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Quantum field theories (QFTs) are the most precise descriptions of the physical reality
that humanity has found. Yet exact predictions are often missing as most computations
are notoriously difficult to carry out. One generally resorts to perturbation theory which
immediately limits the regime of validity. The need of better computational techniques and a
deeper understanding of quantum field theory is evident.

The highly symmetric N=4 SYM theory offers guidance in this quest. The theory's
maximal supersymmetry and conformal invariance have allowed for the development of
several computational techniques, most notably the AdS/CFT correspondence, supersymmetric
localization and applications of integrability. These methods provide the rarity of exact results
in a fully interacting QFT and shine light on regimes inaccessible by traditional computations.

The insights drawn from N=4 SYM can be extended into more general settings through
deformations and modifications. Three such modifications are the β-deformation, the massive
deformation N=2* and N=4 SYM with a defect. This thesis summarizes a number of exact
results for these three settings through: i) a spin-chain analogy for two-point functions in the
defect N=4 SYM, ii) a vacuum solution for the β-deformed defect N=4 SYM and its spin-
chain interpretation of one-point functions, iii) a detailed study of the phase transitions in
N=2* applying localization and iv) an adaptation of the Quantum Spectral Curve to explicit
calculations of anomalous dimensions in β-deformed N=4 SYM.
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1. Introduction

Quantum field theory (QFT) is one of the most successful frameworks found in
science to describe the physical world. When it comes to quantitative predic-
tions it is, in fact, the most accurate description known, e.g. the electromag-
netic moment of an electron has been predicted and experimentally verified
with a precision of twelve digits. Rather than a single theory, it is a versatile
framework and the applicability ranges from condensed matter systems, phase
transitions to the most fundamental particles. The Standard Model, as it is
known, is a QFT description of all the basic building blocks that have so far
been observed. It describes all particles as excitations in functions called fields
and how they interact through three of the four fundamental forces: the strong,
the weak and the electromagnetic force. In this description, an extraordinary
amount of physical processes are captured in a very small set of mathematical
expressions and the validity has been tested and confirmed by a multitude of
experiments. The latest major discovery was made at the Large Hadron Col-
lider at CERN where the predicted Higgs boson was detected, confirming the
existence of the final particle within the Standard Model.

The descriptive language of fundamental particles is one of symmetries,
here used in the more general sense as a mathematical operation that can be
applied to the governing equations such that they stay invariant. Such symme-
tries are described by group theory and particle theories are classified accord-
ing to which group of symmetries they possess. A particular class of these
theories are gauge theories. The Standard Model belongs to this class and has
the gauge group SU(3)×SU(2)×U(1).

As successful the Standard Model has been so far, there are still a lot of
questions and problems with it. First of all, it is not a complete description
of the physical universe as both the forth force, gravity, and an explanation
for dark matter, are missing. All attempts to fit the gravitational force within
the framework of QFT have yet failed to produce sensible theories (they are
non-renormalizable).

A long-time candidate for a quantum description of gravity is string the-
ory. Instead of point-like particles, it assumes one-dimensional objects called
strings to be the fundamental constituents. String theory has been around since
the 70’s but so far not provided a unified predictive theory for all four forces.
Nevertheless, it has brought a lot of new insights to theoretical physics and we
will return to a more recent discovery that revealed a surprising link between
strings and quantum field theory.

Second, the Standard Model is problematic because it is simply difficult
to handle. Despite its beautiful formulation, it is practically challenging to
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compute physical quantities that can be compared to experiments. Typically,
one has to resort to perturbation theory in which the particle interactions are
assumed to be small and can be treated as corrections to the calculable results
of the interaction-free theory. This is normally done through expansions in the
coupling constants that parameterize the interaction strengths.

“Constants” is however a bit of a misnomer as these couplings normally de-
pend on the energy scale at which the physical process occurs. They are said
to be running with the energy scale. This means that perturbation calculations
only are valid in small regimes. For example, the strong force that governs
the interactions among quarks is small only at very large energies (asymptotic
freedom) while their behavior at small energies is completely inaccessible us-
ing perturbation theory.

This problem is glaring within the Standard Model but is, in fact, a general
issue of QFT. It is very hard to understand quantum field theories in full detail.
This calls for studies of new and more powerful theoretical tools and hopefully
some exact results in special cases that may guide the understanding of QFTs
in general.

N = 4 Super-Yang-Mills theory

One very special quantum field theory in which one could hope to develop
techniques and obtain exact results is N = 4 Super-Yang-Mills (SYM) the-
ory. It functions a bit like a theoretical laboratory as it is significantly simpler
to handle while still being a fully-fledged interacting quantum field theory.
The simplifications are due to its large set of symmetries. It is the unique
four-dimensional theory with maximal supersymmetry, and the name N = 4
indicates the sets of supercharges.

Supersymmetry is a suggested symmetry for particle theories which im-
plies a symmetry between the number of bosons and fermions, the two parti-
cle families. So far, it has not been observed in experiments but it has some
very attractive theoretical features. Most supersymmetric particle theories are
thus not candidates for realistic models but serve as theoretical exploration to
deepen the understanding of QFTs.

N = 4 SYM is special among them in that, on top of the maximal super-
symmetry, it is what is called conformally invariant; it is a four-dimensional
example of a conformal field theory (CFT).

Among the conformal symmetries, there is the symmetry under rescalings.
Everything described by a CFT is completely independent of the physical
scale. The generator of such rescalings within the field theory framework is
the dilatation operator D and its action on other field theory operators depends
on their corresponding conformal (or scaling) dimension Δ. Mathematically,
the dimension is the eigenvalue under rescalings

DO(0) = ΔOO(0) (1.1)
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and is classically1 the mass dimension of the operator O and therefore half-
integers. The quantization of N = 4 SYM, as with most QFTs, requires a
process called renormalization in which operators may start to mix with each
other. As a consequence, D acts as a matrix and only certain (linear) combina-
tions of operators have well-defined scaling dimensions. These, in turn, may
develop a fractional part

Δ = Δ0+γ (1.2)

where γ is called the anomalous dimension. Finding these anomalous dimen-
sions and the corresponding operator combinations is a central problem in any
CFT. They constitute half of what is called the conformal data (the other being
the coefficients in the three-point functions) with which, at least in principle,
any quantity in the theory can be calculated. Such knowledge would thus give
us one of those sought for examples of solvable QFTs.

The AdS/CFT correspondence

N = 4 SYM was found already in 1977 but the interest in it was renewed by
a more recent discovery in 1997. In a seminal paper, Maldacena conjectured
that there is a strong link between N = 4 SYM and string theory. In fact,
he boldly stated that N = 4 SYM is dual2 to IIB (closed) string theory in a
spacetime geometry called AdS5 ×S 5. Dual in this context means that they de-
scribe the same physics and are thus equivalent theories, just phrased in differ-
ent languages. That means that one-dimensional strings in a ten-dimensional
curved spacetime would capture the same physics as do point-like operators
in a four-dimensional spacetime. It is an example of what is called the holo-
graphic principle, where the details of a physical system are described fully in
a lower dimensional space. The original formulation is called the AdS/CFT
correspondence but several examples of other holographic dualities have since
been found.

This new avenue of research spawned a flurry of activity and the past two
decades have been filled with a multitude of non-trivial tests. The conjecture
has not yet been proven but after twenty years of withstanding all tests thrown
at it, few doubt its validity.

An important aspect of the AdS/CFT correspondence is that it is a so called
strong/weak duality. It means that the strongly coupled regime in the field
theory, where perturbative methods do not reach, is dual to a weakly coupled
regime in string theory, where known calculation techniques do work. It is
thus possible to obtain field theory results, normally not accessible, by doing
a manageable string theory calculation and vice versa.

In order to check and explore the validity of this remarkable correspon-
dence, however, the strong/weak nature of it requires some exact results in the

1Field theories that describes physics without anything quantum mechanical are called classical.
The process of promoting a field theory to incorporate quantum effects is called quantization.
2in the large N limit of an infinitely large rank of the gauge group
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Figure 1.1. The very special theory N = 4 SYM is both dual to string theory via the
AdS/CFT correspondence and enjoys an integrable spin-chain interpretation. Both
allow for computations of quantities that are inaccessible by other means. The picture
illustrates string theory to the left with a string propagating through spacetime and the
spin-chain to the right as a periodic lattice with a number of particles that interact with
each other through spin-couplings.

strongly coupled regimes. In particular two methods have been used and de-
veloped in this process: supersymmetric localization and integrability. Both
have stories of their own but we will focus on them in the presented context.

Localization

Supersymmetric localization for N = 4 SYM was first conjectured in 2000 and
consecutively proven in 2007. It allows for an immense simplification of the
partition function of a range of supersymmetric field theories. The partition
function is used to calculate the expectation values of different quantities by
integrating over all possible field configurations. Localization utilizes super-
symmetry to localize this integration from an infinite-dimensional space onto
a finite one and is valid for any value of the coupling constants. This allows for
exact results in both the strong, weak and intermediate regimes but comes at a
price. Only a small subset of certain supersymmetric quantities are calculable
using this technique. Notable examples are Wilson loops, which have been
studied extensively, but also the free energy and susceptibility are attainable
using localization.

Integrability

The other important method for exact results we encounter in this thesis is that
of integrability. In quantum theories, integrability is loosely defined as the
existence of an infinite tower of commuting charges, that is to say an infinite
number of symmetries. This vast symmetry makes it possible to formulate
integrable theories in terms that lay bare their entire structure. Such theories
are thus called exactly solvable theories.

