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Abstract

In this thesis we explore the physics of bosonic atoms in the first excited band of an
optical lattice - the p band. As is discussed here, due to the additional orbital degree of
freedom, the physics in the p band is qualitatively different from the physics of the well
characterized systems in the ground band. We first define the orbital states and dis-
cuss properties at the single particle level, from where we construct the framework for
studying the many-body system. This serves as the basis for the mean-field analysis that
is carried out in the sequence. The main body of this work covers the studies developed
in Papers I and II. In Paper I we discuss properties of confined p-orbital bosons, that
include condensation of the ideal gas of bosons in the p band, the ideal gas at finite tem-
peratures and zero temperature studies of the interacting system for both the symmetric
and asymmetric lattices. We continue with the studies of Paper II, in which p-orbital
bosons are considered in the strongly correlated regime. In particular, we show that the
effective Hamiltonian describing p-orbital bosons in the Mott phase with a unit filling
of the lattice sites can be mapped into the spin-1/2 quantum XYZ Heisenberg model in
external field. Here the system is considered in the context of quantum simulators and
we complement the study by proposing detection and manipulation schemes for experi-
mentally probing the physics discussed. Finally, we present some work in progress that
suggests the possibility of using systems of bosons in the p band for experimentally
exploring the physics of spin chains beyond spin-1/2.
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1. Introduction

After the experimental realization of the optical lattices in the lab and the subsequent ob-
servation in 2003 [1, 2] of the previously predicted Mott-insulator to superfluid transition,
cold atom systems became a primary candidate for understanding many-body quantum
phenomena [3, 4]. The degree of control and manipulation in these systems is so great,
that nowadays it is possible to engineer lattices with all sorts of different configura-
tions that allow for the study of many-body quantum physics in the strongly correlated
regime [3, 4]. Put in other words, cold atoms in optical lattices provide highly controllable
laboratories for testing models of solid state and condensed matter physics.

This is because similar to the behavior of electrons described by the celebrated Hub-
bard model [5], the many-body dynamics in the optical lattice is dominated by the two
basic ingredients consisting of hopping and atom-atom repulsive interactions [6]. This
is usually described in most simple terms by the Bose-Hubbard Hamiltonian in the
tight-binding limit,

. U
Ay = —tY (ala; +ala) + 5 Y ala —1), t,U>0, (1.1)
(i) i

where ZU’D runs over the nearest neighbors and 4; and dlf are the bosonic operators
that annihilate and create an atom in a site-localized state in the i-th site. The first term
describes nearest neighbors hopping, which happens with amplitude f, and the second
term describes the onsite two-body interactions, characterized by a matrix element with
magnitude proportional to U. The reason why nothing is said about the band struc-
ture — which results from the periodic structure superimposed on the system - is the
truncation scheme adopted in the expansion of the many-body Hamiltonian. In fact, the
majority of studies consider a single-band description of such systems, in terms of a
basis constructed with the use of site-localized states of the first band only. This is not
the case in this thesis. Instead, we would like to understand what happens, for example,
if we also allow for the atoms to occupy states of higher bands of the optical lattice. How
would this affect the properties of the Mott-insulator to superfluid transition? And what
happens if the atoms are restricted to occupy only these higher-bands?

These issues are already interesting as they involve generalization of the Bose-Hubbard
Hamiltonian [7, 8, 9]; and even though they might seem, at a first glance, nothing more
than mere academic problems, recent studies and experimental work [10, 11] warrant
answering these and other questions related to many-body quantum phenomena in ex-
cited bands of optical lattices. It has been argued, for example, that under the presence
of (strong) repulsive interactions, the atomic population can migrate from the ground
to the excited bands [12], thereby affecting the properties of the ground-state expected
for the system. The interaction-induced broadening of the onsite wave-functions was
also observed experimentally via microwave spectroscopy [13]. Furthermore, through



1. Introduction

the mapping of collapse-revival structures in the atomic density of non-equilibrium con-
figurations, it was possible to verify signatures of higher bands physics [14, 15]. As a
result following this initial motivation, a large body of experimental research is nowa-
days focusing directly on the physics of cold atoms in the first excited (the p) and higher
bands.

The physics of bosons in the p band is qualitatively different from the physics of the
usual Bose-Hubbard model (Eq. (1.1)) where the atoms are restricted to the lowest (the
s) band. The reason for this can be most easily understood from analyzing the square
and cubic lattices. In these cases, due to the lattice symmetry, the p band becomes
doubly (square lattice) and triply (cubic lattice) degenerate [7, 16]. This degeneracy
introduces the concept of orbitals that are associated to the site-localized states in the
lattice, and that are characterized by a node in each of the spatial directions. These
are called the p orbitals and are usually described in terms of the lattice Wannier
functions. The Wannier functions, in turn, are broader in the direction of the node, and
since their shapes determine the ease of tunneling between sites, this directly influences
the dynamical properties of the system. Now, because the tunneling properties of p-
orbital bosons considerably differ from the tunneling properties of bosons in the s
band, various types of novel quantum phases [17, 18, 19, 20, 21] can appear. In fact,
due to the anomalous dispersions, mean-field analysis of the system reveals that the
condensed state of bosons in the p band is characterized by macroscopic occupation of
nonzero momentum states [22].

The manner in which p-orbital atoms interact also differs significantly from interactions
in the s-band. Again, this is a consequence of the orbital degeneracy. For the case
of bosons, for example, in addition to the density-density interactions (as described by
Eq. (1.1)), the system also contains multi-species (different orbital states) density-density
interactions and interactions that move the atoms between the different orbital states.
This gives rise to novel phenomena which include the formation of structures in the
order parameter of the condensed phase [7, 16, 19].

The purpose of this thesis is to provide an introduction to the physics of cold atoms in the
first excited bands of optical lattices, the p band, and to report a number of studies that
we have performed on this subject in the past years. We focus on the case of separable
lattices! and mainly in the two-dimensional case. We start by defining and characterizing
the orbital states in Chapter 2, where we also discuss the construction of the many-body
Hamiltonian. In Chapter 3, properties of p-orbital bosons in isotropic square and cubic
lattices are considered from the viewpoint of mean-field analysis. We then investigate
how inclusion of the harmonic trap affects the physics of the two dimensional case
in Chapter 4. This chapter is based on the study of Paper I and presents details of
calculations that were omitted in the original work.

Moving away from the mean-field territory, we present properties of the p-orbital bosons
in the strongly correlated regime in Chapter 5. The system is discussed here in the
context of quantum simulators [23, 24] for studying critical properties of spin models
relevant for the study of quantum magnetism. This chapter is based in the study of
Paper II and also includes more details than what is presented in the original work.
It also contains additional discussions on extensions of this work that are still work

1See definition in Sec. 2.1
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in progress. Nevertheless it displays a different aspect of the physics of multi-orbital
Hubbard systems that hints at an interesting direction for future research. We reserve
final remarks to the Conclusion section.



2. p-orbital bosons: nice to meet you!

“To P or not to P? (bands!)”
William Shakespeare!

In this chapter we characterize the system of p-orbital bosons. We start with a quick
note in Sec. 2.1 on the energy and length scales adopted here to define dimensionless
variables, and follow with discussions on the general properties of single particle physics
in periodic potentials in Sec. 2.2. In Sec. 2.3.1 we define the orbital states and discuss their
properties. The many-body Hamiltonian for p-orbital bosons is derived in Sec. 2.4 and
in Sec. 2.4.1 we briefly discuss symmetry properties of the many-body Hamiltonian.

2.1. Disclaimer notice

All the problems discussed in this thesis are concerned with the physics of cold atoms
in optical lattices. Optical lattices are spatially periodic potentials, created from the
superposition of counter-propagating laser beams, that can be used to trap atoms via
Stark effect [2, 6]. Unless stated otherwise, we assume here that the lattices are sinusoidal
and separable?, as e.g.

Viatt(x,y) = Vi sir12(kxx) + Vy sinQ(ky;y) (2.1)

in 2D, where V, is the amplitude of the laser light with wavelength A, in the direction
a = {x,y} and k, is the corresponding wave vector. In this context, any of the inverse
wave vectors, ;! = 25t/)A, provides a natural choice for parametrizing the length scale,
and any of the recoil energies EX = /i%k,/2m (for an atom of mass m), provides a natural
choice for fixing the energy scale.

Here whenever we use the word 'dimensionless’ referring to any position, this means
that the positions are scaled in terms of one of the l,, and whenever we use it referring
to any energy, it means that the energies are scaled in terms of one of the EY. The
direction a will be explicitly determined.

! Adapted from the tragedy of Hamlet.
2More explicitly, by separable lattice we mean that the eigenvalue problem for the given lattice potential
admits solutions that can be factorized in the different directions.
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2.2. General properties of one particle subjected to periodic potentials

Two main properties characterize the problem of a quantum particle interacting with a
periodic potential [25]: (a) that the energy spectrum displays structure of bands where
regions with allowed energies are separated from each other, and (b) that the solutions
of the eigenvalue equation are given by Bloch functions. This is formulated in one
dimension® as

~h? d?
2m dx?
with m the mass of the particle and V(x) = V(x +d) the periodic potential with periodicity
d. The expression for the Bloch functions can be obtained from the Bloch theorem [26]

and follows as

HY(x) = E¥(x), where H = Vix) (2.2)

\qu (x) = eiqxuvq (x), (2-3)

where u,q is a periodic function satisfying u,q(x) = u.,q(x + d) and q and v are the
good quantum numbers labeling, respectively, quasi-momentum and band index. The
fact that we are using the band index v implicitly assumes the reduced scheme, where
quasi-momentum varies along the first Brillouin zone [26]. To each of the values of v and
q there is an associated energy, and in general the relation between the free particle
momentum p of E = /#?p?/2m and the quasi-momentum q appears in the form of a
complicated (transcendental) equation. The eigenstates of Eq. (2.2) correspond thus to
plane waves delocalized in the lattice and that experience a modulation due to the lattice
periodicity.

An alternative basis for describing particles subjected to periodic potentials is given
by the so called Wannier functions [25]. They are constructed in terms of the Bloch
functions according to the prescription

waj(x) = Ze“iqu‘I’vq(x), (2.4)
q

where R; labels the coordinates of the j'th site and we sum over the quasi-momenta in
the first Brillouin zone. The Wannier basis differs from the Bloch basis in two main
aspects: First, at each site each of the energy bands is endowed only one Wannier
function. Second, this is a site localized basis labeled by the position in the lattice. The
Wannier functions at different sites satisfy the following orthonormality condition

/ dxwni(x)wy,(x) = 6, . (25)

Let us now briefly illustrate this discussion by starting with Fig. 2.1, where the band
structure for a system with periodic potential given by V(x) = Vy sinQ(kxx) is shown for
different values of the lattice amplitude Vj, and as a function of the quasi-momentum q.
The general picture following is that for increasing values of the lattice amplitude, V%,
the widths of the bands experience a narrowing at the same time that the energy gaps
between the bands become larger.

5Extensions for 2D and 3D systems are straightforward. We use the 1D case here just for illustrative
purposes.
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Figure 2.1.: Band structure of a system with Vy = 0.5E, (blue), Vy = 5E, (red) and V, = 17E,

(green). As discussed in the text, the widths of the bands are larger for smaller

values of the lattice amplitude. In addition, the energy gaps between the different

bands increase for increasing values of Vj.
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Figure 2.2.: Real part of the Bloch functions of the first (in (a)) and second (in (b)) bands for
different values of quasi-momentum q and for V = 5E,. Notice here that the Bloch
function of the 2nd band is strictly imaginary if g = 0.

We continue by showing samples of the real and imaginary parts of the Bloch functions
in Figs. 2.2 and 2.3, where we particularly raise attention to the delocalized character of
the Bloch functions. This is clearly not the case for the Wannier functions, as illustrated
in Fig. 2.4, which shows the Wannier functions of the first and second bands, and for
different values of the lattice amplitude. In this picture, larger values of V have corre-
sponding Wannier functions that are more and more localized around the minimum of
the potential well. For completeness, we show the probability density associated to each
of these Wannier functions in Fig. 2.5 (a) and (b).
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Figure 2.3.: Imaginary part of the Bloch functions of the first (in (a)) and second (in (b)) bands
for different values of quasi-momentum q and for V;, = 5E,. In contrast to the result
of Fig. 2.2, here we notice that the 1st band Bloch function with g = 0 is strictly
real. We point out that there is an arbitrary phase to be fixed in the definition of the
Bloch functions. Once this phase is fixed, however, and say the Bloch function of
the first band with q = 0 is purely real, then the Bloch function in the second band
with g = 0 will be purely imaginary.
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Figure 2.4.: Wannier functions of the first and second bands for systems with Vy = 0.5E, (green),
Vo = BE, (red) and V; = 17E, (blue).
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Figure 2.5.: Probability density of the first and second bands Wannier functions for systems with
Vo = 0.5E, (green), Vy = 5E, (red) and Vy = 17E, (blue).
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2.3. What are the p-orbitals?

p-orbitals are the site-localized states of the first excited energy band, the p band [7].
For isotropic square/cubic optical lattices in two or three dimensions, the first excited
band is respectively two- and three-fold degenerate. This, in turn, renders a corre-
sponding degeneracy for the site-localized states or p-orbitals. In particular, p orbitals
are anisotropic in magnitude and odd in parity [16], features of which are discussed in
this section.

2.3.1. p-orbital bosons in the harmonic approximation

In order to get familiar with the physics in the p band, we consider the system in the har-
monic approximation, where analytical solutions are easily obtained and simple enough
to expose properties of the physics in analytical terms. This consists in approximating
each well of the sinusoidal potential with a harmonic potential, i.e., V(x) = sinQ(kxx) ~
k2x?. Although the use of the harmonic approximation is limited [9, 27] and justified
only in very particular cases?, it is still a good starting point for building an intuitive
picture about the objects used in the representation of the orbital states.

Let us then consider a two dimensional separable lattice with decoupled x- and y-
directions, for which the expression of the lattice potential is given by V(x,y) = V, sinQ(kxx)
+Vy sinQ(kyy), where V, and k,, @ ={x,y} correspond to the potential amplitude and
wave number, respectively, in the direction a. The Schrédinger equation for a particle
under action of this potential assumes the form of the Mathieu equation:

R h? d? h? d?

H‘I’=<2md2+V5m(kxx) 2mdQ+Vsm(k )>‘I’=E‘I’. (2.6)
We now use dimensionless variables as kyy — y' and kyx — x’ such that ky, ! sets the
length scale at the lattice, and expand the potential around its minimum keeping only

first order contributions, i.e.

r RPEZ 42 . / h2ky 2
HY = (— meﬁ + Vi st(i—;x) s dy,Q + V, sin?(y’ )) v
(2.7)
N WPEZ 42 B2 2E2 42
2 ( ey + Veppx? - L 4 vyy@) v,
which implies
By (_d oamyy ko o omyy o) g
BT 12 k2! VX k2 dy”? H2k? $24
. ) . (2.8)
AR ( &P, ka -+ vyy'2> 12
In the last step we introduced V, = V,/EY, where E; = h2k§/2m is the recoil energy in

the y-direction. This step sets the energy scale.

