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Abstract

In this thesis we explore the physics of bosonic atoms in the first excited band of anoptical lattice - the p band. As is discussed here, due to the additional orbital degree offreedom, the physics in the p band is qualitatively different from the physics of the wellcharacterized systems in the ground band. We first define the orbital states and dis-cuss properties at the single particle level, from where we construct the framework forstudying the many-body system. This serves as the basis for the mean-field analysis thatis carried out in the sequence. The main body of this work covers the studies developedin Papers I and II. In Paper I we discuss properties of confined p-orbital bosons, thatinclude condensation of the ideal gas of bosons in the p band, the ideal gas at finite tem-peratures and zero temperature studies of the interacting system for both the symmetricand asymmetric lattices. We continue with the studies of Paper II, in which p-orbitalbosons are considered in the strongly correlated regime. In particular, we show that theeffective Hamiltonian describing p-orbital bosons in the Mott phase with a unit fillingof the lattice sites can be mapped into the spin-1/2 quantum XYZ Heisenberg model inexternal field. Here the system is considered in the context of quantum simulators andwe complement the study by proposing detection and manipulation schemes for experi-mentally probing the physics discussed. Finally, we present some work in progress thatsuggests the possibility of using systems of bosons in the p band for experimentallyexploring the physics of spin chains beyond spin-1/2.
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1. Introduction

After the experimental realization of the optical lattices in the lab and the subsequent ob-servation in 2003 [1, 2] of the previously predicted Mott-insulator to superfluid transition,cold atom systems became a primary candidate for understanding many-body quantumphenomena [3, 4]. The degree of control and manipulation in these systems is so great,that nowadays it is possible to engineer lattices with all sorts of different configura-tions that allow for the study of many-body quantum physics in the strongly correlatedregime [3, 4]. Put in other words, cold atoms in optical lattices provide highly controllablelaboratories for testing models of solid state and condensed matter physics.
This is because similar to the behavior of electrons described by the celebrated Hub-
bard model [5], the many-body dynamics in the optical lattice is dominated by the twobasic ingredients consisting of hopping and atom-atom repulsive interactions [6]. Thisis usually described in most simple terms by the Bose-Hubbard Hamiltonian in thetight-binding limit,

ĤBH = −t∑
〈i,j〉

(â†i âj + â†j âi) + U2 ∑
i
n̂i(n̂i − 1), t, U > 0, (1.1)

where ∑〈i,j〉 runs over the nearest neighbors and âi and â†i are the bosonic operatorsthat annihilate and create an atom in a site-localized state in the i-th site. The first termdescribes nearest neighbors hopping, which happens with amplitude t , and the secondterm describes the onsite two-body interactions, characterized by a matrix element withmagnitude proportional to U . The reason why nothing is said about the band struc-ture – which results from the periodic structure superimposed on the system – is thetruncation scheme adopted in the expansion of the many-body Hamiltonian. In fact, themajority of studies consider a single-band description of such systems, in terms of abasis constructed with the use of site-localized states of the first band only. This is notthe case in this thesis. Instead, we would like to understand what happens, for example,if we also allow for the atoms to occupy states of higher bands of the optical lattice. Howwould this affect the properties of the Mott-insulator to superfluid transition? And whathappens if the atoms are restricted to occupy only these higher-bands?
These issues are already interesting as they involve generalization of the Bose-HubbardHamiltonian [7, 8, 9]; and even though they might seem, at a first glance, nothing morethan mere academic problems, recent studies and experimental work [10, 11] warrantanswering these and other questions related to many-body quantum phenomena in ex-cited bands of optical lattices. It has been argued, for example, that under the presenceof (strong) repulsive interactions, the atomic population can migrate from the groundto the excited bands [12], thereby affecting the properties of the ground-state expectedfor the system. The interaction-induced broadening of the onsite wave-functions wasalso observed experimentally via microwave spectroscopy [13]. Furthermore, through
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1. Introduction
the mapping of collapse-revival structures in the atomic density of non-equilibrium con-figurations, it was possible to verify signatures of higher bands physics [14, 15]. As aresult following this initial motivation, a large body of experimental research is nowa-days focusing directly on the physics of cold atoms in the first excited (the p) and higherbands.
The physics of bosons in the p band is qualitatively different from the physics of theusual Bose-Hubbard model (Eq. (1.1)) where the atoms are restricted to the lowest (the
s) band. The reason for this can be most easily understood from analyzing the squareand cubic lattices. In these cases, due to the lattice symmetry, the p band becomesdoubly (square lattice) and triply (cubic lattice) degenerate [7, 16]. This degeneracyintroduces the concept of orbitals that are associated to the site-localized states in thelattice, and that are characterized by a node in each of the spatial directions. Theseare called the p orbitals and are usually described in terms of the lattice Wannier
functions. The Wannier functions, in turn, are broader in the direction of the node, andsince their shapes determine the ease of tunneling between sites, this directly influencesthe dynamical properties of the system. Now, because the tunneling properties of p-orbital bosons considerably differ from the tunneling properties of bosons in the sband, various types of novel quantum phases [17, 18, 19, 20, 21] can appear. In fact,due to the anomalous dispersions, mean-field analysis of the system reveals that thecondensed state of bosons in the p band is characterized by macroscopic occupation ofnonzero momentum states [22].
The manner in which p-orbital atoms interact also differs significantly from interactionsin the s-band. Again, this is a consequence of the orbital degeneracy. For the caseof bosons, for example, in addition to the density-density interactions (as described byEq. (1.1)), the system also contains multi-species (different orbital states) density-densityinteractions and interactions that move the atoms between the different orbital states.This gives rise to novel phenomena which include the formation of structures in theorder parameter of the condensed phase [7, 16, 19].
The purpose of this thesis is to provide an introduction to the physics of cold atoms in thefirst excited bands of optical lattices, the p band, and to report a number of studies thatwe have performed on this subject in the past years. We focus on the case of separablelattices1 and mainly in the two-dimensional case. We start by defining and characterizingthe orbital states in Chapter 2, where we also discuss the construction of the many-bodyHamiltonian. In Chapter 3, properties of p-orbital bosons in isotropic square and cubiclattices are considered from the viewpoint of mean-field analysis. We then investigatehow inclusion of the harmonic trap affects the physics of the two dimensional casein Chapter 4. This chapter is based on the study of Paper I and presents details ofcalculations that were omitted in the original work.
Moving away from the mean-field territory, we present properties of the p-orbital bosonsin the strongly correlated regime in Chapter 5. The system is discussed here in thecontext of quantum simulators [23, 24] for studying critical properties of spin modelsrelevant for the study of quantum magnetism. This chapter is based in the study ofPaper II and also includes more details than what is presented in the original work.It also contains additional discussions on extensions of this work that are still work

1See definition in Sec. 2.1
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1. Introduction
in progress. Nevertheless it displays a different aspect of the physics of multi-orbitalHubbard systems that hints at an interesting direction for future research. We reservefinal remarks to the Conclusion section.
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2. p-orbital bosons: nice to meet you!

“To P or not to P? (bands!)”William Shakespeare1

In this chapter we characterize the system of p-orbital bosons. We start with a quicknote in Sec. 2.1 on the energy and length scales adopted here to define dimensionlessvariables, and follow with discussions on the general properties of single particle physicsin periodic potentials in Sec. 2.2. In Sec. 2.3.1 we define the orbital states and discuss theirproperties. The many-body Hamiltonian for p-orbital bosons is derived in Sec. 2.4 andin Sec. 2.4.1 we briefly discuss symmetry properties of the many-body Hamiltonian.
2.1. Disclaimer notice

All the problems discussed in this thesis are concerned with the physics of cold atomsin optical lattices. Optical lattices are spatially periodic potentials, created from thesuperposition of counter-propagating laser beams, that can be used to trap atoms viaStark effect [2, 6]. Unless stated otherwise, we assume here that the lattices are sinusoidaland separable2, as e.g.
Vlatt(x, y) = Vx sin2(kxx) + Vy sin2(kyy) (2.1)

in 2D, where Vα is the amplitude of the laser light with wavelength λα in the direction
α = {x, y} and kα is the corresponding wave vector. In this context, any of the inversewave vectors, l−1

α = 2π/λα provides a natural choice for parametrizing the length scale,and any of the recoil energies Eαr = ~2kα/2m (for an atom of mass m), provides a naturalchoice for fixing the energy scale.
Here whenever we use the word ’dimensionless’ referring to any position, this meansthat the positions are scaled in terms of one of the lα, and whenever we use it referringto any energy, it means that the energies are scaled in terms of one of the Eαr . Thedirection α will be explicitly determined.

1Adapted from the tragedy of Hamlet.2More explicitly, by separable lattice we mean that the eigenvalue problem for the given lattice potentialadmits solutions that can be factorized in the different directions.
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2. p-orbital bosons: nice to meet you!
2.2. General properties of one particle subjected to periodic potentials

Two main properties characterize the problem of a quantum particle interacting with aperiodic potential [25]: (a) that the energy spectrum displays structure of bands whereregions with allowed energies are separated from each other, and (b) that the solutionsof the eigenvalue equation are given by Bloch functions. This is formulated in onedimension3 as
ĤΨ(x) = EΨ(x), where Ĥ = −~22m d2

dx2 + V (x) (2.2)
with m the mass of the particle and V (x) = V (x+d) the periodic potential with periodicity
d. The expression for the Bloch functions can be obtained from the Bloch theorem [26]and follows as Ψνq(x) = eiqxuνq(x), (2.3)where uνq is a periodic function satisfying uνq(x) = uνq(x + d) and q and ν are thegood quantum numbers labeling, respectively, quasi-momentum and band index. Thefact that we are using the band index ν implicitly assumes the reduced scheme, wherequasi-momentum varies along the first Brillouin zone [26]. To each of the values of ν and
q there is an associated energy, and in general the relation between the free particlemomentum p of E = ~2p2/2m and the quasi-momentum q appears in the form of acomplicated (transcendental) equation. The eigenstates of Eq. (2.2) correspond thus toplane waves delocalized in the lattice and that experience a modulation due to the latticeperiodicity.
An alternative basis for describing particles subjected to periodic potentials is givenby the so called Wannier functions [25]. They are constructed in terms of the Blochfunctions according to the prescription

wνj (x) =∑
q
e−iqRjΨνq(x), (2.4)

where Rj labels the coordinates of the j ’th site and we sum over the quasi-momenta inthe first Brillouin zone. The Wannier basis differs from the Bloch basis in two mainaspects: First, at each site each of the energy bands is endowed only one Wannierfunction. Second, this is a site localized basis labeled by the position in the lattice. TheWannier functions at different sites satisfy the following orthonormality condition∫
dxwνj (x)wν′ i(x) = δνν′δij . (2.5)

Let us now briefly illustrate this discussion by starting with Fig. 2.1, where the bandstructure for a system with periodic potential given by V (x) = V0 sin2(kxx) is shown fordifferent values of the lattice amplitude V0, and as a function of the quasi-momentum q.The general picture following is that for increasing values of the lattice amplitude, V0,the widths of the bands experience a narrowing at the same time that the energy gapsbetween the bands become larger.
3Extensions for 2D and 3D systems are straightforward. We use the 1D case here just for illustrativepurposes.
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2. p-orbital bosons: nice to meet you!

Figure 2.1.: Band structure of a system with V0 = 0.5Er (blue), V0 = 5Er (red) and V0 = 17Er(green). As discussed in the text, the widths of the bands are larger for smallervalues of the lattice amplitude. In addition, the energy gaps between the differentbands increase for increasing values of V0.

Figure 2.2.: Real part of the Bloch functions of the first (in (a)) and second (in (b)) bands fordifferent values of quasi-momentum q and for V0 = 5Er . Notice here that the Blochfunction of the 2nd band is strictly imaginary if q = 0.
We continue by showing samples of the real and imaginary parts of the Bloch functionsin Figs. 2.2 and 2.3, where we particularly raise attention to the delocalized character ofthe Bloch functions. This is clearly not the case for the Wannier functions, as illustratedin Fig. 2.4, which shows the Wannier functions of the first and second bands, and fordifferent values of the lattice amplitude. In this picture, larger values of V0 have corre-sponding Wannier functions that are more and more localized around the minimum ofthe potential well. For completeness, we show the probability density associated to eachof these Wannier functions in Fig. 2.5 (a) and (b).

6



2. p-orbital bosons: nice to meet you!

Figure 2.3.: Imaginary part of the Bloch functions of the first (in (a)) and second (in (b)) bandsfor different values of quasi-momentum q and for V0 = 5Er . In contrast to the resultof Fig. 2.2, here we notice that the 1st band Bloch function with q = 0 is strictlyreal. We point out that there is an arbitrary phase to be fixed in the definition of theBloch functions. Once this phase is fixed, however, and say the Bloch function ofthe first band with q = 0 is purely real, then the Bloch function in the second bandwith q = 0 will be purely imaginary.

Figure 2.4.: Wannier functions of the first and second bands for systems with V0 = 0.5Er (green),
V0 = 5Er (red) and V0 = 17Er (blue).

Figure 2.5.: Probability density of the first and second bands Wannier functions for systems with
V0 = 0.5Er (green), V0 = 5Er (red) and V0 = 17Er (blue).
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2. p-orbital bosons: nice to meet you!
2.3. What are the p-orbitals?

p-orbitals are the site-localized states of the first excited energy band, the p band [7].For isotropic square/cubic optical lattices in two or three dimensions, the first excitedband is respectively two- and three-fold degenerate. This, in turn, renders a corre-sponding degeneracy for the site-localized states or p-orbitals. In particular, p orbitalsare anisotropic in magnitude and odd in parity [16], features of which are discussed inthis section.
2.3.1. p-orbital bosons in the harmonic approximation

In order to get familiar with the physics in the p band, we consider the system in the har-
monic approximation, where analytical solutions are easily obtained and simple enoughto expose properties of the physics in analytical terms. This consists in approximatingeach well of the sinusoidal potential with a harmonic potential, i.e., V (x) = sin2(kxx) ≈
k2
xx2. Although the use of the harmonic approximation is limited [9, 27] and justifiedonly in very particular cases4, it is still a good starting point for building an intuitivepicture about the objects used in the representation of the orbital states.

Let us then consider a two dimensional separable lattice with decoupled x- and y-directions, for which the expression of the lattice potential is given by V (x, y) = Vx sin2(kxx)+Vy sin2(kyy), where Vα and kα, α ={x, y} correspond to the potential amplitude andwave number, respectively, in the direction α. The Schrödinger equation for a particleunder action of this potential assumes the form of the Mathieu equation:
ĤΨ = (− ~22m d2

dx2 + Vx sin2(kxx)− ~22m d2
dy2 + Vy sin2(kyy))Ψ = EΨ. (2.6)

We now use dimensionless variables as kyy Ï y′ and kyx Ï x′ such that k−1
y sets thelength scale at the lattice, and expand the potential around its minimum keeping onlyfirst order contributions, i.e.

ĤΨ = (−~2k2
y2m d2
dx′2 + Vx sin2(kxky x′)− ~2ky2m d2

dy′2 + Vy sin2(y′))Ψ
ĤΨ = (−~2k2

y2m d2
dx′2 + Vx k

2
x
k2
y
x′2 − ~2k2

y2m d2
dy′2 + Vyy′2)Ψ, (2.7)

which implies
Ĥ
Eyr

Ψ = (− d2
dx′2 + ( 2m

~2k2
y
)Vx k2

x
k2
y
x′2 − d2

dy′2 + ( 2m
~2k2

y
)Vyy′2)Ψ

Ĥ
Eyr

Ψ = (− d2
dx′2 + Ṽx k

2
x
k2
y
x′2 − d2

dy′2 + Ṽyy′2)Ψ. (2.8)
In the last step we introduced Ṽα = Vα/Eyr , where Eyr = ~2k2

y/2m is the recoil energy inthe y-direction. This step sets the energy scale.
4The limit of very deep potential wells is required.
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2. p-orbital bosons: nice to meet you!
When dealing with a separable lattice like in the example above, it is possible to findthe solutions in the x- and y-directions by solving the corresponding equations indepen-dently. We solve first for y′ (dimensionless y-direction):(

− d2
dy′2 + Ṽyy′2

)Ψ(y′) = εy′Ψ(y′) (2.9)
where εy′ is the energy scaled in recoil energies of the lattice in the y-direction. Weidentify the characteristic length of the oscillator as y−40 = Ṽy and therefore the groundand first excited states, with energies ε0

y′ and ε1
y′ , are given by

φ0(y′) = 1
π1/4y1/20 e−y′2/2y20 = ( Ṽ1/8

y
π1/4

)
e−
√
Ṽyy′2/2 (2.10)

and
φ1(y′) = ( √2

π1/4y3/20
)
y′ e−y′2/2y20 = (√2Ṽ3/8

y
π1/4

)
y′ e−

√
Ṽyy′2/2 (2.11)

Equations for x′ (dimensionless x-direction) are solved in the same way[
− d2
dx′2 + Ṽx

k2
x
k2
y
x′2
]Ψ(x′) = εx′Ψ(x′) (2.12)

and εx′ is again the energy scaled in units of Eyr . The characteristic length of theoscillator is identified here as x−40 = Ṽxk2
x/k2

y , and the ground and first excited states,with corresponding energies ε0
x′ and ε1

x′ , are given by
φ0(x′) = 1

π1/4x1/20 e−x′2/2x20 = 1
π1/4

(
Ṽxk2

x
k2
y

)1/8
e−
√
Ṽxkx
ky x′2/2 (2.13)

and
φ1(x′) = ( √2

π1/4x3/20
)
x′ e−x′2/2x20 = √2

π1/4
(
Ṽxk2

x
k2
y

)3/8
x′ e−

√
Ṽxkx
ky x′2/2 (2.14)

With the expressions of the eigenfunctions in hand, we can now describe the energylevels and eigenstates of the 2 dimensional system in the harmonic approximation. Forsimplicity we consider here an isotropic lattice for which Ṽx = Ṽy and kx = ky . The trueground state within this approximation has energy E0 = (ε0
x′ + ε0

y′) and its eigenfunctionhas a Gaussian profile in both x- and y-directions:
Ψ0(x′, y′) = 1

π1/2x1/20 y1/20 e−x′2/2x20−y′2/2y20 . (2.15)
The first excited state is doubly degenerate. It has energy given by E1 = (ε1

x′ + ε0
y′) =(ε0

x′ + ε1
y′) and the corresponding eigenfunctions are given, respectively, by

Ψx(x′, y′) = ( √2
π1/4x3/20

)
x′ e−x′2/2x20

( 1
π1/4y1/20

)
e−y′2/2y20 (2.16)
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2. p-orbital bosons: nice to meet you!