The concept of integrability enters in a wide range of systems, e.g. the har-
monic oscillator, planetary motion and vertex models, but are yet rare. An im-
portant class of models are integrable spin-chains. They are one-dimensional
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Figure 1.2. A sketch over the spin-chain analogy of the single-trace operator (1.3).
Each field maps to a site in the spin-chain where, in this case, Z maps to a spin-up
particle and X maps to a spin-down. Since the trace is cyclic, the chain needs to be
periodic.

lattice models of particles that interact with their neighbors through spin-spin
couplings. Spin-chains were first introduced as simple models for magnetism
and were the first encountered examples of quantum integrable systems. In
1931, Hans Bethe managed to exactly solve one of these models, the Heisen-
berg chain, by an ansatz that since carries his name. The research field has
expanded greatly since then and took a new turn when they turned out to be
related to some supersymmetric field theories in the early 2000’s.

When studying the spectrum of anomalous dimensions in N = 4 SYM, Mi-
nahan and Zarembo observed in [1] that the problem was mathematically iden-
tical to solving a spin-chain model. Being indeed two very different theories
— a conformal field theory in four dimensions on the one hand and a one-
dimensional lattice model on the other — the connection is made through
composite single-trace operators.

Let us make this more concrete by considering an operator built out of two
(of the three complex) scalar fields Z and X in N = 4 SYM. The single-trace
operator

O = tr (ZXZZX · · ·ZXZ) (1.3)

could be viewed as chain with a site at each scalar where the scalar type Z or X
corresponds to either spin-up or spin-down. Since the trace is cyclic, the chain
needs to be periodic, like in figure 1.2. The key insight in [1] was that the
dilatation operator acts on these operators as does the spin-chain Hamiltonian,
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the operator that measures energy. We have the picture

N = 4 SYM Spin-chain

tr (ZXZZX · · ·ZXZ) ←→

D ←→ H

γ ←→ energy levels.

The dilatation eigenvalues, i.e. the anomalous dimensions, are hence de-
scribed by the energy levels in the spin-chain and the spin-chain energy eigen-
states correspond to the operator combinations with definite scaling dimen-
sions.

Through this analogy, a lot of the conformal data is calculable via inte-
grability techniques that have been developed and refined into an extensive
machinery over the past 80 years. The encounter of integrability within N = 4
SYM inspired to push this development even further.

The first observation in [1] was made only for a part of the theory, the 1-
loop SO(6)-subsector of scalars, but the principle could be extended to the
full set of fields in N = 4 SYM. The analogous spin-chain is a PSU(2,2|4)
supersymmetric chain, reflecting the full symmetry group of N = 4 SYM, and
a lot of work has been done to widen the scope of the integrability techniques
to these type of spin-chains.

This could have been the whole story but there is, however, a problem with
the spin-chain picture. As more perturbative corrections are included in the
field theory calculations, accounting for what is called higher loop interac-
tions, the interaction length in the corresponding spin-chain increases. The
spin-chain particles begin to talk not only to their neighbors but to their neigh-
bors’ neighbors and so forth. When the interaction length is long enough, it
starts to wrap around the chain (this happens at loop order L where L is the
number of fields in the single-trace operator) and the spin-chain picture breaks
down.

Methods have been developed to deal with these complications, such as
Lüsher corrections and the thermodynamic Bethe ansatz. However, the state
of the art technique to calculate anomalous dimensions in N = 4 SYM is the
so called Quantum Spectral Curve.

The Quantum Spectral Curve (QSC) is a Riemann-Hilbert problem that cap-
tures the full integrable structure of (planar) N = 4 SYM in a highly compact
way and allows for extremely efficient calculations. Inspired by the eigenvalue
spectrum of a certain operator3 in the dual string theory, it connects string the-
ory, through SYM, all the way to spin-chains in one framework.

It was first developed in [2, 3] by Gromov, Kazakov, Leurent and Volin and
has been the source of many extraordinary results. Of particular relevance to

3i.e. the trace of Lax operators in the integrable σ-model of the worldsheet
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this thesis is the approach developed in [4, 5] to find a leading solution and
then extend it through an efficient perturbative algorithm.

Deformations and defects

Truly a wonder of a theory, N = 4 SYM is also rather special. That comes as a
disadvantage in the attempts to gain understanding of general QFTs through it.
An approach to bypass this disadvantage is to start from N = 4 SYM but then
deform it in various ways. If carefully done, it can still keep the applicability
of the discussed methods but have stronger resemblance with other theories,
thus stretching the insights from N = 4 SYM into more general settings.

There are many such deformations, like the η-, γ- and β-deformations. Two
such that enter this thesis and they are the β-deformation and N = 2∗ SYM.

The β-deformation.
The former is a deformation of what is called the R-symmetry of N = 4 SYM.
Technically, one introduces a non-commutative Moyal-like product that de-
pends on the R-charges of the fields which deforms the Lagrangian with field
dependent phases. In the dual geometry, this amounts to squashing the sphere
S 5 a bit.

The β-deformation retains some supersymmetry (N = 1) and conformality
and there is a corresponding spin-chain picture in which the boundary condi-
tions of the chain are twisted due to the deformation.

There exists a twisted formulation of the QSC [6]. Paper IV aimed to adapt
the methods of [4, 5] and to calculate some explicit examples of anomalous
dimension in the β-deformation.

N = 2∗ SYM.
The second casting deformation is N = 2∗ SYM. It is a massive theory so it im-
mediately breaks conformal invariance (the mass introduces a physical scale).
It has the same field content as N = 4 SYM but some fields (the N = 2 hyper-
multiplet with two of the three complex scalars and two of the four fermions)
are given a mass. It is not integrable but it is treatable with the methods of
localization and has the interesting feature of being a non-conformal theory
with a known holographic dual4.

From the localization results, it has been discovered that N = 2∗ SYM has
an intricate pattern of phase transitions, very different from regular N = 4
SYM. Paper III probed deeper into the nature of these phase transitions in
the strong-coupling regime and showed that they occur in the next-to-next-to-
leading order, illuminating why the corresponding phase transitions in holo-
graphic dual have not yet been observed.

4The dual is the Pilch-Warner background.
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A Defect.
A different kind of modification than the deformations is the introduction of a
defect in N = 4 SYM. Inspired by holography5, one can put a (codimensional-
one) defect at the coordinate value z = 0. It breaks the four-dimensional con-
formal symmetry but preserves dilatations, thus keeping the scaling dimen-
sions Δ as central objects.

An interesting effect of the defect is that non-trivial one-point functions,
normally forbidden by the conformal symmetry, are allowed. They still have
an integrable spin-chain interpretation and the defect corresponds to a certain
Matrix Product State (MPS) in the spin-chain. A series of papers have studied
the one-point functions in terms of spin-chain overlaps with the MPS and have
resulted in some neat determinant formulas. It was first discovered for the
SU(2)-subsector illustrated above, and then consecutively extended into the
full scalar sector.6

The study of one-point functions in the defect N = 4 SYM was taken into
loop calculations in [10, 11]. Building on that work, Paper I studied a special
case of two-point functions that could be reduced and written solely in the
spin-chain language of the one-point functions.

All these were results for defect N = 4 SYM. Paper II initiated the explo-
ration of the combination of a defect and the β-deformation. It found a vac-
uum solution admitting a defect and the corresponding MPS in the spin-chain
picture. The simplest types of one-point functions were calculated but no sim-
plifying determinant formula was found, as it was shown that the immediate
integrable structure of the MPS is broken by the β-twist.

1.1 Thesis outline
This thesis is organized as a introductory summary to help readers follow the
appended papers. It naturally has overlaps but also tries to flesh out the under-
lying concepts in more detail. It is organized in the following six chapters

2. N = 4 SYM introduces the foundational theory with its symmetries and the
group theoretical representations used in the thesis. It briefly reviews
correlation functions in CFT and shows the link between the renormal-
ized theory and the spin-chain picture. It is essential to all four appended
papers. The final section introduces the minimal amount of holography
in terms of the AdS/CFT required to follow the discussions.

3. Deformations of N = 4 SYM specifies the two deformations of N = 4 SYM
treated in Papers II-IV: the β-deformation and the N = 2∗ SYM.

4. Localization and matrix models conceptually introduces the techniques
of localization and the resulting matrix models from applying localiza-

5It is the holographic dual is the D3-D5-brane construction of [7].
6Other defects (dual to the D3-D7-brane set-up) have also been considered. See e.g [8, 9].
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tion to N = 4 SYM and N = 2∗ SYM. It provides the theoretical back-
ground for Paper III.

5. Spin-chains and integrability contains fairly self-contained review of the
relevant spin-chain models and three formalisms to solve them: the co-
ordinate Bethe ansatz, the algebraic Bethe ansatz and Q-functions and
Q-operators. It also discusses the special spin-chain state appearing in
the following chapter. It is highly relevant for Paper I and II and helpful
to understand Paper IV.

6. N = 4 SYM with a defect discusses how to put a specific defect into N = 4
SYM and the implications for the symmetries, correlation functions and
the existence of a vacuum solution. Then the results for one-point func-
tions are reviewed, with focus on the SU(2)-subsector and the properties
of the corresponding MPS. The scalar propagators in the presence of the
defect are reviewed to provide background for the summarized results
of Paper I. Lastly, the β-deformation is introduced into the defect theory
and the consequences, worked out in Paper II, are stated.

