 10, orange is 1 and blue is 0.01. The earlier times are denoted by the
different dashed black lines.

field decays. We see a clear inverse cascade which we expect not to be possible
if ISM is conserved Figure 3.3. The shell models does not seem to capture
the same inverse cascade behaviours as the direct numerical simulations does
as shown in Figure 3.1 and Figure 3.2. Even if the shell models does not
reproduce the expected decay behaviours in the absence of helicity there are
other features where the shell model does work as expected. In the case of
finite chirality the shell model captures the decay behaviour of the mangetic
field. In Figure 3.6 we can see the inverse cascade in the subinertial range
with a k2 spectra and a saturation value at approximately 10−6 which can be
obtained from Equation (2.56).

Figure 3.6: Shows the magnetic energy spectra for a run with µ5 = 223 ≈ 1.7× 107 and with
η = 5× 10−11. Calculated with BEO97-model. The different times are indicated by the dif-
ferent colours. Red is 10, orange is 1 and blue is 0.01. The earlier times are denoted by the
different dashed black lines.
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Comparing the shells models with direct numerical simulations[3], we can
see from fig. 3.7 that the evolution of the magnetic field as well as the decay
behaviour in fig. 3.6 agrees.

Figure 3.7: Show the evolution of EM(k, t). The vertical dashed line shows the k-value of
maximal growth, k = µ5/2 and the horisontal line is the saturation value Cλ µ5/λ . The ratio
vλ/vµ is the ratio between the velocity regimes. The ratio implies regime I.(Figure credit [3]).

Therefore the shell models seems to capture the decay behaviour in the
finite chiral case. Why the shell models does not not capture the decay be-
haviours in the Hosking case is still unknown and further studies are required
before any conclusions can be drawn.
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4. Conclusions

In this report we have studied the importance of magnetic helicity in magnetic
turbulence and how the conservation of this quantity leads to a possibility of
an inverse cascade due to the realizability condition. We have also explained
how the chiral chemical potential causes the induction equation and thereby
the magnetic field to grow and inversely cascade in the sub-inertial range. In
hydrodynamics the phenomena of an inverse cascade is absent. We explain
how the hydrodynamic invariants, the Saffman and Loitsyansky integral pre-
vents the possibility of an inverse cascade. In MHD with an absence of total
helicity this was also thought to be the case. The newly introduced Hosking
integral as a new conserved quantity in non-helical MHD shows that this is
not the case. We also discuss that in the case of chiral MHD, in absence of
helicity it also follows the same decay laws as the Hosking integral determines
in non-helical MHD. From dimensional arguments we can find the scalings of
the magnetic energy spectrum. We study the MHD equations using Shell mod-
els to reproduce the evolution of the magnetic field. We compare these results
with direct numerical simulations.

The shell models is a powerful tool in capturing the enormous ranges of
wavenumbers that the study of decaying MHD turbulence requires. In this
report we have seen that the Shell models indeed captures the decay behaviours
of the magnetic fields in the case of finite chirality. In the absence of total
averaged helicity the shell models does not yet seem to capture the expected
decay behaviours. Why this is the case is still unclear and further studies is
needed before any conclusions can be drawn. A possibility might also be to
introduce a new time stepping scheme of higher order to obtain more precise
simulations.
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