Figure 2.6.: Comparison between the numerically obtained Wannier functions and the Wannierfunctions in the harmonic approximation, Eqs. (2.10) and (2.11) for a 1D system with
V0 = 17Er (see discussion in the text).

and Ψy(x′, y′) = ( 1
π1/4x1/20

)
e−x′2/2x20

( √2
π1/4y3/20

)
y′e−y′2/2y20 , (2.17)

that are precisely the px- and py-orbital states in the harmonic approximation. As canbe verified, the spatial profile of the two orbitals have different parities in the differentdirections, i.e., it is odd in the direction which introduces the node in the wave-functionand even otherwise. In particular, the name of the orbital state is coined after thedirection in which the wave-function is odd.
We compare in Fig. 2.6 the ground and first excited Wannier functions obtained from nu-merical diagonalization of the Mathieu equation with the ground and first excited statesobtained in the harmonic approximation. It illustrates the situation where V0 = 17Er ,of deep wells, where the harmonic approximation is expected to give a good qualitativepicture of the system. While the harmonic oscillator ground-state eigenfunctions willnever assume negative values, the negativity of the Wannier functions is an importantproperty for the orthonormality condition (2.5). In addition, it is important to keep inmind that as opposed to the picture provided by the harmonic limit, the energy differ-ence between different bands in the sinusoidal potential is not constant. In fact, due tothe anharmonicity of the sinusoidal potential, the bands are usually not equally spacedin the optical lattices.
2.4. From the one-body to the many-body problem

The dynamics of a gas of N atoms of mass m under action of an external potential canbe represented, in general terms, by a Hamiltonian of the type
H = N∑

i=1
(
p2
i2m + Vext(~ri))+∑

i,j
Vint(~ri, ~rj ), (2.18)

where the first two terms account for single-particle effects, while the last term describesinteractions between the atoms, and therefore accounts for effects of collective nature.
10



2. p-orbital bosons: nice to meet you!
In the ideal scenario Vint should include all interactions in the system, i.e., the resultof two-body collisions, three-body collisions and so on5. In real life, however, exactsolutions for problems involving interacting many-body quantum particles are knownonly in very few or particular cases. The way out, of course, starts with the use ofapproximations that are capable of describing not all, but all the relevant interactionsthat warrant a good picture of the experimental reality.
We mentioned before that the interest here is in the physics of (many and also a few)interacting p-orbital bosons. We aim, therefore, at describing systems of very cold anddilute bosonic gases, where the atoms occupy the orbital states discussed in Sec. 2.2, ofthe p band of an optical lattice. By ’very cold’ we mean that the temperatures consideredare close to the absolute zero6. In the same way, by ’very dilute’ we mean that the distancebetween any two atoms fixed by n = N/V - where N is the total number of particles and
V the volume of the system - is very large. In the lab, for example, these systems areproduced with densities of the order of 10−5 atoms per cm3 (∼ 10−27g/cm3)7, and underthese circumstances, it is reasonable to truncate the interaction term in the two-bodypart [28, 29].
As a consequence from the characteristic low densities, the distances between the par-ticles are always large enough to justify the use of the asymptotic expression of thewave function of the relative motion [28]. In addition, as a consequence from the lowtemperatures T , the relative momentum corresponding to kinetic energies kBT , where
kB is the Boltzmann constant, justifies that the collisions are effectively described by
s-wave scattering processes, that are completely characterized by the correspondingphase shift [30]. At very low temperatures, however, the phase shift is not the bestparameter for characterizing the cross section of the scattering processes.

This can be illustrated8, for example, by considering the cross section of twoparticles in a state with relative momentum ~k and energy ~2k2/2µ, where µ is thereduced mass
dσ
dΩ = sin2(δ0(k))

k2 kÏ0−−Ï a2 (2.19)
where a has dimensions of length. At very low temperatures, i.e., in the limk Ï 0,the presence of k2 in the denominator of Eq. (2.19) would require that sin(δ0(k))vanishes linearly for any value of the cross section [30].

The trick here is to use instead the scattering length a defined as
lim
kÏ0 ksin(δ0(k)) ≡ − 1

a, (2.20)
that is, up to the choice of a sign, exactly the same length parameter of Eq. (2.19). Nowthis is a good quantity for parametrizing the low energy scattering cross section, for itcan also be further interpreted as the first term of the expansion in powers of k of the

5’Ambition is the last refugee of failure.’ - Oscar Wilde6Or much less than the bandwidth. The temperature is typically of the order of ∼ 1nK.7For comparison, the density of the air at room temperature (notice however that the definition of roomtemperature might vary in countries like Sweden or Finland) is ∼ 1.25 × 10−3g/cm3, the density of thewater is 1g/cm3 and the density of a white dwarf can be estimated as 1.3× 106g/cm3.8This discussion is based on the discussion presented in Ref. [30].
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2. p-orbital bosons: nice to meet you!
effective range expansion [30],

k cot(δ0(k)) ≡ − 1
a + r02 k2 + ..., (2.21)

where r0 is the so called effective range of the potential. In these terms, low energyscattering processes can be characterized by only two parameters, a and r0, and regard-less of their underlying forms or expressions, any two potentials that are characterizedby the same s-wave scattering length a and effective range r0, will give rise to the sameeffective interaction [30].
The values of a are determined with the use of the standard scattering theory. Nowassuming that a is a known quantity, our goal is to implement in the Hamiltonian (2.18)an effective interaction that captures the physics seen in the lab. The usual processconsists in considering the real interaction potential Vint(~ri, ~rj ) as a contact interaction
Vint = λδ(~ri − ~rj ) with coupling constant given by λ = 2π~2a/µ, where µ is the reducedmass of the two particles [31]. Accordingly, the effective potential for two identicalparticles of mass m follows as

Vint(~ri, ~rj ) = 4π~2a
m δ(~ri − ~rj ). (2.22)

In the language of second quantization, this can be further re-written with the use ofthe bosonic field operators Ψ(~r′) and Ψ†(~r′), that annihilate and create a bosonic particleof mass m at position ~r′ as
V̂int = 4π~2a

m

∫
d~r′d~rΨ̂†(~r)Ψ̂†(~r)δ(~r − ~r′)Ψ̂(~r)Ψ̂(~r′) = 4π~2a

m

∫
d~r′Ψ̂†(~r′)Ψ̂†(~r′)Ψ̂(~r′)Ψ̂(~r′).(2.23)These operators satisfy the bosonic commutation relations [Ψ(~r′′),Ψ(~r′)] = δ(~r′′−~r′). Thefull expression of the Hamiltonian describing a weakly interacting Bose gas is given,therefore, by

Ĥ = ∫ d~r′
{Ψ̂†(~r′) [−~2∇22m + V (~r′)] Ψ̂(~r′) + Ũ02 Ψ̂†(~r′)Ψ̂†(~r′)Ψ̂(~r′)Ψ̂(~r′)}, (2.24)

where V (~r′) accounts for effects of external potentials superimposed to the system and
Ũ0 = 4π~2a/m is the coupling constant in units of the recoil energies, as defined inSec. 2.1.
In the usual procedure the field operators are then expanded with the use of a convenientbasis, which in our case will be constructed in terms of the orbital states of the p band ofthe optical lattice9. But before proceeding with the expansion, let us restrict the externalpotentials acting in this system V (~r) (in Eq. (2.18)) to account only for the optical potential.In the isotropic cubic lattice this follows as

V (~r) = Vlatt(~r′) = Ṽx sin2(kx′) + Ṽy sin2(ky′) + Vz sin2(kz′), (2.25)
where again the lattice amplitudes and wave vectors are given, respectively by Ṽα,
α ={x, y, z} and k = 2π/λ, with λ being the wavelength of the applied lasers. As before

9Since in this step we restrict the atoms to live in the p band of the optical lattice, this also means that weare considering what is called the single band approximation.
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2. p-orbital bosons: nice to meet you!
we define dimensionless parameters by taking the recoil energy Er = ~2k2/2m as theenergy scale and the inverse wave vector as the typical length scale l = λ/2π10. In theseterms, the expression for the field operators then follows as

Ψ†(~r) = ∑
αjw∗αj(~r)â†αj(~r)

Ψ(~r) = ∑
αjwαj(~r)âαj(~r) (2.26)

where â†αj and âαj create and annihilate an atom in the α ={x, y, z} orbital state and inthe j-th site of the lattice (j = (jx, jy , jz), jx, jy , jz ∈ N).
Notice here that the orbital states in the p band are not eigenstates of the single-particle Hamiltonian. They are constructed in terms of the site-localized Wannierfunctions11 wνj(~r), ν = 1, 212 with the prescription13

wxj(~r) = w2jx (x)w1jy (y)w1jz (z)
wyj(~r) = w1jx (x)w2jy (y)w1jz (z)
wzj(~r) = w1jx (x)w1jy (y)w2jz (z),

(2.27)
which according to Eq. (2.4), relate with the Bloch functions (the eigenstates of thesingle-particle Hamiltonian) as

wνRj(~r) =∑
q
e−iq·Rjφνq(~r),

where we use Rj = (xj, yj, zj) = (πjx , πjy , πjz) and q = (qx , qy , qz) is the index whichlabels the quasi-momentum.
Now before arriving to the final expression of the second quantized version of theHamiltonian describing bosonic atoms in the p band, we assume, in addition, the tight-
binding regime. In this approximation, the range of the tunneling is restricted to thefirst nearest neighbors, and the interactions to happen only onsite. The final result thenfollows as

Ĥ = Ĥ0 + Ĥnn + ĤFD. (2.28)The first term here corresponds to the kinetic part of the Hamiltonian and is given by
Ĥ0 = −∑

α,β

∑
〈ij〉β

tαβâ†αiâαj (2.29)
with ∑〈ij〉β the nearest neighbor sum in the direction β. The second and third termsaccount for different types of interactions:

Ĥnn =∑
α

∑
j
n̂αj(n̂αj − 1) + ∑

αβ,α 6=β
∑

j
Uαβn̂αjn̂βj, (2.30)

10These units are used in all derivations from here on, which also makes the resulting equations dimen-sionless.11Which themselves are also not eigenstates of the single particle-Hamiltonian.12Remember here that ν is the index which labels the energy band of the corresponding Wannier function.13Remember that we are considering the case where the equations describing the lattice are separable inthe different directions.
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2. p-orbital bosons: nice to meet you!
describes various types of density-density interactions, where n̂αj is the atom numberoperator for particles in the pα-orbital, and

ĤFD = ∑
αβ,α 6=β

∑
j

Uαβ4 (
â†αjâ

†
αjâβjâβj + â†βjâ

†
βjâαjâαj

)
, (2.31)

describes interactions which move atomic population between the different orbital states.
To complement we write the expressions for the various coupling parameters. Theyare given in terms of the orbital states as

Uαβ = U0
∫

d~r|wαj(~r)|2|wβj(~r)|2, (2.32)
where U0 = Ũ0l3/Er is the dimensionless interparticle strength, and

tαβ = −∫ d~rw∗αj(~r)[−∇2 + V (~r)]wαj+1β(~r), (2.33)
with V (~r) is the external potential of Eq. (2.25).
Substitution of Eq. (2.27) in the above Eq. (2.33) shows that the tunneling coefficientsin the directions perpendicular to the node depend uniquely on the properties of theWannier functions in the ground band (i.e., ν = 1), while in the direction parallel tothe node, it depends solely on the Wannier functions of the second band of the lattice(ν = 2)14. This is the basis of the tunneling anisotropy in the p band, and explicitlyshows why an atom in the the pα-orbital state has larger probability of tunneling in the
α direction than in the transverse ones15.
2.4.1. Brief discussion on the symmetries of the model

Because each term in Eq. (2.28) has the same number of operators and Hermitian con-jugates, the Hamiltonian describing bosonic particles in the p band is clearly invariantunder global U(1) transformations. This reflects the overall conservation of particlenumber in the system, and therefore
[Ĥ,∑

j
(n̂xj + n̂yj + n̂zj )] = 0. (2.34)

In addition to the overall number conservation, the number of particles modulo 2 ineach of the orbital states is also conserved. This follows from the properties of theterms describing transfer of population between the different orbitals, Eq. (2.31), whichintroduce a set of Z2 symmetries under which the full Hamiltonian is invariant. In fact,in isotropic lattices16, any permutations of the type
âxj Ï ±âyj, âyj Ï ±âzj, âzj Ï ±âxj (2.35)

14Notice here that these bands refer to the band in the 1D lattice from where one considers the quasi-momentum of the Bloch functions used in the construction of the localized states.15Remember that the pα orbital state has a broader spatial profile in the α direction.16Where all the tαα for different orbitals are equal, as well as all the tαβ , and Uxx = Uyy = Uzz with againall the Uαβ equal for different α and β.

14



2. p-orbital bosons: nice to meet you!
leave the Hamiltonian invariant.
Let us take a closer look on the symmetries of the two-dimensional case. We start withthe isotropic square lattice, where Uxx = Uyy , Uxy = Uyx , txx = tyy and txy = tyx . In thiscase, transformations of the type â′xj

â′yj

Ï
 cos θ − sin θ

sin θ cos θ
 âxj

âyj

 (2.36)
leave the Hamiltonian invariant for different values of θ = (0, π/2, π)±kπ , where k ∈ Z.This is not the case for an asymmetric lattice. Here, even though the lattice can betuned in such a way to preserve the degeneracy between the orbitals, the couplingconstants Uxx 6= Uyy and tαα 6= tββ , tαβ 6= tβα, which means that transformations of thetype âxj Ï âyj, âyj Ï âxj will not leave the Hamiltonian invariant. There is a particularcase, however, for which even in asymmetric lattices the system is characterized by anadditional SO(2) symmetry [32]. This corresponds to the harmonic approximation in thelimit of vanishing tunneling17, where Uαα = 3Uαβ = U . As pointed out in Ref. [32], thisspecial case is better studied with the use of the angular-momentum like annihilationoperators â±j = (âxj± iâyj)/√2, in terms of which the local part of the Hamiltonian canbe written as [32]

Ĥ = U2 [n̂j
(
n̂j − 23)− 13]+ δ

[(n̂j − 1)(L̂+j + L̂−j)]
+λ [14 L̂2

zj − 3(L̂+j − L̂2
−j)2 − n̂j

] (2.37)
where U = (Uxx + Uyy)/2, δ = (Uxx − Uyy)/2 and λ = Uxy − U/3. The density operatorcan be expressed as n̂j = â†+jâ+j + â†−jâ−j, and the angular momentum operators are
L̂zj = â†+jâ+j − â†−jâ−j and L̂±j = â†±jâ∓j/2. Now it follows from the properties of theharmonic oscillator eigenstates that in the harmonic approximation λ = δ = 0 forany lattice configuration, and therefore [Ĥj, L̂zj] = 0 [32]. This is not the case for realoptical lattices, for there λ, δ 6= 0, which destroys the axial symmetry, and consequently[Ĥj, L̂zj] 6= 0 [32]. It is important to point out here that this additional SO(2) symmetry isnot of geometric character. Instead, this is a dynamical symmetry [33], which appearsas a consequence of the specific form that the eigenvalue problem assumes when theharmonic approximation is used.

17This is only valid in the case of separable lattices.
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A. Hamiltonian parameters in the harmonic
approximation

We briefly compute here the various coupling constants in the harmonic approximation.As discussed before, under this assumption the Wannier functions are approximated byharmonic oscillator eigenfunctions, and therefore (2.32) and (2.33) can be obtained fromcomputation of simple Gaussian integrals. Here
Uxx = U0 ∫ dx ( √2

π1/4x3/20
)4

x4 e−2x2/x20 ∫ dy ( 1
π1/4y1/20

)4
e−2y2/y20

= U0
( √2
π1/4x3/20

)4 34 √π25/2x50
( 1
π1/4y1/20

)4√π2 y0 = U0 ( 38π 1
x0y0

) (A.1)
Analogous calculation yields Uyy = U0 ( 38π 1

x0y0
).