7. Quantum Spectral Curve for the β-deformation provides a crash-course
review of the QSC and, in particular, to the adaptations made in Paper
IV. The Pμ-system is introduced, as well as an approach to finding the
leading solution and how to build on that in a perturbative algorithm.

The interdependencies of the chapters and connections to the papers can be
illustrated as:

1.1.1 A note to the appended papers
All four papers are reprinted in greyscale in the second half of this thesis.
Since some of them (in particular Paper IV and the plots of Paper II) make
heavy use of coloration, the interested reader is encouraged to find the original
versions online.
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2. N = 4 Supersymmetric Yang-Mills Theory

N = 4 SYM was first discovered in 1977 in [12] and attracted much inter-
est already from the start. The advent of the AdS/CFT correspondence in
1997 sparked another wave of research into the properties of this theory. As
it underlies all the results for this thesis, we begin with reviewing its action,
symmetries, conformal properties and role in the AdS/CFT correspondence.

2.1 The action
It is possible to obtain the action of N = 4 SYM in more than one way. The
original formulation in [12] arrived at it through a dimensional reduction of
N = 1 SYM in 10D. We will first follow that approach but later on also present
a construction from the action in N = 1 superspace.

2.1.1 Dimensional reduction from 10D N = 1 SYM
Let us, as stated, first obtain the action of N = 4 SYM by starting from the
unique N = 1 SYM action in 10 dimensions and dimensionally reduce it down
to 4 dimensions.

The starting point is the ten-dimensional SYM action with a massless spin-
1
2 Majorana-Weyl fermion Ψ in flat Minkowski space,1

S 10D =
1

g2
YM

∫
d10x tr

(
−

1
2

FMN FMN +Ψ̄ΓMDMΨ

)
. (2.1)

The field strength FMN , M,N = 0,1, . . . ,9, and the covariant derivative are as
usual defined in terms of the gauge field AM ,

FMN = ∂MAN −∂N AM − i[AM ,AN] (2.2)
DM = ∂M − i[AM , · ]. , (2.3)

and all fields are in the adjoint representation of the gauge group U(N) or
SU(N) such that, for instance,

AM = Aa
MT a , tr(T aT b) =

1
2
δab , a,b =

⎧⎪⎪⎨⎪⎪⎩0,1, . . . ,N2 −1 for U(N),
1,2, . . . ,N2 −1 for SU(N),

(2.4)

1Here and throughout the thesis, Einstein’s summation convention of repeated indices is under-
stood, except where otherwise stated.
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with T a being the generators of u(n) or su(N), respectively. ΓM are the ten-
dimensional gamma-matrices.

This action enjoys an N = 1 supersymmetry in form of the transformation

δεAM = −iε̄ΓMΨ , (2.5)

δεΨ =
i
2

FMNΓ
MNε , (2.6)

where ΓMN = i
2

(
ΓMΓN −ΓNΓM

)
and ε is a constant Majorana-Weyl spinor.

This symmetry is the reason for the large symmetry group we will obtain after
the dimensional reduction.

Dimensional reduction

We now dimensionally reduce the action (2.1) down to four dimensions. That
results in a split of the ten-dimensional gauge field into the four-dimensional
gauge field Aμ, with μ = 0,1,2,3, and six real scalars ϕi, i = 1,2, . . . ,6 coming
from the compactified dimensions. The ten-dimensional fermion undergoes a
similar split into four four-dimensional Majorana fermions ψ. The resulting
action reads

S =
2

g2
YM

∫
d4x tr

(
−

1
4

FμνFμν−
1
2

DμϕiDμϕi+
i
2
ψ̄ΓμDμψ

+
1
2
ψ̄Γ̃i[ϕi,ψ]+

1
4

[ϕi,ϕ j][ϕi,ϕ j]
)
, (2.7)

where again the field strength and covariant derivative are defined as above, but
with μ,ν = 0,1,2,3. The reduction of ΓM to Γμ and Γ̃i can be found explicitly
in [11] but we will not need it for this thesis.

Notation of scalars

The six real scalars ϕi are in the six-dimensional vector representation of
the SO(6) R-symmetry, discussed below. It is, however, common to map
them to the anti-symmetric representation of SU(4) � SO(6) through the six-
dimensional sigma matrices Φab = −Φba = ϕiΣ

i
ab. Moreover, a third notation

of the now complex scalars is to write them as φi = Φi4 and φ̄i = (φi)∗ with
i = 1,2,3. These transform in the fundamental and anti-fundamental represen-
tations of the SU(3)-subgroup of SU(4). In this thesis, we will use all three
notations with

Z = φ1 = ϕ1+ iϕ4 , X = φ2 = ϕ2+ iϕ5 , Y = φ3 = ϕ3+ iϕ6 ,

Z̄ = φ̄1 = ϕ1 − iϕ4 , X̄ = φ̄2 = ϕ2 − iϕ5 , Ȳ = φ̄3 = ϕ3 − iϕ6 .
(2.8)

Note that the notation and labeling of the scalars differs somewhat between
the appended papers.
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2.1.2 Conformality, large-N and the planar limit
The action (2.7) of N = 4 SYM has two parameters: the Yang-Mills coupling
gYM and the rank of the gauge group N. Most commonly in field theories
though, renormalization introduces a mass scale Λ with which the coupling
constants run and are hence not freely tunable. However, N = 4 SYM belongs
to the small subset of theories for which the couplings are independent of the
renormalization scale, i.e. its single β-function satisfies

βgYM(Λ) = Λ
dgYM

dΛ
= 0 . (2.9)

The classical conformal invariance of the action (2.7) is thus preserved pertur-
batively, and believed to hold also non-perturbatively, such that N = 4 SYM
enjoys conformal symmetry at full quantum level [13–18]. The Yang-Mills
coupling gYM is hence an entirely free parameter of the theory.

The second parameter N is also at our disposal. Although the color group
of the standard model only has N = 3, there has been an enormous interest in
theories for which N is very large. The reason for this is the observation, first
due to ’t Hooft in [19], that the coupling constant gYM and N combine in the
large N limit into

λ = g2
YMN , g2 =

λ

(4π)2 . (2.10)

λ is called the ’t Hooft coupling and as we will exclusively deal with large N
theories it will be the relevant coupling through out the thesis. Here we have
also introduced the effective planar coupling constant g which is a convenient
rescaling of the ’t Hooft coupling.

The combination into λ in the large N limit can be seen from the Feynman
diagrams in the double-line notation. In this notation, each color index follows
a line where two open ends correspond to a Kronecker δ and connected lines
are summed over, e.g.

which is the completeness relation2 for the gauge group generators (s = 0 for
U(N) and s = 1 for SU(N)). Any closed line produces a trace and hence a
factor of δii = N. Counting interaction vertices, propagators and closed lines,
the Yang-Mills coupling and N combine into λwhile the topology of a double-
line graph decides its order in N, as exemplified in figure 2.1. The set of
leading graphs are all planar, that is to say that they can be drawn flatly on a
sphere.

2i.e. the relation
N2−1∑
a=s

[
T a]i

j
[
T a]k

l = δ
i
lδ

k
j −

s
N δ

i
jδ

k
l
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Figure 2.1. An illustration of a planar graph in the double-line notation to the left
and a non-planar graph to the right. Notice how the Yang-Mills coupling gYM and the
gauge group rank N combine into the ’t Hooft coupling λ and how the topology of the
graph determines the number of closed lines and hence the order in N.

Consequently, all non-planar graphs are suppressed in the large N limit
leaving us only with the small subset of planar graphs, why the limit is also
known as the planar limit. The limit is taken in such a way that the relevant
expansion parameter λ is kept fixed, hence forcing gYM → 0. This is a great
simplification of the theory, not only because of the vastly reduced number
of graphs but also because it admits factorization of correlation functions into
their smallest partitions, a process called large N factorization.

Strictly speaking, there are a few caveats to the above statement about pla-
narity. Technically, a graph is called planar if it contributes at the leading order
in N if all its open double-lines are contracted at a single vertex at infinity. This
will not, however, play a prominent role for this thesis; rather, more details can
be found in references [20, 21].

2.1.3 The action from N = 1 superspace
The action for N = 4 SYM can also be obtained from an N = 1 action in
superspace. The field content is packaged into one vector superfield V and
three chiral superfields Φi. The complex scalars φi are the scalar content of
the latter and three of the fermions are their spinors. The fourth fermion is
bundled as the gaugino together with the gauge field into the vector superfield.
Although the final action for the component fields is equivalent with the action
(2.7), this formalism obscures the full SU(4) R-symmetry such that only its
SU(3)×U(1) subgroup is manifest.

The N = 1 superspace action reads

S = tr
{∫

d4x
[
d4θ e−gVΦ

†
i egVΦi+

1
4

(∫
d2θWαWα+h.c.

)
+ ig

√
2

3!