“The limit of very deep potential wells is required.
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When dealing with a separable lattice like in the example above, it is possible to find
the solutions in the x- and y-directions by solving the corresponding equations indepen-
dently. We solve first for y’ (dimensionless y-direction):

d2 0 2 ’ ’

W Voy™ | Y(¥') = ey ¥ (¥) (2.9)
where €y is the energy scaled in recoil energies of the lattice in the y-direction. We
identify the characteristic length of the oscillator as y; 4 = V, and therefore the ground
and first excited states, with energies eg, and 651,,, are given by

, 1 2002 i NG
¢0(y) = 47[1/43/6/26 ¥ 295 <7T‘S£/4 e Vyy'=/2 (210)
and /3
, \/Q ;2002 2V, ST
¢1(y') = <n1/4y3,2 eI < | — o |y e VIR (2.11)
0

Equations for x’ (dimensionless x-direction) are solved in the same way

d? -, k2 2

R V(x') = ex¥(x) (2.12)

and €, is again the energy scaled in units of E;. The characteristic length of the
oscillator is identified here as x;* = kaj%/k?,, and the ground and first excited states,

with corresponding energies 62, and 6315,, are given by

(2.13)

~ 1/8 _
1 —x”[2x? 1 Ve k?c e~ Lgk" x?/2
il

olx’) = e = | e
7 il | k2

and

5 3/8
2 . 2 [ V.k? _V/Vky o
H1(x") = <\f > x/ e x"2xg _ 7\/> < xkx> S e (2.14)

7r1/4x8/2 rll4 k?,

With the expressions of the eigenfunctions in hand, we can now describe the energy
levels and eigenstates of the 2 dimensional system in the harmonic approximation. For
simplicity we consider here an isotropic lattice for which ¥, = V, and ky = ky. The true
ground state within this approximation has energy Eg = (62, + 63,) and its eigenfunction
has a Gaussian profile in both x- and y-directions:

1 21042 121002
\PO(x,ry,) = me_x [2x5 -y /2y0. (215)
12x5"%y,

The first excited state is doubly degenerate. It has energy given by E; = (e}c, + 62,) =
(62, + 651//) and the corresponding eigenfunctions are given, respectively, by

2 , 1 ,
¥, (x',y') = <f3/2> wem <1/2> il (2.16)
0

sellay iyl
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|— Harmonic Approximatio (a) | —Harmonic Approximation (b)
— Numerical Solution —Numerical Solution

Figure 2.6.. Comparison between the numerically obtained Wannier functions and the Wannier
functions in the harmonic approximation, Egs. (2.10) and (2.11) for a 1D system with
Vo = 17E, (see discussion in the text).

and

, 1 Y V2 ;2002
Vy(x',y') = <1/2> e <3/2> y'e V%%, (217)
0

sellay ilhyd

that are precisely the p,- and py-orbital states in the harmonic approximation. As can
be verified, the spatial profile of the two orbitals have different parities in the different
directions, i.e., it is odd in the direction which introduces the node in the wave-function
and even otherwise. In particular, the name of the orbital state is coined after the
direction in which the wave-function is odd.

We compare in Fig. 2.6 the ground and first excited Wannier functions obtained from nu-
merical diagonalization of the Mathieu equation with the ground and first excited states
obtained in the harmonic approximation. It illustrates the situation where Vy = 17E,,
of deep wells, where the harmonic approximation is expected to give a good qualitative
picture of the system. While the harmonic oscillator ground-state eigenfunctions will
never assume negative values, the negativity of the Wannier functions is an important
property for the orthonormality condition (2.5). In addition, it is important to keep in
mind that as opposed to the picture provided by the harmonic limit, the energy differ-
ence between different bands in the sinusoidal potential is not constant. In fact, due to
the anharmonicity of the sinusoidal potential, the bands are usually not equally spaced
in the optical lattices.

2.4. From the one-body to the many-body problem

The dynamics of a gas of N atoms of mass m under action of an external potential can
be represented, in general terms, by a Hamiltonian of the type

where the first two terms account for single-particle effects, while the last term describes
interactions between the atoms, and therefore accounts for effects of collective nature.

2
Pt Vend) + 3 Vi) (248)

10
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In the ideal scenario Vi,¢ should include all interactions in the system, i.e., the result
of two-body collisions, three-body collisions and so on®. In real life, however, exact
solutions for problems involving interacting many-body quantum particles are known
only in very few or particular cases. The way out, of course, starts with the use of
approximations that are capable of describing not all, but all the relevant interactions

that warrant a good picture of the experimental reality.

We mentioned before that the interest here is in the physics of (many and also a few)
interacting p-orbital bosons. We aim, therefore, at describing systems of very cold and
dilute bosonic gases, where the atoms occupy the orbital states discussed in Sec. 2.2, of
the p band of an optical lattice. By 'very cold’ we mean that the temperatures considered
are close to the absolute zero®. In the same way, by 'very dilute’ we mean that the distance
between any two atoms fixed by n = N/V - where N is the total number of particles and
V the volume of the system - is very large. In the lab, for example, these systems are
produced with densities of the order of 10~° atoms per cm?® (~ 10~%"g/cm3)’, and under
these circumstances, it is reasonable to truncate the interaction term in the two-body
part [28, 29].

As a consequence from the characteristic low densities, the distances between the par-
ticles are always large enough to justify the use of the asymptotic expression of the
wave function of the relative motion [28]. In addition, as a consequence from the low
temperatures T, the relative momentum corresponding to kinetic energies kT, where
kg is the Boltzmann constant, justifies that the collisions are effectively described by
s-wave scattering processes, that are completely characterized by the corresponding
phase shift [30]. At very low temperatures, however, the phase shift is not the best
parameter for characterizing the cross section of the scattering processes.

This can be illustrated®, for example, by c0n51der’1ng the cross section of two
particles in a state with relative momentum k and energy h’k?/2j1, where p is the
reduced mass

do  sin’(6o(k)) k-0
— 2 PO R0
dQ k2
where a has dimensions of length. At very low temperatures, i.e., in the limk — 0,
the presence of k? in the denominator of Eq. (2.19) would require that sin(So(k))
vanishes linearly for any value of the cross section [30].

(2.19)

The trick here is to use instead the scattering length a defined as
Iim ——— = 1 (2.20)
k-0 sin(Sp(k)) ~  a’ '

that is, up to the choice of a sign, exactly the same length parameter of Eq. (2.19). Now
this is a good quantity for parametrizing the low energy scattering cross section, for it
can also be further interpreted as the first term of the expansion in powers of k of the

SAmbition is the last refugee of failure. - Oscar Wilde

60r much less than the bandwidth. The temperature is typically of the order of ~ 1 nK.

"For comparison, the density of the air at room temperature (notice however that the definition of room
temperature might vary in countries like Sweden or Finland) is ~ 1.25 x 10~3g/cm?, the density of the
water is 1g/cm?® and the density of a white dwarf can be estimated as 1.3 x 10%g/cm®.

8This discussion is based on the discussion presented in Ref. [30].

11
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effective range expansion [30],

kcot(Solk)) = —= + %kQ +o (2.21)

Q|+~

where rg is the so called effective range of the potential. In these terms, low energy
scattering processes can be characterized by only two parameters, a and rg, and regard-
less of their underlying forms or expressions, any two potentials that are characterized
by the same s-wave scattering length a and effective range rg, will give rise to the same
effective interaction [30].

The values of a are determined with the use of the standard scattering theory. Now
assuming that a is a known quantity, our goal is to implement in the Hamiltonian (2.18)
an effective interaction that captures the physics seen in the lab. The usual process
consists in considering the real interaction potential Vin¢(F;, Fj) as a contact interaction
Vint = AS(F; — Fj) with coupling constant given by A = 27th?a/p, where p is the reduced
mass of the two particles [31]. Accordingly, the effective potential for two identical
particles of mass m follows as

Lha
Vint(Fi, 7)) =

S(F; — ). (2.22)

In the language of second quantization, this can be further re-written with the use of
the bosonic field operators ¥(#') and W/(#'), that annihilate and create a bosonic particle
of mass m at position ' as

. hmhPa

4rth?a
Vint =

/ dF dry (VTS (7 — )W ()W () / AT )T (7B (7)) B (7).

(2.23)
These operators satisfy the bosonic commutation relations [V (#”), ¥(#')] = §(7” —#'). The
full expression of the Hamiltonian describing a weakly interacting Bose gas is given,
therefore, by

f - / ar [ ¥1(r) {—h;f + V)| Wi + Z(’\iff(fﬂ)\iff )i, (2.24)

where V() accounts for effects of external potentials superimposed to the system and
Uy = 4mh?a/m is the coupling constant in units of the recoil energies, as defined in
Sec. 2.1.

In the usual procedure the field operators are then expanded with the use of a convenient
basis, which in our case will be constructed in terms of the orbital states of the p band of
the optical lattice®. But before proceeding with the expansion, let us restrict the external
potentials acting in this system V(#) (in Eq. (2.18)) to account only for the optical potential.
In the isotropic cubic lattice this follows as

V(F) = Viggt(?) = Vy sin?(kx’) + V, sin(ky’) + V, sin?(kz’), (2.25)

where again the lattice amplitudes and wave vectors are given, respectively by V,,
a ={x,y,z} and k = 271/A, with A being the wavelength of the applied lasers. As before

9Since in this step we restrict the atoms to live in the p band of the optical lattice, this also means that we
are considering what is called the single band approximation.
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2. p-orbital bosons: nice to meet you!

we define dimensionless parameters by taking the recoil energy E, = h*k?*/2m as the
energy scale and the inverse wave vector as the typical length scale [ = A/27r!0. In these
terms, the expression for the field operators then follows as

LUUBEED WA
(2.26)
‘Ij(f’) = Zaj Waj (F)docj (F)
where dl. and d,j create and annihilate an atom in the a ={x, y, z} orbital state and in

the j-th site of the lattice (j = (jx, jy, jz), joc, Jy. jz € N).

Notice here that the orbital states in the p band are not eigenstates of the single-
particle Hamiltonian. They are constructed in terms of the site-localized Wannier
functions!! wy;(F), v = 1,2!2 with the prescription'®

wyj(F) = wy (x)wy;, (y)wj, (2)
wyi(F) = wyj (x)wo;, (y)wyj, () (2.27)
Wzj (F) = Wij, (x) Wij, (Y)szz (z),

which according to Eq. (2.4), relate with the Bloch functions (the eigenstates of the
single-particle Hamiltonian) as

Wi = Y e g (),
q

where we use R; = (xj,¥j,2j) = (), 7Tjy, 71j,) and q = (qx, qy, q;) is the index which
labels the quasi-momentum.

Now before arriving to the final expression of the second quantized version of the
Hamiltonian describing bosonic atoms in the p band, we assume, in addition, the tight-
binding regime. In this approximation, the range of the tunneling is restricted to the
first nearest neighbors, and the interactions to happen only onsite. The final result then
follows as

H = HO + Hnn + HFD- (2.28)

The first term here corresponds to the kinetic part of the Hamiltonian and is given by
A= =3 taplilslas (229)
aB (ij)p

with Z<ij>5 the nearest neighbor sum in the direction B. The second and third terms
account for different types of interactions:

PInn = ZZﬁaj(flaj — 1) + Z Z Uagfla-jflgj, (2.30)
J

a apatB j

10These units are used in all derivations from here on, which also makes the resulting equations dimen-
sionless.

"Which themselves are also not eigenstates of the single particle-Hamiltonian.

12Remember here that v is the index which labels the energy band of the corresponding Wannier function.

5 Remember that we are considering the case where the equations describing the lattice are separable in
the different directions.
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2. p-orbital bosons: nice to meet you!

describes various types of density-density interactions, where f,; is the atom number
operator for particles in the pq-orbital, and

A= 3 ), aB( al;ak;a0 +d,§jd,§jdajdaj>, (2.31)
aBatp

describes interactions which move atomic population between the different orbital states.

To complement we write the expressions for the various coupling parameters. They
are given in terms of the orbital states as

Usg = Uo [ dilwes() w7 (2:39)
where Uy = Upl®/E, is the dimensionless interparticle strength, and
top = = [ APV + VI wag 1, 2.53
with V() is the external potential of Eq. (2.25).

Substitution of Eq. (2.27) in the above Eq. (2.33) shows that the tunneling coefficients
in the directions perpendicular to the node depend uniquely on the properties of the
Wannier functions in the ground band (i.e., v = 1), while in the direction parallel to
the node, it depends solely on the Wannier functions of the second band of the lattice
(v = 2)'. This is the basis of the tunneling anisotropy in the p band, and explicitly
shows why an atom in the the py-orbital state has larger probability of tunneling in the
a direction than in the transverse ones'.

2.4.1. Brief discussion on the symmetries of the model

Because each term in Eq. (2.28) has the same number of operators and Hermitian con-
jugates, the Hamiltonian describing bosonic particles in the p band is clearly invariant
under global U(1) transformations. This reflects the overall conservation of particle
number in the system, and therefore

A, Z (Af + A + A7) = 0. (2.34)

In addition to the overall number conservation, the number of particles modulo 2 in
each of the orbital states is also conserved. This follows from the properties of the
terms describing transfer of population between the different orbitals, Eq. (2.31), which
introduce a set of Zy symmetries under which the full Hamiltonian is invariant. In fact,
in isotropic lattices!%, any permutations of the type

dxj — idyj, dyj — idzj, dzj — idxj (2.35)

1“Notice here that these bands refer to the band in the 1D lattice from where one considers the quasi-
momentum of the Bloch functions used in the construction of the localized states.

SRemember that the p, orbital state has a broader spatial profile in the a direction.

16\Where all the t,, for different orbitals are equal, as well as all the tog, and Uy = Uy, = U, with again
all the Uyg equal for different a and B.

14



2. p-orbital bosons: nice to meet you!

leave the Hamiltonian invariant.

Let us take a closer look on the symmetries of the two-dimensional case. We start with

the isotropic square lattice, where Uyy = Uyy, Ury = Uyx, trx = tyy and tyy = ty,. In this
case, transformations of the type

d;j cosf —sinf Qi

— (2.36)

’ A

ay; sin® cos6 Qyj
leave the Hamiltonian invariant for different values of 6 = (0, 7t/2, ;t) + kot, where k € Z.
This is not the case for an asymmetric lattice. Here, even though the lattice can be
tuned in such a way to preserve the degeneracy between the orbitals, the coupling
constants Uyy # Uyy and teq # tgg, tag # tga, Wwhich means that transformations of the
type Gyj — Qyj, Ayj — Grj Will not leave the Hamiltonian invariant. There is a particular
case, however, for which even in asymmetric lattices the system is characterized by an
additional SO(2) symmetry [32]. This corresponds to the harmonic approximation in the
limit of vanishing tunneling!’, where U, = 3Uqp = U. As pointed out in Ref. [32], this
special case is better studied with the use of the angular-momentum like annihilation
operators d.j = (Ayj + idy;)/ V2, in terms of which the local part of the Hamiltonian can
be written as [32]

(2.37)
+A [%f,gj — (L5 - £2)) - ﬁj]

where U = (Ury + Uyy)/2, 6 = (Uxx — Uyy)/2 and A = Uyy — U/3. The density operator
can be expressed as A; = dzjdﬂ + dijd_j, and the angular momentum operators are

A

Lyj = dzjdﬂ- - df;jd_j and L.j = dijdﬂ-/z Now it follows from the properties of the
harmonic oscillator eigenstates that in the harmonic approximation A = § = 0 for
any lattice configuration, and therefore [Hj, f,zj] = 0 [32]. This is not the case for real
optical lattices, for there A, 6 # 0, which destroys the axial symmetry, and consequently
[Hj, ﬁzj] # 0 [32]. It is important to point out here that this additional SO(2) symmetry is
not of geometric character. Instead, this is a dynamical symmetry [33], which appears
as a consequence of the specific form that the eigenvalue problem assumes when the
harmonic approximation is used.

"This is only valid in the case of separable lattices.
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A. Hamiltonian parameters in the harmonic
approximation

We briefly compute here the various coupling constants in the harmonic approximation.
As discussed before, under this assumption the Wannier functions are approximated by
harmonic oscillator eigenfunctions, and therefore (2.32) and (2.33) can be obtained from
computation of simple Gaussian integrals. Here

4
2 152
Uex = Uo[dx < 174 3/2> xt e 2 /xoj y <7r1/41y1/2> e %
. (A1)
2 3 3 1
= W <ﬂ1/4xs/2> 155X < > V3% = Uo <8*7>
Analogous calculation yields Uy, = Up <8i4>
We now compute U,y:
\f 2 27,2 2 27,2
2 2 a- 1 -
Uy = Uy [ dx <n”4x8/2> 12 g—x*/xj <7r“’=xé’2> e~ XIxg
2 2
ey 22
[ dy <n1/\[23/2 y* eV v < 1/41 ) eV
¥ ol (A.2)
2152
- o] e ) e () e

= Uo <8nxoyo> ’

and thus we verify that in the harmonic approximation U, = Uyy = 3Uyy. In particular,
notice that Uyq/Uqg = 3 is always valid in the harmonic approximation regardless of the
wave vectors of the lattice, k, and ky. In addition, it is very surprising that in this limit
the coupling constants don’t even depend on the values of the lattice vector, but only on
the lattice amplitudes V, and V,! [32]. This is again another feature of the harmonic
approximation, which in general is not valid when the lattice Wannier functions are used
for computation of the Hamiltonian parameters.