We now compute Uxy :
Uxy = U0 ∫ dx

( √2
π1/4x3/20

)2
x2 e−x2/x20

( 1
π1/4x1/20

)2
e−x2/x20×∫

dy
( √2
π1/4y3/20

)2
y2 e−y2/y20

( 1
π1/4y1/20

)2
e−y2/y20

= U0 ∫ dx
( √2
π1/2x20

)2
x2e−2x2/x20 ∫ dy

( √2
π1/2y20

)2
y2e−2y2/y20

= U0 ( 18π 1
x0y0

)
,

(A.2)

and thus we verify that in the harmonic approximation Uxx = Uyy = 3Uxy . In particular,notice that Uαα/Uαβ = 3 is always valid in the harmonic approximation regardless of thewave vectors of the lattice, kx and ky . In addition, it is very surprising that in this limitthe coupling constants don’t even depend on the values of the lattice vector, but only onthe lattice amplitudes Vx and Vy1 [32]. This is again another feature of the harmonicapproximation, which in general is not valid when the lattice Wannier functions are usedfor computation of the Hamiltonian parameters.
Now according to Eq. (2.33), the tunneling coefficients are computed in the harmonicapproximation (see Eqs. (2.16) and (2.17)) as

−txx = ( √2
π1/4x3/20

)2
Vx
∫
dx x(x + d) sin2 x e−x2/2x20e−(x+d)2/2x20

+( √2
π1/4x3/20

)2 ∫
dx d

dx (xe−x2/2x20 ) ddx ((x + d)e(x+d)2/2x20) (A.3)
1In the harmonic approximation this happens because the use of the degeneracy condition fixes the ratio
kx/ky .
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A. Hamiltonian parameters in the harmonic approximation

Figure A.1.: Comparison between the values of the couplings obtained from analytical and nu-merical computations as a function of V . It is shown in (a) that the harmonic ap-proximation fails to reproduce the results obtained numerically for the tunnelingcoefficients when tunneling occurs in the direction of the node. In (b) we show theresults for the interaction coefficients. In particular the estimates obtained from theharmonic approximation are always larger than the values of the couplings com-puted numerically.

Figure A.2.: Ratio Uxx/Uxy for different values of the amplitude of the optical potential. Noticehere that Uxx/Uxy is always larger than 3 for numerical computations with the latticeWannier functions.
where d is used here as the lattice constant and where we already used that the integralin the y-direction yields 1. In the same way,

−txy = ( 1
π1/4y1/20

)2
Vy
∫
dy sin2 y e−y2/2x20e−(y+d)2/2y20

+( 1
π1/4y1/20

)2 ∫
dy d

dye−y
2/2y20 d

dye−(y+d)2/2y20 ,
(A.4)

but now it is the integral in the x-direction that yields 1, and therefore we only write thepart that contributes to the tunneling coefficient. The expressions for tyx and tyy areobtained by making x Ï y and y Ï x with x0 Ï y0 and y0 Ï x0.
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3. p-orbital bosons in the mean-field
approximation

In this chapter1 we focus on the mean-field description of p-orbital bosons in isotropicsquare and cubic lattices. After presenting details of the formalism in Sec. 3.1, we char-acterize general properties of the order parameters of the two and three dimensionalcases in Secs. 3.1.1 and 3.1.2.
3.1. The mean-field Hamiltonian

At the mean-field level, the system is characterized in terms of order parameters whichacquire a finite value in the phases with broken symmetry [34]. This is usually relatedto the appearance of a long-wavelength collective mode, and description in such termsneglects details of microscopic nature of the corresponding model [35]. This is there-fore not a good approach for studying properties of more correlated regimes. For coldatoms in optical lattices, for example, mean field analysis is not suitable for describingproperties of the Mott phase. On the other hand, if the system is deep in the super-fluid phase, a mean-field treatment is still capable of revealing qualitative aspects of theunderlying physics [29].
In order to give a mean-field description and to study the superfluid phase2 of the systemdescribed by Eq. (2.28) we start by replacing the operators âα,j with the complex numbers
ψαj. If the Hamiltonian is normally ordered3, then this corresponds to attributing acoherent state at each site, |Ψ〉 = ⊗j|ψ〉j = ⊗j|ψxj, ψyj, ψzj〉j such that âαj|Ψ〉 = ψαj|Ψ〉j.Now since this has the form of a product state, it does not contain information aboutquantum correlations between sites. Nevertheless, as we anticipate here, this ansatz isused with self-consistent equations and therefore provides a self-consistent solution forour problem.
In terms of the Fock basis, the single site many-body wave function is given thus by

|Ψ〉j = exp(−|ψxj|2 + |ψyj|2 + |ψzj|22
) ∑
nx ,ny

ψnxxj ψ
ny
yj ψ

nz
zj√

nx!ny!nz! |n〉j, (3.1)
from where |n〉j = |nx, ny , nz〉j represents the state with nx px-orbital atoms, ny py-orbital atoms, and nz pz-orbital atoms at the site j. In this language the order parameter

1This chapter describes part of the study developed in Paper I.2This is a phase where the U(1) symmetry related to conservation of particle number is broken.3Notice here that since the Hamiltonian in Eq. (2.28) is not in the normal form, it is necessary to normallyorder it before taking the expectation values for proceeding with the mean-field analysis.

18



3. p-orbital bosons in the mean-field approximation
of site j and orbital α is given by ψαj = 〈Ψ|âαj|Ψ〉, and for being a coherent state it hasnumber fluctuations which obey Poissonian statistics [36]. In addition, this is also partof what we call the full onsite order parameter, defined as the expectation value of theannihilation operator in Eq. (2.26)

ψj(~r) ≡ 〈Ψ̂j(~r)〉 =∑
α
wαj(~r)〈âαj〉. (3.2)

We can now derive the equations of motion for the order parameter ψα from the Euler-Lagrange equations:
∂L
∂ψ∗αj

− d
dt

(
∂L
∂ψ̇∗αj

) = 0, (3.3)
where the Lagrangian is given by

L =∑
α

∑
j

i2
[
ψ∗αj

d
dt ψαj − ψαj

d
dt ψ

∗
αj

]
−HMF , (3.4)

with the mean-field Hamiltonian
HMF = −

∑
αβ
∑
〈i,j〉β tαβψ

∗
αiψαj +∑α

∑
j
Uαα2 nαjnαj +∑αβ,α 6=β∑jUαβnαjnβj

+∑αβ,α 6=β∑j
Uαβ4 (

ψ∗αjψ∗αjψβjψβj + ψ∗βjψ∗βjψαjψαj
)
,

(3.5)
and where computation of the coherent-state expectation value is carried out with thenormally order version of the Hamiltonian (2.28). The density of the pα-orbital state isgiven by nαj = |ψαj|2 and normalization was imposed in the whole lattice as

N = Nx +Ny +Nz =∑
j
|ψxj|2 +∑

j
|ψyj|2 +∑

j
|ψzj|2, (3.6)

with N the total number of atoms.
The Euler-Lagrange equations lead to a set of coupled (discrete) Gross-Pitaevskii equa-tions, one for each of the orbital states at each site j:

−i ∂ψxj
∂t = −

∑
β∈{x,y,z} txβ(ψxj+iβ − 2ψxj + ψxj−1β )

+(Uxx|ψxj|2 + (Uxy +Uyx)|ψyj|2 + (Uxz +Uzx)|ψzj|2)ψxj

+(Uxy+Uyx2 )
ψ2
yjψ∗xj + (Uxz+Uzx2 )

ψ2
zjψ∗xj

−i ∂ψyj
∂t = −

∑
β∈{x,y,z} tyβ(ψyj+iβ − 2ψyj + ψyj−1β )

+(Uyy |ψyj|2 + (Uxy +Uyx)|ψxj|2 + (Uyz +Uzy)|ψzj|2)ψyj

+(Uxy+Uyx2 )
ψ2
xjψ∗yj + (Uzy+Uyz2 )

ψ2
zjψ∗yj

(3.7)
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3. p-orbital bosons in the mean-field approximation
−i ∂ψzj

∂t = −
∑

β∈{x,y,z} tzβ(ψzj+iβ − 2ψzj + ψzj−1β )
+(Uzz|ψxj|2 + (Uxz +Uzx)|ψxj|2 + (Uyz +Uzy)|ψyj|2)ψzj

+(Uxz+Uzx2 )
ψ2
xjψ∗zj + (Uyz+Uzy2 )

ψ2
yjψ∗zj,Moreover, using the fact that the order parameters in the Hamiltonian (3.5) are complexnumbers, say

ψαj = eiθαj |ψαj|, (3.8)further properties at the level of the mean-field analysis can be additionally inferredfrom the conditions that lead to minimum energy4.
We start this analysis by first considering the non-interacting part of the mean-fieldHamiltonian

H0
MF = −∑

α,β

∑
〈i,j〉β

tαβψ∗αiψαj = −2∑
αβ

∑
〈i,j〉

tαβ|ψαi||ψαj| cos(θαj − θαi). (3.9)
Here the role of the tunneling becomes clear: it connects the phases of the order param-eters between neighboring sites, establishing phase coherence within the correspondingorbital state. In particular, since the tunneling coefficients are t‖ < 0 in the directionparallel to the node and t⊥ > 0 in the perpendicular direction, intersite phase coherenceis implemented in the form of a stripped pattern. In fact, taking as an example the
px-orbital state, the phase of the corresponding order parameter can be expressed as
θxj = θx(jx, jy , jz) − π mod (jx, 2). Analogous relations hold for the py- and pz-orbitals.It follows, therefore, from the properties of tunneling in the p band, that neighboringsites will always maintain the same phase relation in the directions perpendicular to thenode, while in the parallel direction the phase alternates with π difference.
We consider now the interacting part of the mean-field Hamiltonian. Substituting Eq. (3.8)in the term that describes density-density interactions

H (j)
nn = Uxx2 |ψxj|4 + Uyy2 |ψyj|4 + Uzz2 |ψzj|4

+2Uxy |ψxj|2|ψyj|2 + 2Uxz|ψxj|2|ψzj|2 + 2Uyz|ψyj|2|ψzj|2.
(3.10)

no information regarding phase relation can be extracted. But this was already expected,for this term in Eq. (2.30) depends only on number operators. This is not the case,however, in the term describing transfer of population between different orbitals,
H (j)
FD = Uxy |ψxj|2|ψyj|2 cos(2(θxj − θyj)) +Uxz|ψxj|2|ψzj|2 cos(2(θxj − θzj))

+Uyz|ψyj|2|ψzj|2 cos(2(θyj − θzj)), (3.11)
and therefore the configuration which minimizes energy will impose a correspondingspecific onsite phase locking for the different orbital states order parameters. In whatfollows we discuss the cases of two and three dimensional lattices separately.

4This discussion follows Refs. [9] and Paper I.
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3. p-orbital bosons in the mean-field approximation

Figure 3.1.: Here we illustrate the phase ordering established in the different orbital states orderparameters. Black arrows in the left pannel describe θxj while the red arrows areused to describe θyj. Notice that θxj and θyj always keep a π/2 phase difference asrequired by Eq. (3.12) for minimizing the ground-state energy. In the right pannelwe illustrate the vortex/anti-vortex structure in the different lattice sites.
3.1.1. The two-dimensional la�ice

In the two-dimensional case, the phases between the px- and py-orbitals are locked witha π/2 phase difference. This can be easily noticed from the fact that
H (j)
FD 2D = Uxy |ψxj|2|ψyj|2 cos(2(θxj − θyj)) (3.12)

is at a minimum value for θxj − θyj = ±π/2 (Uxy > 0). When this is combined withthe stripped pattern required for minimizing contributions of the tunneling terms, thephases of the order parameters become constrained. This is illustrated in the left pannelof Fig. 3.1 where the directions of the arrows define an angle.
Now in terms of the orbital states, the expression of the full onsite order parameterdefined in Eq. (3.2) is given in the position representation as [27]

ψj(~r) = ψxjwxj(~r) + ψyjwyj(~r), (3.13)
which can be further re-written as

ψj(~r) = |ψxj|wxj(~r)± i|ψyj|wyj(~r), (3.14)
after use is made of the specific phase relations that minimize the energy. In particular,the ± sign alternates between neighboring sites (see Eq. (3.12)). Making use of Eq. (2.5),which states the orthonormality condition satisfied by the Wannier functions, the onsiteorder parameter can be interpreted as a spinor

ψj = [ |ψxj|
±i|ψyj|

]
, (3.15)

where the basis states wxj(~r) and wyj(~r) contain any spatial dependence, and where thelength of the spinor gives the onsite atom number, i.e., Nj =√|ψxj|2 + |ψyj|2. Since here
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3. p-orbital bosons in the mean-field approximation
the onsite order parameter has essentially the same properties of a two-level system, itcan be completely characterized by a Bloch vector Jj = (Jxj, Jyj, Jzj) with components

Jxj = ψ∗xjψyj + ψ∗yjψxj,

Jyj = i(ψ∗xjψyj − ψ∗yjψxj),
Jzj = |ψxj|2 − |ψyj|2.

(3.16)
The length of the Bloch vector is related with the total number of atoms5 at the site
j, |Jj| = Nj, and Jzj computes the onsite population imbalance between the px- and the
py-orbital states. In addition, due to the required onsite phase-locking relation, Jxj isalways zero.
Now we still need to analyze the spatial dependence of the order parameter, which isabsent in the Bloch vector description. This is most conveniently done by consideringfirst what happens in the limit where the harmonic approximation is reasonable: theWannier functions can be replaced by harmonic oscillator ground states (see Sec. 2.3.1)and the expression of the onsite order parameter becomes

ψ(ha)
j = [|ψxj|x ± i|ψyj|y

]
e−

x2+y2
σ2 , (3.17)

where σ2 is the effective width of the oscillator, determined from the lattice parameters.Now if |ψxj| = |ψyj|, this is an angular momentum eigenstate, Lzj = −i∂θj , Lzjψ(ha)
j =

±ψ(ha)
j (~r), which allows for interpretation of the onsite order parameter as a vortex/anti-vortex state which covers the entire lattice. In terms of the Bloch sphere, this means that

Jxj = 0 for every j and that the Bloch vector points parallel to the direction defined by Jyj.This vortex/anti-vortex structure is illustrated in the right pannel of Fig. 3.1. We remarkthat this solution is only true in the harmonic approximation. Outside this regime thereis no requirement which ensures the existence of a true vortex/anti-vortex state6 evenwhen Jzj = 0. It still stands though, that due to the properties of the Wannier functionsand the onsite interorbital phase relation, the density vanishes at the center of the site j,and therefore the onsite order parameter do show a vortex-like singularity. In addition,it also holds that the neighboring sites are then characterized by anti-vortex-like states.This is the extent to which the order parameter of the general case shares propertiesof the staggered vortex solution.
3.1.2. The three-dimensional la�ice

Similar analysis7 also reveals many features of the physics in the three-dimensionalsystem. But in the isotropic cubic lattice, due to the triple degeneracy of the orbitalstates on the p band, the angular momentum becomes a vector with components Lα,
α ={x, y, z}. Let us assume first that |ψxj| = |ψyj| = |ψzj| and check the requirements

5This is a mean-field version of the Schwinger bosons.6In the sense of eigenvalues of Lzj.7We follow analysis done in Ref. [9].
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3. p-orbital bosons in the mean-field approximation
for minimizing Eq. (3.11). Under these conditions the phase relation to be satisfied is
θxj − θyj = θyj − θzj = θzj − θxj = ±2π/3± π , which can be written, for example, as

Ψj =  ψxj
ψyj
ψzj

 =√Nj3 eiθ
 1
e2πi/3
e4πi/3

 , (3.18)
where Nj is the total onsite atom number and θ is an arbitrary phase. The onsite wavefunction with equal number of atoms on each of the orbital states has a unit angularmomentum per atom which points along the axis L ∝ (±1,±1,±1). And because Uxy > 0,the relative phases of the three orbital order parameters are frustrated8. In particular,it was pointed out in Ref. [7] that “the onsite frustrated phase configurations come intwo different “chiralities” that cannot be converted into each other by shifting any oneof the phases by the π shift allowed by the Z2 symmetry.”9
With information about the onsite orbitals phase locking and in particular the frustratedcharacter of the phase relation in the three orbital case, one can then pose the inversequestion. Let us assume that this property is inherent of the model, and that the phasesof the different orbital states are arranged as in Eq. (3.18). Is this phase relation stillvalid regardless of the values of Uαα and Uαβ , or is there any condition imposed overthe values of these coupling constants?
We follow again the approach of Ref. [9], and re-write the interacting part of the mean-field Hamiltonian as10

Hnn = Uxx2 (n2
x + n2

y + n2
z) + 2Uxy(nxny + nxnz + nynz),

HFD = Uxy
(cos(∆xy)nxny + cos(∆xz)nxnz + cos(∆xz −∆xy)nynz) , (3.19)

where nα = |ψα|2, and ∆αβ = 2(θα − θβ). In these terms, defining n = (nx, ny , nz), theenergy functional can be written in the quadratic form of the nα variables,
E[ψx, ψy , ψz] = nTMn, (3.20)with

M =


Uxx/2 Uxy(2 + cos(∆xy)) Uxy(2 + cos(∆xz))
Uxy(2 + cos(∆xy)) Uxx/2 Uxy(2 + cos(∆xz −∆xy))
Uxy(2 + cos(∆xz)) Uxy(2 + cos(∆xz −∆xy)) Uxx/2

 .
(3.21)Solving for the eigenvalues we find that

λ1 = Uxx − 3Uxy
λ2 = Uxx − 3Uxy
λ3 = Uxx + 6Uxy ,

(3.22)
8Notice that the phase relation to be satisfied is a (dependent) linear combination of the phases of thedifferent orbital states.9We refer to the original reference [7] for more discussions on the symmetry properties of the brokensymmetry phase of three orbital system.10Due to typos in Ref. [9], there are different factors in the calculations presented here. We point out,however, that this does not change the conclusions drawn by the authors.
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3. p-orbital bosons in the mean-field approximation
which requires Uxx > 3Uxy for otherwise M is not positive definite. This is usuallysatisfied in sinusoidal lattices (see Fig. A.2). However when this condition is violated, theonsite phase of the order parameters cannot establish the phase relation described inEq. (3.20) because for this range of the parameter values M is not positive definite. Inparticular, this also means that minimization of the overall energy has to be studied nowin the case where |ψxj| 6= |ψyj| 6= |ψzj| and therefore qualitative features of the ground-state are expected to be different (see Ref. [9] for discussions of this case). Furthermorethis also reveals limitations in the description provided by the harmonic approximation,in which case Uxx = 3Uxy as discussed previously.
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4. Confined p-orbital bosons