(∫
d2θ εi jkΦ

i[Φ j,Φk]+
∫

d2θ̄ εi jkΦ
†
i [Φ†

j ,Φ
†
k]
)]}
, (2.11)
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where the standard superfields in the Wess-Zumino gauge are3

V = −θσμθ̄Aμ+ iθθθ̄ψ̄− iθ̄θ̄θψ+
1
2
θθθ̄θ̄D , (2.12)

Wα = −
1
4

D̄D̄DαV. (2.13)

The derivation operators are

Dα =
∂

∂θα
+ iσμαα̇θ̄

α̇ ∂

∂xμ
, (2.14)

D̄α̇ = −
∂

∂θ̄α̇
− iθασμαα̇

∂

∂xμ
, (2.15)

and the scalar potential is

W(Φ) = ig

√
2

3!
εi jk trΦi[Φ j,Φk] , (2.16)

while we temporarily have dropped the subscript of the Yang-Mills coupling
g = gYM.

Expanding the action (2.11) into the component fields, performing the in-
tegration over the Grassmanian coordinates and substituting the equations of
motion for the auxiliary fields brings it to the form equivalent to (2.7).

We will, however, only make very limited use of the superspace formula-
tion. Fuller accounts can for instance be found in [22, 23].

2.2 Symmetries
The N = 4 SYM action has a remarkable amount of symmetry. First, it
has the four-dimensional Poincaré symmetry with the six generators Lαβ,L

α̇
β̇

of the Lorentz group and the four translations Pαα̇ = Pμσ
μ
αα̇. Here σμ =

{�,σ1,σ2,σ3} are the three Pauli matrices collected with the identity � and
map between the Lorentz group SO(1,3) and its SL(2,�) representation. The
symmetry generators have the commutation relations

[Lαβ, Jγ] = δ
α
γ Jβ− 1

2δ
α
β Jγ , [Lαβ, J

γ] = −δγβJ
α+ 1

2δ
α
β Jγ , (2.17)

[L̇α̇
β̇
, Jγ̇] = δα̇γ̇ Jβ̇− 1

2δ
α̇
β̇

Jγ̇ , [L̇α̇
β̇
, Jγ̇] = −δγ̇

β̇
Jα̇+ 1

2δ
α̇
β̇

Jγ̇ , (2.18)

for any generator J and apply for each of its indices.

3We trust the reader not to confuse the auxiliary D-field with the dilatation operator which will
use the same symbol below.
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This symmetry is extended to the four-dimensional conformal group SO(2,4) �
SU(2,2) through the dilatation generator D and the four special conformal gen-
erators Kαα̇. Their commutation relations are

[D,Pαα̇] = Pαα̇ , [D,Lαβ] = [D, L̇α̇
β̇
] = 0 , [D,Kαα̇] = −Kαα̇ , (2.19)

[Kαα̇,Pββ̇] = δ
α̇
β̇

Lαβ+δ
α
β L̇α̇

β̇
+δαβδ

α̇
β̇

D . (2.20)

The ten-dimensional Lorentz symmetry gives rise to an SO(6) � SU(4) R-
symmetry from its compactified dimensions. The gauge field is a singlet un-
der the R-symmetry while the scalars transform in the six-dimensional anti-
symmetric representation and the fermions in the (anti-)fundamental repre-
sentation. The generators commute with any generator with an R-symmetry
index according to

[Ra
b, Jc] = δac Jb − 1

4δ
a
bJc , [Ra

b, J
c] = −δcbJa+ 1

4δ
a
bJc , (2.21)

where again this should be applied to every such index.
Moreover, the theory also has the maximal amount of permitted supersym-

metry with N = 4, i.e. 16 supercharges Qa
α and Q̇aα̇. They commute with

the special conformal charges into the 16 superconformal charges S αa and Ṡ aα̇.
The (anti-)commutation relations read

{Q̇aα̇,Qb
α} = δbaPαα̇ , [Kαα̇,Qa

β] = δ
α
β Ṡ

aα̇ , [Kαα̇, Q̇aβ̇] = δ
α̇
β̇
S αa , (2.22)

{Ṡ aα̇,S αb } = δ
a
bKαα̇ , [S αa ,Pββ̇] = δ

α
β Q̇aβ̇ , [Ṡ aα̇,Pββ̇] = δ

α̇
β̇

Qa
β , (2.23)

and

{S αa ,Qb
β} = δ

b
aLαβ+δ

α
βR

b
a+

1
2δ
α
βδ

b
aD , (2.24)

{Ṡ aα̇, Q̇bβ̇} = δ
a
bL̇α̇
β̇
−δα̇
β̇
Ra

b+
1
2δ
α̇
β̇
δabD . (2.25)

The commutation relations with the dilatation operator is of the same form as
in (2.19), i.e.

[D, J] = ΔJ J , (2.26)

where

ΔQ = ΔQ̇ = +
1
2 , ΔS = ΔṠ = −1

2 (2.27)

ΔP = +1 , ΔK = −1 . (2.28)

We repeated the dimensions for Pαα̇ and Kαα̇ to emphasize the raising and
lowering of the dimension by the two columns of generators.

All in all, these charges generates the full symmetry group PSU(2,2|4).
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2.3 Representations of PSU(2,2|4) as a graded super Lie
algebra

The spectrum of N = 4 SYM naturally organizes itself according to its sym-
metry group PSU(2,2|4). Let us review some facts about the representation
theory in general for GL(N,M|K) and in particular PSU(2,2|4).

Generally, we can label the generators of gl(N,M|K) as

Emn , m,n = 1,2, . . . ,N +M+K , (2.29)

and introduce two gradings of these according to

pm =

⎧⎪⎪⎨⎪⎪⎩0 if m ≤ M+N
1 if M+N +1 ≤ m

and cm =

⎧⎪⎪⎨⎪⎪⎩1 if m ≤ N
0 if N +1 ≤ m

. (2.30)

The (anti)-commutation relations with this notation are

EmnEkl − (−1)(pm+pn)(pk+pl)EklEmn = δnkEml − (−1)(pm+pn)(pk+pl)δmlEkn .
(2.31)

The Cartan subalgebra consists of the generators Emm and have the weights

Eii|ψ〉 = νi|ψ〉 , i = 1,2, . . . ,M+N, (2.32)
Eaa|ψ〉 = λa|ψ〉 , a = 1,2, . . . ,K, (2.33)

which for psu(2,2|4) gives the two sets {λ1,λ2,λ3,λ4} and {ν1, ν2, ν3, ν4}. How-
ever, only six of these are independent such that the representations are char-
acterized by the differences λa −λa+1 and νi − νi+1.

To specify to the real form of psu(N,M|K) we require both the conjugation
property and the vanishing central charge4

E†
mn

!
= (−1)cm+cn Enm , C =

∑
m

Emm
!
= 0 . (2.34)

A representation of such a Lie algebra consists of a vector space V for
which there exists a map Emn → π(Emn) ∈ End(V) that respects the commuta-
tion relations (2.31). As usual we refer to both the module V and the map π
as the representation and to irreducible representations, i.e. such that have no
non-trivial invariant subspaces, as multiplets.

2.3.1 Highest weight states and gradings
We will be concerned with highest weight representations which are defined
in terms of a highest weight state (HWS) |Ψ〉, satisfying

Emn|Ψ〉 = 0 , ∀n > m . (2.35)

4We sometimes use the notation !
= for equalities or conditions to emphasize it is something we

impose.
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Figure 2.2. The grading can be illustrated as a path on a lattice where the nth line is
vertical if pn = 1 and horizontal if pn = 0. Naturally, this corresponds to the locations
of the hatted indices such that this grading is 121̂32̂3̂4̂4 or 2333 in the notation of
paper IV.

Such a definition naturally depends on how we order the labeling indices. We
can specify this by writing out the p-grading of the indices such that those with
pm = 1 are indicated with a hat, as in 121̂32̂3̂4̂4. A shorthand notation is to
only indicate the positions of the hats such that the same grading would read
2333. This can be visualized by picturing the grading as a path on a lattice
illustrated in 2.2.

Starting from a HWS, the rest of the multiplet is obtained through the action
of the generators. It is hence characterized by the grading and the weights of
the HWS.

Combining the HWS property with required unitarity gives some bounds on
the allowed weights. They can be straight-forwardly proven by starting from
〈Ψ|[Emn,Enm}|Ψ〉 and using equations (2.31), (2.34) and (2.35) together with
the positivity of the norm. The bounds for psu(2,2|4) are

λa −λa+1 ≥ 0 , (2.36a)
ν4 ≥ ν3 ≥ ν1 ≥ ν2 , (2.36b)⎧⎪⎪⎨⎪⎪⎩λa+ νk ≤ 0 , k = 1,2,
λa+ νk ≥ 0 , k = 3,4.

(2.36c)

In the grading 2222, we have the lowering, Cartan and raising operators

lowering :
{
Pαα̇, Qa

α, Q̇aα̇, Lαβ (α ≥ β), L̇α̇
β̇

(α̇ ≥ β̇), Ra
b (a ≥ b)

}
Cartan :

{
D, Lαβ (α = β), L̇α̇

β̇
(α̇ = β̇), Ra

b (a = b)
}

raising :
{
Kαα̇, S αa , Ṡ

aα̇, Lαβ (α ≤ β), L̇α̇
β̇

(α̇ ≥ β̇), Ra
b (a ≤ b)

}
.