Now according to Eq. (2.33), the tunneling coefficients are computed in the harmonic
approximation (see Egs. (2.16) and (2.17)) as

9
—tey = <ﬂ1/‘[33,2> Vy fdxx(x+d)siane“IQ/nge“(x+d>2/2x§

—x? 2 2
+ <7r1/\[x3/2> / dxd x /QxO)dd <(x + d)elc+d) /2x0>

In the harmonic approximation this happens because the use of the degeneracy condition fixes the ratio
k. /ky.

(A.3)
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A. Hamiltonian parameters in the harmonic approximation
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Figure A.1..: Comparison between the values of the couplings obtained from analytical and nu-
merical computations as a function of V. It is shown in (a) that the harmonic ap-
proximation fails to reproduce the results obtained numerically for the tunneling
coefficients when tunneling occurs in the direction of the node. In (b) we show the
results for the interaction coefficients. In particular the estimates obtained from the
harmonic approximation are always larger than the values of the couplings com-
puted numerically.
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Figure A.2.: Ratio Uy, /Uy, for different values of the amplitude of the optical potential. Notice
here that Uy, /Uyy is always larger than 3 for numerical computations with the lattice
Wannier functions.

where d is used here as the lattice constant and where we already used that the integral
in the y-direction yields 1. In the same way,

2
~ty = < 11/2) Vy [ dy sin®y e /2 e ~lv+d/*/2x5
0

llty

(A.4)

2
1 d o-y22y2 d o-(y+d)?/23}
+ <n1/4y3/2> f dy g€ 0 4ye 0,

but now it is the integral in the x-direction that yields 1, and therefore we only write the
part that contributes to the tunneling coefficient. The expressions for fy, and fy, are
obtained by making x — y and y — x with xog — yp and yo — xo.
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3. p-orbital bosons in the mean-field
approximation

In this chapter! we focus on the mean-field description of p-orbital bosons in isotropic
square and cubic lattices. After presenting details of the formalism in Sec. 3.1, we char-
acterize general properties of the order parameters of the two and three dimensional
cases in Secs. 3.1.1 and 3.1.2.

3.1. The mean-field Hamiltonian

At the mean-field level, the system is characterized in terms of order parameters which
acquire a finite value in the phases with broken symmetry [34]. This is usually related
to the appearance of a long-wavelength collective mode, and description in such terms
neglects details of microscopic nature of the corresponding model [35]. This is there-
fore not a good approach for studying properties of more correlated regimes. For cold
atoms in optical lattices, for example, mean field analysis is not suitable for describing
properties of the Mott phase. On the other hand, if the system is deep in the super-
fluid phase, a mean-field treatment is still capable of revealing qualitative aspects of the
underlying physics [29].

In order to give a mean-field description and to study the superfluid phase? of the system
described by Eq. (2.28) we start by replacing the operators d.,; with the complex numbers
Ygj. If the Hamiltonian is normally ordered®, then this corresponds to attributing a
coherent state at each site, |V) = ®j|¥)j = ®j|Pxj, Yyj, Yzj)j such that do;|V) = Pgj|¥V)j.
Now since this has the form of a product state, it does not contain information about
quantum correlations between sites. Nevertheless, as we anticipate here, this ansatz is
used with self-consistent equations and therefore provides a self-consistent solution for
our problem.

In terms of the Fock basis, the single site many-body wave function is given thus by

SR L BN (P
[i” + [Pyl” + [W5]” i yj Yo
W) = - TH T gy 3.1
) = exp ( : S ) (51
from where |n); = |n,., ny, n;); represents the state with n, p.-orbital atoms, n; py-

orbital atoms, and n, p,-orbital atoms at the site j. In this language the order parameter

!This chapter describes part of the study developed in Paper I.

2This is a phase where the U(1) symmetry related to conservation of particle number is broken.

5Notice here that since the Hamiltonian in Eq. (2.28) is not in the normal form, it is necessary to normally
order it before taking the expectation values for proceeding with the mean-field analysis.
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3. p-orbital bosons in the mean-field approximation

of site j and orbital a is given by ¥,j = (¥|dj|¥), and for being a coherent state it has
number fluctuations which obey Poissonian statistics [36]. In addition, this is also part
of what we call the full onsite order parameter, defined as the expectation value of the
annihilation operator in Eq. (2.26)

ll)j ( Z Wa;l aoc) (3-2)

We can now derive the equations of motion for the order parameter 1), from the Euler-
Lagrange equations:

oL d oL
T T : =0, (3.3)
oYy; dt L
where the Lagrangian is given by
il , d d .,
L= ;ZJ: 5 [lbajdtll)aj - lyb(xjdtl,baj} — Hyir, (3.4)
with the mean-field Hamiltonian
Hur = - ZaB Z(i,j)ﬁ tap¥si¥aj + Xog Zj %najnaj + ZaB,aTJ:B Zj UapNajnp;

(3.5)
t Yapars L i < oi Vo VeiUsi + lPEijE,-tbajlbaj) ,

and where computation of the coherent-state expectation value is carried out with the
normally order version of the Hamiltonian (2.28). The density of the p,-orbital state is
given by ng; = |lpaJ] and normalization was imposed in the whole lattice as

N =Ne+ Ny + Ny = [+ ) [y + ) g, (3.6)
J J J

with N the total number of atoms.
The Euler-Lagrange equations lead to a set of coupled (discrete) Gross-Pitaevskii equa-
tions, one for each of the orbital states at each site j:

. O
—i gtj = _Zﬁe{x,y,z} th(lpxjHB - 2¢xj + ¢xj—15)

"'(Uxx[‘pxj[Q + (Uyry + ny)lll)yjlg + (Uyz + sz)|lpzj|2)¢xj
Uy + Uypx * Uy, +U,x *
+ <%> oy + <+> AL
. Oy

-l = - Zﬁe{x,y,z} fyB(lpyjH,g — 2ty + lpyj—ig)

+(Uyy [ty3]* + (Ury + Uyx)|xj|* + (Uyz + Uszy)|t55*)ty; (3.7)

+ <ny+UyI> l,b (Uzy+Uyz> l[)
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3. p-orbital bosons in the mean-field approximation

: 0y

—i of = - Zﬁe{x,y,z} tzB(¢zj+iB - 2lpzj + lsz—iﬁ)

ZZ|¢xJ| + (Uxz + Up) ]lbx;llz (Uyz + Ugy) |¢yJ| ¥z

n <sz+sz> d) (UmUzy) ¢

Moreover, using the fact that the order parameters in the Hamiltonian (3.5) are complex
numbers, say

Yaj = elfe (3.8)

further properties at the level of the mean-field analysis can be additionally inferred
from the conditions that lead to minimum energy*.

We start this analysis by first considering the non-interacting part of the mean-field
Hamiltonian

Hp = =Y ) tapigtaj = =2 Y tap|tail [Yaj] 08605 — Bi)- (3.9)
oy

aB (ij)p

Here the role of the tunneling becomes clear: it connects the phases of the order param-
eters between neighboring sites, establishing phase coherence within the corresponding
orbital state. In particular, since the tunneling coefficients are t; < 0 in the direction
parallel to the node and t;, > 0 in the perpendicular direction, intersite phase coherence
is implemented in the form of a stripped pattern. In fact, taking as an example the
px-orbital state, the phase of the corresponding order parameter can be expressed as
Oxj = Ox(jx,jy,jz) — 1 mod (jr,2). Analogous relations hold for the py- and p,-orbitals.
It follows, therefore, from the properties of tunneling in the p band, that neighboring
sites will always maintain the same phase relation in the directions perpendicular to the
node, while in the parallel direction the phase alternates with 5 difference.

We consider now the interacting part of the mean-field Hamiltonian. Substituting Eq. (3.8)
in the term that describes density-density interactions

j U,
Hin = Ll + 5l + G 0l

(3.10)
+2Uy [ [P [Wy51? + 2Unz|[¥nj|*|55]* + 2Upz g5 |% 1551

no information regarding phase relation can be extracted. But this was already expected,
for this term in Eq. (2.30) depends only on number operators. This is not the case,
however, in the term describing transfer of population between different orbitals,

ng%) = ny]leJ'IQWyJ'IQ cos(2(6xj — Oy;j)) + sz|¢xj[2[¢zj[2 cos(2(6yj — 055)) 541)

+ Uyz|¢yj|2|¢zj[2 cos(2(6y; — 054)),
and therefore the configuration which minimizes energy will impose a corresponding

specific onsite phase locking for the different orbital states order parameters. In what
follows we discuss the cases of two and three dimensional lattices separately.

“This discussion follows Refs. [9] and Paper 1.
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3. p-orbital bosons in the mean-field approximation
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Figure 3.1.: Here we illustrate the phase ordering established in the different orbital states order
parameters. Black arrows in the left pannel describe 6,; while the red arrows are
used to describe 6,;. Notice that 6,; and 8y; always keep a 71/2 phase difference as
required by Eq. (3.12) for minimizing the ground-state energy. In the right pannel
we illustrate the vortex/anti-vortex structure in the different lattice sites.

3.1.1. The two-dimensional lattice

In the two-dimensional case, the phases between the p.- and py-orbitals are locked with
a st/2 phase difference. This can be easily noticed from the fact that

HY) = Uy [t [ty cos(2(6:5 — 645)) (312)

is at a minimum value for 6.j — y; = £m/2 (Uyy > 0). When this is combined with
the stripped pattern required for minimizing contributions of the tunneling terms, the
phases of the order parameters become constrained. This is illustrated in the left pannel
of Fig. 3.1 where the directions of the arrows define an angle.

Now in terms of the orbital states, the expression of the full onsite order parameter
defined in Eq. (3.2) is given in the position representation as [27]

le(f') = lijij(f’) + l,bijyj(f’)r (3'13)
which can be further re-written as
Yi(F) = [Prj|wrj(F) £ 1[ygj|wy;(F), (3.14)

after use is made of the specific phase relations that minimize the energy. In particular,
the + sign alternates between neighboring sites (see Eq. (3.12)). Making use of Eq. (2.5),
which states the orthonormality condition satisfied by the Wannier functions, the onsite
order parameter can be interpreted as a spinor

Y =

ll)bxj[ } ) (3'15)

ii]d)y‘j]

where the basis states w,j(F) and wy;(F) contain any spatial dependence, and where the
length of the spinor gives the onsite atom number, i.e., Nj = \/[¢yj|* + [{yj]*. Since here
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3. p-orbital bosons in the mean-field approximation

the onsite order parameter has essentially the same properties of a two-level system, it
can be completely characterized by a Bloch vector J; = (]xj, Jvj, Jzj) with components

Jij = YWy + Wg;ng,
Jyj = il i Vi —¢;j¢xj)r (3.16)

]zj = I¢xj[2_|¢yj|2'

The length of the Bloch vector is related with the total number of atoms® at the site
j. |Jj| = Nj, and J,; computes the onsite population imbalance between the p.- and the
py-orbital states. In addition, due to the required onsite phase-locking relation, J,j is
always zero.

Now we still need to analyze the spatial dependence of the order parameter, which is
absent in the Bloch vector description. This is most conveniently done by considering
first what happens in the limit where the harmonic approximation is reasonable: the
Wannier functions can be replaced by harmonic oscillator ground states (see Sec. 2.3.1)
and the expression of the onsite order parameter becomes

2., 2

M~ ([l & byl 6o (5.17)

where 02 is the effective width of the oscillator, determined from the lattice parameters.
Now if [¢hyj| = [tyj], this is an angular momentum eigenstate, L,; = —idg, szlblfha) =

J_rgb;gha) (#), which allows for interpretation of the onsite order parameter as a vortex/anti-
vortex state which covers the entire lattice. In terms of the Bloch sphere, this means that
Jxj = 0 for every j and that the Bloch vector points parallel to the direction defined by Jy;.
This vortex/anti-vortex structure is illustrated in the right pannel of Fig. 3.1. We remark
that this solution is only true in the harmonic approximation. Outside this regime there
is no requirement which ensures the existence of a true vortex/anti-vortex state® even
when J;; = 0. It still stands though, that due to the properties of the Wannier functions
and the onsite interorbital phase relation, the density vanishes at the center of the site j,
and therefore the onsite order parameter do show a vortex-like singularity. In addition,
it also holds that the neighboring sites are then characterized by anti-vortex-like states.
This is the extent to which the order parameter of the general case shares properties
of the staggered vortex solution.

3.1.2. The three-dimensional lattice

Similar analysis’ also reveals many features of the physics in the three-dimensional
system. But in the isotropic cubic lattice, due to the triple degeneracy of the orbital
states on the p band, the angular momentum becomes a vector with components L,
a ={x,y,z}. Let us assume first that |{j| = |{yj| = [¢;j| and check the requirements

5This is a mean-field version of the Schwinger bosons.
5In the sense of eigenvalues of L,;.
"We follow analysis done in Ref. [9].
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3. p-orbital bosons in the mean-field approximation

for minimizing Eq. (3.11). Under these conditions the phase relation to be satisfied is
Orj — Oyj = Oyj — 0,5 = 0,5 — Oj = £271/3 £ 7, which can be written, for example, as

Vi N; . .
Y5 = |ty =\/§Je’9 eS| (3.18)

lej elmi /3

where Nj is the total onsite atom number and 0 is an arbitrary phase. The onsite wave
function with equal number of atoms on each of the orbital states has a unit angular
momentum per atom which points along the axis L o< (1, £1, £1). And because Uyy > 0,
the relative phases of the three orbital order parameters are frustrated®. In particular,
it was pointed out in Ref. [7] that “the onsite frustrated phase configurations come in
two different “chiralities” that cannot be converted into each other by shifting any one
of the phases by the st shift allowed by the Zo symmetry.”®

With information about the onsite orbitals phase locking and in particular the frustrated
character of the phase relation in the three orbital case, one can then pose the inverse
question. Let us assume that this property is inherent of the model, and that the phases
of the different orbital states are arranged as in Eq. (3.18). Is this phase relation still
valid regardless of the values of U,y and Ugg, or is there any condition imposed over
the values of these coupling constants?

We follow again the approach of Ref. [9], and re-write the interacting part of the mean-
field Hamiltonian as'®

Hpn = %=(n2 + n2 + n2) + 2Usy(neny + nen, + nyny),

(3.19)
Hrp = Uyy (cos(Ary)neny + cos(Axz)nen, + cos(Ag, — Agy)ngn,) ,

where ny = [q|?, and Agg = 2(04 — 6g). In these terms, defining n = (ny, ny, n,), the
energy functional can be written in the quadratic form of the n, variables,

E[Yx, ¥y, ¥;] = n"Mn, (3.20)
with
Ur/2 Uy (2 + cos(Axy)) Ury(2 + cos(Axz))
Ury(2 + c0os(Axz)) Uxy(2 + cos(Axz — Axy)) Urr /2
(3.21)
Solving for the eigenvalues we find that
)\41 = Uxx - 3ny
Ay = Uxx —3Uyxy (3.22)

)\'3 = Uxx+6nyr

8Notice that the phase relation to be satisfied is a (dependent) linear combination of the phases of the
different orbital states.

9We refer to the original reference [7] for more discussions on the symmetry properties of the broken
symmetry phase of three orbital system.

1%Due to typos in Ref. [9], there are different factors in the calculations presented here. We point out,
however, that this does not change the conclusions drawn by the authors.
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3. p-orbital bosons in the mean-field approximation

which requires U, > 3U,y for otherwise M is not positive definite. This is usually
satisfied in sinusoidal lattices (see Fig. A.2). However when this condition is violated, the
onsite phase of the order parameters cannot establish the phase relation described in
Eq. (3.20) because for this range of the parameter values M is not positive definite. In
particular, this also means that minimization of the overall energy has to be studied now
in the case where || # |¥yj| # |¥;j] and therefore qualitative features of the ground-
state are expected to be different (see Ref. [9] for discussions of this case). Furthermore
this also reveals limitations in the description provided by the harmonic approximation,
in which case Uy, = 3Uyy as discussed previously.