In this chapter we study the superfluid phase of p-orbital bosons confined by a harmonictrap1. Mean-field analysis carried out in Chapter 3 revealed the existence of specific onand inter site phase relations to be satisfied by the phase of the orbital order parame-ters in order to minimize the system’s energy. More explicitly, it was shown that in asituation of equal number of atoms in the different orbital states, the ground state in theisotropic square lattice is characterized by a staggered vortex-like solution. But how isthis scenario altered by the presence of an external confining trap?
By rendering the atomic density an inhomogeneous spatial profile, the presence of aconfining potential immediately adds an extra feature for the physics in the p band.In the case of a harmonic trap, for example, the atomic density has an approximateGaussian distribution in the lattice. Now how will the combination of inhomogeneousatomic density + the anisotropic tunneling in the p band affect the properties of theground state?
In order to answer this question we proceed with a mean field analysis for a system ofharmonically confined p-orbital bosons. We first discuss how confinement changes theequations of the order parameters in Sec. 4.1, where we also discuss the approximationsconsidered. We continue with the study of Bose-condensation for the ideal gas in the
p band in Sec. 4.2, and also analyze finite temperature properties. We consider theinteracting case in Sec. 4.2.2, and conclude the study by analyzing the properties of thesystem with an anisotropic optical lattice in Sec. 4.2.3.
4.1. Mean-field equations of the two-dimensional confined system

In Sec. 2.4 the general expression of the many-body Hamiltonian, Eq. (2.24), was ex-panded with the use of orbital states of the p band. In this section we extend thisprocedure in order to include effects stemming from an external confining harmonictrap. We do this by modifying the term in Eq. (2.24) that describes contributions ofexternal potentials as
V (~r′)Ï Vlatt(~r′) + Vtrap(~r′), (4.1)where

Vlatt(~r′) = Vx sin2(kx′) + Vy sin2(ky′) (4.2)and
Vtrap(~r′) = mω̃22 (x′2 + y′2) = ω22 (x2 + y2). (4.3)

1This chapter is based on Paper I, which is attached in the end of this thesis.
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4. Confined p-orbital bosons
Here, as usual, k is the wave vector of the lattice, Vα the lattice amplitude in the di-rection α ={x, y}, ω̃ is the trap frequency. ω = √2mω̃/~k2 is the dimensionless trapfrequency, and x = kx′ and y = ky′ are dimensionless positions. We now assume thatthe parameters of the system satisfy the requirements necessary for validity of the lo-
cal density approximation2. We consider thus a very smooth confining potential, withcharacteristic length ltrap = √h/mω̃ � λ/2. Under this condition, the system can stillbe considered periodic on the length scale characteristic of the trap, and correspondingtrap effects can be implemented at each site, as a shift of the onsite energies3. In addi-tion, the site-localized Wannier functions are assumed the same as in the non-trappedcase, which also implies that the orbital states remain unaltered from the ones discussedpreviously.
The expression of the second quantized Hamiltonian describing p-orbital bosons in thesquare lattice and with harmonic confinement then follows as

Ĥ2D = −
∑

αβ
∑
〈i,j〉β tαβâ

†
αiâαj +∑α

∑
j
ω2 (x2

j + y2
j )n̂αj

+∑α
∑

j
Uαα2 n̂α(n̂αj − 1) +∑αβ,α 6=β∑jUαβn̂αjn̂βj

+∑αβ,α 6=β∑j
Uαβ4 (â†αjâ

†
αjâβjâβj + â†βjâ

†
βjâαjâαj),

(4.4)

where again n̂αj = â†αjâαj, with α = {x, y} the number operator for the orbital state α.In particular, notice here that the first, second and third lines correspond, respectively,to the former Ĥ0, Ĥnn and ĤFD of Eq. (2.28).
As a quick remark, we explicitly write the expression of ĤU = Ĥnn + ĤFD for thecase of an isotropic square lattice, where Uαβ = Uβα

4:
ĤU = Uxx2 n̂xj(n̂xj − 1) + Uyy2 n̂yj(n̂yj − 1) + 2Uxyn̂xjn̂yj

+Uxy2 â†xjâ
†
xjâyjâyj + Uxy2 â†yjâ

†
yjâxjâxj.

(4.5)
Our goal now is to obtain equations similar to Eqs. (3.7), i.e, the equations of motion forthe order parameter, but for the system described by the Hamiltonian (4.4). We thusstart with the coherent state ansatz, Eq. (3.1), and obtain the mean-field Hamiltonianthat will be used to compute the Euler-Lagrange equations. In the same way as for thethree-dimensional case in Sec. 3.1, normalization is imposed in the whole lattice as

N = Nx +Ny =∑
j
|ψxj|2 +∑

j
|ψyj|2, (4.6)

where N is the total number of atoms.
The equations for the order parameters then follow. They correspond to a set of coupled

2We remark that the term local density approximation means different things in different contexts. Whatwe mean by local density approximation is explicitly defined in the sequence of the text and no othersignificance is implied.3This is equivalent to having a position dependent chemical potential.4We do this here just because the literature has considerable amount of typos in this part.

26



4. Confined p-orbital bosons
(discrete) Gross-Pitaevskii equations, one for each of the orbital states at each site j

−i ∂ψxj
∂t = −

∑
β∈{x,y} txβ(ψxj+iβ − 2ψxj + ψxj−1β ) + ω22 (x2

j + y2
j )ψxj

+(Uxx|ψxj|2 + (Uxy +Uyx)|ψyj|2)ψxj + (Uxy+Uyx2 )
ψ2
yjψ∗xj

−i ∂ψyj
∂t = −

∑
β∈{x,y} tyβ(ψyj+iβ − 2ψyj + ψyj−1β ) + ω22 (x2

j + y2
j )ψyj

+(Uyy |ψyj|2 + (Uxy +Uyx)|ψxj|2)ψyj + (Uxy+Uyx2 )
ψ2
xjψ∗yj,

(4.7)

where the expressions of the couplings are given by Eqs. (2.32) and (2.33), which arecomputed here with the lattice Wannier functions obtained from numerical solution asthe Mathieu equation for the potential (4.2).
4.2. The ideal gas

We start by considering first the simplest case of the non interacting gas, where expres-sion of the mean-field Hamiltonian follows as
H0
MF = −∑

α,β

∑
〈i,j〉β

tαβψ∗αiψαj +∑
α

∑
j

ω22 (x2
j + y2

j )nαj, (4.8)
where nαj = |ψαj|2 is the onsite density of the orbital state α.
The analysis again makes use of the same ideas discussed in Chapter 3: the orderparameters are complex numbers,

ψαj = |ψαj|eiθαj , (4.9)
and therefore we are required to characterize properties of both amplitudes and phasesin the lattice. Here Eq. (4.8) accounts only for contributions of the free part of the fullHamiltonian (4.4), and the additional term describing contributions of the trap dependsonly on number operators. This means that the confining potential does not require anyparticular phase relation to be satisfied, and that the phases of the order parametersbehave in exactly the same way as in the non-confined system discussed in Sec. 3.1.1:neighboring sites will always keep the same phase relation in the directions perpen-dicular to the node, while in the parallel direction the phase alternates with a π phasedifference.
We proceed with the Schrödinger equation for (4.8),

i ∂∂tΨ = H (0)
MFΨ.

We first notice that the the Hamiltonian of this discrete model, Eq. (4.8), has structuresimilar to the Mathieu equation expanded in momentum eigenstates [37], and therefore
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4. Confined p-orbital bosons
the eigenvalue problem for each of the pα orbitals can be written in the form

i ∂∂t


...

ψαj−1β
ψαjβ
ψαj+1β...

 =



. . . ...
ω22 R2

j−2β −tαβ 0 0 0
. . . −tαβ ω22 R2

j−1β −tαβ 0 0 . . .

. . . 0 −tαβ ω22 R2
j −tαβ 0 . . .

0 0 −tαβ ω22 R2
j+1β −tαβ

... . . .




...

ψαj−1β
ψαjβ
ψαj+1β...

 ,

(4.10)where as usual α, β ={x, y} and R2
j = x2

j + y2
j . Special cases of this equation can besolved analytically. However, since the solution is given in terms of Fourier expansionsof the Mathieu functions, there is not much to learn from analytical expressions inthis case [37]. In any way, it is still possible to understand the influence of the trap inrather simple terms by considering the continuum limit, where analytical solutions havea closed form. This consists in making ψαj Ï ψα(x, y), such that the kinetic energytransforms as

ψαj+1β − 2ψαj + ψαj−1β Ï
∂2
∂β2ψα(x, y).

But another step before arriving at the final form of the equations, is to impose in thewave function ansatz the correct phase imprint which renders the stripped order in thelattice. The phase factors are then further absorbed into the redefinition of the tunnelingcoefficients by making tαα Ï −tαα, and the equations of the orbital states are given by
i ∂∂tψx(x, y) = [

−|txx| ∂
2

∂x2 − |txy | ∂2
∂y2 + ω22 (x2 + y2)]ψx(x, y)

i ∂∂tψy(x, y) = [
−|tyx| ∂

2
∂x2 − |tyy | ∂2

∂y2 + ω22 (x2 + y2)]ψy(x, y) (4.11)
By introducing the effective mass mαβ = |tαβ|−1/2, and parallel and transverse frequen-cies

ω‖ = ω
√2|tαβ|, α = β

ω⊥ = ω
√2|tαβ|, α 6= β,

(4.12)
Eq. (4.11) can be re-written as

i ∂∂t ψx(x, y) = [ p2
x2mxx

+ p2
y2mxy

+ mxxω2
‖2 x2 + mxyω2

⊥2 y2]ψx(x, y), (4.13)
with a corresponding equation for the py orbital state. We find therefore that the con-tinuum approximation considerably simplifies the problem, for now the system we haveto deal with resumes to the 2D anisotropic harmonic oscillator. This also shows thatimplementation of the striped pattern in the wave-function ansatz prior to taking the thecontinuum limit helps avoiding a final Hamiltonian that is not bounded from below. It
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4. Confined p-orbital bosons
has an overall effect in the system, in the sense that it inverts the p band and shifts itsminimum to the center of the Brillouin zone, but the physics remain unchanged.
Now the anisotropy arising from the different tunneling elements txx and txy will affect
mαβ and therefore also ωαβ . As a consequence, the density of the resulting ground stateof Eq. (4.13) will be characterized by a Gaussian distribution, but with different widths in
x- and y-directions. We use this fact to define the anisotropy parameter

Sx =√ (∆xx)2(∆xy)2 , (4.14)
where (∆αβ)2 = 〈β2〉α − 〈β〉2α, and 〈..〉α represents the expectation value taken withrespect to ψα(x, y). The anisotropy in the density for atoms occupying the py-orbitalstate is characterized by an equivalent expression, that satisfies SxSy = 1 for symmetryreasons, and thus from now on we use S = Sx whenever discussing such anisotropies.In particular, in the continuum case discussed here

Scon = ( |txx||txy |

)1/4 = ( ω‖ω⊥
)
. (4.15)

The limit where ω‖ = ω⊥ corresponds to the case of isotropic tunneling, and yields S = 1.But as soon as this isotropy is broken, S 6= 1. Accordingly this reveals a narrowing inthe density of atoms in the orbital states along one of the directions.
4.2.1. The ideal gas at finite temperatures

The possibility of rewriting the Schrödinger equation of the non-interacting system in arather simple form allows for the study of thermodynamic properties of condensationin the p band.
We start by analyzing the properties of the continuum limit, described by Eqs. (4.11).Here known properties of condensation in harmonically trapped systems can be directlyused [29]. The critical temperature for the Bose-Einstein condensation, for example isgiven by

T (2D)
c = ω(2D)

eff

√6N/π2 (4.16)and
T (3D)
c = ω(3D)

eff (N/ζ(3))1/3 (4.17)in the two and three dimensional cases. It also follows that ζ(3) ≈ 1.20206 and theeffective trapping frequencies are defined [29] as
ω(2D)
eff = 3ω√|txx||txy | (4.18)and

ω(3D)
eff = 4ω(|txx||txy ||txz|)1/3 = 4ω(|txx||txy |2)1/3. (4.19)

For the discrete model described by Eq. (4.8), the critical temperature can be computedby noticing that the number of thermal atoms is determined by
NT =∑

n 6=0
1

eβ(En−µ) − 1 , (4.20)
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4. Confined p-orbital bosons

Figure 4.1.: Critical temperature for the establishment of Bose-Einstein condensation in the pband as a function of the atom number denoted by N . (a) shows the results of the2D system while (b) shows the results for the 3D system. We also compare theresults obtained for the continuum approximation (dashed line) with the results ofthe discrete model obtained numerically (solid line). The parameters here are ω2/2 =0.001 for the dimensionless trap strength and |txx/txy | = 20.1, which corresponds tothe ratio between the tunneling coefficients for Vx = Vy = 17.
where β = Er/kBT is the inverse (dimensionless) temperature and µ is the chemicalpotential. In these terms, the chemical potential is found by fixing the total atom number
N , and the energy levels En are obtained via diagonalization of (4.10).
In Fig. 4.1 we compare the results for the critical temperature in both the continuumand discrete cases. In the limit of very small atom number, the continuum limit predictslarger values for the critical temperature of the discrete model, while in the otherlimit, of large atom number, it predicts considerable smaller critical temperatures. Weattribute this difference as being a consequence of the different density of states betweenthe lattice and continuum models.
Now in the 2D version of the system, is there any change in the profile of the atomicdensity distribution as the temperature is lowered below the critical temperature Tcassociated to the transition to the condensed phase? In the limit of high temperature,we expect the system to display isotropic atomic density. This is because in this regionthe system is described by the Boltzmann distribution, which is isotropic. But after thesystem reaches the critical temperature, is there any direct signature of this intrinsictunneling anisotropy? The answer is yes. In fact, in the low temperature limit, thecondensed state of p-orbital bosons is characterized by a bimodal structure. In partic-ular, below Tc the condensate density has properties similar to the properties of theground state, which feature anisotropies because of the different tunneling strengths inthe different directions. This is illustrated in Figs. 4.2 (a) and (b), where we show thedensity

ntotal(j) = N0|ψ0(j)|2 +∑
n 6=0

|ψn(j)|2
eβ(En−µ) − 1 (4.21)

for two different temperatures, above Tc and for the ground state (where T = 0).
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4. Confined p-orbital bosons

Figure 4.2.: Populations per site of the 2D Bose gas in the p band and for a single orbital state.(a) shows a situation where T > Tc , while in (b) T = 0. In both cases the total numberof atoms in the system Ntot = 1000, the dimensionless trap strength ω2/2 = 0.001and potential depths are Vx = Vy = 17.

Figure 4.3.: The anisotropy parameter S (see text) that is used to characterize the anisotropy inthe density in the 2D system, and as a function of the temperatures scaled with txx .The number of atoms considered is N = 1000, the dimensionless trap strength is
ω2/2 = 0.001 and Vx = Vy = 17.
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4. Confined p-orbital bosons
To conclude this section, we use the anisotropy parameter defined in Eq. (4.14) andcharacterize how the anisotropy in the p-orbital ideal gas changes with temperature fora system with 1000 atoms in Fig. 4.3. As Fig. 4.1 (a) indicates, after the (scaled) criticaltemperature Tc ≈ 0.9, the atomic density becomes isotropic in the xy-plane.
4.2.2. Interacting system

In order to characterize the ground state of the interacting system we propagate themean-field equations (4.7) in imaginary time with an initial trial wave-function.
To illustrate how this procedure works [38], let us consider the Schrödinger equa-tion Ĥψ = Eψ such that the wave function ψ evolves in time according to ψ(t) =

e−iĤtψ(0), where we used ~ = 1. Writing ψ in the basis of its energy eigenstates,
ψ =∑n cnφn , with cn = 〈ψ|φn〉,

ψ(t) =∑
n
cne−iEntφ(0),

where En corresponds to the n-th energy level of the system. Now using t Ï iτ ,with
ψ(τ) =∑

n
cne−Enτφ(0),

the overlap between the ground state with the ψ(τ) propagated in imaginary time,and after a long propagation time, is given by
〈ψ(τ)|c0φ(τ)〉 Ï lim

τÏ∞

c20e−2E0τ
c20e−2E0τ +∑n=1 c2

ne−2Enτ = 1
Therefore in the limit of τ Ï ∞, ψ(τ) will converge to the true ground state of thesystem, as long as the overlap between these states is non-vanishing:

ψ(τ) = c0e−τHφ(0) + O(e−τ(E1−E0)),
with a correction of the order of O(e−τ(E1−E0)).This method can also be applied to non-linear systems as e.g the system describedby Eqs. (4.7), but in this case propagation has to be carried out self-consistently.

We re-write Eqs. (4.7) as
i∂Ψj
∂t = [ H11 H12

H21 H22
]Ψj, (4.22)

where Ψj = [ ψxj
ψyj

] and
H11 = −txx ∂2

∂x2 − txy ∂2
∂y2 +Uxx|ψxj|2 + (Uxy +Uyx)|ψyj|2,

H22 = −tyx ∂2
∂x2 − tyy ∂2

∂y2 +Uyy |ψyj|2 + (Uxy +Uyx)|ψxj|2,
H12 = (

Uxy+Uyx2 )
ψyjψ∗xj,

H21 = (
Uxy+Uyx2 )

ψxjψ∗yj.