(2.37)

2.3.2 The oscillator formalism
Any GL(N,M|K) representation with integer weights can be formulated in
what is called Jordan-Schwinger oscillators. Specifying that formalism for
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psu(2,2|4), we have
Emn = χ̄mχn (2.38)

with

Eα̇β̇ = −bα̇b
†
β̇
, [bα̇,b

†
β̇
] = δα̇β̇ , (2.39)

E(2+α)(2+β) = aαa
†
β , [aα,a

†
β] = δαβ , (2.40)

E(4+a)(4+b) = f
†
a fb , {fa, f

†
b } = δab , (2.41)

where α̇, β̇,α,β= 1,2 and a,b= 1,2,3,4. We see that a and b are bosonic while
f is fermionic and that all of them satisfy the corresponding oscillator algebra.
All other commutators are zero. The full matrix of operators is

Emn =

−b1b
†
1 −b1b

†
2 −b1a1 −b1a2 −b1f1 −b1f2 −b1f3 −b1f4

−b2b
†
1 −b2b

†
2 −b2a1 −b2a2 −b2f1 −b2f2 −b2f3 −b2f4

a
†
1b

†
1 a

†
1b

†
2 a

†
1a1 a

†
1a2 a

†
1f1 a

†
1f2 a

†
1f3 a

†
1f4

a
†
2b

†
1 a

†
2b

†
2 a

†
2a1 a

†
2a2 a

†
2f1 a

†
2f2 a

†
2f3 a

†
2f4

f
†
1b

†
1 f

†
1b

†
2 f

†
1a1 f

†
1a2 f

†
1 f1 f

†
1 f2 f

†
1 f3 f

†
1 f4

f
†
2b

†
1 f

†
2b

†
2 f

†
2a1 f

†
2a2 f

†
2 f1 f

†
2 f2 f

†
2 f3 f

†
2 f4

f
†
3b

†
1 f

†
3b

†
2 f

†
3a1 f

†
3a2 f

†
3 f1 f

†
3 f2 f

†
3 f3 f

†
3 f4

f
†
4b

†
1 f

†
4b

†
2 f

†
4a1 f

†
4a2 f

†
4 f1 f

†
4 f2 f

†
4 f3 f

†
4 f4

,

(2.42)

where we have written it out for a later comparison with the β-deformed theory
below.

The oscillators act on a Fock space vacuum |0〉 defined by

aα|0〉 = bα̇|0〉 = fa|0〉 = 0 . (2.43)

The generators of the psu(2,2|4) algebra (2.37) are in the oscillator formu-
lation5

Lαβ = a
†
βa
α− 1

2δ
α
βa

†
γa
γ , Qa

α = a
†
αf

a , S αa = f
†
aaα , (2.44)

L̇α̇
β̇
= b

†
β̇
bα̇− 1

2δ
α̇
β̇
b

†
γ̇b
γ̇ , Q̇aα̇ = b

†
α̇f

†
a , Ṡ aα̇ = fabα̇ , (2.45)

Ra
b = f

†
b fa − 1

4δ
a
bf

†
c fc , Pαα̇ = a

†
αb

†
α̇ , Kαα̇ = aαbα̇ , (2.46)

with the dilatation operator

D = 1+ 1
2 a

†
γa
γ + 1

2 b
†
γ̇b
γ̇ . (2.47)

5The change of the index locations here is to bridge the different notations used previously in
the chapter and to the one used in Paper IV.
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Table 2.1. The singleton representation of N = 4 SYM fields in the oscillator formal-
ism.

scalars fermions field strength
covariant
derivative

Φab =̂ f
†
a f

†
b |0〉

ψaα =̂ f
†
aa

†
α|0〉

ψ̄aα̇ =̂ εabcdf
†
b f

†
c f

†
db

†
α̇|0〉

Fαβ =̂ a
†
αa

†
β|0〉

F̄α̇β̇ =̂ b
†
α̇b

†
β̇
f
†
1 f

†
2 f

†
3 f

†
4 |0〉

Dαα̇ =̂ a
†
αb

†
α̇

2.3.3 The representations of N = 4 SYM fields and operators
The observables in N = 4 SYM are gauge invariant operators constructed from
gauge covariant field combinations over which the trace is taken. The gauge
field Aμ can thus only enter through the field strength or the covariant deriva-
tive

Fαβα̇β̇ = Fμν(σμ)αβ(σν)α̇β̇ = −
√

2εα̇β̇Fαβ−
√

2εαβFα̇β̇ , (2.48)

Dαα̇ = Dμ(σμ)αα̇ , (2.49)

where we have also defined the self-dual Fαβ and anti-self-dual field strengths
F̄α̇β̇, using the standard anti-symmetric two-dimensional symbols ε12 = ε1̇2̇ =

ε21 = ε 2̇1̇ = 1. Due to the Bianchi identity D[μFμν] = 0 and the equations of
motion, it is possible to write any gauge covariant combination of the N = 4
SYM field content symmetrized in all spinor indices in terms of the building
blocks in table 2.3.3.

This constitutes the singleton representation of psu(2,2|4). Notice how the
covariant derivative can be applied to any of the Fock states an infinite number
of times, reflecting the non-compactness of psu(2,2|4).

Composite operators are built by taking traces of field combinations in the
singleton representation. This corresponds to tensor products in the oscillator
formalism, e.g.

tr (ZZX) =̂ f
†
1 f

†
2 |0〉⊗ f

†
1 f

†
2 |0〉⊗ f

†
1 f

†
3 |0〉 . (2.50)

The symmetry generators act as usual on these tensor products according to
the rule A(a⊗b) = (Aa)⊗b+a⊗ (Ab).

Given a grading, we can label the operators by their oscillator content using
the number operators, e.g. naα = a

†
αaα. We will use the notation

n = [nb1 ,nb2 |nf1 ,nf2 ,nf3 ,nf4 |na1 ,na2] . (2.51)

In this notation, the central charge acting on a single site is

C = −2−nb+nf +na , (2.52)

with na = na1 +na2 , etc., and its vanishing is a requirement on each state for it
to be part of the singleton representation.
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2.3.4 The conformal field theory language
An operator O in a (supersymmetric) CFT that maps to a HWS of the sym-
metry group is called a (super)conformal primary, i.e. such operators that are
annihilated by all the raising6 generators in (2.37). Acting on the primary op-
erator with the lowering generators builds up the entire representation and all
these operators are called (conformal) descendants. It can be shown that all
correlators in the CFT can be expressed in terms of the primary operators and
they are hence the central objects of study.

A very important subset of these is the chiral primary operators, or BPS-
operators. Their defining property is that they are annihilated by one or more
of the raising operators Qa

α,

[Qa
α, O} = 0 . (2.53)

As a consequence, there is a relation between the quantum numbers of the
operator. In particular, its conformal dimension Δ is expressible through the
spin and R-symmetry quantum numbers and is hence required to be a half-
integer. As such, Δ cannot receive quantum corrections and the operator is
said to be protected.

2.4 Correlation functions
Correlation functions in a CFT are very restricted due to the large symmetry.
One-point functions are required to be constant, normally zero, and the two-
point functions need to be on the form

〈O1(x1)O2(x2)〉 =
δΔ1Δ2

(x1 − x2)Δ1+Δ2
, (2.54)

where the denominator is a shorthand notation for
(
(x1 − x2)2)Δ1+Δ2

2 . The nor-
malization of the operators are normally chosen to maintain this canonical
form of the two-point function.

Three-point functions also have their spacetime dependence dictated by the
conformal symmetry; it is

〈O1(x1)O2(x2)O3(x3)〉 =
λ123

(x12)Δ1+Δ2−Δ3(x23)Δ2+Δ3−Δ1(x31)Δ3+Δ1−Δ2
, (2.55)

with xi j = xi − x j and where λ123 are the field dependent structure constants
coming from the operator product expansion. With the normalization of the
two-point functions (2.54), these are well-defined theory dependent numbers.

6The nomenclature is a bit confusing as the lowering operators increase the dimension Δ and
what is referred to as highest/lowest state differ between references. We choose to name the
symmetry generators according to (2.37) and to call the primary operators HWS.
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As mentioned in the introduction, these, together with the set of conformal di-
mensions and corresponding primary operators, constitute the conformal data
of the theory.

First at the level of four-point functions may the correlators depend non-
trivially on the spacetime coordinate but only through the conformally invari-
ant cross-ratios

(x1 − x2)2(x3 − x4)2

(x1 − x3)2(x2 − x4)2 and
(x1 − x4)2(x2 − x3)2

(x1 − x3)2(x2 − x4)2 . (2.56)

2.5 Renormalization and anomalous dimension
At quantum-level, the correlation functions of section 2.4 become infinite and
renormalization with some regularization scheme is required to render them
finite. In N = 4 SYM, all such infinites can be mended through

Oren
I =ZIJObare

J , (2.57)

where I, J are some collective indices that label the operators and Z is the
matrix controlling the field renormalization. Z depends on the coupling g and
the regularization parameter Λ and, as it is a matrix, we see from (2.57) that
the renormalized operators are linear combinations of the bare operators, a
phenomenon called operator mixing.

The conformal dimensions develop a non-half-integer part in this process,

Δ = Δ0+γ , (2.58)

where γ =
∑

n g2nγ(n) is the anomalous dimension expanded7 in the coupling.
The two-point function for an operator with itself then becomes

〈Oren(x1)Ōren(x2)〉 =
1

(x1 − x2)2Δ0
−g2γ(1) log|Λ(x1 − x2)|+ . . . . (2.59)

The dilatation operator is hence now a matrix, related to Z through

D = D(0)+Dγ = D(0)+Z−1 d
dlogΛ

Z . (2.60)

Consequently, only operators in a basis that diagonalizes Dγ have a well-
defined dimension γ. The task to find them and their corresponding dimen-
sions is the spectral problem of N = 4 SYM.