24



4. Confined p-orbital bosons

In this chapter we study the superfluid phase of p-orbital bosons confined by a harmonic
trap!. Mean-field analysis carried out in Chapter 3 revealed the existence of specific on
and inter site phase relations to be satisfied by the phase of the orbital order parame-
ters in order to minimize the system’s energy. More explicitly, it was shown that in a
situation of equal number of atoms in the different orbital states, the ground state in the
isotropic square lattice is characterized by a staggered vortex-like solution. But how is
this scenario altered by the presence of an external confining trap?

By rendering the atomic density an inhomogeneous spatial profile, the presence of a
confining potential immediately adds an extra feature for the physics in the p band.
In the case of a harmonic trap, for example, the atomic density has an approximate
Gaussian distribution in the lattice. Now how will the combination of inhomogeneous
atomic density + the anisotropic tunneling in the p band affect the properties of the
ground state?

In order to answer this question we proceed with a mean field analysis for a system of
harmonically confined p-orbital bosons. We first discuss how confinement changes the
equations of the order parameters in Sec. 4.1, where we also discuss the approximations
considered. We continue with the study of Bose-condensation for the ideal gas in the
p band in Sec. 4.2, and also analyze finite temperature properties. We consider the
interacting case in Sec. 4.2.2, and conclude the study by analyzing the properties of the
system with an anisotropic optical lattice in Sec. 4.2.3.

4.l. Mean-field equations of the two-dimensional confined system

In Sec. 2.4 the general expression of the many-body Hamiltonian, Eq. (2.24), was ex-
panded with the use of orbital states of the p band. In this section we extend this
procedure in order to include effects stemming from an external confining harmonic
trap. We do this by modifying the term in Eq. (2.24) that describes contributions of
external potentials as

V(') = Vigtt(?) + Virap(F), (4.1)
where
Vigtt(F) = Vi sin?(kx’) + V, sin®(ky’) (4.2)
and ~2 )
Virap(F) = 5 (% + 9%) = (2 + 92). (4.3)

!This chapter is based on Paper I, which is attached in the end of this thesis.
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4. Confined p-orbital bosons

Here, as usual, k is the wave vector of the lattice, V, the lattice amplitude in the di-
rection @ ={x,y}, @ is the trap frequency. w = V2ma/hk? is the dimensionless trap
frequency, and x = kx’ and y = ky’ are dimensionless positions. We now assume that
the parameters of the system satisfy the requirements necessary for validity of the lo-
cal density approximation®. We consider thus a very smooth confining potential, with
characteristic length lirqp = Vh/m® > A/2. Under this condition, the system can still
be considered periodic on the length scale characteristic of the trap, and corresponding
trap effects can be implemented at each site, as a shift of the onsite energies®. In addi-
tion, the site-localized Wannier functions are assumed the same as in the non-trapped
case, which also implies that the orbital states remain unaltered from the ones discussed
previously.

The expression of the second quantized Hamiltonian describing p-orbital bosons in the
square lattice and with harmonic confinement then follows as

R AT A A
Hop = =Ylap Xy taplaifaj + Y 2 B + 57 Aaj

+ a2 %% Aoy — 1) + Y apaip 2j Uaplajig (4.4)
UaptaT AT & A Al AT &~ A
+ Yaparp i 1 (Aajla;dpidps + Agagdajiaj),
where again fqj = dedajr with a = {x,y} the number operator for the orbital state a.

In particular, notice here that the first, second and third lines correspond, respectively,
to the former Hy, H,, and Hrp of Eq. (2.28).

As a quick remark, we explicitly write the expression of Hy = Hpn + Hrp for the
case of an isotropic square lattice, where U, = U,;a":

r Ui & 1a Upy A ..
Hy = S*hg(fyy —1) + 2R — 1) + 2Uxy gy
(4.5)
Uy AT AT & Ug st AT »
75 AyjUyQyjlyy + 5 Qg 0gAxidyg

Our goal now is to obtain equations similar to Egs. (3.7), i.e, the equations of motion for
the order parameter, but for the system described by the Hamiltonian (4.4). We thus
start with the coherent state ansatz, Eq. (3.1), and obtain the mean-field Hamiltonian
that will be used to compute the Euler-Lagrange equations. In the same way as for the
three-dimensional case in Sec. 3.1, normalization is imposed in the whole lattice as

N =Ne+ Ny =Y g+ [y, (4.6)
J j

where N is the total number of atoms.

The equations for the order parameters then follow. They correspond to a set of coupled

2We remark that the term local density approximation means different things in different contexts. What
we mean by local density approximation is explicitly defined in the sequence of the text and no other
significance is implied.

5This is equivalent to having a position dependent chemical potential.

“We do this here just because the literature has considerable amount of typos in this part.
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4. Confined p-orbital bosons

(discrete) Gross-Pitaevskii equations, one for each of the orbital states at each site j

—i % = Ypefry) tBWxjriy = 2¥x5 + Pjg,) + %(x + ¥} )Y
Usy+Uyx *
(U [xjl* + (Usy + Uyae) Wy )¢y + < S ) 53 ¥
(4.7)
. Oty
—l% = —Zﬁe{x,y} tyﬁ(l/)yj+i3 — 2¢y; +¢yj~1ﬁ) %(x 'l_‘yJ)lb‘yJ

ny ny *
+(Uyy[¢yj[2 + (Uyxy + ny)]lbijQ)wyj + <+> 32cj vy’

where the expressions of the couplings are given by Eqgs. (2.32) and (2.33), which are
computed here with the lattice Wannier functions obtained from numerical solution as
the Mathieu equation for the potential (4.2).

4.2. The ideal gas

We start by considering first the simplest case of the non interacting gas, where expres-
sion of the mean-field Hamiltonian follows as

Hyp = — Z Z tap¥aiVaj + Z Z (] + ¥} )naj, (4.8)

aB (ij)p

where ngj = lzpa,-]? is the onsite density of the orbital state a.

The analysis again makes use of the same ideas discussed in Chapter 3: the order
parameters are complex numbers,

Vaj = |Yaj|e™, (4.9)

and therefore we are required to characterize properties of both amplitudes and phases
in the lattice. Here Eq. (4.8) accounts only for contributions of the free part of the full
Hamiltonian (4.4), and the additional term describing contributions of the trap depends
only on number operators. This means that the confining potential does not require any
particular phase relation to be satisfied, and that the phases of the order parameters
behave in exactly the same way as in the non-confined system discussed in Sec. 3.1.1:
neighboring sites will always keep the same phase relation in the directions perpen-
dicular to the node, while in the parallel direction the phase alternates with a st phase
difference.

We proceed with the Schrédinger equation for (4.8),

0

0)
i ¥ = HO W,

We first notice that the the Hamiltonian of this discrete model, Eq. (4.8), has structure
similar to the Mathieu equation expanded in momentum eigenstates [37], and therefore
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4. Confined p-orbital bosons

the eigenvalue problem for each of the p, orbitals can be written in the form

GRY,  —ty O 0 0
: \ :
' a lpaj—lg “e —taﬁ %RjQ——lﬁ —taﬁ O O “e l/)aj—lﬁ
l— lpajg = l,bajﬁ )
ot o W 10 o
aj+1g ... 0 —tap 7Rj —top 0 ... aj+1g
0 0 —tap $RLy, —tap

(4.10)
where as usual «a,8 ={x,y} and RJ.2 = ij + yf Special cases of this equation can be
solved analytically. However, since the solution is given in terms of Fourier expansions
of the Mathieu functions, there is not much to learn from analytical expressions in
this case [37]. In any way, it is still possible to understand the influence of the trap in
rather simple terms by considering the continuum limit, where analytical solutions have
a closed form. This consists in making ¥ — ¥«(x,y), such that the kinetic energy
transforms as

&
Vaji1p — 2Vaj + Yaj—15 — @ll)a(x,y)-

But another step before arriving at the final form of the equations, is to impose in the
wave function ansatz the correct phase imprint which renders the stripped order in the
lattice. The phase factors are then further absorbed into the redefinition of the tunneling
coefficients by making t,o — —tqq, and the equations of the orbital states are given by

i%lpx(x,y) = [_|txx|% _Itxy[%—l‘%Z(xQ-i-yQ)} lpx(x,y)
(4.11)
Gl y) = [~ltxl s — ltwl s + $ 1% + 2| dylx,9)

By introducing the effective mass mgyg = |ta3[_1/2, and parallel and transverse frequen-

cies
a)” = wa]taB, a=ﬁ
(4.12)
w1 = w\2|tegl, a B,
Eg. (4.11) can be re-written as
D gty = [ PR el mad o)
ot =Y T oy T 2myy 2 g | Py '

with a corresponding equation for the p, orbital state. We find therefore that the con-
tinuum approximation considerably simplifies the problem, for now the system we have
to deal with resumes to the 2D anisotropic harmonic oscillator. This also shows that
implementation of the striped pattern in the wave-function ansatz prior to taking the the
continuum limit helps avoiding a final Hamiltonian that is not bounded from below. It
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4. Confined p-orbital bosons

has an overall effect in the system, in the sense that it inverts the p band and shifts its
minimum to the center of the Brillouin zone, but the physics remain unchanged.

Now the anisotropy arising from the different tunneling elements f,, and t,, will affect
mgg and therefore also weg. As a consequence, the density of the resulting ground state
of Eq. (4.13) will be characterized by a Gaussian distribution, but with different widths in
x- and y-directions. We use this fact to define the anisotropy parameter

(Arx)?
(Axy)g '

where (AqB)> = (B%)a — (B)%, and (..)q represents the expectation value taken with
respect to Yu(x,y). The anisotropy in the density for atoms occupying the py-orbital
state is characterized by an equivalent expression, that satisfies S, S; = 1 for symmetry
reasons, and thus from now on we use S = S, whenever discussing such anisotropies.
In particular, in the continuum case discussed here

ol (2)

The limit where w| = w, corresponds to the case of isotropic tunneling, and yields S = 1.
But as soon as this isotropy is broken, S # 1. Accordingly this reveals a narrowing in
the density of atoms in the orbital states along one of the directions.

Se = (4.14)

4.2.1. The ideal gas at finite temperatures

The possibility of rewriting the Schrodinger equation of the non-interacting system in a
rather simple form allows for the study of thermodynamic properties of condensation
in the p band.

We start by analyzing the properties of the continuum limit, described by Egs. (4.11).
Here known properties of condensation in harmonically trapped systems can be directly
used [29]. The critical temperature for the Bose-Einstein condensation, for example is

given by

TP = w5 V6N n? (4.16)
and

T = wegy (N/E(E) (4.47)

in the two and three dimensional cases. It also follows that ¢(3) ~ 1.20206 and the
effective trapping frequencies are defined [29] as

Wiy = B30y |tex [ty (4.18)
(D)

werr = 40| tex|tey ||tz = dool|tex||tey )M (4.19)

and

For the discrete model described by Eq. (4.8), the critical temperature can be computed
by noticing that the number of thermal atoms is determined by

1
Nr=3, eBEn—1) _ 1’ (420

n+0
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Figure 4.1.: Critical temperature for the establishment of Bose-Einstein condensation in the p
band as a function of the atom number denoted by N. (a) shows the results of the
2D system while (b) shows the results for the 3D system. We also compare the
results obtained for the continuum approximation (dashed line) with the results of
the discrete model obtained numerically (solid line). The parameters here are w?/2 =
0.001 for the dimensionless trap strength and |t /t.y| = 20.1, which corresponds to
the ratio between the tunneling coefficients for V, = V, = 17.

where B = E,/kgT is the inverse (dimensionless) temperature and p is the chemical
potential. In these terms, the chemical potential is found by fixing the total atom number
N, and the energy levels E, are obtained via diagonalization of (4.10).

In Fig. 4.1 we compare the results for the critical temperature in both the continuum
and discrete cases. In the limit of very small atom number, the continuum limit predicts
larger values for the critical temperature of the discrete model, while in the other
limit, of large atom number, it predicts considerable smaller critical temperatures. We
attribute this difference as being a consequence of the different density of states between
the lattice and continuum models.

Now in the 2D version of the system, is there any change in the profile of the atomic
density distribution as the temperature is lowered below the critical temperature T,
associated to the transition to the condensed phase? In the limit of high temperature,
we expect the system to display isotropic atomic density. This is because in this region
the system is described by the Boltzmann distribution, which is isotropic. But after the
system reaches the critical temperature, is there any direct signature of this intrinsic
tunneling anisotropy? The answer is yes. In fact, in the low temperature limit, the
condensed state of p-orbital bosons is characterized by a bimodal structure. In partic-
ular, below T, the condensate density has properties similar to the properties of the
ground state, which feature anisotropies because of the different tunneling strengths in
the different directions. This is illustrated in Figs. 4.2 (a) and (b), where we show the
density

Ntotar(i) = No|vo()|? + Z [¥n(3) (4.21)

eBEn—p) —1

for two different temperatures, above T, and for the ground state (where T = 0).
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Figure 4.2.: Populations per site of the 2D Bose gas in the p band and for a single orbital state
(a) shows a situation where T > T, while in (b) T = 0. In both cases the total number
of atoms in the system N;,; = 1000, the dimensionless trap strength w?/2 = 0.001

and potential depths are V, = V, = 17.
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Figure 4.3.: The anisotropy parameter S (see text) that is used to characterize the anisotropy in
the density in the 2D system, and as a function of the temperatures scaled with f,..
The number of atoms considered is N = 1000, the dimensionless trap strength is

w?/2 =0.001 and V, = V, = 17.
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4. Confined p-orbital bosons

To conclude this section, we use the anisotropy parameter defined in Eq. (4.14) and
characterize how the anisotropy in the p-orbital ideal gas changes with temperature for
a system with 1000 atoms in Fig. 4.3. As Fig. 4.1 (a) indicates, after the (scaled) critical
temperature T, ~ 0.9, the atomic density becomes isotropic in the xy-plane.

4.2.2. Interacting system

In order to characterize the ground state of the interacting system we propagate the
mean-field equations (4.7) in imaginary time with an initial trial wave-function.

To jllustrate how this procedure works [38], let us consider the Schrodinger equa-
tion Hi = E such that the wave function 1 evolves in time according to (t) =
e~ tH13)(0), where we used i = 1. Writing ¥ in the basis of its energy eigenstates,

Y=Y, cndn, with c, = (P|dn),
U(t) = > cne Fi(0),

where E, corresponds to the n-th energy level of the system. Now using t — iT,
with
P(r) =) cne 7H(0),
n

the overlap between the ground state with the (1) propagated in imaginary time,
and after a long propagation time, is given by

2 ,—2EpT
cye 0

(Y(1)|cod(T)) — lim 1

T—500 CgefQEUT + ani 0121672Enr

Therefore in the limit of T — oo, ¥(1) will converge to the true ground state of the
system, as long as the overlap between these states is non-vanishing:

(1) = coe THP(0) + O(e T EEol),

with a correction of the order of O(e~T(F1~Fo),
This method can also be applied to non-linear systems as e.g the system described
by Egs. (4.7), but in this case propagation has to be carried out self-consistently.

We re-write Eqs. (4.7) as

. 0Y; Hi1 Hig
Yy _ v, 499
Uat [ Hy Hy | 7' 22
. l:bxj
where ¥; s and

v

Hyy = —fxx% - txyai;ﬂ + Ure|[¥l” + (Uxy + Upa)[9hys]*,

Hy = g~ twgy + Un[bul” + (Uny + Uy g

(4.23)

Uxy+ U
H12 = < xy2 yx) lpyjd);jl

Uyy+U
Hu = (%258 gogup,.
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4. Confined p-orbital bosons

Since the Hamiltonian governing time-evolution contains both spatial and momentum
dependent terms, we study the system numerically, with the use of the split-operator
method [39]. This method is based on factorization of the evolution operator, and there-
fore becomes exact only in the limit of vanishingly small time steps. Propagation is thus
carried out in very tiny time steps, and numerical accuracy of the procedure is checked
by varying the size of the time steps.