(4.23)
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4. Confined p-orbital bosons
Since the Hamiltonian governing time-evolution contains both spatial and momentumdependent terms, we study the system numerically, with the use of the split-operatormethod [39]. This method is based on factorization of the evolution operator, and there-fore becomes exact only in the limit of vanishingly small time steps. Propagation is thuscarried out in very tiny time steps, and numerical accuracy of the procedure is checkedby varying the size of the time steps.
In what follows, we illustrate the details of the calculation. The time evolution operatoris written as
U(δt) = e−iHδt = exp{−i [ H11 H12

H21 H22
]
δt
} = exp{−i([ H11 00 H22

]+ [ 0 H12
H21 0

])
δt
}

and since we assume the lim δt Ï 0, this equation is further approximated as
U(δt) ≈ e−iδt

 H11 00 H22
︸ ︷︷ ︸

U1(δt)
e
−iδt

 0 H12
H21 0

︸ ︷︷ ︸
U2(δt)

. (4.24)
We now expand U2(δt). In particular,

[ 0 H12
H21 0

]2 =

(
Uxy+Uyx2 )2

|ψxj|2|ψyj|2 0
0 (

Uxy+Uyx2 )2
|ψxj|2|ψyj|2

 (4.25)
and [ 0 H12

H21 0
]3 = (Uxy +Uyx2

)3
|ψxj|2|ψyj|2

[ 0 ψyjψ∗xj
ψxjψ∗yj 0

]
, (4.26)

from where it follows that expansion of U2(δt) has the form
(−iδt)n
n! An = (−iδt)n

n! |ψxj|n−1|ψyj|n−1 [ 0 ψyjψ∗xj
ψxjψ∗yj 0

] (4.27)
for odd n, and (−iδt)n

n! An = (−iδt)n
n! |ψxj|n|ψyj|n

[ 1 00 1
] (4.28)

for even n. Gathering all the terms of the expansion, we have
U2(δt) =

 U (11)2 U (12)2
U (21)2 U (22)2

 , (4.29)
where

U (11)2 = U (22)2 = cos((Uxy +Uyx2
)
δt|ψxj||ψyj|

)
,

U (12)2 = −iδt (Uxy +Uyx2
) sinc((Uxy +Uyx2

)
δt|ψxj||ψyj|

)
ψyjψ∗xj

and
U (21)2 = −iδt (Uxy +Uyx2

) sinc((Uxy +Uyx2
)
δt|ψxj||ψyj|

)
ψxjψ∗yj
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4. Confined p-orbital bosons

Figure 4.4.: (a) and (b) show populations in the px- and in the py-orbital states respectively. (c)illustrates the corresponding population imbalance Jzj. The dimensionless systemparameters are Vx = Vy = 17, ω = 0.005, and U0N = 1. Excess of atoms in the
px-orbital state appears in the horizontal axis and is indicated by red color, while inthe vertical axis the system displays excess of atoms in the py-orbital state.

Now the idea is to make Ψ(δt) = U1(δt)U2(δt)Ψ = U1(δt)Ψ1, where Ψ1 = U2(δt)Ψ with
U1(δt) defined in (4.24). This involves evolution with a diagonal matrix that containstwo different types of contributions (see the expressions of H11 and H22 in Eqs. (4.23)),one that depends on derivatives with respect to x and y, and the other that contains aquadratic dependency of the orbitals order parameters. We will first evolve Ψ1 with thepart of U1 that does not depend on the derivatives and thus Ψ1 Ï Ψ̃1. After this stepis taken into account, the remaining part is considered in momentum space. By meansof a Fourier transform we obtain the expression of Ψ̃1 in the momentum representa-tion, F[Ψ̃1] = Ψ̃, which can then be easily evolved with the corresponding dispersionrelations5[
ψ̃xj(δt)
ψ̃yj(δt)

] = [ e−iδt[2txx (1−cos kxx )+2txy (1−cos kxy )] 00 e−iδt[2tyx (1−cos kyx )+2tyy (1−cos kyy )]
] [

ψ̃xj
ψ̃yj

]
.(4.30)By Fourier transforming it back to the position representation, the final result is Ψ(δt)(cf. Eq. (4.22)), that is used now as the trial wave function and propagated in imaginarytime again. This procedure is repeated until convergence has been reached.

Fig. 4.4 displays the density profiles of the px- and py-orbitals in the confined system,in (a) and (b), respectively. As can be seen from comparison with Fig. 4.2 (b), here thedensity of the px-orbital state is also elongated in the x-direction, with analogous resultholding for the density of the py-orbital. Fig. 4.4 (c) shows the population imbalancein the lattice, i.e., the difference between the number of atoms occupying the px and
py orbital states at the site j (Jzj). Now the next question that arises is what happensin the regime where tunneling stops playing an important role in the dynamics of thesystem?
There are two ways of weakening the role of tunneling in the lattice: either by makingthe lattice sites very deep, either by making the coupling parameter Ũ0 (see Eq. (2.24))very large. In these situations, i.e., in the limit where interactions are so strong that

5In momentum space the term −tαβ ∂2
∂β2 corresponds to tαβk2

αβ . Here however we use k2
αβ Ï 2tαβ(1−cos kαβ)to account for the (inverted) shape of the p band and the discrete character of the system.
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4. Confined p-orbital bosons
other effects can be neglected in the dynamics, the system is said to be in the Thomas-
Fermi limit [29]. Now since we already know that the tunneling is the main factorrendering this anisotropic profile for the atomic cloud, it is natural to expect that bysuppressing its effects, the density should display more and more symmetric profile. Buthow does this transition from anisotropic to symmetric profile happens as the relativestrength of tunneling gets weaker as compared to other terms in the mean-field versionof Hamiltonian (4.4)?
In order to characterize anisotropies in the density, we use again the anisotropy param-eter defined in Sec. 4.2:

S =√ (∆xx)2(∆xy)2and calculate if for different values of the system’s parameters. As showed in Fig. 4.5, theanisotropy parameter approaches S = 1 smoothly in both cases. However, as opposedto the behavior of S obtained for suppressing the tunneling by increasing the interactionstrength (axis U0N in Fig. 4.5), when the lattice sites are made deeper and deeper (Vaxis), the anisotropy of the density increases until it reaches a maximum value, and fromthere it decreases monotonically until it reaches 1. Although we had no reason to expectsuch behavior, which in fact is not predicted by Scont in the continuum limit6, this canbe a consequence of the poor description provided by the tight-binding approximationin situations which assume shallow lattice sites and therefore the results should not betaken too literally in this region. To complement the analysis, Figs. 4.6 (a) and (b) displaythe density profile of the px- and py-orbitals for a situation with moderate interaction,where U0N = 15, ω = 0.005 and V = Vx = Vy = 17, which confirms the results discussedhere.
When the system is not confined, mean-field analysis reveals that the ground state ischaracterized by the staggered vortex-like solution. This corresponds to the most favor-able configuration satisfying both requirements of tunneling and interaction parts whichlead to the lowest energy. What happens now with the staggered vortex solution, whenthe system is harmonically confined?
As opposed to the non-confined system, the atomic cloud in the present case is not evenlydistributed in the lattice, and as discussed previously, it has the approximate form of aGaussian distribution. Here we investigate ground state properties and characterize thefate of the staggered vortex-like solution in terms of the mean-field version of Schwingerbosons, as discussed previously in Sec. 3.1.1. It was argued there, that the phase of thefull onsite order parameter, Eq. (3.2), was characterized by a true vortex/anti-vortexprofile only in the harmonic approximation. Outside this limit, even Jzj = 0 didn’tprovide sufficient condition for rendering a perfect staggered vortex solution. And asdiscussed above, the confined system has already a natural imbalance in the numberof atoms occupying the px and py orbital states, as seen in Fig. 4.4. Here it holds thus

6It should be noticed, however, that the expression provided by Scont is obtained in the limit of U0 = 0and it does not approach 1 as V Ï∞. On the other hand, under these circumstances any small U0 > 0is sufficient to make Scont Ï 1 since the kinetic term is going to be negligible relatively to interactions.For moderate values of the lattice depth V , Scont increases monotonically with increasing of V . Thisbehavior is not confirmed by the predictions of the discrete model (Eq. (4.8)) and thus it should be keptin mind that the behavior predicted for the density anisotropy in the limit of deep lattices is qualitativelydifferent in the continuum and discrete models.
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4. Confined p-orbital bosons

Figure 4.5.: The condensate anisotropy parameter S (see Eq. (4.14)) as a function of the inter-action strength U0N and of the lattice amplitude V = Vx = Vy for the system withdimensionless trap frequency ω = 0.005. It illustrates that the system enters theThomas-Fermi regime whenever the relative strength of the tunneling compared tointeractions becomes small, i.e., S Ï 1.

Figure 4.6.: These plots display populations in the px- (a) and py- (b) orbital states, for Vx = Vy =17, ω = 0.005 and U0N = 15. Due to the strength of the interactions, the anisotropyin the density is not so pronounced as compared to the results in Figs. 4.4 (a) and(b).
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4. Confined p-orbital bosons

Figure 4.7.: Bloch vector at different sites of the optical lattice. We use the horizontal axis torepresent the y-component of the spin and the vertical axis to represent the spin
z-component. The x-component of the spin is strictly zero due to the specific onsitephase locking between the px-and the py-orbital states. Information about the densityis encoded in the length of the Bloch vector (see Eq. (3.16)) and the offset from thehorizontal axis encodes information about the breakdown of the antiferromagneticorder. The black dots are used to denote the lattice sites. In (a) U0N = 1 and in(b) U0N = 15. The other parameters are the same as in Fig. 4.6. This illustrates,in particular, that the staggered-vortex solution remains valid in a larger number ofsites in the center of the trap in the limit of large interactions.

that in general Jzj 6= 0, and the staggered vortex solution is certainly lost at the edgesof the condensed cloud. In the center of the cloud, however, where Jzj ≈ 0, it is stillpossible to find characteristics of non-trapped like physics. This is illustrated in Figs. 4.7(a) and (b), which display the Bloch vector in the yz-plane7, Jj = (0, Jyj, Jzj). By callingthe horizontal axis the y-spin direction and the vertical axis the z-spin direction, we seethat the Jyj component dominates at the center of the trap, while at the edges the Blochvector no longer points along the horizontal direction. This reveals the breakdownof the staggered vortex solution in these regions. It also shows, however, that in thelimit of larger interactions where the density becomes more symmetric, the staggeredvortex-like solution holds true for a larger number of sites in the center of the trap.
4.2.3. Properties of the system in the anisotropic la�ice

All the properties discussed so far addressed the case of a symmetric lattice, wherethe requirements ensuring the degeneracy of the orbital states were automatically ful-filled. This picture is modified in anisotropic or asymmetric lattices, where any smallanisotropy/imperfection is in principle capable of lifting the degeneracy between theorbital states.
In particular, there are two ways of introducing anisotropies in the lattice discussed

7Recall here that Jxj is always zero.
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4. Confined p-orbital bosons
here, either as a result of choosing different wave vectors, kx 6= ky , either as a result ofhaving a lattice with different amplitudes Vx 6= Vy in the different directions. What arethe properties of the physics then, and how robust are the properties of the symmetriclattice with respect to small imperfections?
We investigate these issues by considering the second scenario, of a lattice with differentamplitudes, and in terms of the anisotropy parameter

R = Vy
Vx

(4.31)
which controls the ratio between the lattice depths. The case of R = 1 recovers thesymmetric lattice that was already discussed.
We have checked (numerically) that the main effect of the asymmetry is to shift theenergy levels between the degenerate orbital states. The amount can be estimated inthe harmonic approximation, for example, by considering the onsite energies of the pxand py orbitals at the j-th lattice site:

∆ = Ey − Ex = 2√Vx(√R − 1), (4.32)
where Eα = ∫

d~r w∗αj(~j)[−∇2 + Vlat(~r)]wαj(~j) is the energy of the pα orbital state. Thissplitting is actually site independent, and as long as the value of ∆ is much smaller thanthe energy scale set by the interaction terms, EU ∼ U0N|ψx|2, it doesn’t really affect thephysics.
This picture becomes more complicated when more sites are taken into account. It canbe the case, for example, that interaction is capable of coupling the order parameters ofthe orbital states in a small region δ around R = 1, such that small changes of the latticeparameters can lead to drastic changes in the properties of the ground state8. This is animportant point to be considered here, because in case it is possible to accurately controlthese parameters, the physics in a neighborhood around the degeneracy point mightreveal novel phenomena similar to adiabatic ramping through an avoided crossing9 (asdiscussed in Ref. [40]). In this sense the parameter which computes population imbalancebetween the different orbital states

Jz = 1
N
∑

j
Jzj, (4.33)

arises as a natural candidate for characterizing sensitivity of the system with respectto R. When Jz = −1, all the particles occupy only py orbital states, and in the sameway, when Jz = 1 all the particles occupy only px orbital states. In addition, the case of
Jz = 0 recovers the symmetric lattice, which is characterized by the equal sharing ofpopulation among the different orbitals. Now it is important to remember that the trapdefines an effective size for the system that is fixed by ω. Since this will set the extent towhich finite size effects affect the system10, we expect that sensitivity under variationsof R is greatly influenced by the values of the trap frequency.

8In the sense of changing its symmetry properties.9It is important to point out, however, that since here the densities of different orbital states are spatiallydifferent, adiabatic driving could lead to macroscopic flow of particles within the trap.10By transforming energy level crossings into avoided crossings, for example.
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4. Confined p-orbital bosons

Figure 4.8.: The parameter for measuring population imbalance Jz as a function of the latticeasymmetry parameter, R, and for different values of the trapping frequency. Here
U0N = 1 and Vx = 17. The vertical dashed lines are used to denote the typical sizes
δ of the transition region where atoms coexist in the two orbital states. In particular,smaller values of ω are associated with smaller values of δ. This means that thetransition becomes sharper as the system’s size increases.

Figure 4.8 depicts the behavior of Jz around R = 1 for systems of different sizes, i.e.,with different trapping frequencies ω. It illustrates that the range of δ is smaller forlarger systems, which implies that qualitative properties of the ground state will changemore abruptly for increasing system sizes. We also verified numerically that δ increaseswith increasing values of the interaction strength U0N , which is in agreement with thepicture that the orbital order parameters are coupled by interactions.
This suggests thus that if the system interacts very weakly, a very fine tuning of thelattice parameters is required in order to investigate the properties of the ground stateof the symmetric lattice. In addition, these properties become more robust in the limitof stronger interactions. In fact, even a small temperature could actually contibute tothe establishment of phase coherence between the order parameters of the px and pyorbital states in experimental realizations. This follows from the reduction of the energygap between the ground and first excited states around the R = 1 point, that makes iteasier for the atoms to occupy the first excited state. In particular, this is needed forbalancing the population of the two orbitals. We furthermore notice that the transitionfrom one to the other extreme of Jz is smooth for nonzero ω, and that by controlling thelattice amplitudes this system could realize a many-body Landau-Zener transition [41],which when R is tuned externally could form a play-ground of the Kibble-Zurek [42]mechanism.
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5. Beyond the mean-field approximation: E�ective
spin Hamiltonians via exchange mechanism

In the previous chapters we studied the physics of p-orbital bosons from a mean-fieldperspective. In this chapter we move away from the mean-field regime and study thephysics of the strongly correlated Mott insulator phase of p-orbital bosons. We areparticularly interested in the Mott-insulator state with a unit filling of the lattice sites1and mainly in the case of a 2D lattice.
As will be shown in Sec. 5.1, there is a regime for which the dynamics of the two orbitalcase can be effectively described by the Hamiltonian of the XYZ quantum Heisenbergmodel in external field2. This spin model, in turn, is one of the classical models employedfor describing quantum magnetism [44, 45], and particularly special for falling in the classof non-integrable models [46]. This means that there is no known heuristics leading toanalytical solutions in closed form. On the other hand, as we show here, this physicsis accessible with the use of bosons in the p band of an optical lattice. In this context,therefore, p-orbital bosons constitute a nice controllable system that can be used as a
quantum simulator3 [3, 24].
This will be discussed in Sec. 5.1.1, where we characterize the phase diagram for theparticular case of an effective 1D spin chain for both the infinite and finite cases. Wecontinue then by presenting detection schemes which are capable of experimentallyaddressing the physics discussed, in Sec. 5.2. We conclude this study by extending thecalculations for the three orbital case4 in Sec. 5.5.