7In general there may also be odd powers of g in this expansion but the even powers cover all
cases considered in this thesis.
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2.5.1 The spin-chain picture
The dilatation operator can be expanded in the coupling,

D =
∞∑

n=0

g2nD(n) . (2.61)

At the nth loop order, a maximum of n+ 1 fields inside a local operator can
be involved in a connected interaction and, in the planar limit, they need to be
neighbors inside the trace in order to not be suppressed. This means that at
each order, the dilatation operator acts on an operator OL as a sum over local
densities

D(n) =

L∑
l=1

D(n)
l,...,l+n , (2.62)

where the cyclic trace in OL identifies position l+L with l.
This form is very suggestive of a spin-chain interpretation, especially with

the tensor product representation (2.50) in mind. This was indeed the real-
ization when the action of D(1) on single-trace operators of scalars was dia-
gramatically computed in [1]. There it was first observed that D(1)

scal acts as the
Hamiltonian of an integrable spin-chain, specifically the XXX spin-chain with
SO(6)-symmetry. Explicitly,

D(1)
scal. = 2

L∑
l=1

Hl,l+1 , Hl,l+1 = �−Pl,l+1+
1
2
Kl,l+1 , (2.63)

where P and K are the permutation and trace operators, respectively,

P(a⊗b) = b⊗a , (2.64)

K(a⊗b) = a ·b
6∑

i=1

êi ⊗ êi , (2.65)

with êi being the basis vectors in �6.
This result was later generalized in [24] to the full 1-loop dilatation op-

erator D(1) and consecutively given a PSU(2,2|4)-spin-chain interpretation in
[25]. Its action on an operator of length L can elegantly be written in terms of
projectors Π( j) onto the irreducible length-2 representations V j of PSU(2,2|4)
in the decomposition of the tensor product of two singleton representations

V⊗V =
⊕

j

V j . (2.66)

The 1-loop dilation operator then reads

D(1) = 2
L∑

l=1

∞∑
j=0

h( j)Π( j)
l,l+1 , (2.67)
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where h( j) are the harmonic numbers

h( j) =
j∑

k=1

1
k
. (2.68)

The extension of the spin-chain picture to higher loop orders inevitably
reaches a limit at the Lth loop. At that point, the interaction length is longer
than the length of the chain and the sum over local densities is not a valid
expression for the dilatation operator. This finite-size effect is called wrap-
ping and requires special care in the perturbative calculations of anomalous
dimensions. Furthermore, beyond 1-loop interactions may change the number
of fields and hence the spin-chain length; such chains are called dynamical.
[24–30]

2.5.2 Subsectors
D commutes with Lαβ and Ra

b, as seen in section 2.2, which implies that the
operator mixing can only occur between operators with the same quantum
numbers, thus creating closed subsectors. The most relevant for this thesis
is the SU(2)-subsector which consists of operators built out of two SU(4)-
scalars. For definiteness we will choose Z and X such that the quantum num-
bers for an operator with L − M scalars of type Z and M of type X has the
quantum numbers (L,0,0; L − M,M,0). In the oscillator formalism it is la-
beled by n = [0,0|L,L − M,M,0|0,0] with tr(ZZ . . .Z) being the HWS. Note
that tr(ZZ . . .Z) is a chiral primary and has vanishing anomalous dimension.
The 1-loop dilatation operator acts on this subsector as

D(1)
SU(2) = 2

L∑
l=1

(
�−Pl,l+1

)
, (2.69)

which is the Hamiltonian of the Heisenberg XXX1/2 spin-chain. We will study
it carefully in chapter 5.

Another notable subsector is SU(3|2), consisting of the three scalars Z,X
and Y with the combined quantum numbers (3,0,0;1,1,1) and two fermions
with quantum numbers ( 3

2 ,±
1
2 ,0; 1

2 ,
1
2 ,

1
2 ). We see that these quantum numbers

allow for the mentioned length changing mixing such that L is no longer a
useful label for the operators. This can, however, only occur at two or higher
loops so L is still meaningful in one-loop calculations.

Similarly and accordingly, the one-loop SO(6) � SU(4)-subsector of scalars
in [1] is no longer closed at higher loops and mixes with the entire PSU(2,2|4)-
representation.

The last subsector that we highlight is the SU(1,1)-subsector built from
a number, possibly infinite, of covariant derivatives D12 distributed over L
scalars Z. This sector is closed at all loops and is also referred to as the SL(2)-
subsector.

33



2.5.3 The Konishi multiplet
One of the most well-studied multiplets in N = 4 SYM is the Konishi multi-
plet. Its operator with the lowest dimension is

tr(ZZ̄+XX̄+YȲ) , (2.70)

which is the simplest operator with a non-vanishing anomalous dimension.
The latter is currently known up to an impressive eleven loops, as reported
in [5], using perturbative algorithm of the Quantum Spectral Curve. We will
return to that in chapter 7. The operator (2.70) is the HWS in the grading 2222

and acting on it with the symmetry operators generates the full multiplet.
However, there is a subtlety as the full Konishi multiplet consists of op-

erators of different lengths and, as mentioned in the previous section, these
operators are only connected by the full symmetry generators at finite cou-
pling. For g = 0, the Konishi multiplets splits up into four multiplets, one with
L = 2, two with L = 3 and one with L = 2, in an effect known as shortening.

It was the goal of Paper IV to study the splitting of this multiplet in the
β-deformation, to be introduced below in chapter 3, and to calculate some of
its anomalous dimensions.

The two-point function of the Konishi operator (2.70) and any operator in
the SU(2)-subsector was calculated in Paper I inside a version of N = 4 SYM
with a codimensional-one defect, which we will introduce in chapter 6.

2.6 The AdS/CFT correspondence
The global symmetries SO(2,4)×SO(6) of N = 4 SYM and speculative ideas
about a holographic principle lead Maldacena to a remarkable conjecture in
1997 called the AdS/CFT correspondence [31]. It states that four-dimensional
N = 4 SYM is dual to type IIB super string theory on the background geometry
AdS5 ×S 5. This provoked a flurry of activity and opened up a field of research
that has kept pushing these ideas for more than two decades8. Although it is
still a conjecture and no proof is within sight, it has passed an extraordinary
number of tests and is now generally taken as a truth. Generalized versions
of this first conjecture go collectively under the name gauge/gravity dualities.
The subject is huge and reaches all the way to attempted applications in con-
densed matter theory. The original and archetypical example of the AdS/CFT
correspondence is however our focus, with an additional deformation later on
in chapter 3.

8For the immediate elaboration, see e.g. [32, 33].
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Figure 2.3. An illustration of AdS2 ×S 2 to the left, both with radius L, and to right the
flat space slicing of the Poincaré patch (2.72).

2.6.1 The anti-de Sitter geometry
The anti-de Sitter geometry AdSd of d dimensions is a maximally symmetric
solution to the vacuum Einstein equations with a constant negative curvature
L. It can be defined through the constraint

−X2
0 − X2

d +

d−1∑
i=1

X2
i = −L2 (2.71)

from which it is clear that it has the isometry group SO(2,d). There are many
common choices of coordinate systems, out of which the Poincaré patch is
illustrative for our purposes. The metric in these coordinates is

ds2 =
L2

z2

(
ημνdxμdxν+dz2

)
(2.72)

where each constant z> 0 gives a flat space slicing. The conformal boundary at
z → 0 is hence the Minkowski space 1,d−2, referred to as just the boundary.
z > 0 is called the bulk and z the radial coordinate. Two illustrations of the
geometry can be found in figure 2.3.

Together with the sphere, AdS5 × S 5 has the same isometry group as the
global symmetry group of N = 4 SYM and its conformal boundary is precisely
the 4D flat spacetime. The mental leap of the holographic principle of the
AdS/CFT correspondence states that the physics described inside the bulk of
AdS5 × S 5 is captured entirely by the 4D conformal theory, viewed as living
on the boundary.

2.6.2 The correspondence
The AdS/CFT correspondence more specifically states that correlation func-
tions of local composite operators in N = 4 SYM can be calculated by so
called boundary to boundary correlators in the bulk theory. This requires a
map between the free parameters λ and N of N = 4 SYM to counterparts in
string theory.
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Table 2.2. A summary of the parameters and regimes of the AdS/CFT correspondence.

N = 4 SYM IIB strings on AdS5 ×S 5

λ = g2
YMN T =

√
λ

2π

N,gYM gs =
g2

YM
4π =

λ
4πN

planar: N → ∞ gs → 0 : free strings
strong coupl.: λ� 1 T � 1 : supergravity

The string theory is characterized by its string tension T , governing the
amount of accessible sting excitations, and the string coupling constant gs
which determines the interaction probability of strings splitting and joining.
The latter is connected to the Yang-Mills coupling through

gs =
g2

YM

4π
=
λ

4πN
. (2.73)

This means that the large N limit of N = 4 SYM is mirrored by a vanishing
string coupling, i.e. the planar limit corresponds to non-interacting strings.

The string tension, on the other hand, is connected to the ’t Hooft coupling,

T =
√
λ/2 . (2.74)

At strong coupling λ� 1, the large string tension renders any excitation very
energetic and hence prohibited. What remains is the supergravity limit of
string theory. This is one of the most important features of the correspondence;
it maps a strongly coupled quantum regime in one theory to a classical and
weakly coupled regime in the other. It is a great virtue in that it allows us to
use perturbation theory on one side to access results way out of reach from
such computational methods on the other. Table 2.2 summarizes the map of
the correspondence.