In what follows, we illustrate the details of the calculation. The time evolution operator
is written as

_ _—iH&6t _ .| Hu Hi B . Hyy O 0 Hi
Ulst) = e —exp{ l{HM Hy 6t =exp{—i 0  Hy + Hy 0 ot

and since we assume the lim 6t — 0, this equation is further approximated as

-—létl Hiy O —'51[ 0 Hi
USt) ~ e 0 Ho Hpr 0 (4.24)
Uy (6t) Us(6t)
We now expand Uy (6t). In particular,
[ /Uyt U
[ 0 Hi r _ < S ) | |*[hy5> .25)
H. 0 B ey + Uy )
g 0 (Lot ) 2 g
and s s
0 Hip|"_ [Uxy+ Uy 120 12 0 Yoy
[ H21 0 - < 2 IleCJ] ]d)yJ] d)lep;j 0 ’ (426)
from where it follows that expansion of Uy(St) has the form
(—ist)"™ ( 161‘ n1 n-1 0 ‘pyjlb;j
= . 7
n! A llple IIPLVJ[ wlep;j 0 (42 )
for odd n, and ( (
—ist)" 161‘ 10
At = Sl | § 3 ] (428
for even n. Gathering all the terms of the expansion, we have
Uém USZ)
U (6t) = , (4.29)
@1 (22
vt ul?
where U U
U = U = cos ( (B2 08 ) st ).
s = ot (22222 ) sine ( (B2 200 ) sty gl ) ity
and

oo [ Uey + Uge | Ury + U, *
Uézi) = —iét <Iy2yx> sinc <<xy2yx> 5f]¢xj|l¢yj[> Ui Y5
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Figure 4.4.: (a) and (b) show populations in the p,.- and in the py-orbital states respectively. (c)
illustrates the corresponding population imbalance J,;. The dimensionless system
parameters are V, = V, = 17, w = 0.005, and UyN = 1. Excess of atoms in the
p«-orbital state appears in the horizontal axis and is indicated by red color, while in
the vertical axis the system displays excess of atoms in the py-orbital state.

Now the idea is to make V(6t) = Uy (6t)Up(6t)¥Y = Uy (65t)¥y, where ¥y = Uy(S6t)¥ with
Uy (8t) defined in (4.24). This involves evolution with a diagonal matrix that contains
two different types of contributions (see the expressions of Hy4 and Hgs in Eqgs. (4.23)),
one that depends on derivatives with respect to x and y, and the other that contains a
quadratic dependency of the orbitals order parameters. We will first evolve ¥, with the
part of U; that does not depend on the derivatives and thus ¥; — ¥,. After this step
is taken into account, the remaining part is considered in momentum space. By means
of a Fourier transform we obtain the expression of ¥; in the momentum representa-
tion, F[¥;] = ¥, which can then be easily evolved with the corresponding dispersion

relations®
{ij (St) _ @ ~i6t[2trx (1-C08 Ryx) +2tcy (1 -cos kry)] 0 {l)xj
{b‘Vj (61) 0 e ~161[2tyx (1-cos kyx)+2tyy (1 -cos kyy)] {l)yj .
(4.30)

By Fourier transforming it back to the position representation, the final result is ¥V(6t)
(cf. Eq. (4.22)), that is used now as the trial wave function and propagated in imaginary
time again. This procedure is repeated until convergence has been reached.

Fig. 4.4 displays the density profiles of the p,- and py-orbitals in the confined system,
in (a) and (b), respectively. As can be seen from comparison with Fig. 4.2 (b), here the
density of the p,-orbital state is also elongated in the x-direction, with analogous result
holding for the density of the py-orbital. Fig. 4.4 (c) shows the population imbalance
in the lattice, i.e., the difference between the number of atoms occupying the p, and
py orbital states at the site j (J;;). Now the next question that arises is what happens
in the regime where tunneling stops playing an important role in the dynamics of the
system?

There are two ways of weakening the role of tunneling in the lattice: either by making
the lattice sites very deep, either by making the coupling parameter Uy (see Eq. (2.24))
very large. In these situations, i.e., in the limit where interactions are so strong that

5In momentum space the term —tag% corresponds to ta,gkfxﬁ. Here however we use kﬁﬁ — 2tap(1—cos kyg)
to account for the (inverted) shape of the p band and the discrete character of the system.
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other effects can be neglected in the dynamics, the system is said to be in the Thomas-
Fermi limit [29]. Now since we already know that the tunneling is the main factor
rendering this anisotropic profile for the atomic cloud, it is natural to expect that by
suppressing its effects, the density should display more and more symmetric profile. But
how does this transition from anisotropic to symmetric profile happens as the relative
strength of tunneling gets weaker as compared to other terms in the mean-field version
of Hamiltonian (4.4)?

In order to characterize anisotropies in the density, we use again the anisotropy param-
eter defined in Sec. 4.2:

(Ayx)?

(Ary )2

and calculate if for different values of the system’s parameters. As showed in Fig. 4.5, the
anisotropy parameter approaches S = 1 smoothly in both cases. However, as opposed
to the behavior of S obtained for suppressing the tunneling by increasing the interaction
strength (axis UgpN in Fig. 4.5), when the lattice sites are made deeper and deeper (V
axis), the anisotropy of the density increases until it reaches a maximum value, and from
there it decreases monotonically until it reaches 1. Although we had no reason to expect
such behavior, which in fact is not predicted by Scon¢ in the continuum limit®, this can
be a consequence of the poor description provided by the tight-binding approximation
in situations which assume shallow lattice sites and therefore the results should not be
taken too literally in this region. To complement the analysis, Figs. 4.6 (a) and (b) display
the density profile of the p,- and py-orbitals for a situation with moderate interaction,
where UgN = 15, w = 0.005 and V = V, = V;, = 17, which confirms the results discussed
here.

When the system is not confined, mean-field analysis reveals that the ground state is
characterized by the staggered vortex-like solution. This corresponds to the most favor-
able configuration satisfying both requirements of tunneling and interaction parts which
lead to the lowest energy. What happens now with the staggered vortex solution, when
the system is harmonically confined?

As opposed to the non-confined system, the atomic cloud in the present case is not evenly
distributed in the lattice, and as discussed previously, it has the approximate form of a
Gaussian distribution. Here we investigate ground state properties and characterize the
fate of the staggered vortex-like solution in terms of the mean-field version of Schwinger
bosons, as discussed previously in Sec. 3.1.1. It was argued there, that the phase of the
full onsite order parameter, Eq. (3.2), was characterized by a true vortex/anti-vortex
profile only in the harmonic approximation. Outside this limit, even J;; = 0 didn’t
provide sufficient condition for rendering a perfect staggered vortex solution. And as
discussed above, the confined system has already a natural imbalance in the number
of atoms occupying the p, and p, orbital states, as seen in Fig. 4.4. Here it holds thus

61t should be noticed, however, that the expression provided by S.on¢ is obtained in the limit of Uy = 0
and it does not approach 1 as V — co. On the other hand, under these circumstances any small Uy > 0
is sufficient to make S.,,¢ — 1 since the kinetic term is going to be negligible relatively to interactions.
For moderate values of the lattice depth V, S.,n¢ increases monotonically with increasing of V. This
behavior is not confirmed by the predictions of the discrete model (Eq. (4.8)) and thus it should be kept
in mind that the behavior predicted for the density anisotropy in the limit of deep lattices is qualitatively
different in the continuum and discrete models.
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Figure 4.5.: The condensate anisotropy parameter S (see Eq. (4.14)) as a function of the inter-
action strength UpN and of the lattice amplitude V = V, = V,, for the system with
dimensionless trap frequency w = 0.005. It illustrates that the system enters the
Thomas-Fermi regime whenever the relative strength of the tunneling compared to
interactions becomes small, i.e., S — 1.
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Figure 4.6.: These plots display populations in the p,- (a) and py- (b) orbital states, for V, = V, =
17, w = 0.005 and UyN = 15. Due to the strength of the interactions, the anisotropy

in the density is not so pronounced as compared to the results in Figs. 4.4 (a) and
(b).
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Figure 4.7.: Bloch vector at different sites of the optical lattice. We use the horizontal axis to
represent the y-component of the spin and the vertical axis to represent the spin
z-component. The x-component of the spin is strictly zero due to the specific onsite
phase locking between the p,-and the py-orbital states. Information about the density
is encoded in the length of the Bloch vector (see Eq. (3.16)) and the offset from the
horizontal axis encodes information about the breakdown of the antiferromagnetic
order. The black dots are used to denote the lattice sites. In (a) Uy)N = 1 and in
(b) UJN = 15. The other parameters are the same as in Fig. 4.6. This illustrates,
in particular, that the staggered-vortex solution remains valid in a larger number of
sites in the center of the trap in the limit of large interactions.

that in general J,; # 0, and the staggered vortex solution is certainly lost at the edges
of the condensed cloud. In the center of the cloud, however, where J,; = 0, it is still
possible to find characteristics of non-trapped like physics. This is illustrated in Figs. 4.7
(a) and (b), which display the Bloch vector in the yz-plane’, J; = (0, Jyj, J;j). By calling
the horizontal axis the y-spin direction and the vertical axis the z-spin direction, we see
that the Jy; component dominates at the center of the trap, while at the edges the Bloch
vector no longer points along the horizontal direction. This reveals the breakdown
of the staggered vortex solution in these regions. It also shows, however, that in the
limit of larger interactions where the density becomes more symmetric, the staggered
vortex-like solution holds true for a larger number of sites in the center of the trap.

4.2.3. Properties of the system in the anisotropic lattice

All the properties discussed so far addressed the case of a symmetric lattice, where
the requirements ensuring the degeneracy of the orbital states were automatically ful-
filled. This picture is modified in anisotropic or asymmetric lattices, where any small
anisotropy/imperfection is in principle capable of lifting the degeneracy between the
orbital states.

In particular, there are two ways of introducing anisotropies in the lattice discussed

"Recall here that J.j is always zero.
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here, either as a result of choosing different wave vectors, k. # ky, either as a result of
having a lattice with different amplitudes V, # V in the different directions. What are
the properties of the physics then, and how robust are the properties of the symmetric
lattice with respect to small imperfections?

We investigate these issues by considering the second scenario, of a lattice with different
amplitudes, and in terms of the anisotropy parameter

R=2 (4.31)

which controls the ratio between the lattice depths. The case of R = 1 recovers the
symmetric lattice that was already discussed.

We have checked (numerically) that the main effect of the asymmetry is to shift the
energy levels between the degenerate orbital states. The amount can be estimated in
the harmonic approximation, for example, by considering the onsite energies of the p,
and p, orbitals at the j-th lattice site:

A =Ey, —E. = 2y/V.(VR - 1), (4.32)

where E, = [dF w;j(ﬂ[—VQ + Vlaf(r")]waj(f) is the energy of the p, orbital state. This
splitting is actually site independent, and as long as the value of A is much smaller than
the energy scale set by the interaction terms, Ey ~ UgN|{y 2 it doesn’t really affect the
physics.

This picture becomes more complicated when more sites are taken into account. It can
be the case, for example, that interaction is capable of coupling the order parameters of
the orbital states in a small region 6 around R = 1, such that small changes of the lattice
parameters can lead to drastic changes in the properties of the ground state®. This is an
important point to be considered here, because in case it is possible to accurately control
these parameters, the physics in a neighborhood around the degeneracy point might
reveal novel phenomena similar to adiabatic ramping through an avoided crossing® (as
discussed in Ref. [40]). In this sense the parameter which computes population imbalance
between the different orbital states

1
J: = 5 ‘Lj_jfzj, (4.33)

arises as a natural candidate for characterizing sensitivity of the system with respect
to R. When J, = —1, all the particles occupy only p, orbital states, and in the same
way, when J, = 1 all the particles occupy only p, orbital states. In addition, the case of
J. = 0 recovers the symmetric lattice, which is characterized by the equal sharing of
population among the different orbitals. Now it is important to remember that the trap
defines an effective size for the system that is fixed by w. Since this will set the extent to
which finite size effects affect the system!?, we expect that sensitivity under variations
of R is greatly influenced by the values of the trap frequency.

8In the sense of changing its symmetry properties.

9Tt is important to point out, however, that since here the densities of different orbital states are spatially
different, adiabatic driving could lead to macroscopic flow of particles within the trap.

19By transforming energy level crossings into avoided crossings, for example.
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Figure 4.8.: The parameter for measuring population imbalance J, as a function of the lattice
asymmetry parameter, R, and for different values of the trapping frequency. Here
UoN =1 and V, = 17. The vertical dashed lines are used to denote the typical sizes
6 of the transition region where atoms coexist in the two orbital states. In particular,
smaller values of w are associated with smaller values of 6. This means that the
transition becomes sharper as the system'’s size increases.

Figure 4.8 depicts the behavior of J, around R = 1 for systems of different sizes, i.e.
with different trapping frequencies w. It illustrates that the range of § is smaller for
larger systems, which implies that qualitative properties of the ground state will change
more abruptly for increasing system sizes. We also verified numerically that 6 increases
with increasing values of the interaction strength UyN, which is in agreement with the
picture that the orbital order parameters are coupled by interactions.

This suggests thus that if the system interacts very weakly, a very fine tuning of the
lattice parameters is required in order to investigate the properties of the ground state
of the symmetric lattice. In addition, these properties become more robust in the limit
of stronger interactions. In fact, even a small temperature could actually contibute to
the establishment of phase coherence between the order parameters of the p, and py
orbital states in experimental realizations. This follows from the reduction of the energy
gap between the ground and first excited states around the R = 1 point, that makes it
easier for the atoms to occupy the first excited state. In particular, this is needed for
balancing the population of the two orbitals. We furthermore notice that the transition
from one to the other extreme of J, is smooth for nonzero w, and that by controlling the
lattice amplitudes this system could realize a many-body Landau-Zener transition [41],
which when R is tuned externally could form a play-ground of the Kibble-Zurek [42]
mechanism.
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5. Beyond the mean-field approximation: Effective
spin Hamiltonians via exchange mechanism

In the previous chapters we studied the physics of p-orbital bosons from a mean-field
perspective. In this chapter we move away from the mean-field regime and study the
physics of the strongly correlated Mott insulator phase of p-orbital bosons. We are
particularly interested in the Mott-insulator state with a unit filling of the lattice sites’
and mainly in the case of a 2D lattice.

As will be shown in Sec. 5.1, there is a regime for which the dynamics of the two orbital
case can be effectively described by the Hamiltonian of the XYZ quantum Heisenberg
model in external field?. This spin model, in turn, is one of the classical models employed
for describing quantum magnetism [44, 45], and particularly special for falling in the class
of non-integrable models [46]. This means that there is no known heuristics leading to
analytical solutions in closed form. On the other hand, as we show here, this physics
is accessible with the use of bosons in the p band of an optical lattice. In this context,
therefore, p-orbital bosons constitute a nice controllable system that can be used as a
quantum simulator® [3, 24].

This will be discussed in Sec. 5.1.1, where we characterize the phase diagram for the
particular case of an effective 1D spin chain for both the infinite and finite cases. We
continue then by presenting detection schemes which are capable of experimentally
addressing the physics discussed, in Sec. 5.2. We conclude this study by extending the
calculations for the three orbital case* in Sec. 5.5.

1'We remark that this is the easiest case for experimental realizations of Mott phases for bosons in excited
bands [43].

2This chapter is based in the study done in Paper II

5The idea of quantum simulation dates back to 1982, in the work of Feynman entitled Simulating Physics
with Computers [23]. In this work Feynman suggests that an alternative way to understanding compu-
tationally intractable systems (due to the exponential growth of the Hilbert space, for example) would be
to find another system of experimental feasibility that has the same equations of motion. In this sense
one physical system would be ‘simulated’ by another.

“That is, where an effective one-dimensional chain is constructed from a three-dimensional lattice.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

5.1. p-orbital Bose system and effective spin Hamiltonian

Let us consider once more the second quantized Hamiltonian describing a system of
p-orbital bosons in two dimensions®:

H = =YY tea] e + g [Uga RAialRia — 1) + E®Riq
(5.1)
Ut et V4l al aa
+ Zioc,-éﬁ apliallip + 5-A; d; (AipAig |
where d;a creates a particle in the p,-orbital with a = {x,y} at site i, A; o = dzadi,a, and
where ZW) is the sum over nearest neighbors. We remind again that the tunneling
elements® tf]f and coupling constants U,g depend on the orbital states and are given by
Egs. (2.33) and (2.32), and E3° denotes the onsite energy of the p,-orbital state.