1We remark that this is the easiest case for experimental realizations of Mott phases for bosons in excitedbands [43].2This chapter is based in the study done in Paper II.3The idea of quantum simulation dates back to 1982, in the work of Feynman entitled Simulating Physics
with Computers [23]. In this work Feynman suggests that an alternative way to understanding compu-tationally intractable systems (due to the exponential growth of the Hilbert space, for example) would beto find another system of experimental feasibility that has the same equations of motion. In this senseone physical system would be ’simulated’ by another.4That is, where an effective one-dimensional chain is constructed from a three-dimensional lattice.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
5.1. p-orbital Bose system and e�ective spin Hamiltonian

Let us consider once more the second quantized Hamiltonian describing a system of
p-orbital bosons in two dimensions5:

Ĥ = −
∑

α
∑
〈i,j〉 tαij â

†
i,αâj,α +∑i,α

[
Uαα2 n̂i,α(n̂i,α − 1) + Eosα n̂i,α

]
+∑iα 6=β (Uαβn̂i,αn̂i,β + Uαβ2 â†i,αâ

†
i,αâi,βâi,β

)
,

(5.1)
where â†i,α creates a particle in the pα-orbital with α = {x, y} at site i, n̂i,α = â†i,αâi,α, andwhere ∑〈i,j〉 is the sum over nearest neighbors. We remind again that the tunnelingelements6 tαij and coupling constants Uαβ depend on the orbital states and are given byEqs. (2.33) and (2.32), and Eosα denotes the onsite energy of the pα-orbital state.
Our interest here is in the physics of the Mott insulator phase with a unit filling ofthe lattice sites. In this regime the system admits description in terms of an effectiveHamiltonian, obtained from the perturbative expansion of the tunneling processes up tosecond order in t/U . We give here a detailed description of the procedure [45, 47].
First let Ĥ act on the Hilbert space H. Define HP as the projection on the subspace
P̂H of states which describe sites occupied by one atom, and HQ , where Q̂ = 1̂ − P̂the subspace of states with at least one doubly occupied site. Since both P̂ and Q̂ areprojection operators, the following relations hold: P̂2 = P̂ and Q̂2 = Q̂. The eigenvalueproblem associated to Ĥ can be decomposed as

ĤΨ = EΨÏ Ĥ
(
P̂ + Q̂

)ΨÏ (
ĤK + ĤU

)(
P̂ + Q̂

)Ψ = EΨ, (5.2)
whereHK andHU describe, respectively, the kinetic and the interaction terms of Eq. (5.1).
We then act with Q̂ and P̂ from the left(

Q̂ĤKP̂ + Q̂ĤKQ̂ + Q̂ĤU P̂ + Q̂ĤUQ̂
)Ψ = EΨ,(

P̂ĤKP̂ + P̂ĤKQ̂ + P̂ĤUQ̂ + P̂ĤU P̂
)Ψ = EΨ, (5.3)

and use that Q̂ĤKQ̂, Q̂ĤU P̂, P̂ĤKP̂ and P̂ĤU P̂ are all equal to zero7 to obtain the fol-lowing expression
Q̂Ψ = − 1

Q̂ĤUQ̂ − E
Q̂ĤKP̂Ψ, (5.4)

which leads to
ĤMott1 = −P̂ĤKQ̂

1
Q̂ĤUQ̂ − E

Q̂ĤKP̂. (5.5)
5In order to match the notation used in the previous chapters of this thesis, the notation here differs fromwhat we used in Paper II.6Notice here that tαij is used to denote the tunneling of a pα-orbital atom from site i to site j in a genericway, and that the direction of the tunneling should be implicit in the ij indices.7The first three terms are equal to zero for connecting orthogonal projections of the Hilbert space, whilethe last term is equal to zero for computing interactions in states that have a unit occupation of thelattice sites.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
So far this result is exact. It explicitly shows the effects of the tunneling, which actsas an intermediate and couples the different projections of the Hilbert space P̂H and
Q̂H. We summarize it here by considering the physics in two neighboring sites, anddenote the states of the 2-site problem as |sitej, sitej+1〉. Let us start from a situationwhere each of these lattice sites are occupied by only one atom. Suppose then that theparticle at the site j tunnels to the site j + 1. This yields a state where the (j + 1)-thsite is doubly occupied, and that has a corresponding matrix element which accountsfor the interaction processes allowed by ĤU . After interaction has taken place, one ofthe particles is brought back to the site j8, and again, in the final state, the lattice sitesare characterized by unit filling. This is the starting point for derivation of the effectiveHamiltonian describing the n = 1 Mott (Mott1) phase of p-orbital bosons. But up till nowwe have not yet specified the equations that describe the optical lattice. We use here thesame sinusoidal potential as in Chapter 4,

Vlatt(r) = Vx sin2(kxx) + Vy sin2(kyy), (5.6)
and remind once more that Vα and kα are the amplitude and wave vector of the potentialin the direction α = {x, y}.
Under the assumptions of the Mott phase, the operator 1/(Q̂ĤUQ̂ − E) in Eq. (5.5) canthen be expanded to lowest order in t/Uαβ in analogy to the customary procedure usedfor the large U expansion of the Hubbard model at half filling [45, 47]. Let us considerthe 2-site problem again9 and define a basis for the HP and HQ subspaces:

HP Ï {|X,X〉, |X,Y〉, |Y,X〉, |Y, Y〉} (5.7)
and

HQ Ï {|0, 2X〉, |0, XY〉, |0, 2Y〉}. (5.8)Notice, in particular, that the states listed above for a basis in HQ are only the onesthat are relevant for the perturbative calculation10. It also follows that the full energy inEq. (5.5) is of the order of E ∼ t2/U , which makes it possible to consider (ĤQ − E)−1 ≈
Ĥ−1
Q , where ĤQ = Q̂ĤUQ̂. However, due to the possibility of transferring populationbetween the different orbital states via action of ĤFD , the projection of the Hamiltonianon the HQ subspace is not diagonal in the basis of the intermediate states with doublyoccupied sites. We therefore adapt the usual procedure for this situation and estimate thematrix elements for characterizing the virtual interaction resulting from the exchangeprocesses by using the inverse matrix Ĥ−1

Q . Explicitly,

ĤQ =


Uxx 0 Uxy

0 2Uxy 0
Uxy 0 Uyy

 (5.9)

8Again via action of the tunneling Hamiltonian.9Under the assumption of the tight-binding regime it is enough to consider what happens in two sites.10In fact, these are precisely the intermediate states of the perturbative analysis.

42



5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
and its inverse

Ĥ−1
Q =


Uyy/U2 0 −Uxy/U2

0 1/2Uxy 0
−Uxy/U2 0 Uxx/U2

 , (5.10)
where U2 ≡ UxxUyy − U2

xy . On this basis we arrive at the final form of the effectiveHamiltonian by computing the relevant matrix elements of (5.5).
From states of the type |αi, αj〉

â†α,iâα,jĤ−1
Q â†α,j âα,i|αi, αj〉 = â†α,iâα,jĤ−1

Q
√2|0, 2αj〉

= √2â†α,iâα,j(UββU2 |0, 2αj〉 − Uαβ
U2 |0, 2αj〉)= 2Uββ

U2 |αi, αj〉the effective Hamiltonian acquires a term of the form
−
∑
〈i,j〉

∑
α

2|tαij |2Uββ
U2 n̂α,in̂α,j .

In the same way, from the states of the type |αi, βj〉, with α 6= β,
â†α,iâα,jĤ−1

Q â†α,j âα,i|αi, βj〉 = â†α,iâα,jĤ−1
Q |0, αjβj〉

= 12Uxy â†α,iâα,j |0, αjβj〉 = 12Uxy |αi, βj〉,corresponding to the operator
−
∑
〈i,j〉

∑
α

|tαij |22Uxy n̂α,in̂β,j .
From the states of the type |βi, αj〉 and the following process

â†α,iâα,jĤ−1
Q â†β,j âβ,i|βi, αj〉 = â†α,iâα,jĤ−1

Q |0, αjβj〉
= 12Uxy â†α,iâα,j |0, αjβj〉 = 12Uxy |αi, βj〉,the Hamiltonian gains a contribution as
−
∑
〈i,j〉

∑
α

tαjit
β
ij2Uxy â†α,iâβ,iâ†α,j âβ,j .

Finally, we consider the states of the type |βi, βj〉,
â†α,iâα,jĤ−1

Q â†β,j âβ,i|βi, βj〉 = â†α,iâα,jĤ−1
Q
√2|0, 2βj〉
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
= √2â†α,iâα,j(UααU2 |0, 2βj〉 − Uxy

U2 |0, 2αj〉)=−2Uxy
U2 |αi, αj〉,that contribute to the effective Hamiltonian with a term that changes the orbital statesof the atoms in both sites ∑

<i,j>

∑
α,α 6=β

2tαjitβijUxy
U2 â†α,iâβ,iâ

†
β,j âα,j .

The resulting expression for the effective Hamiltonian corresponds thus to
ĤMott = −∑

〈i,j〉

∑
α

(2|tα|2Uββ
U2 n̂α,in̂α,j + |tα|22Uxy n̂α,in̂β,j

−
2tαjitβijUxy

U2 â†α,iâβ,iâ
†
α,j âβ,j + tαjit

β
ij2Uxy â†α,iâβ,iâ†β,j âα,j

)
.

(5.11)

We now use the orbital states to define the Schwinger spin operators [48]
Ŝz = 12(â†xâx − â†yây)
Ŝ+ = Ŝx + iŜy = â†xây

Ŝ− = Ŝx − iŜy = â†yâx,

(5.12)

and together with the constraint of unit occupation of the lattice sites in the Mott1 phase,i.e. n̂x,i + n̂y,i = 1, we rewrite Eq. (5.11) as
ĤMott = −∑

〈i,j〉

(
JzzŜzi Ŝzj +JxxŜxi Ŝxj +Jyy Ŝyi Ŝyj )−∑

i
JzŜzi .

This shows that within the perturbative regime, the physics of bosonic atoms in theorbital states of a 2D optical lattice is well described by the XYZ quantum Heisenbergmodel in an external field, where all the parameters of the spin model depend on thelattice configuration. We notice, in addition, that no assumption regarding the geometryof the lattice was used, and thus this derivation applies to square lattices, hexagonallattices, etc.
From now on we restrict the study to the case of asymmetric lattices with very deeppotential wells in one of the axis, say the y-direction, in such a way to yield an effective1D dynamics11 (here along the x axis). At the same time the wave vectors are adjustedso that the quasi-degeneracy of the orbital states is maintained12. In other words, weare considering the case where |txy |, |tyy | Ï 0 and also that Uαβ � |txx|, |tyx| due to the
11Here we focus on the effective 1D system, but generalizations of the procedure for computing thecouplings of the effective Hamiltonian for the 2D system is straightforward.12In the harmonic approximation this is achieved by imposing that Vxk2

x = Vyk2
y . For sinusoidal latticesthere is no simple relation which states the degeneracy condition, but this can be numerically checkedfor various lattice configurations.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
strong coupling regime condition. Therefore, in terms of the lattice parameters, theexpression for the various couplings follow

Jxx = 2txty
Uxy

(1− 4U2
xy
U2

)
, (5.13)

Jyy = 2txty
Uxy

(1 + 4U2
xy
U2

)
, (5.14)

Jzz = 4 |tx|2UyyU2 + 4 |ty |2UxxU2 − |tx|
2

Uxy
− |ty |

2
Uxy

, (5.15)
Jz = 2|tx|2Uyy

U2 − 2|ty |2Uxx
U2 + (Eosx − Eosy ). (5.16)

We adopt here the standard notation used for the XYZ Heisenberg model and define J =
−2txty/Uxy , ∆ = −Jzz, h = −Jz, and γ = −4U2

xy/U2, in terms of which the Hamiltonianis then rewritten as
ĤXYZ =∑

〈i,j〉
J
[(1 + γ)Ŝxi Ŝxj + (1− γ)Ŝyi Ŝyj + ∆

J Ŝ
z
i Ŝzj
]+ h

∑
i
Ŝzi . (5.17)

Notice that the tunneling in the p band satisfies txty < 0 and therefore J > 0. In addition,since |γ| < 1 the interactions between the x-component and the y-component of neigh-boring spins always favor for anti-ferromagnetic order. This is an interesting property,for bosonic particles always preserve the sign of the wave function under exchangeprocesses, and thus it is more natural for a bosonic system to display ferromagneticorder. This is not the case here, however, and its only possible because of the specificproperties of the tunneling in the p band.
Another important feature of this spin model which follows solely due to the propertiesof the p-orbital bosonic system, is the appearance of the anisotropy parameter γ whichbreaks the rotational symmetry characteristic of the XXZ Heisenberg model13. In fact,this is a consequence of the terms describing transit of population between the differentorbital states, in ĤFD , which break the continuous U(1) symmetry of the Hamiltonianto a set of Z2 symmetries. Accordingly, the resulting XYZ spin model is also invariantonly to discrete Z2 symmetries. This property is related to the ’parity’ of the states ofthe many-body Hamiltonian, which divides the eigenstates into states with even or oddnumber of atoms in the px and py orbitals.
The importance of the orbital changing term in the dynamics of the effective spin modelcan be further investigated in terms of the Jordan-Wigner transformation [51]

Ŝ−i = eiπ
∑i−1

j=1 ĉ†j ĉj ĉi
Ŝ+
i = ĉ†j e

iπ
∑i−1

j=1 ĉ†j ĉj ,
(5.18)

13The same procedure applied to the usual (ground band) Bose-Hubbard Hamiltonian with one atom persite yields spin chains with continuous symmetries (as is the case of the XXZ model), and which typicallyfavor for ferromagnetic order [49, 50].
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
where the ĉj are fermionic operators satisfying {ĉi, ĉj}={ĉ†i , ĉ†j }= 0 and {ci, c†j }= δij .This yields the fermionic Hamiltonian

ĤK/J = ∑
n

[(ĉ†nĉn+1 + ĉ†n+1ĉn) + γ(ĉ†nĉ†n+1 + ĉn+1ĉn)
+∆

J (ĉ†nĉn − 12 )(ĉ†n+1c†n+1 − 12 ) + h
J (ĉ†nĉn − 12 )] (5.19)

that contains a pairing term proportional to γ. The presence of a pairing term typicallyopens a gap in the energy spectrum, and therefore we expect the spectrum to be gappedwhenever γ 6= 0. In addition, we notice furthermore that the limit of ∆ Ï 0 is arealization of the Kitaev chain [52].
5.1.1. Properties of the ground state: the phase diagram of the XYZ model

We illustrate the rich physics of the XYZ model in external field by discussing the phasediagram for the 1D14 open chain15. One dimensional quantum systems are particularlyinteresting, for quantum effects are specially pronounced in low dimensions.
One dimensional quantum systems require a description which accounts for thecollective rather than individual behavior of their constituent parts [53]. To seethis more explicitly, let us consider, for example, a system of spinless bosons withrepulsive interactions in one dimension. Such a system is described in general termsby a symmetric wave-function. But in the limit of infinitely repulsive interactions -the Tonks-Girardeau limit, it is reasonable to assume that the amplitude of thiswave-function should decrease in the neighborhood of any of the bosonic particles,and vanish completely at the exact values for which the probability of finding any ofthese particles is maximum, as shown in Fig. 5.1.Now the symmetric wave-function shown in Fig. 5.1 can be used to construct an al-ternative anti-symmetric wave-function via reflection to the negative axis, with nodesthat reproduce the nodes of the symmetric case. At the level of the wave-functions,the description provided by the symmetric and anti-symmetric wave-functions will bevery different. In fact, collective anti-symmetric wave-functions describe systems ofnon-interacting fermions, not of bosons. But the construction of this anti-symmetricwave-function can be considered in such a way that its absolute value reproducethe absolute value of the symmetric wave-function. This means, therefore, that theproperties of the bosonic system at the level of densities, as e.g. density-density cor-relation functions, can be completely inferred from the properties of a system ofnon-interacting fermions. This process is usually referred to as the fermionization

of bosons [54], and is used here to illustrate how interesting and maybe counterintuitive nature can become when collective behavior is allowed to play a role in lowdimensional quantum systems.

14We remark that little is known about the XYZ Heisenberg model in external field in higher dimensions.In addition to not having analytical solutions, numerical treatment of this problem is very limited dueto the exponential growth of the Hilbert space and becomes intractable already for a small number ofspins in 2D (less than 8x8 sites).15That is, with open boundary conditions.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

Figure 5.1.: One dimensional system of infinitely repulsive bosonic particles. The position of thebosons are the black dots in the x-axis and the red and blue wave functions arethe corresponding symmetric and anti-symmetric descriptions. This figure is takenfrom Ref. [54].
Now in 1D the ground state of the system described by Eq. (5.17) experiences four dif-ferent phases as the parameters of this Hamiltonian are varied. A schematic phasediagram is illustrated in Fig. 5.2. At zero field, the XYZ Heisenberg model is integrable16with known analytical expressions for the eigenvalues and the eigenvectors [55]. Atlarge positive values of ∆/J the system has anti-ferromagnetic order in the z-direction.For small values of ∆/J , the system displays Nèel ordering in the y-direction and is inthe so called spin-flop phase [56]. The h = 0 line for large negative values of ∆/J ischaracterized by a ferromagnetic phase in the z-direction, and for all the cases, thelimit of large external field displays a magnetized phase, where the spins align alongthe orientation of the field in the z-direction. These three phases also characterize thephase diagram of the XXZ model in a longitudinal field [44]. For non-zero anisotropy
γ, however, the system has an additional phase in between the anti-ferromagnetic andspin-flop phases that is called as the floating phase [56]. This is a gapless phase charac-terized by algebraic decay of the correlations17. Notice, in particular, that this propertyis unexpected from the point of view of the fermionic chain, where as stated before forvalues of γ 6= 0 the Hamiltonian contains a pairing term, which typically opens a gap inthe energy spectrum.
All these phases are separated by different types of phase transitions. The transitionfrom the anti-ferromagnetic to the floating phase is of the commensurate to incommen-surate (C-IC) type, whereas the transition from the floating phase to the spin flop phaseis a Berezinski-Kosterlitz-Thouless (BKT) transition. For ∆ < −(1 + |γ|) there is a firstorder phase transition at h = 0 between the two polarized phases (all spins up or allspins down) and finally, between the spin flop and the polarized phases there is an Isingtransition.

In what follows we give a brief description of the properties of the different phasesand the different types of phase transitions. Here we illustrate these concepts in thecontext of interacting spins, where we consider an Ising-like Hamiltonian given by
HIsing = −J∑〈i,j〉 ŜiŜj + h

∑
i Ŝi.• Nèel order: Nèel order is the term generally used to describe a state with

16It was shown by Sutherland, in 1970 [46, 55], that the transfer matrix of any zero-field eight-vertex modelcommutes with the Hamiltonian of the XYZ Heisenberg model. In addition, it was shown by Baxterin 1971 and 1972 that for any values of the couplings in the Hamiltonian of the XYZ model, Eq. (5.17),this operator is effectively a logarithmic derivative of an eight-vertex transfer matrix and therefore theminimum eigenvalue of Eq. (5.17) can be obtained [46, 55]. Baxter study properties of the ground stateof the XYZ model by generalizing the Bethe ansatz [55], and in 1973 Baxter’s results were generalizedby other authors and used for computing the energy of the excitations of the XYZ model.17In terms of bosonization [53, 57] and renormalization group arguments, the floating phase is characterizedby irrelevant Umklapp terms and accordingly described by the Luttinger Liquid theory. Upon enteringthe XY phase these terms are no longer irrelevant and the phase becomes gapped [56].
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

Figure 5.2.: Schematic phase diagram of the XYZ chain. AFM denotes the anti-ferromagneticphase, FP the floating phase, SF the spin flop phase and PP the polarized phase.The properties of these phases and of the different types of phase transitions arediscussed in the text.
broken symmetry and for which

〈Ŝi〉 6= 0
for all the spins [58]. And although this is most commonly used to refer to thebipartite lattice, i.e., the Nèel anti-ferromagnet, where the direction neighboringspins alternate in opposite directions [58], there are more complex patterns thatalso correspond to a Nèel state [58].• Anti-ferromagnetic phase (J < 0): as stated above, the anti-ferromagnetic phaseis characterized by Nèel order with alternating neighboring spins. States of thistype are characterized by staggered magnetization [58], and therefore the netmagnetization is vanishing:

M =∑
i
〈Ŝi〉 = 0.