The strong/weak coupling duality becomes a complication though in at-
tempting to verify the correspondence; it is difficult to obtain results on both
the sides simultaneously. Various techniques have been developed to probe
the strong coupling regimes and all to a perfect agreement with the conjecture.
We will look closer into one of them in chapter 4.

36



3. Deformations of N = 4 SYM

N = 4 SYM has, as we have seen, an extraordinary amount of symmetry and
makes a perfect testing ground for developing computational techniques. In
particular its clear holographic interpretation and the integrability in the planar
limit have been great successes the last two decades.

In an attempt to capitalize on these advancements, there has been a lot of
work to generalize the applicability through various deformations. By intro-
ducing different types of parameters, one can alter the theory in various pre-
cise ways to capture more varied physics while retaining as much as possible
of the salient features. We will introduce two types of such deformations in
this chapter: the β-deformation and the N = 2∗ SYM theory.

3.1 β-deformed N = 4 SYM
The β-deformation was first considered among the marginal deformations in
[34] and is in fact a special case of a more general deformation called the γ-
deformation. A common way to introduce the full γ-deformation is to start
from the N = 4 SYM action (2.11) formulated in N = 1 superspace and then
replace all field multiplications with a non-commutative ∗-product. It is de-
fined through the SU(4) R-charges of the fields, here gathered in vectors q,
according to

A∗ B = e
i
2 qA∧qB AB, (3.1)

where ∧ carries the anti-symmetric matrix C of three deformation parameters

qA ∧qB = qT
A CqB, C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 0 −γ3 γ2
γ3 0 −γ1
−γ2 γ1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (3.2)

The R-charges for the (complex) scalars and fermions are listed in table 3.1.
There we have also included the basis

Q1 = q1 −q2 , Q2 = q2 −q3 , r = 2
3 (q1+q2+q3) . (3.3)

The β-deformation is the special case when all deformation parameters are
equal and real,

γi = −β ∈� . (3.4)

37



Table 3.1. The non-zero SU(4) R-charges for the field content in N = 4 SYM. The
pluses and minuses for the fermions are all ± 1

2 but with the fraction omitted to reduce
clutter. Note that ψ4 only has non-zero r in the basis (3.3) and is untouched by the
β-deformation.

φ1 φ2 φ3 ψ1α ψ2α ψ3α ψ4α

q1 1 0 0 + − − +

q2 0 1 0 − + − + 1
2

q3 0 0 1 − − + +

Q1 1 −1 0 1 −1 0 0
Q2 0 1 −1 0 1 −1 0
3r 2 2 2 −1 −1 −1 −1

The ∧-product then simplifies to

qA ∧qB = β

3∑
a,b,c=1

εabcqa
Aqb

B = β

3∑
a,b=1

εab3Qa
AQb

B , (3.5)

i.e. it is independent of the third charge r. From table 3.1 we can than see that
the β-deformation leaves field products with ψ4 untouched.

Although non-commutative, the ∗-product is associative and a multiple prod-
uct evaluates to

A1 ∗ A2 ∗ . . .∗ AL = exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣ i
2

∑
i< j

qAi ∧qA j

⎤⎥⎥⎥⎥⎥⎥⎥⎦A1A2 . . .AL . (3.6)

3.1.1 The action
Substituting the ∗-product into the N = 1 action (2.11) affects only the com-
mutators which are changed to ∗-commutators. The expansion into component
fields then yields the single-trace action

S s-t =
2

g2
YM

∫
d4x tr

[
−

1
4

FμνFμν−
1
2

Dμφ̄i Dμφi+ iψ̄a
α̇(σ̄

μ)α̇βDμψaβ

−
1
2

(
iεi jk4ψαi [φ j,ψkα]∗+2iψαi [φ̄i,ψ4α]+h.c.

)
+

1
2

(
[φi,φ j]∗[φ̄i, φ̄ j]∗ −

1
2

[φi, φ̄i][φ j, φ̄ j]
)]
. (3.7)

Note that the commutator involving the gaugino ψ4 is not starred, in accor-
dance with the comment above.

However, this procedure also creates double-trace terms due to the fact that
the trace of a starred commutator is no longer zero. For gauge group SU(N),
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this double-trace term has the form

S d-t = −
1
N

∫
d4x tr

(
[φi,φ j]∗

)
tr
(
[φ̄i, φ̄ j]∗

)
, (3.8)

but will not play any explicit role in this thesis. For discussions of the emer-
gence and effects of new interaction terms due to the deformations, see for
instance [35–37].

3.1.2 Symmetries
The β-deformation obviously breaks the R-symmetry out of which only the
Cartan subalgebra u(1)×3 remains. There is, however, still a discrete permuta-
tion symmetry S 3 among the three complex scalars.

Most of the supersymmetry is also broken but since both Aμ and the gaugino
remain unaffected with Q1 = Q2 = 0, an N = 1 is still realized with the 4
supercharges Q4

α, Q̇4α̇,S α4 and Ṡ 4α̇.
In the oscillator formalism, the broken and retained symmetry generators

organize themselves according to

Emn =

−b1b
†
1 −b1b

†
2 −b1a1 −b1a2 −b1f1 −b1f2 −b1f3 −b1f4

−b2b
†
1 −b2b

†
2 −b2a1 −b2a2 −b2f1 −b2f2 −b2f3 −b2f4

a
†
1b

†
1 a

†
1b

†
2 a

†
1a1 a

†
1a2 a

†
1f1 a

†
1f2 a

†
1f3 a

†
1f4

a
†
2b

†
1 a

†
2b

†
2 a

†
2a1 a

†
2a2 a

†
2f1 a

†
2f2 a

†
2f3 a

†
2f4

f
†
1b

†
1 f

†
1b

†
2 f

†
1a1 f

†
1a2 f

†
1 f1 f

†
1 f2 f

†
1 f3 f

†
1 f4

f
†
2b

†
1 f

†
2b

†
2 f

†
2a1 f

†
2a2 f

†
2 f1 f

†
2 f2 f

†
2 f3 f

†
2 f4

f
†
3b

†
1 f

†
3b

†
2 f

†
3a1 f

†
3a2 f

†
3 f1 f

†
3 f2 f

†
3 f3 f

†
3 f4

f
†
4b

†
1 f

†
4b

†
2 f

†
4a1 f

†
4a2 f

†
4 f1 f

†
4 f2 f

†
4 f3 f

†
4 f4

,

where the broken symmetries are grayed out.
Although a general γ-deformation spoils the conformal invariance, it is re-

tained in the β-deformation1, also at the quantum level. The double-trace terms
mentioned above are needed but do still have vanishing β-function.

3.1.3 Holographic dual
The β-deformation has a holographic dual first found in [38], known since
as the Lunin-Maldacena background for string theory. Similarly to the gauge
theory side, it is obtained by breaking the SO(6)-symmetry which amounts
to a deformation of the five-sphere. The deformation can be achieved by se-
quentially performing a T-duality transformation, a shift and another T-duality
transformation back again, called a TsT-transformation. The AdS-part of the
geometry stays the same, reflecting the preserved conformal invariance.

1This is true when the gauge group is SU(N) which is the case we consider here. See [35].
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3.2 N = 2∗ SYM
The second and very different deformation we consider in this thesis is N = 2∗

SYM. It is the unique relevant deformation of N = 4 SYM that still has N = 2
supersymmetry. It is obtained by first rearranging the N = 4 SYM field content
into N = 2 multiplets. The gauge field, one complex scalar and two fermions
make up the vector multiplet while the remaining two complex scalars and
fermions compose a complex hypermultiplet:

vector multiplet :
{
Aμ,Y,ψ3,ψ4

}
(3.9)

massive hyper :
{
X,Z,ψ1,ψ2

}
(3.10)

Secondly, the matter in the hypermultiplet is given a mass M which adds reg-
ular quadratic mass terms for the fields in the hypermultiplet plus cubic cou-
plings for the scalars.

The introduction of a mass scale naturally breaks the conformal symmetry,
its presence is indicated by the star, but the N = 2 supersymmetry is retained
such that eight supercharges survive.

The R-symmetry is also obviously broken. In flat space, an SU(2)×U(1)-
symmetry remains but as we later will be considering this theory on S 4 it is
further broken down to U(1)×U(1) [39].

The two different limits for the mass M sends N = 2∗ either to N = 4 SYM
for vanishing mass or to pure N = 2 SYM, when the mass is large and the
heavy hypermultiplet may be integrated out. We will see consequences of this
in the next chapter as we consider the results of localization applied to this
theory.

3.2.1 Holographic dual
Despite N = 2∗ not being conformal, there is a known holographic dual and
it is thus an example of a more general gauge/gravity duality than the origi-
nal AdS/CFT correspondence. It is called the Pilch-Warner background after
the discoverers in [40] and is a deformation of both the two geometry fac-
tors AdS5 and S 5, which is to be expected from the broken conformality and
R-symmetry.

The first string correction to this background was calculated in [41] and
successfully compared to the strong coupling results for N = 2∗ as another
confirmation of the duality.