Our interest here is in the physics of the Mott insulator phase with a unit filling of
the lattice sites. In this regime the system admits description in terms of an effective
Hamiltonian, obtained from the perturbative expansion of the tunneling processes up to
second order in t/U. We give here a detailed description of the procedure [45, 47].

First let H act on the Hilbert space ¥C. Define (p as the projection on the subspace
PFC of states which describe sites occupied by one atom, and $(g, where Q =1-p
the subspace of states with at least one doubly occupied site. Since both P and O are
projection operators, the following relations hold: P2 = P and Q% = Q. The eigenvalue
problem associated to H can be decomposed as

H‘F=EW—>H<P+Q>‘I’—><HK+HU> <P+Q>\IJ=E\I’, (5.2)
where Hi and Hy describe, respectively, the kinetic and the interaction terms of Eq. (5.1).

We then act with Q and P from the left

(Q P + OHO + OHyD + QFIUQ> Vv = EVY,
(5.3)
<PHKP + PAKO + PAHyO + PHUP> Vv = EV,

and use that QA Q, QHyD, PHKP and PHyP are all equal to zero’ to obtain the fol-
lowing expression

Q\I] = —‘ﬁ@ﬁ}{p\y; (54)

QHyQ -E

which leads to 1
H = —pH C ~ A A e I:I p. 5.5
Mott, KQQHUQ - EQ K (5.5)

5In order to match the notation used in the previous chapters of this thesis, the notation here differs from
what we used in Paper II.

5Notice here that ti; is used to denote the tunneling of a p,-orbital atom from site i to site j in a generic
way, and that the direction of the tunneling should be implicit in the ij indices.

"The first three terms are equal to zero for connecting orthogonal projections of the Hilbert space, while
the last term is equal to zero for computing interactions in states that have a unit occupation of the
lattice sites.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

So far this result is exact. It explicitly shows the effects of the tunneling, which acts
as an intermediate and couples the different projections of the Hilbert space P¥C and
QFC. We summarize it here by considering the physics in two neighboring sites, and
denote the states of the 2-site problem as |sitej, sitej.1). Let us start from a situation
where each of these lattice sites are occupied by only one atom. Suppose then that the
particle at the site j tunnels to the site j + 1. This yields a state where the (j + 1)-th
site is doubly occupied, and that has a corresponding matrix element which accounts
for the interaction processes allowed by Hy. After interaction has taken place, one of
the particles is brought back to the site j8, and again, in the final state, the lattice sites
are characterized by unit filling. This is the starting point for derivation of the effective
Hamiltonian describing the n = 1 Mott (Mott;) phase of p-orbital bosons. But up till now
we have not yet specified the equations that describe the optical lattice. We use here the
same sinusoidal potential as in Chapter 4,

Viatt(r) = Vi sinQ(ka) +Vy sinQ(kyy), (5.6)

and remind once more that V, and k, are the amplitude and wave vector of the potential
in the direction a = {x,y}.

Under the assumptions of the Mott phase, the operator 1/(QOHyO — E) in Eq. (5.5) can
then be expanded to lowest order in t/U,g in analogy to the customary procedure used
for the large U expansion of the Hubbard model at half filling [45, 47]. Let us consider
the 2-site problem again® and define a basis for the ¥(p and ¥(o subspaces:

Hp — {|X, X), [X, V), [V, X), [V, V)} (5.7)

and
Fo — {

0,2X),

0, XY),

0,2V)}. (5.8)

Notice, in particular, that the states listed above for a basis in ¥(o are only the ones
that are relevant for the perturbative calculation!®. It also follows that the full energy in
Eq. (5.5) is of the order of E ~ t?/U, which makes it possible to consider (HQ S
H61, where I:IQ = QHyQ. However, due to the possibility of transferring population

between the different orbital states via action of Hrp, the projection of the Hamiltonian
on the #(g subspace is not diagonal in the basis of the intermediate states with doubly
occupied sites. We therefore adapt the usual procedure for this situation and estimate the
matrix elements for characterizing the virtual interaction resulting from the exchange
processes by using the inverse matrix Héi. Explicitly,

8Again via action of the tunneling Hamiltonian.
9Under the assumption of the tight-binding regime it is enough to consider what happens in two sites.
10Tn fact, these are precisely the intermediate states of the perturbative analysis.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

and its inverse
Uyy/UQ 0 —ny/U2

Hy' = 0 1/2Uyy 0 ) (5.10)

—Uyy/U? 0 Uy /U2

where U? = UygUyy — Ufy. On this basis we arrive at the final form of the effective
Hamiltonian by computing the relevant matrix elements of (5.5).

From states of the type |a;, aj)

A,

alanHQ amlal,a,) a H

2

i)
U U 2U
_\/> Tl a7<U2 , aj>-— 055102 > 'BB|(X1, >

the effective Hamiltonian acquires a term of the form

2lful UBB

- E g alﬁoc,j-

In the same way, from the states of the type |a;, 8j), with a + B,

AT A 1Al A . pN _ Al A fr-1
aoc,iaOCJHQ aa,jaa,llauﬁ]> = aa,iaa,]HQ

i)

T 1 . .
2ny alaa}lo C(]B]> nylal'ﬁ]>r

corresponding to the operator

—ZZ nmnm

From the states of the type |B;, a;) and the following process

al itaiFga) apilBi aj) = 4l e HG'

Qa,l

i)

LY
2ny al

the Hamiltonian gains a contribution as

1
iBj) = mlailﬁi%

foeh

—ZZ U Qip.60, G5

Finally, we consider the states of the type |B:,5j),

A

AT A pPr-ial A AT 4 —1
ai,iaa,fHQ ag,jaﬁyi Bi. Bj) = aZ,iaa,fHQ

)
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

AT A Una U 2Uyy
= \/Qa;iaa,j< ) - Uxy >> -—z |a[,a,)

that contribute to the effective Hamiltonian with a term that changes the orbital states
of the atoms in both sites
2t9tP Uy, Al a4l

S XY U AL
25: ji: d,;ap,iag Aa,

<iLj> o,afp

The resulting expression for the effective Hamiltonian corresponds thus to

2t.|? U, 2
HMOH——ZZ< Ia[ BBAalAa]-l-Qlla][ nalnB]

(5.11)
2128 U, teth
IR0 sl o] o] )
We now use the orbital states to define the Schwinger spin operators [48]
&2 Lata. _ala
5% = Q(axa a,ay)
& = &riisv —ala, 542)

(/))
‘<\1~
H

5 = &

and together with the constraint of unit occupation of the lattice sites in the Mott; phase,
ie. Ay + Ay; = 1, we rewrite Eq. (5.11) as

yort = =Y (778757 + 5 SF 57+ o818 ) = 3 87,
(L) i

This shows that within the perturbative regime, the physics of bosonic atoms in the
orbital states of a 2D optical lattice is well described by the XVYZ quantum Heisenberg
model in an external field, where all the parameters of the spin model depend on the
lattice configuration. We notice, in addition, that no assumption regarding the geometry
of the lattice was used, and thus this derivation applies to square lattices, hexagonal
lattices, etc.

From now on we restrict the study to the case of asymmetric lattices with very deep
potential wells in one of the axis, say the y-direction, in such a way to yield an effective
1D dynamics!! (here along the x axis). At the same time the wave vectors are adjusted
so that the quasi-degeneracy of the orbital states is maintained'®. In other words, we
are considering the case where

"Here we focus on the effective 1D system, but generalizations of the procedure for computing the
couplings of the effective Hamiltonian for the 2D system is straightforward.

'?In the harmonic approximation this is achieved by imposing that V.k? = V,k2. For sinusoidal lattices
there is no simple relation which states the degeneracy condition, but this can be numerically checked
for various lattice configurations.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

strong coupling regime condition. Therefore, in terms of the lattice parameters, the
expression for the various couplings follow

2, t U?
XX __ Xty _ Xy
] - ny <1 4 U2 > ’ (5.13)
2t t U?
vy _ 2lxly Zxy
J U, <1 + 4 2 > , (5.14)
]tJCIQU;Vy [tyIQUIJC |tJCIQ |ty12
zZ __ _ —
J?% = 4 T 4 o U~ Uy’ (5.15)
2|t |2 2|, |2
) (5.16)

We adopt here the standard notation used for the XYZ Heisenberg model and define | =
—2tety/Uyy, A = —J%, h = —J?, and y = —4UZ,/U?, in terms of which the Hamiltonian
is then rewritten as

Hyyz = Z]
(i,j)

1+ 785 + (1 - 9588 + =557

D>

+h) &7 (5.17)
i

Notice that the tunneling in the p band satisfies t,f, < 0 and therefore J > 0. In addition,
since |y| < 1 the interactions between the x-component and the y-component of neigh-
boring spins always favor for anti-ferromagnetic order. This is an interesting property,
for bosonic particles always preserve the sign of the wave function under exchange
processes, and thus it is more natural for a bosonic system to display ferromagnetic
order. This is not the case here, however, and its only possible because of the specific
properties of the tunneling in the p band.

Another important feature of this spin model which follows solely due to the properties
of the p-orbital bosonic system, is the appearance of the anisotropy parameter ¢ which
breaks the rotational symmetry characteristic of the XXZ Heisenberg model'3. In fact,
this is a consequence of the terms describing transit of population between the different
orbital states, in HFD, which break the continuous U(1) symmetry of the Hamiltonian
to a set of Zp symmetries. Accordingly, the resulting XYZ spin model is also invariant
only to discrete Zy symmetries. This property is related to the 'parity’ of the states of
the many-body Hamiltonian, which divides the eigenstates into states with even or odd
number of atoms in the p, and py orbitals.

The importance of the orbital changing term in the dynamics of the effective spin model
can be further investigated in terms of the Jordan-Wigner transformation [51]

A . il afa
5 = elﬂZi:icfc’éi

(5.18)
&+ _ é;‘einzj};% é]éi’

13The same procedure applied to the usual (ground band) Bose-Hubbard Hamiltonian with one atom per
site yields spin chains with continuous symmetries (as is the case of the XXZ model), and which typically
favor for ferromagnetic order [49, 50].
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where the ¢; are fermionic operators satisfying {é,é,}z{éf é]}z 0 and {ci,c].T}z 6ij.
This yields the fermionic Hamiltonian
B/ = At A NP Al Laa
k! Zn (EnCns1 + Cn+1cn) + 7(Cncn+1 + ¢n+1Cn)
(5.19)

+4(ehen - Delyely — 5) + Behen - 5)

that contains a pairing term proportional to . The presence of a pairing term typically
opens a gap in the energy spectrum, and therefore we expect the spectrum to be gapped
whenever 7 +# 0. In addition, we notice furthermore that the limit of A — 0 is a
realization of the Kitaev chain [52].

5.1.1. Properties of the ground state: the phase diagram of the XYZ model

We illustrate the rich physics of the XYZ model in external field by discussing the phase
diagram for the 1D'* open chain'®. One dimensional quantum systems are particularly
interesting, for quantum effects are specially pronounced in low dimensions.

One dimensional quantum systems require a description which accounts for the
collective rather than individual behavior of their constituent parts [53]. To see
this more explicitly, let us consider, for example, a system of spinless bosons with
repulsive interactions in one dimension. Such a system is described in general terms
by a symmetric wave-function. But in the limit of infinitely repulsive interactions -
the Tonks-Girardeau limit, it is reasonable to assume that the amplitude of this
wave-function should decrease in the neighborhood of any of the bosonic particles,
and vanish completely at the exact values for which the probability of finding any of
these particles is maximum, as shown in Fig. 5.1.

Now the symmetric wave-function shown in Fig. 5.1 can be used to construct an al-
ternative anti-symmetric wave-function via reflection to the negative axis, with nodes
that reproduce the nodes of the symmetric case. At the level of the wave-functions,
the description provided by the symmetric and anti-symmetric wave-functions will be
very different. In fact, collective anti-symmetric wave-functions describe systems of
non-interacting fermions, not of bosons. But the construction of this anti-symmetric
wave-function can be considered in such a way that its absolute value reproduce
the absolute value of the symmetric wave-function. This means, therefore, that the
properties of the bosonic system at the level of densities, as e.g. density-density cor-
relation functions, can be completely inferred from the properties of a system of
non-interacting fermions. This process is usually referred to as the fermionization
of bosons [54], and is used here to illustrate how interesting and maybe counter
intuitive nature can become when collective behavior is allowed to play a role in low
dimensional quantum systems.

1“We remark that little is known about the XVZ Heisenberg model in external field in higher dimensions.
In addition to not having analytical solutions, numerical treatment of this problem is very limited due
to the exponential growth of the Hilbert space and becomes intractable already for a small number of
spins in 2D (less than 8x8 sites).

15That is, with open boundary conditions.
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Figure 5.1.: One dimensional system of infinitely repulsive bosonic particles. The position of the
bosons are the black dots in the x-axis and the red and blue wave functions are
the corresponding symmetric and anti-symmetric descriptions. This figure is taken
from Ref. [54].

Now in 1D the ground state of the system described by Eq. (5.17) experiences four dif-
ferent phases as the parameters of this Hamiltonian are varied. A schematic phase
diagram is illustrated in Fig. 5.2. At zero field, the XVZ Heisenberg model is integrable!®
with known analytical expressions for the eigenvalues and the eigenvectors [55]. At
large positive values of A/J the system has anti-ferromagnetic order in the z-direction.
For small values of A/], the system displays Neel ordering in the y-direction and is in
the so called spin-flop phase [66]. The h = 0 line for large negative values of A/J is
characterized by a ferromagnetic phase in the z-direction, and for all the cases, the
limit of large external field displays a magnetized phase, where the spins align along
the orientation of the field in the z-direction. These three phases also characterize the
phase diagram of the XXZ model in a longitudinal field [44]. For non-zero anisotropy
v, however, the system has an additional phase in between the anti-ferromagnetic and
spin-flop phases that is called as the floating phase [56]. This is a gapless phase charac-
terized by algebraic decay of the correlations'”. Notice, in particular, that this property
is unexpected from the point of view of the fermionic chain, where as stated before for
values of 7 # 0 the Hamiltonian contains a pairing term, which typically opens a gap in
the energy spectrum.

All these phases are separated by different types of phase transitions. The transition
from the anti-ferromagnetic to the floating phase is of the commensurate to incommen-
surate (C-IC) type, whereas the transition from the floating phase to the spin flop phase
is a Berezinski-Kosterlitz-Thouless (BKT) transition. For A < —(1 + |y|) there is a first
order phase transition at h = 0 between the two polarized phases (all spins up or all
spins down) and finally, between the spin flop and the polarized phases there is an Ising
transition.

In what follows we give a brief description of the properties of the different phases
and the different types of phase transitions. Here we illustrate these concepts in the
context of interacting spins, where we consider an Ising-like Hamiltonian given by
HIsing = —] Z<”> SiSj + th Si.

e Néel order: Neel order is the term generally used to describe a state with

161t was shown by Sutherland, in 1970 [46, 55], that the transfer matrix of any zero-field eight-vertex model
commutes with the Hamiltonian of the XYZ Heisenberg model. In addition, it was shown by Baxter
in 1971 and 1972 that for any values of the couplings in the Hamiltonian of the XYZ model, Eq. (5.17),
this operator is effectively a logarithmic derivative of an eight-vertex transfer matrix and therefore the
minimum eigenvalue of Eq. (5.17) can be obtained [46, 55]. Baxter study properties of the ground state
of the XYZ model by generalizing the Bethe ansatz [55], and in 1973 Baxter’s results were generalized
by other authors and used for computing the energy of the excitations of the XYZ model.