• Floating phase (J < 0): this is a gapless phase without long range order, andfor which the correlations decay algebraically [59].• Spin-flop phase (J < 0): this corresponds to a gapped phase with Nèel order inthe x and y components of the spin. It is again a gapped phase, with exponentialdecay of the correlations.• Highly magnetized state or polarized phase (J < 0): for sufficiently large h, thephase diagram of spin models subjected to external fields will always displaya highly magnetized state, where the spins align in the direction of the field.This corresponds to a ’forced’ order, in the sense that there is no symmetrybreaking involved in the ordering processes and the spins are uncorrelated.• Ferromagnetic phase (J > 0): for the case of positive J both the spins and theirneighbors align in the same direction, which therefore builds a highly magne-tized state. Here, however, as opposed to the polarized phase, the ordering isaccompanied of symmetry breaking, with an order parameter similar to theorder parameter of the anti-ferromagnetic phase [58].We now briefly discuss the properties of the different types of phase transitions thatappear in the phase diagram of the infinite system, Fig. 5.2:• Ising transition: the transition between the polarized and the spin flop phasesbelongs to the universality class of the 2D Ising model. It is classified as acontinuous or second order phase transition, and therefore the discontinuities
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
appear at the level of the order parameter (or second derivatives of the en-ergy). In the Ising transition the critical exponent related to the divergenceof the correlation length goes as ξ ∝ (distance from the transition)−1 as oneapproaches the critical point, and in addition, the dynamical critical exponent18(z) is also equal to one [61, 62].• Berezinski-Kosterlitz-Thouless (BKT) transition: BKT transitions also belong tothe class of continuous phase transitions. They are rather special, however, forthe derivatives of the energy don’t present discontinuities (they are sometimesreferred to as infinite order phase transitions), and there is no local orderparameter [63]. In fact, BKT transitions do not involve symmetry breaking andare not described by the Landau theory.• Commensurate to incommensurate (C-IC) transition: the C-IC transition hap-pens due to the interplay of competing length scales in the system. In a periodicsystem, the collective excitations can develop a periodic structure that has dif-ferent period from the ’natural period of the system’. These structures couldcomprise kinks, walls or solitons19 [64].• First order phase transition: in thermodynamic systems, first order phase tran-sitions are defined as transitions that involve coexistence of phases, latent heat,and the discontinuities appear in the first derivative of the free energy [61].In the same way, in quantum phase transitions20, the discontinuities appear inthe first derivative of the ground state energy as one of the parameters of theHamiltonian is varied.

Since any implementation of the Heisenberg model will contain effects of finite size dueto the harmonic confinement inevitably required for experimental realizations with coldatoms, it is important to reproduce these studies in systems with finite sizes. In thepresence of confinement, in addition, it might also be the case that the inhomogeneitiesin the density affect the properties of the system. Here, however, as long as the trap issmooth enough such that the system satisfies the requisites of the local density approx-imation (as discussed in Sec. 4.1), effects stemming from the confinement renormalizethe couplings such that they become spatially dependent. In the same way, as long asthe sizes of the orbitals are very small compared to the length scale imposed by thetrap, this spatial dependency is not relevant for the physics, and can therefore be ne-glected [27]. For this reason we restrict our study of finite size effects to the case ofthe open chain with constant coupling coefficients. We perform exact diagonalizationfor the system with 18 spins and focus on the behavior of the total magnetization of theground state
M =∑

i
〈Ŝzi 〉 (5.20)

for different values of h/J and ∆. γ is assumed to be fixed and the result is presentedin Fig. 5.3: While both the anti-ferromagnetic (AFM) and the polarized (PP) phasesare clearly visible, numerical treatment of this system exposes that in between thesephases, the total magnetization develops a step-like structure. We attribute these stepsin M to a devil’s staircase structure of spin density waves (SDW) [59]. In fact, the
18The dynamical critical exponent is the exponent defined to characterize the behavior of the correlationtime near the critical point. In the same way as it works for the correlation length, the correlation timealso diverges in the vicinity of the phase transition. The divergence of the correlation time implies thatthe fluctuations on any observable become incredibly slow, a phenomenon that is known as the critical

slowing down [60, 61].19A very good review on the subject is given in Ref. [59].20Here there is no concept of temperature, i.e., quantum phase transitions happen at T = 0 and due tocompetition between non-commuting terms in the Hamiltonian of the system [65].
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
change in the total magnetization appears as a consequence of the modulation of theanti-ferromagnetic pattern (of the anti-ferromagnetic phase), which happens as one runsthrough larger and larger values of h. his also mean, for the finite system, that it isonly possible to give a precise quantitative estimate for the Ising transition between thepolarized and the spin flop phase21. While it is not clear whether the C-IC transitioncan be captured by this procedure, the BKT transition is certainly overshadowed by thesharp transitions between the different spin density waves. In the thermodynamic limitthis staircase becomes complete and one then recovers the phase diagram displayedin Fig. 5.222. These transitions between the different SDW are more pronounced formoderate system sizes and we estimate approximately 15 different SDW between theanti-ferromagnetic and polarized phases of a system with 50 spins23.

Figure 5.3.: Finite size ’phase diagram’ obtained from exact diagonalization of a system with 18spins and with the anisotropy parameter γ = 0.2. It displays the total magnetization
M (as defined in the text) which is characterized by an incomplete devil’s staircaseof SDW between the AFM and the PP phases.

5.2. Measurements, manipulations & experimental probing

The entire derivation of the spin chain for effectively describing the Mott1 phase of
p-orbital bosons was based on the fact that the spins are encoded in spatial degrees offreedom rather than in internal atomic states. Experimental manipulation/detection inthis system requires therefore the ability of controlling the spatial states of the atomsat single sites. This can be done by combining single-site addressing [67] with tech-niques used in trapped ion physics. And by exploiting the symmetries of the px- andthe py-orbital states, stimulated Raman transitions can drive both sideband and carriertransitions for the chosen orbitals in the Lamb-Dicke regime.
21At least by using the total magnetization as the order parameter.22In fact, using similar heuristics, i.e., going up and down the steps of a complete devil’s staircase, ChuckNorris counted to infinity - twice [66].23We consider here that the chain with 50 spins is supposed to provide a very good experimental pictureof the system that we would like to realize.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism

Figure 5.4.: Schematic representation of the coupling between the different orbital states at asingle site. While the internal atomic electronic states are coupled by the carriertransition, the different orbital degrees of freedom are coupled by the sidebandtransitions. As depicted in the figure, the red and blue sideband transitions lowerand raise, respectively, the external vibrational state with a single phonon.
Let us consider the two internal atomic electronic states for 87Rb atoms F = 1 and F = 2Raman coupled with two lasers with amplitudes Ω1 and Ω2 and wave vectors k1 and k2.The matrix element describing this transition is given byΩ1Ω2

δ 〈F = 2|ei(k1−k2)x|F = 1〉, (5.21)
where δ is the detuning of the transitions relative to the ancilla electronic state. In theusual case the spatial dependence of the lasers will induce couplings between vibrationalstates of the atom, and this, here, corresponds to the different bands. By making theeffective Rabi frequency very large, Ω = Ω1Ω2/δ, the duration of a π/2-pulse, for ex-ample, can be made very short in comparison with any other time scale in the systemand therefore it is reasonable to consider that the dynamics in the system is frozen dur-ing the applied pulse24. Furthermore, accidental degeneracies between other undesiredstates can be removed by driving resonant two-photon transitions.
In the region of parameters that is interesting for the physics considered here, i.e.,deep in the Mott insulator phase, single sites can be approximated with two-dimensionalharmonic oscillators with frequencies ωα = √2Vαk2

α/m and the Lamb-Dicke param-
eters [68, 69] become ηα = kα

√
~/2mωα. Moreover, in the Lamb-Dicke regime, when

ηα � 1, multi-photon transitions can additionally be neglected, and as illustrated inFig. 5.4, this leaves three possible transitions for the one-dimensional case:
(I) Carrier transitions - with no change in the vibrational state;

(II) Red sideband transitions - which lower the vibrational state with one quantum;
(III) Blue sideband transitions - which raise the vibrational state with one quantum.
These different transitions are not degenerate, and therefore it is possible to select singletransitions by carefully choosing the frequencies of the lasers. And in these terms, or
24Indeed, this same assumption applies for experiments with single-site addressing in optical lattices [67].
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
with the use if these techniques, it is also possible to singly adress the different orbitals.The px-orbital state, for example, can be addressed by considering k1 − k2 = kx suchthat there is no component in the y-direction.
This also provides a means for fully controlling the system, for this is achieved if everyunitary R̂β(φ) = eŜβφ , where β = {x, y, z} and φ is an effective rotation, can be realized.To see that this is the case we discuss implementation of R̂z(φ) and R̂x(φ). We startwith the simplest case, of rotations on the z-component of the spin by first noticing that
Ŝz = Ŝ+Ŝ−−1. Here it is enough to realize the operation Ŝ+Ŝ−, which consists of a phaseshift of one of the orbitals. This is most easily done by driving the carrier transitionoff-resonantly for one of the two-orbitals, and since the driving is largely detuned, thiscorresponds to Stark shifting one of the orbitals.
The R̂x(φ) operation can be implemented by simultaneously driving off-resonantly thered sidebands of the two orbitals. Due to the large detuning, the s-band will never be-come populated but the transition between the two orbitals can be made resonant. Moreexplicitly, this operation involves the three states that we denote here as {|x, 0, 0〉, |0, y, 0〉and |0, 0, s〉}, where the last entry of the ket refers to the state in the s-band. The
p-orbitals are coupled to the s-orbital in a V -configuration, that in the rotating wave
approximation is described by [70]

ĤV =  0 0 Ω10 0 Ω2Ω1 Ω2 δ

 , (5.22)
where Ω1 and Ω2 are considered real and spatially dependent. For δ � Ω1, Ω2 theHamiltonian that generates a rotation of the x-component of the spin, R̂x(φ),

Ĥx = [ 0 ΩΩ 0
] = ΩŜx, (5.23)

is then obtained after adiabatic elimination of the state |0, 0, s〉. Notice, however, that if theRaman transition between the two orbitals is not resonant, then this process will performa combination of rotations in the x and z components of the spin. Rotations in the ycomponent of the spin, in addition, can be performed in two ways, either by adjustingthe phases of the lasers, or either by noticing that R̂y(φ) = R̂z(π/4)R̂x(φ)R̂z(−π/4).
This method allows thus for any manipulation of single spins at a given site. To measurethe state of the spin in a given direction one then combines the rotations with singlesite resolved fluorescence (which acts as measuring Ŝzi ) [71]. More precisely, sincethe drive laser can couple to the two orbitals individually, one of the orbitals will betransparent to the laser while the other one will show fluorescence. In other words,one then measures Ŝzi on a single site. The other components of the spin can also bemeasured in this way, but after the correct rotation to the spin state has been previouslyimplemented. Furthermore, with the help of coincident detection, it is possible to extractcorrelators of the type 〈Ŝαi Ŝβj 〉, α, β = {x, y} [72].
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
5.2.1. External parameter control

The spin mapping carried out in Sec. 5.1 provides a route for obtaining the Hamilto-nian that effectively describes the physics of Mott1 phase of p-orbital bosons. In thatprocedure, all the couplings in the spin picture are shown to depend initially on theparameters of the bosonic system, and therefore also on the configuration of the opticalpotential.
In order to give a qualitative estimate for the couplings in the spin model we make use ofthe analytical expressions derived in Sec. 2.3.1, where the parameters of the Hamiltonianfor p-orbital bosons were considered in the harmonic limit. Introducing the widths of
σα of the orbital wave functions for the spatial directions α ={x, y, z}, the expressions ofthe couplings in this approximation are given by (see appendix A for the derivation)

Uxx = Uyy = 3Uxy = u0
σxσyσz

, (5.24)
where u0 is used here to denote an effective strength of the interactions, proportionalto the s-wave scattering length. According to Eq. (5.15), this reveals that the interactionsin the z component of the spin favor primarily for ferromagnetic order, i.e., ∆ < 0. Infact, using that |tx|2 � |ty |2,

∆ ≈ −|tx|2(4 Uyy
UxxUyy −U2

xy
− 1
Uxy

)
, (5.25)

which in the harmonic approximation becomes
∆ = −|tx|2 3σxσyσz2u0 < 0. (5.26)

Similar computation yields γ = 1/2, which gives anti-ferromagnetic couplings for thespin x and y components. We notice in addition that even though computation of thecouplings with the lattice Wannier functions yield different values for the couplings, itdoes not change the qualitative properties of the physics obtained via the harmonicapproximation. In particular, we have numerically checked that ∆ is always negative,even outside of this limit.
The fully anti-ferromagnetic regime can be reached, however, with application of thesame ideas discussed in the previous section. This is again based on the techniquesdeveloped for trapped ion physics, and more explicitly, with driving the carrier transitionof either of the two orbitals dispersively, with a spatially dependent field25. If the shapeof the drive is chosen in such a way that the resulting Stark shift is weaker in the centerof the sites, then this procedure will narrow the orbital in one of the directions andwe say that the orbital is squeezed. Let us assume that the squeezing is implementedhere in the y-direction. Then the only requirement is that the spatial profile of the fielddriving the carrier transition changes in the length scale of the lattice spacing in thisdirection. The tunneling rates tx and ty will not be affected by the squeezing but withthis procedure it is possible to change both Uyy and Uxy and therefore it is also possible
25This is nothing but a potential that reshapes the lattice sites in different ways for the different orbitals,and that can be implemented as a change in the σy widths of the different Wannier functions (wx(~r) and
wy (~r)) of the orbitals, while the widths σx are kept unaltered.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
to tune the coupling constants. To be more specific, let us assume that the ratio σ ofthe harmonic length scales of the px and the py orbitals is tuned (in the y-direction). Astraightforward calculation using harmonic oscillator functions yields

α ≡ Uxx
Uxy

= 2−3/23(1 + σ2)3/2
σ (5.27)

and that
β ≡ Uyy/Uyx = 2−3/23(1 + σ2)3/2. (5.28)The dependence with σ on the coupling constants is given as

∆/J = 2txt−1
y

β(αβ − 1) = 2tyt−1
x

α(αβ − 1) − txt−1
y + tyt−1

x2 (5.29)
and

γ = − 4(αβ − 1) . (5.30)
The inset in Fig. 5.5 displays the three coupling parameters as a function of σ for
|tx/ty | = 0.1. We see that the relative size and even the sign of the couplings canbe tuned by varying σ . In particular, while interactions in Ŝy always lead to anti-ferromagnetic couplings, the interactions in Ŝz and Ŝx can lead to both ferromagneticor anti-ferromagnetic couplings. In the main part of Fig. 5.5 we sketch the differentpossible models as a function of ty/tx and σ . This clearly demonstrates that this methodallows for realization of a whole class of XYZ spin chains.

Figure 5.5.: XYZ Heisenberg chains with different types of couplings that can be achieved byvarying the relative orbital squeezing and the relative tunneling strength. In (I)the system has anti-ferromagnetic couplings in all the components of the spin with∆ > J (1 + |γ|). In (II) the system has both ferromagnetic or anti-ferromagneticcouplings in the z component of the spin and anti-ferromagnetic in the y componentwith J (1 + |γ|) > ∆. Finally, (III) has the same characteristics of region (II) but now
|∆| > J (1 + |γ|). In the inset we show one example of the spin parameters where
ty/tx = −0.1, and Jxx = (1 + γ), Jyy = (1− γ) and Jzz = ∆/J .

5.2.2. Experimental realization

In the experiment described in Ref. [11], the lifetimes reported for bosons occupyingthe states in the p band of an effective 1D optical lattice were surprisingly long. With an
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average number of approximately two atoms per site, the atoms could tunnel hundredsof times before decaying to the s band. Here the main decay mechanism stem fromatom-atom collisions [7, 11], and therefore an increase in the lifetime is expected for thecase where there is only one atom per site26
The typical values for the tunneling times can be estimated from the overlap integralsof neighboring Wannier functions. Considering 87Rb atoms, for example, and λlat =843nm to be the wavelength (in the y-direction) which sets the recoil energy ER, weobtain J/ER ∼ 0.01 and the characteristic tunneling time τ = ~/J ∼ 5ms for the systemwith Vx = 30ER, Vy = 50ER and Vz = 60ER. This corresponds to a few dozens oftimes smaller than the expected lifetimes [11], which should allow for experimentalexplorations of our results. In addition, it is possible to use the external driving discussesin section 5.2.1 to increase the lifetimes even further.
A last remark is in time which regards the temperatures required for observation of thespin correlations. The physics discussed here will emerge for temperatures of the orderof kBT . J ∼ t2/U [49]. Although it might be very difficult to experimentally achievesuch temperatures, this reflects the frontier of experimental realizations and it is beingcurrently attacked by several experimental groups.
5.3. E�ective model including imperfections due to s-orbital atoms

Difficulties for experimental implementations that are related to the low temperaturesrequired for accessing the physics explored here were already pointed out in the lastsection. The other main difficulty related to experiments regards the existence of im-perfections in the system. These imperfections consist of residual s-orbital atoms, thatresult from the process of loading atoms in the p-band. Although the possibility of pro-moting atoms from the s to the d band with 99% fidelity was recently reported [73], thefidelity for promoting atoms from the s to the p band is currently at 80%. This meansthat 20% of the atoms will still remain in the orbital states of the s band and that it isnecessary to investigate the extent of which the presence of (s-orbital atom) impuritiesare capable of changing the physics of the clean system.
We notice first that due to the large amplitudes of the optical potential (required by theMott insulator phase), the atoms occupying orbital states of the s band can be declaredimmobile. As a consequence, random sites will contain localized impurities. The nextfactor to consider is related to the energy scales. Double occupation of states with one
s- and one p-orbital atom has a larger energy cost than the double occupation of stateswith two atoms in the p-orbital states. In other words, Ups > Uαβ , where α, β = {x, y}and

Ups = U0
∫
dr|wα

i (r)|2|ws
i (r)|2 (5.31)

is the interaction energy between an s- and a p-orbital atom27. Accordingly, repeatedexperimental realizations will prepare the system in different random configurations as
26In fact, Ref. [11] estimates an increase of up to a factor of 5 in the lifetimes for the situation with unitfilling of the lattice sites.27Notice here that ws

i (r) is used to denote the s orbital at the site i.
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illustrated in Fig. 5.6. This means that an additional step must be carried out, in principle,in order to integrate out degrees of freedom corresponding to atoms in the s-orbitals.This is possible by averaging over all the different configurations which contain a fixedratio of s- to p-orbital atoms.
We now repeat the reasoning of Sec. 5.1, to include in the effective Hamiltonian contri-butions stemming from the presence of impurities in the model. Let us consider twoneighboring sites, i and j , one with an s and the other with a p orbital atom. After thesteps of the perturbative calculation are carried out (in second order in t/U), we are leftwith only one additional term,

− t2α
Ups

â†α,iâ
†
s,j âα,iâs,j = − t2α

Ups
n̂α,i, (5.32)

where again α ={x, y} and âs,j is the operator that annihilates one atom in the s-orbitalstate at the site j , and where in the last equality we used that n̂s,j = 1. Since tx 6= ty ,the effect resulting from the presence of an s atom in the system appears as a localfluctuation in the external field. We therefore obtain an XYZ chain with disorder in thefield, i.e.,
Ĥ (dis)
Mott = −∑

〈i,j〉

(
JzzŜzi Ŝzj + JxxŜxi Ŝxj + Jyy Ŝyi Ŝ

y
j

)
−
∑
i
JiŜzi . (5.33)

If the system contains a small number of atoms on the states of the lowest band, thiseffect should not be too drastic and we expect the disorder to be irrelevant28 [74]. As thefraction of impurity atoms increases and the disorder in the external field covers a largernumber of sites, we expect the disorder to become relevant and the qualitative pictureto change. In fact, one possible scenario is the appearance of a localized phase [74]. Weremark here that the physics of disordered one dimensional quantum systems containa plethora of interesting phenomena, as e.g., Anderson phases29 [54, 61, 62], Mott-glassphases30 [54], and many of its questions are in the frontier of the current research31.The analysis of the random field XYZ chain discussed here, however, is out of the scopeof the present thesis and is left to the future.

28In the language of real space renormalization group.29The Anderson transition is a transition between a localized and a metallic state, that appears in disorderedsystems. Nowadays, after many advances on the physics of disordered systems that happened in the 70’sand 80’s, the term Anderson transition is used in a broader sense [75] and in addition to the transitionfrom metal-insulator, it also includes critical points with transitions that separate localized phases [75].30The Mott-Glass phase is an incompressible gapless insulator phase that is conjectured to appear in thephase diagram of random 1D superfluid to insulator phase transition [62].31The phase diagram of the system known by the name of random bosons, for example, is still a matterof ’lively debates’ in the community [62].
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Figure 5.6.: Three random experimental realizations of the insulating state are schematicallydepicted. The yellow balls are used to represent s-orbital atoms, while p-orbitalatoms are represented by the blue balls.

5.4. A quick remark regarding alternative systems for implementing
quantum simulators

Alternative scenarios for implementing simulators of quantum systems rely on experi-mental realizations with trapped ions and polar molecules. Systems of trapped ions havealready been used to implement both a small [76, 77, 78, 79] and a large [80] numberof spins, but one easily looses control in these setups as the system size increases. Inaddition, due to trapping potentials the experiments are currently limited to approxi-mately 25 spins, and due to the inherent long range character of the interactions, theconstruction of paradigmatic spin models becomes a non-trivial task with systems oftrapped ions.
Similar limitations appear when using polar molecules, where the effective spin interac-tions [81, 82] are obtained from the intrinsic dipole-dipole interactions. Here again thecharacter of the dipolar interaction yields effective spin models that are typically longrange and in addition, the couplings feature spatial anisotropies [81]. While this spatialanisotropy in the couplings might be in favor of anisotropic models as is the case of the
XYZ chain, restricting the range of the interactions might still be tricky for this type ofsystems.
In summary, even though the temperatures required for simulating the XYZ modelwith bosons in the p band are very low and in the frontier of the current research,these alternative proposals have different drawbacks and it is not yet clear whether theyprovide an easier route for experimental implementation of this system.
5.5. Remarks on the e�ective Hamiltonian of the 3-orbital system

In the previous sections we discussed how to use p orbitals to explore the physics ofparadigmatic spin 1/2 Hamiltonians. The next question which arises, maybe even natu-
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rally, regards the effective Hamiltonian that is obtained from the three orbital system.More explicitly, what is the effective ’spin model’ that describes the Mott1 phase of a 1Dsystem with three orbital states?
While this is still in the category of ’work in progress’, we present some preliminarydiscussions regarding the derivation of the effective spin Hamiltonian for a system of(polarized) fermionic atoms in the p band. We restrict ourselves to the fermionic casefor the moment, for this considerably simplifies the interaction part of the Hamiltonian(in Eq. (5.1)). In fact, polarized fermions in the p band are described by

Ĥf = −∑
ij,α

tαij â
†
iαâjα + ∑

i,α 6=βUαβn̂iαn̂iβ +∑
i,α

Epαn̂iα, (5.34)
which in addition to the tunneling and on-site energy terms contains only density-densityinteractions between the different orbital states. Notice here that âiα and â†iα are oper-ators that destroy and create, respectively, a fermionic atom in the site i, and that theysatisfy the anti-commutation relations {âiα, â†iα}= 1 and {âiα, âiα} = {â†iα, â†iα}= 0.
We now apply the same reasoning that was used in Sec. 5.1, and obtain the effectiveHamiltonian from second order perturbation theory in t/U . For the three orbital system,the basis of states in the subspaces HP and HQ is taken as

HP Ï {|X,X〉, |X,Y〉, |X,Z〉, |Y,X〉, |Y, Y〉, |Y,Z〉, |Z,X〉, |Z, Y〉, |Z,Z〉} (5.35)
and

HQ Ï {|0, 2X〉, |0, XY〉, |0, XZ〉, |0, 2Y〉, |0, YZ〉, |0, 2Z〉}, (5.36)and since the matrix elements which account for transitions of the type 〈α, β|Ĥ−1
Q |β, α〉will be non-vanishing even for the fermionic case32, the effective Hamiltonian will con-tain onsite terms that convert any atom in the pα-orbital state into an atom in the pβ-orbital state for any α, β. In order to account for all these dynamical processes weare required to choose a representation for the generators of the SU(3) group33. Wetherefore introduce the Gell-Mann matrices [33]

λ1 =  0 1 01 0 00 0 0
 , λ2 =  0 −i 0

i 0 00 0 0
 , λ3 =  1 0 00 −1 00 0 0

 ,

λ4 =  0 0 10 0 01 0 0
 , λ5 =  0 0 −i0 0 0

i 0 0
 ,

λ6 =  0 0 00 0 10 1 0
 , λ7 =  0 0 00 0 −i0 i 0

 , λ8 = 1√3
 1 0 00 1 00 0 −2

 .

(5.37)

32Notice that it is the density-density interaction term in Eq. (5.35) that allow for such processes to happen.33Maybe an intuitive way of understanding why this is not a spin-1 case, is by noticing that any of theorbital states can be directly converted into each other, i.e., px 
 py 
 pz 
 px . In order for the systemto mimic the spin-1 case the conversion between the orbital states should obey a rule as px 
 py 
 pz ,for example, where an atom occupying a px-orbital state can only be made to occupy a pz-orbital stateby being in a py -orbital state first.
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
They are traceless Hermitian matrices that satisfy the commutation relations [33][λi, λj ] = 2if ijkλk, (5.38)with i, j, k = 1, ..8 and where the f ijk are completely anti-symmetric structure constantsgiven by [33]

f123 = 1, f147 = f165 = f246 = f257 = f345 = f376 = 12 , f458 = f678 = √32 . (5.39)
In terms of these objects, the correspondence between the SU(3)-spin operators and theoperators in the fermionic picture follows as

λi1 = â†ixâiy + â†iyâix, λi2 = iâ†iyâix − iâ
†
ixâiy

λi4 = â†ixâiz + â†izâix, λi5 = iâ†izâix − iâ
†
ixâiz

λi6 = â†iyâiz + â†izâiy , λi7 = iâ†iyâiz − iâ
†
izâiy

(5.40)

λi3 = n̂xi − n̂
y
i

λi8 = 1√3 n̂xi + 1√3 n̂yi − 2√3 n̂zi .In analogy with the routine executed previously for analysis of the spin-1/2 case, we alsoimpose here the constraint of a unit filling of the lattice sites: n̂xi + n̂yi + n̂zi = 1. Wetherefore obtain
n̂xi = 13 + 12λi3 + √36 λi8
n̂yi = 13 − 12λi3 + √36 λi8
n̂zi = 13 − √33 λi8,

(5.41)
and also rewrite the following expressions:

â†ixâiy = λi1+iλi22
â†ixâiz = λi4+iλi52
â†iyâiz = λi6−iλi72 .

(5.42)

Now after conducting the steps of the perturbative calculation, the expression for theeffective Hamiltonian describing the Mott1 phase of fermions in the three p-orbitalsystem follows as
H =∑i

(
t2x + t2y) I1 (n̂xi n̂yj + n̂yi n̂xj

)+ (t2x + t2z) I2 (n̂xi n̂zj + n̂zi n̂xj
)

+ (t2y + t2z) I3 (n̂yi n̂zj + n̂zi n̂
y
j

)
+ 2txty I4 â†iyâixâ†jxâjy + 2txty I5 â†izâixâ†jxâjz + 2tytz I6 â†izâiyâ†jyâjz
+ 2txty I7â†ixâiyâ†jyâjx + 2txty I8 â†ixâizâ†jzâjx + 2tytz I9â†iyâizâ†jzâjy ,(5.43)
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5. Beyond the mean-field approximation: Effective spin Hamiltonians via exchange mechanism
where the In, n = 1...9 are used to denote the inverse of the intensity of the exchangeinteraction. In fact, due to the absence of orbital-changing terms in the Hamiltonianof fermions in the p band, the interaction Hamiltonian is diagonal in the basis of theintermediate states of the perturbative calculation, and therefore I = 12Uαβ , where α, β ={x, y, z}. While explicit computation of each term of the effective Hamiltonian is shownin the appendix, we quote here the final result,

H = ∑
i

(√39 (t2x+t2y )
Uxy −

√39 (t2x+t2z )
Uxz −

√39 (t2y+t2z )
Uyz

)
λi8

+ ∑
i

( (t2x+t2z )6Uxz − (t2y+t2z )6Uyz
)
λi3

+ ∑
〈i,j〉−

(t2x+t2y )4Uxy λi3λj3 + ( (t2x+t2y )12Uxy − (t2y+t2z )6Uyz − (t2x+t2z )6Uxz
)
λi8λj8

+ ∑
〈i,j〉

(√312 (t2y+t2z )
Uyz −

√312 (t2x+t2z )
Uxz

)(
λi8λj3 + λi3λj8)

+ ∑
〈i,j〉

txty2Uxy (T+
i T−j + T−i T+

j ) + txtz2Uxz (V+
i V−j + V−i V+

j ) + tytz2Uzy (U+
i U−j +U−i U+

j )(5.44)where T± = λ1 ± iλ2, V± = λ4 ± iλ5 and U± = λ6 ± iλ7 are the SU(3) ladder operators.While analysis of this system is left for the future, we conclude this section by noticingthat cold atoms in the p band offer interesting prospects to unravel the physics of spinchains beyond spin-1/2.
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B. Computation of the e�ective SU(3)-spin chain
Hamiltonian

The following steps show a term-by-term computation of the Hamiltonian shown inEq. (5.44) with explicit use of Eqs. (5.41) and (5.42). This is added here just for ’referencepurposes’, in what is related to the continuation of this work.
n̂xi n̂

y
j = (13 + 12λi3 + √36 λi8)(13 − 12λj3 + √36 λj8)

= 16 (λi3 − λj3) + √318 (λi8 + λj8)− 14λi3λj3 + √312 (λi3λj8 − λi8λj3) + 112λi8λj8
n̂yi n̂xj = (13 − 12λi3 + √36 λi8)(13 + 12λj3 + √36 λj8)

= −16 (λi3 − λj3) + √318 (λi8 + λj8)− 14λi3λj3 − √312 (λi3λj8 − λi8λj3) + 112λi8λj8
n̂xi n̂

y
j + n̂yi n̂xj = √39 (λi8 + λj8)− 12λi3λj3 + 16λi8λj8

(B.1)

n̂xi n̂zj = (13 + 12λi3 + √36 λi8)(13 − √33 λj8)
= −

√39 λj8 + √318 λi8 + 16λi3 − √36 λi3λj8 − 16λi8λj8
n̂zi n̂xj = (13 − √33 λi8)(13 + 12λj3 + √36 λj8)

= −
√39 λi8 + √318 λj8 + 16λj3 − √36 λi8λj3 + 16λi8λj8

n̂xi n̂zj + n̂zi n̂xj = −
√39 (λi8 + λj8) + 16 (λi3 + λj3)− √36 (λi3λj8 + λi8λj3)− 13λi8λj8

(B.2)

n̂yi n̂zj = (13 − 12λi3 + √36 λi8)(13 − √33 λj8)
= −

√39 λj8 − 16λi3 + √36 λi3λj8 + √318 λi8 − 16λi8λj8
n̂zi n̂

y
j = (13 − √33 λi8)(13 − 12λj3 + √36 λj8)

= −16λj3 + √318 λj8 − √39 λi8 + √36 λi8λj3 − 16λi8λj8
n̂yi n̂zj + n̂zi n̂

y
j = −16 (λi3 + λj3)− √39 (λi8 + λj8) + √36 (λi8λj3 + λi3λj8)− 13λi8λj8

(B.3)
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B. Computation of the effective SU(3)-spin chain Hamiltonian
â†iyâixâ

†
ixâjy = 14 (λi1λj1 + i(λi1λj2 − λi2λj1) + λi2λj2)

â†izâixâ
†
jxâjz = 14 (λi4λj4 + i(λi4λj5 − λi5λj4) + λi5λj5)

â†izâiyâ
†
jyâjz = 14 (λi6λj6 − i(λi6λj7 − λi7λi6) + λi7λj7)

(B.4)
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6. Conclusions

In this thesis we presented different aspects of the physics of p-orbital bosons that rangeto properties of both the mean-field and more strongly correlated levels. The main partof this text covers the material of Papers I and II that are attached after the bibliographicreferences.
We started by introducing the band structure and the orbital states in Chapter 2, wherewe also constructed the Hamiltonian for describing the many-body system. This frame-work was used in Chapter 3 as the basis for the mean-field analysis. There we haveshown that the term describing orbital changing collisions in the Hamiltonian of p-orbital bosons leads to the formation of structures in the ground-state of the system:in the 2D system, for example, this corresponds to the staggered-vortex solution. Wecontinued with Chapter 4, where we studied the physics of p-orbital bosons in the pres-ence of an external confining trap. This part presents the study developed in Paper I.In addition to characterizing the ground state propeties and, in particular, the fate of thestaggered-vortex solution due to the presence of the trap, we also studied finite temper-ature physics of the ideal gas and properties of the system in anisotropic lattices.
In Chapter 5 we presented the content of Paper II, where we studied properties of thestrongly correlated regime of p-orbital bosons. More explicitly, we have shown that forthe two-orbital case, the dynamics of the Mott phase with a unit filling of the lattice sitescan be effectively described by the spin-1/2 anisotropic Heisenberg (the XYZ) model inexternal field. We studied the phase diagram in the thermodynamic limit and also finitesize effects relevant to experimental realizations. We have also proposed manipulationand detection schemes that allow for experimental probing of the physics discussed. Inaddition to what is covered in Paper II, in this chapter we also discussed extensions of thespin model and directions for future research. As mentioned in Sec. 5.5, generalizationto the 3D lattice and the three orbital system of the study presented here offers aninteresting prospect for studying the physics of models beyond spin-1/2. Along theselines, it is also interesting to engineer spin-1 chains, which in terms of the orbital states inthe p band, can be constructed by using the px , the py and the pxy1 orbitals of a 2D lattice.Due to recent experimental advances in manipulating bosons in excited bands of opticallattices, and in particular, in the d band [73], characterization of such systems are also ofexperimental relevance. At the same time, there are still open questions for the spin-1/2system that we intend to investigate in future work. These include a thorough studyof the system with impurities discussed in Sec. 5.3, studying the dynamics, propagationof Lieb-Robinson bounds and characterization of the system when it is coupled to anexternal bath.

1The pxy orbital is the orbital state that is odd both in the x and the y directions.
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