7In terms of bosonization [53, 57] and renormalization group arguments, the floating phase is characterized
by irrelevant Umklapp terms and accordingly described by the Luttinger Liquid theory. Upon entering
the XV phase these terms are no longer irrelevant and the phase becomes gapped [56].
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Figure 5.2.: Schematic phase diagram of the XVYZ chain. AFM denotes the anti-ferromagnetic
phase, FP the floating phase, SF the spin flop phase and PP the polarized phase.
The properties of these phases and of the different types of phase transitions are
discussed in the text.

broken symmetry and for which
(Si) #0

for all the spins [58]. And although this is most commonly used to refer to the
bipartite lattice, i.e., the Neel anti-ferromagnet, where the direction neighboring
spins alternate in opposite directions [58], there are more complex patterns that
also correspond to a Néel state [58].

e Anti-ferromagnetic phase (J < 0): as stated above, the anti-ferromagnetic phase
is characterized by Neéel order with alternating neighboring spins. States of this
type are characterized by staggered magnetization [58], and therefore the net
magnetization is vanishing:

M =Y (5)=0.

e Floating phase (J < 0): this is a gapless phase without long range order, and
for which the correlations decay algebraically [59].

e Spin-flop phase (J < 0): this corresponds to a gapped phase with Neel order in
the x and y components of the spin. It is again a gapped phase, with exponential
decay of the correlations.

e Highly magnetized state or polarized phase (J < 0): for sufficiently large h, the
phase diagram of spin models subjected to external fields will always display
a highly magnetized state, where the spins align in the direction of the field.
This corresponds to a ‘forced’ order, in the sense that there is no symmetry
breaking involved in the ordering processes and the spins are uncorrelated.

e Ferromagnetic phase (J > 0): for the case of positive ] both the spins and their
neighbors align in the same direction, which therefore builds a highly magne-
tized state. Here, however, as opposed to the polarized phase, the ordering is
accompanied of symmetry breaking, with an order parameter similar to the
order parameter of the anti-ferromagnetic phase [58].

We now briefly discuss the properties of the different types of phase transitions that
appear in the phase diagram of the infinite system, Fig. 5.2:

e Ising transition: the transition between the polarized and the spin flop phases
belongs to the universality class of the 2D Ising model. It is classified as a
continuous or second order phase transition, and therefore the discontinuities
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appear at the level of the order parameter (or second derivatives of the en-
ergy). In the Ising transition the critical exponent related to the divergence
of the correlation length goes as £  (distance from the transition)™' as one
approaches the critical point, and in addition, the dynamical critical exponent'3
(z) is also equal to one [61, 62].

e Berezinski-Kosterlitz-Thouless (BKT) transition: BKT transitions also belong to
the class of continuous phase transitions. They are rather special, however, for
the derivatives of the energy don’t present discontinuities (they are sometimes
referred to as infinite order phase transitions), and there is no local order
parameter [63]. In fact, BKT transitions do not involve symmetry breaking and
are not described by the Landau theory.

e Commensurate to incommensurate (C-IC) transition: the C-IC transition hap-
pens due to the interplay of competing length scales in the system. In a periodic
system, the collective excitations can develop a periodic structure that has dif-
ferent period from the 'natural period of the system’. These structures could
comprise kinks, walls or solitons!'® [64].

e First order phase transition: in thermodynamic systems, first order phase tran-
sitions are defined as transitions that involve coexistence of phases, latent heat,
and the discontinuities appear in the first derivative of the free energy [61].
In the same way, in quantum phase transitions?’, the discontinuities appear in
the first derivative of the ground state energy as one of the parameters of the
Hamiltonian is varied.

Since any implementation of the Heisenberg model will contain effects of finite size due
to the harmonic confinement inevitably required for experimental realizations with cold
atoms, it is important to reproduce these studies in systems with finite sizes. In the
presence of confinement, in addition, it might also be the case that the inhomogeneities
in the density affect the properties of the system. Here, however, as long as the trap is
smooth enough such that the system satisfies the requisites of the local density approx-
imation (as discussed in Sec. 4.1), effects stemming from the confinement renormalize
the couplings such that they become spatially dependent. In the same way, as long as
the sizes of the orbitals are very small compared to the length scale imposed by the
trap, this spatial dependency is not relevant for the physics, and can therefore be ne-
glected [27]. For this reason we restrict our study of finite size effects to the case of
the open chain with constant coupling coefficients. We perform exact diagonalization
for the system with 18 spins and focus on the behavior of the total magnetization of the
ground state

M = Z(Sf) (5.20)

for different values of h/J] and A. 7 is assumed to be fixed and the result is presented
in Fig. 5.3: While both the anti-ferromagnetic (AFM) and the polarized (PP) phases
are clearly visible, numerical treatment of this system exposes that in between these
phases, the total magnetization develops a step-like structure. We attribute these steps
in M to a devil’s staircase structure of spin density waves (SDW) [59]. In fact, the

18The dynamical critical exponent is the exponent defined to characterize the behavior of the correlation
time near the critical point. In the same way as it works for the correlation length, the correlation time
also diverges in the vicinity of the phase transition. The divergence of the correlation time implies that
the fluctuations on any observable become incredibly slow, a phenomenon that is known as the critical
slowing down [60, 61].

19A very good review on the subject is given in Ref. [59].

20Here there is no concept of temperature, i.e., quantum phase transitions happen at T = 0 and due to
competition between non-commuting terms in the Hamiltonian of the system [65].
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

change in the total magnetization appears as a consequence of the modulation of the
anti-ferromagnetic pattern (of the anti-ferromagnetic phase), which happens as one runs
through larger and larger values of h. his also mean, for the finite system, that it is
only possible to give a precise quantitative estimate for the Ising transition between the
polarized and the spin flop phase?!. While it is not clear whether the C-IC transition
can be captured by this procedure, the BKT transition is certainly overshadowed by the
sharp transitions between the different spin density waves. In the thermodynamic limit
this staircase becomes complete and one then recovers the phase diagram displayed
in Fig. 5.2%2. These transitions between the different SDW are more pronounced for
moderate system sizes and we estimate approximately 15 different SDW between the
anti-ferromagnetic and polarized phases of a system with 50 spins?°.

(b) 6
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* 66
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5 -11.3
-136
| ,‘ o
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Figure 5.3.: Finite size ‘phase diagram’ obtained from exact diagonalization of a system with 18
spins and with the anisotropy parameter y = 0.2. It displays the total magnetization
M (as defined in the text) which is characterized by an incomplete devil’s staircase
of SDW between the AFM and the PP phases.

5.2. Measurements, manipulations & experimental probing

The entire derivation of the spin chain for effectively describing the Mott; phase of
p-orbital bosons was based on the fact that the spins are encoded in spatial degrees of
freedom rather than in internal atomic states. Experimental manipulation/detection in
this system requires therefore the ability of controlling the spatial states of the atoms
at single sites. This can be done by combining single-site addressing [67] with tech-
niques used in trapped ion physics. And by exploiting the symmetries of the p,- and
the py-orbital states, stimulated Raman transitions can drive both sideband and carrier
transitions for the chosen orbitals in the Lamb-Dicke regime.

21 At least by using the total magnetization as the order parameter.

2In fact, using similar heuristics, i.e., going up and down the steps of a complete devil's staircase, Chuck
Norris counted to infinity - twice [66].

ZWe consider here that the chain with 50 spins is supposed to provide a very good experimental picture
of the system that we would like to realize.
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Figure 5.4.: Schematic representation of the coupling between the different orbital states at a
single site. While the internal atomic electronic states are coupled by the carrier
transition, the different orbital degrees of freedom are coupled by the sideband
transitions. As depicted in the figure, the red and blue sideband transitions lower
and raise, respectively, the external vibrational state with a single phonon.

Let us consider the two internal atomic electronic states for 8Rb atoms F = 1 and F = 2
Raman coupled with two lasers with amplitudes €2; and €2 and wave vectors ky and Kko.
The matrix element describing this transition is given by

4829

5<F=%€®*mw=1% (5.21)

where 6 is the detuning of the transitions relative to the ancilla electronic state. In the
usual case the spatial dependence of the lasers will induce couplings between vibrational
states of the atom, and this, here, corresponds to the different bands. By making the
effective Rabi frequency very large, 2 = Q1Q5/6, the duration of a 51/2-pulse, for ex-
ample, can be made very short in comparison with any other time scale in the system
and therefore it is reasonable to consider that the dynamics in the system is frozen dur-
ing the applied pulse?*. Furthermore, accidental degeneracies between other undesired
states can be removed by driving resonant two-photon transitions.

In the region of parameters that is interesting for the physics considered here, i.e.,
deep in the Mott insulator phase, single sites can be approximated with two-dimensional
harmonic oscillators with frequencies wy, = 1/2Vqk%2/m and the Lamb-Dicke param-
eters [68, 69] become 1, = koVh/2mw,. Moreover, in the Lamb-Dicke regime, when
Ne < 1, multi-photon transitions can additionally be neglected, and as illustrated in
Fig. 5.4, this leaves three possible transitions for the one-dimensional case:

(I) Carrier transitions - with no change in the vibrational state;
(IT) Red sideband transitions - which lower the vibrational state with one quantum;

(ITI) Blue sideband transitions - which raise the vibrational state with one quantum.

These different transitions are not degenerate, and therefore it is possible to select single
transitions by carefully choosing the frequencies of the lasers. And in these terms, or

**Indeed, this same assumption applies for experiments with single-site addressing in optical lattices [67].
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

with the use if these techniques, it is also possible to singly adress the different orbitals.
The p.-orbital state, for example, can be addressed by considering ki — kg = ky such
that there is no component in the y-direction.

This also provideg a means for fully controlling the system, for this is achieved if every
unitary ﬁlﬁ(d)) = %%, where B = {x,y,z} and ¢ is an effective rotation, can be realized.
To see that this is the case we discuss implementation of R,(¢) and R.(¢). We start
with the simplest case, of rotations on the z-component of the spin by first noticing that
5z = §+5- —1. Here it is enough to realize the operation 5*5~, which consists of a phase
shift of one of the orbitals. This is most easily done by driving the carrier transition
off-resonantly for one of the two-orbitals, and since the driving is largely detuned, this
corresponds to Stark shifting one of the orbitals.

The R, () operation can be implemented by simultaneously driving off-resonantly the
red sidebands of the two orbitals. Due to the large detuning, the s-band will never be-
come populated but the transition between the two orbitals can be made resonant. More
explicitly, this operation involves the three states that we denote here as {|x,0,0),]0,y,0)
and |0,0,s)}, where the last entry of the ket refers to the state in the s-band. The
p-orbitals are coupled to the s-orbital in a V-configuration, that in the rotating wave
approximation is described by [70]

0 0
Hy=| 0 0 9 |, (5.22)
Q Q0 6

where 241 and Q2o are considered real and spatially dependent. For & » 1, Q29 the
Hamiltonian that generates a rotation of the x-component of the spin, R (¢),

A 0 Q
}ﬁ={9 0

}:Q&, (5.23)
is then obtained after adiabatic elimination of the state |0, 0, s). Notice, however, that if the
Raman transition between the two orbitals is not resonant, then this process will perform
a combination of rotations in the x and z components of the spin. Rotations in the y

component of the spin, in addition, can be performed in two ways, either by adjusting
the phases of the lasers, or either by noticing that Ry (¢) = R, (7/4) Ry (¢)R,(—7/4).

This method allows thus for any manipulation of single spins at a given site. To measure
the state of the spin in a given direction one then combines the rotations with single
site resolved fluorescence (which acts as measuring Siz) [71]. More precisely, since
the drive laser can couple to the two orbitals individually, one of the orbitals will be
transparent to the laser while the other one will show fluorescence. In other words,
one then measures Slz on a single site. The other components of the spin can also be
measured in this way, but after the correct rotation to the spin state has been previously
implemented. Furthermore, with the help of coincident detection, it is possible to extract
correlators of the type <Sia§jﬁ>, a,B={x,y}[72]

52
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5.2.1. External parameter control

The spin mapping carried out in Sec. 5.1 provides a route for obtaining the Hamilto-
nian that effectively describes the physics of Mott; phase of p-orbital bosons. In that
procedure, all the couplings in the spin picture are shown to depend initially on the
parameters of the bosonic system, and therefore also on the configuration of the optical
potential.

In order to give a qualitative estimate for the couplings in the spin model we make use of
the analytical expressions derived in Sec. 2.3.1, where the parameters of the Hamiltonian
for p-orbital bosons were considered in the harmonic limit. Introducing the widths of
0, of the orbital wave functions for the spatial directions a ={x, y, z}, the expressions of
the couplings in this approximation are given by (see appendix A for the derivation)

l&x=mw=3myzq£;&, (5.24)
where ug is used here to denote an effective strength of the interactions, proportional
to the s-wave scattering length. According to Eq. (5.15), this reveals that the interactions
in the z component of the spin favor primarily for ferromagnetic order, i.e., A < 0. In
fact, using that |t [> > |t,]%,

U 1
A=~ |4 4 —~ , 5.25
| x[ < er Uyy _ U%y ny> ( )
which in the harmonic approximation becomes
A= o)t P2%%% . (5.26)
2110

Similar computation yields 7 = 1/2, which gives anti-ferromagnetic couplings for the
spin x and y components. We notice in addition that even though computation of the
couplings with the lattice Wannier functions yield different values for the couplings, it
does not change the qualitative properties of the physics obtained via the harmonic
approximation. In particular, we have numerically checked that A is always negative,
even outside of this limit.

The fully anti-ferromagnetic regime can be reached, however, with application of the
same ideas discussed in the previous section. This is again based on the techniques
developed for trapped ion physics, and more explicitly, with driving the carrier transition
of either of the two orbitals dispersively, with a spatially dependent field?. If the shape
of the drive is chosen in such a way that the resulting Stark shift is weaker in the center
of the sites, then this procedure will narrow the orbital in one of the directions and
we say that the orbital is squeezed. Let us assume that the squeezing is implemented
here in the y-direction. Then the only requirement is that the spatial profile of the field
driving the carrier transition changes in the length scale of the lattice spacing in this
direction. The tunneling rates f, and t;, will not be affected by the squeezing but with
this procedure it is possible to change both Uy, and Uy, and therefore it is also possible

This is nothing but a potential that reshapes the lattice sites in different ways for the different orbitals,
and that can be implemented as a change in the o, widths of the different Wannier functions (w, (#) and
wy (7)) of the orbitals, while the widths o, are kept unaltered.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

to tune the coupling constants. To be more specific, let us assume that the ratio o of
the harmonic length scales of the p, and the py orbitals is tuned (in the y-direction). A
straightforward calculation using harmonic oscillator functions yields

213/2
a = Usx = 2*3/23& (5.27)
Ury
and that
B = Uy /Uy = 27323(1 + 62)3/2, (5.28)
The dependence with o on the coupling constants is given as
4, B L« ety + tyt!
Al =2ty = Ot t = 5.29
T=268 g 1) =P fap 1) 2 029
and
e (5:50)
(@B —1) '
The inset in Fig. 5.5 displays the three coupling parameters as a function of o for
|te/ty]| = 0.1. We see that the relative size and even the sign of the couplings can

be tuned by varying o. In particular, while interactions in Sy always lead to anti-
ferromagnetic couplings, the interactions in 5, and S, can lead to both ferromagnetic
or anti-ferromagnetic couplings. In the main part of Fig. 5.5 we sketch the different
possible models as a function of t,/t, and o. This clearly demonstrates that this method
allows for realization of a whole class of XYZ spin chains.
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02 04 06 08 1 12 14 16 18
(¢}

Figure 5.5.: XYZ Heisenberg chains with different types of couplings that can be achieved by
varying the relative orbital squeezing and the relative tunneling strength. In (I)
the system has anti-ferromagnetic couplings in all the components of the spin with
A > JA +]y])- In (II) the system has both ferromagnetic or anti-ferromagnetic
couplings in the z component of the spin and anti-ferromagnetic in the y component
with J (1 + |y|) > A. Finally, (III) has the same characteristics of region (II) but now
|A] > J(1 + |7]). In the inset we show one example of the spin parameters where
ty/te = —0.1,and Jox = (1 + 7)., Jyy = (1 —7) and J,, = A/].

5.2.2. Experimental realization

In the experiment described in Ref. [11], the lifetimes reported for bosons occupying
the states in the p band of an effective 1D optical lattice were surprisingly long. With an
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

average number of approximately two atoms per site, the atoms could tunnel hundreds
of times before decaying to the s band. Here the main decay mechanism stem from
atom-atom collisions [7, 11], and therefore an increase in the lifetime is expected for the
case where there is only one atom per site®0

The typical values for the tunneling times can be estimated from the overlap integrals
of neighboring Wannier functions. Considering 3’Rb atoms, for example, and Ajq¢ =
843 nm to be the wavelength (in the y-direction) which sets the recoil energy Eg, we
obtain J/Er ~ 0.01 and the characteristic tunneling time T = A/] ~ 5ms for the system
with V., = 30ER, V, = S50ER and V, = 60EgR. This corresponds to a few dozens of
times smaller than the expected lifetimes [11], which should allow for experimental
explorations of our results. In addition, it is possible to use the external driving discusses
in section 5.2.1 to increase the lifetimes even further.

A last remark is in time which regards the temperatures required for observation of the
spin correlations. The physics discussed here will emerge for temperatures of the order
of kgT < J ~ t2/U [49]. Although it might be very difficult to experimentally achieve
such temperatures, this reflects the frontier of experimental realizations and it is being
currently attacked by several experimental groups.

5.3. Effective model including imperfections due to s-orbital atoms

Difficulties for experimental implementations that are related to the low temperatures
required for accessing the physics explored here were already pointed out in the last
section. The other main difficulty related to experiments regards the existence of im-
perfections in the system. These imperfections consist of residual s-orbital atoms, that
result from the process of loading atoms in the p-band. Although the possibility of pro-
moting atoms from the s to the d band with 99% fidelity was recently reported [73], the
fidelity for promoting atoms from the s to the p band is currently at 80%. This means
that 20% of the atoms will still remain in the orbital states of the s band and that it is
necessary to investigate the extent of which the presence of (s-orbital atom) impurities
are capable of changing the physics of the clean system.

We notice first that due to the large amplitudes of the optical potential (required by the
Mott insulator phase), the atoms occupying orbital states of the s band can be declared
immobile. As a consequence, random sites will contain localized impurities. The next
factor to consider is related to the energy scales. Double occupation of states with one
s- and one p-orbital atom has a larger energy cost than the double occupation of states
with two atoms in the p-orbital states. In other words, U,s > Uqg, where o, = {x,y}
and

Ups = U [ delwf(e)Pfwie) (551)

is the interaction energy between an s- and a p-orbital atom?’. Accordingly, repeated
experimental realizations will prepare the system in different random configurations as

%In fact, Ref. [11] estimates an increase of up to a factor of 5 in the lifetimes for the situation with unit
filling of the lattice sites.
?"Notice here that wi(r) is used to denote the s orbital at the site i.
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illustrated in Fig. 5.6. This means that an additional step must be carried out, in principle,
in order to integrate out degrees of freedom corresponding to atoms in the s-orbitals.
This is possible by averaging over all the different configurations which contain a fixed
ratio of s- to p-orbital atoms.

We now repeat the reasoning of Sec. 5.1, to include in the effective Hamiltonian contri-
butions stemming from the presence of impurities in the model. Let us consider two
neighboring sites, i and j, one with an s and the other with a p orbital atom. After the
steps of the perturbative calculation are carried out (in second order in t/U), we are left
with only one additional term,

ta ,

da,ids,j = —U—na,i, (532)
ps

where again a ={x,y} and d;; is the operator that annihilates one atom in the s-orbital
state at the site j, and where in the last equality we used that As; = 1. Since t. # fty,
the effect resulting from the presence of an s atom in the system appears as a local
fluctuation in the external field. We therefore obtain an XYZ chain with disorder in the
field, i.e., .

o = =Y (1775287 + Fe8787 + P 8Y8Y) = Y18 (5.33)

(L) i

If the system contains a small number of atoms on the states of the lowest band, this
effect should not be too drastic and we expect the disorder to be irrelevant® [74]. As the
fraction of impurity atoms increases and the disorder in the external field covers a larger
number of sites, we expect the disorder to become relevant and the qualitative picture
to change. In fact, one possible scenario is the appearance of a localized phase [74]. We
remark here that the physics of disordered one dimensional quantum systems contain
a plethora of interesting phenomena, as e.g., Anderson phases®® [54, 61, 62], Mott-glass
phases® [54], and many of its questions are in the frontier of the current research®'.
The analysis of the random field XYZ chain discussed here, however, is out of the scope
of the present thesis and is left to the future.

%In the language of real space renormalization group.

2The Anderson transition is a transition between a localized and a metallic state, that appears in disordered
systems. Nowadays, after many advances on the physics of disordered systems that happened in the 70’s
and 80’s, the term Anderson transition is used in a broader sense [75] and in addition to the transition
from metal-insulator, it also includes critical points with transitions that separate localized phases [75].

%0The Mott-Glass phase is an incompressible gapless insulator phase that is conjectured to appear in the
phase diagram of random 1D superfluid to insulator phase transition [62].

% The phase diagram of the system known by the name of random bosons, for example, is still a matter
of ’lively debates’ in the community [62].
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Figure 5.6.: Three random experimental realizations of the insulating state are schematically
depicted. The yellow balls are used to represent s-orbital atoms, while p-orbital
atoms are represented by the blue balls.

5.4. A quick remark regarding alternative systems for implementing
quantum simulators

Alternative scenarios for implementing simulators of quantum systems rely on experi-
mental realizations with trapped ions and polar molecules. Systems of trapped ions have
already been used to implement both a small [76, 77, 78, 79] and a large [80] number
of spins, but one easily looses control in these setups as the system size increases. In
addition, due to trapping potentials the experiments are currently limited to approxi-
mately 25 spins, and due to the inherent long range character of the interactions, the
construction of paradigmatic spin models becomes a non-trivial task with systems of
trapped ions.

Similar limitations appear when using polar molecules, where the effective spin interac-
tions [81, 82] are obtained from the intrinsic dipole-dipole interactions. Here again the
character of the dipolar interaction yields effective spin models that are typically long
range and in addition, the couplings feature spatial anisotropies [81]. While this spatial
anisotropy in the couplings might be in favor of anisotropic models as is the case of the
XYZ chain, restricting the range of the interactions might still be tricky for this type of
systems.

In summary, even though the temperatures required for simulating the XYZ model
with bosons in the p band are very low and in the frontier of the current research,

these alternative proposals have different drawbacks and it is not yet clear whether they
provide an easier route for experimental implementation of this system.

5.5. Remarks on the effective Hamiltonian of the 3-orbital system

In the previous sections we discussed how to use p orbitals to explore the physics of
paradigmatic spin 1/2 Hamiltonians. The next question which arises, maybe even natu-
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rally, regards the effective Hamiltonian that is obtained from the three orbital system.
More explicitly, what is the effective 'spin model’ that describes the Mott; phase of a 1D
system with three orbital states?

While this is still in the category of ‘'work in progress’, we present some preliminary
discussions regarding the derivation of the effective spin Hamiltonian for a system of
(polarized) fermionic atoms in the p band. We restrict ourselves to the fermionic case
for the moment, for this considerably simplifies the interaction part of the Hamiltonian
(in Eq. (5.1)). In fact, polarized fermions in the p band are described by

Ay = -y 24l 40 + Y Uspiiafip + Y EPfiq, (5.34)

ij,a i,a#f i,a

which in addition to the tunneling and on-site energy terms contains only density-density
interactions between the different orbital states. Notice here that 4;, and difa are oper-
ators that destroy and create, respectively, a fermionic atom in the site i, and that they
satisfy the anti-commutation relations {dia,dza}= 1 and {a@;,,Qia} = {d[a,dza}= 0.

We now apply the same reasoning that was used in Sec. 5.1, and obtain the effective
Hamiltonian from second order perturbation theory in t/U. For the three orbital system,
the basis of states in the subspaces $(p and ¥(q is taken as

Fp — {1X, X),1X, V), X, Z), |V, X), |V, V), |V, Z),1Z.X), |Z, V), |Z, Z)} (5.35)

and
o — {

0,2X),

0,XY),

0,XZ),

0,2V),

0,YZ),

0,22)1, (5.36)

and since the matrix elements which account for transitions of the type («, B[FI&HB, a)
will be non-vanishing even for the fermionic case®?, the effective Hamiltonian will con-
tain onsite terms that convert any atom in the py-orbital state into an atom in the pg-
orbital state for any a,B. In order to account for all these dynamical processes we
are required to choose a representation for the generators of the SU(3) group®. We
therefore introduce the Gell-Mann matrices [33]

010 0 —i 0 1 0 0
m=[100]), =i 0 0], =0 -1 0],
000 00 0 0 0 0

00 1 00 —i

m=l000], s=[00 0 |, (5.37)

100 i 0 0
000 00 0 10 0
do=|001 |, =00 -], 2g=2|01 0
010 0i 0 00 -2

%2Notice that it is the density-density interaction term in Eq. (5.35) that allow for such processes to happen.

%Maybe an intuitive way of understanding why this is not a spin-1 case, is by noticing that any of the
orbital states can be directly converted into each other, i.e., p, = py = p, = p«. In order for the system
to mimic the spin-1 case the conversion between the orbital states should obey a rule as p, = py, = p,,
for example, where an atom occupying a p.-orbital state can only be made to occupy a p,-orbital state
by being in a py-orbital state first.
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They are traceless Hermitian matrices that satisfy the commutation relations [33]
(A, Aj] = 2if TR, (5.38)
with i,j,k = 1,..8 and where the % are completely anti-symmetric structure constants
given by [33]
1 V3
123 147 165 246 257 345 376 458 678
= 1’ = — = = = = 7’ — = — . 5.39
f FI4T = 100 = 280 = P = S = f0 2 O 8 - T = (5:39)
In terms of these objects, the correspondence between the SU(3)-spin operators and the
operators in the fermionic picture follows as

i At A AT A N A AT A
Ay = QpQiy + Qi Qix, Ay = 10;,Gix — 1G4, Qi
A =al ai, +al a, A =ial ain —ial a;
4 = izQix, A5 = 1A, Aix ixdiz (5.40)
t o4 AT A

>

N~
Il
=
S

i _ 1 ~x 1Ay 2AZ
)‘8—\[’1"'\[1 i

In analogy with the routine executed previously for analysis of the spin-1/2 case, we also
impose here the constraint of a unit filling of the lattice sites: A¥ + Ay + A7 = 1. We
therefore obtain

ax 1 190 4 V3yi
ny = 3+3M+ %A
AV _ 1140, V34
ni = 3 = g)\'s + ?)\’8 (541>
A = 5
and also rewrite the following expressions:
AT oA MM
AixAiy = =3
AT A M +iAL
al.a;, = 455 (5.42)
AT oA MM
Aiydiz = —5 -

Now after conducting the steps of the perturbative calculation, the expression for the
effective Hamiltonian describing the Mott; phase of fermions in the three p-orbital
system follows as

H =% (€+€) 90 () + afaf) + (& + ) 95 (AfA7 + AZAT)

2, 42 Y A LAY
+ (tZ+t7) I3 (ni A7 + nizn].>

+ 2t ty 94 G dwcafxa,y + 2t ty I54; dlxaT LQjz + 26,1, T 4; alyajydjz
+ 2t ty I74; dlyaT Qjx + 21ty Ig4; dlzaTa]x + 2ty t, Toa; dlzajza,y,

(5.43)
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where the 9, n = 1...9 are used to denote the inverse of the intensity of the exchange
interaction. In fact, due to the absence of orbital-changing terms in the Hamiltonian
of fermions in the p band, the interaction Hamiltonian is diagonal in the basis of the
intermediate states of the perturbative calculation, and therefore 9 = ﬁ, where a, B =

{x,y,z}. While explicit computation of each term of the effective Hamiltonian is shown
in the appendix, we quote here the final result,

_ V3 (E2412) 32412 B U2HED)N 4
H = §:z<77 U, ~9 U, 9 0, >Aé

(2+2) () 44
+ X < 10ty 3 el %

(+8) i 0j o ((E+E) () (2+42) 5i4)
+ Z(i,j)— )”)L <12ny — %0, et ) 88

+ Loy (8 f?;f) B (s + 40

+ Y s (T T + TO T ) + g5 (VA + Vi V) + g (U U + U U
(5 44)
where T* = A +idy, V¥ = A, = ids and U* = Ag + iA7 are the SU(3) ladder operators.
While analysis of this system is left for the future, we conclude this section by noticing
that cold atoms in the p band offer interesting prospects to unravel the physics of spin
chains beyond spin-1/2.
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B. Computation of the effective SU(3)-spin chain

Hamiltonian

The following steps show a term-by-term computation of the Hamiltonian shown in
Eq. (5.44) with explicit use of Egs. (5.41) and (5.42). This is added here just for 'reference
purposes’, in what is related to the continuation of this work.

iy = (b e ) (4 -2+ )
= L —A)) + Y30L + AY) - AL + B - AlAL) + LALA
afay = (§- 35+ ) (3 + 105+ )
= 0L - ) + B+ L) — LA — YB(UAL - ALAL) + HALAL
aray + AT = P04+ AL) - SAAL + LAd)
arnz = (§+ 35+ 0) (4 - 44)
= VAL AL 4+ AL — Bl — IAlAL
wny = (4P (3 1 )
- Dk 12—+ il
ATAZ + AZAT = —YS(AL + L) + 104 + A)) — YA + ARAL) — IAlA)
R O DI
= N - AL+ A YA - A
apy = (§-4) (5 - 34+ 54)
- Pl - Bl - il
AYAZ + AZ7nY = 104+ AL) — YSOL + AL + B + AlAL) — SAlAL
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B. Computation of the effective SU(3)-spin chain Hamiltonian

QlyQical iy = FOIA] + IALA — A3AL) + AbAD)
alaiala, = LW, + 1AL - A + Al
alawala, = LG — iGN - A428) + 2LA))
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6. Conclusions

In this thesis we presented different aspects of the physics of p-orbital bosons that range
to properties of both the mean-field and more strongly correlated levels. The main part
of this text covers the material of Papers I and II that are attached after the bibliographic
references.

We started by introducing the band structure and the orbital states in Chapter 2, where
we also constructed the Hamiltonian for describing the many-body system. This frame-
work was used in Chapter 3 as the basis for the mean-field analysis. There we have
shown that the term describing orbital changing collisions in the Hamiltonian of p-
orbital bosons leads to the formation of structures in the ground-state of the system:
in the 2D system, for example, this corresponds to the staggered-vortex solution. We
continued with Chapter 4, where we studied the physics of p-orbital bosons in the pres-
ence of an external confining trap. This part presents the study developed in Paper 1.
In addition to characterizing the ground state propeties and, in particular, the fate of the
staggered-vortex solution due to the presence of the trap, we also studied finite temper-
ature physics of the ideal gas and properties of the system in anisotropic lattices.

In Chapter 5 we presented the content of Paper II, where we studied properties of the
strongly correlated regime of p-orbital bosons. More explicitly, we have shown that for
the two-orbital case, the dynamics of the Mott phase with a unit filling of the lattice sites
can be effectively described by the spin-1/2 anisotropic Heisenberg (the XYZ) model in
external field. We studied the phase diagram in the thermodynamic limit and also finite
size effects relevant to experimental realizations. We have also proposed manipulation
and detection schemes that allow for experimental probing of the physics discussed. In
addition to what is covered in Paper II, in this chapter we also discussed extensions of the
spin model and directions for future research. As mentioned in Sec. 5.5, generalization
to the 3D lattice and the three orbital system of the study presented here offers an
interesting prospect for studying the physics of models beyond spin-1/2. Along these
lines, it is also interesting to engineer spin-1 chains, which in terms of the orbital states in
the p band, can be constructed by using the p,, the p, and the pxy1 orbitals of a 2D lattice.
Due to recent experimental advances in manipulating bosons in excited bands of optical
lattices, and in particular, in the d band [73], characterization of such systems are also of
experimental relevance. At the same time, there are still open questions for the spin-1/2
system that we intend to investigate in future work. These include a thorough study
of the system with impurities discussed in Sec. 5.3, studying the dynamics, propagation
of Lieb-Robinson bounds and characterization of the system when it is coupled to an
external bath.

!The p,y, orbital is the orbital state that is odd both in the x and the y directions.
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