Paper III drew inspiration from the brane calculation in [42] to push the
knowledge about N = 2∗ SYM further and open up for even more detailed
comparisons with future calculations in the Pilch-Warner background.
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4. Localization and matrix models

The word “local” has many meanings depending on the context. In supersym-
metric field theories, localization refers to a rare but remarkable possibility
of reducing the partition function into an integration over a small subset of
the field configurations, possibly even a finite dimensional one. This is an
enormous simplification that allows for exact results inaccessible by any other
means.

Such a simplification was first conjectured in the calculation of the super-
symmetric Wilson loop in [43] and further substantiated in [44]. It was finally
proven by Pestun in [45] and has provided a lot of results since.

Let us here sketch the principle. Start with the partition function of the
theory,

Z =
∫

Dφ e−S [φ] , (4.1)

where φ collectively denotes the entire set of fields, S [φ] is the Euclidean
action and Dφ is the integration measure for the space of all possible field
configurations.

Suppose now that there is a fermionic symmetry δ, i.e. δS [φ] = 0, which
also leaves the measure invariant. Use this to perturb the action together with
some (usually fermionic) field dependent quantity V[φ] such that we get the
deformed partition function

Zt =

∫
Dφ e−S [φ]−tδV , (4.2)

controlled by the deformation parameter t.
Taking the derivate with respect to this t shows, however, that this is “con-

trol” in the meekest sense; the partition function Zt is in fact independent of t.
Assuming vanishing fields at the boundary, we have

∂tZt =

∫
Dφ δV e−S −tδV =

∫
Dφ δ

(
V e−S −tδV

)
= 0 , (4.3)

where we have used the invariance of the measure and the action and that
δ2V = 0.

This allows us to choose any value for t. If the bosonic part of δV is positive
definite, we can in particular let t →∞ with the effect that the partition function
is dominated by the contribution at the field configurations for which δV[φ] =
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0. These loci are often finite dimensional spaces of solutions φ∗ and the full
partition function is hence localized to a finite dimensional integral.

Including the fluctuations around φ∗ gives quadratic terms in the exponent
for which a functional generalization of Gaussian integration can be carried
out. The resulting expression is called the one-loop determinant Z1-loop, con-
sisting of the functional determinants depending on the fields and their inter-
actions and thus capturing the dynamics of the theory.

Such determinants are in general divergent and, in order to render the ex-
pression finite, the theory needs to be defined on a compact space where the
operator spectra are discrete. The cancellation between fermions in the nu-
merator and bosons in the denominator is then ensured by supersymmetry.

What is left in the localized partition function is

Z =
∫

dφ∗ e−S [φ∗] Z1-loop[φ∗] . (4.4)

Notice that the same analysis can be made for any operator O with δ-
invariance inserted into the partition function where a common example would
be the mentioned expectation value of a supersymmetric Wilson loop.

4.1 Actions on the sphere
As mentioned just above, we need theories defined on a compact spacetime in
order to use localization. We thus put N = 4 and N = 2∗ SYM onto the four-
sphere S 4 of radius R. Still being interested mainly in the flat space theories,
we will then take the decompactification limit R →∞ to regain flat space, once
the localization results have been obtained.

The curved spacetime necessarily alter the actions as conformal invariance
requires a coupling for the scalars to the now non-zero Ricci curvature. Gen-
erally for a sphere S d, we have R = d(d −1)/R2 and the scalar coupling is

LRic. = −
2

g2
YM

tr
R
6
ϕiϕi . (4.5)

Naturally, the measure on the sphere also contains the determinant of the met-
ric, d4x

√
g.

Moreover, to ensure the off-shell supersymmetry that underlies the localiza-
tion procedure, further auxiliary fields are added to the action. Effectively, this
multiplies the Ricci coupling (4.5) with a factor of 3/2 which together with
the volume 8π2R2/3 of S 4 will make up the prefactor in the exponentials that
will appear below. See [45] for a thorough derivation.
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4.2 Large N matrix models
The localized partition functions for the theories of our interest are matrix
models. In general, such models consist of a symmetry group, an ensemble
of matrices and a probability function. They were first studied by Wigner in
the context of the energy levels of nuclei but have later found many different
applications.

Let us introduce the concepts through one of the simplest examples, the
Gaussian Unitary Ensemble, which happens to be relevant for N = 4 SYM.

The partition function for a random Hermitian matrix M, invariant under uni-
tary transformations and with a quadratic potential V ∝ tr M2, reads

Z =
∫

dM e−NV(M) =

∫
dNa Δ(a)e− 8π2N

λ

∑N
i=1 a2

i =

∫
dNa e−S [a] , (4.6)

where ai are the eigenvalues of the matrix, Δ(a) =
∏

i< j(ai − a j)2 is the Van-
dermonde determinant entering as the Jacobian of the diagonalizing transfor-
mation and the integration runs over the real values of ai. We have chosen the
proportionality constant of the potential in the Boltzmann factor for reference
in the next section.

We consequently have the action

S [a] = 2
∑
i< j

log|ai −a j| −
8π2

λ
N

N∑
i=1

a2
i (4.7)

which can be interpreted as a one-dimensional static system of particles expe-
riencing a quadratic potential and a repulsive Coulomb force, i.e. the eigen-
values behave as a 1D Coulomb gas.

We may now take the large N limit and solve the resulting saddle-point
equations for S [a]. To this end, we introduce the density function for the
eigenvalues

ρ(x) =
1
N

N∑
i=1

δ(x−ai) , with

μ∫
−μ

dx ρ(x) = 1 , (4.8)

where ±μ are the largest and smallest eigenvalues, respectively. The continu-
ous limit of the saddle-point equations is thus expressed as a singular integral
equation for the density

�
dy
ρ(y)
x− y

=
8π2

λ
x , (4.9)

where the crossed integral sign signifies the principal value. The kernel K(x−
y) = 1

x−y is the Hilbert kernel and the equation has the famous Wigner semi-
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Figure 4.1. The Wigner semi-circle is the Gaussian unitary matrix model solution for
the eigenvalue probability distribution ρ(x) plotted here together with the quadratic po-
tential V(x). The faint gradient is a loose schematic illustration of the particle density
and filling in the gas interpretation.

circle solution

ρ(x) =
2
πμ

√
μ2 − x2 , with μ =

√
λ

2π
. (4.10)

It is plotted together with a schematic sketch of the potential and its “gas fill-
ing” in figure 4.1.

This is only an example and there exists a multitude of different matrix
models. However, already this simple one has great relevance for both N = 4
SYM and N = 2∗ SYM, as we will now see.

4.3 Matrix model for N = 2∗ SYM
To employ the powers of localization, we place N = 2∗ SYM on the hyper-
sphere S 4 with radius R. The localization procedure, for both N = 2∗ SYM
and its massless limit N = 4 SYM, brings the partition function into one locus,
the Coulomb branch moduli space of vacua parametrized by the expectation
values of the vector multiplet scalar Y ,

〈Y〉 = diag(a1, a2, · · · , aN) , ai ∈� . (4.11)

The result is

Z =
∫

dNa
∏
i< j

(ai −a j)2 Z1-loop(a) |Zinst(a)|2 e− 8π2R2
λ N

∑
i a2

i (4.12)

and their corresponding one-loop determinants are

N = 4 SYM: Z1-loop = 1 , (4.13)

N = 2∗ SYM: Z1-loop =
∏
i< j

H2(ai −a j)
H(ai −a j+M) H(ai −a j − M)

, (4.14)
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with

H(x) =
∞∏

n=1

(
1+

x2R2

n2

)
e− x2R2

n . (4.15)

The instanton contribution |Zinst| is 1 for N = 4 SYM but although non-trivial
for N = 2∗, it is exponentially suppressed in the large N limit such that it will
play no role within our scope. [46–48]

It is now clear that N = 4 SYM in the large N limit is governed by the
Gaussian unitary matrix model and that the eigenvalue distribution is precisely
the Wigner semi-circle in equation (4.10). Its width is controlled by the ’t
Hooft coupling and grows smoothly with it, all the way from weak to strong
coupling.

The story is very different for N = 2∗ SYM. The saddle-point equations are
altered by Z1-loop which gives the kernel

K(x) =
1

R2
1
x
− K̃(x)+

1
2

K̃(x+M)+
1
2

K̃(x− M) , (4.16)

where

K̃(x) = −
H′(x)

R2 H(x)
= 2x

∞∑
n=1

(
1
n

−
n

n2+ x2R2

)
. (4.17)

The equation for the density keeps the same right hand side,� μ
−μ

dy K(x− y)ρ(y) =
8π2

λ
x , (4.18)

where the eigenvalues are still assumed to condense into one interval. This
is motivated by the particle interpretation of the eigenvalues as having some
interaction force from the kernel but being subjected to the quadratic potential.
At small coupling, the potential force is very strong and confines the eigen-
values to the potential well. Gradually increasing λ allows them to spread
through their repulsive forces but does not break the distribution into separate
intervals.

Despite this now complicated equation, there is still a semi-circle lurking
in the background since in the strict strong coupling limit, μ ∼

√
λ→ ∞, the

solution (4.10) reappears with only a shift of the endpoints:

ρ(x) =
2
πμ

√
μ2 − x2 , μ =

√
λ
(
1+ (MR)2)

2π
, (λ→ ∞) . (4.19)

The reason is that the K̃-terms in the kernel K(x) can be approximated as a
second order derivative in this limit,

1
2

K̃(x− y+M)+
1
2

K̃(x− y− M)− K̃(x− y) ≈
1
2

K̃′′(x− y)M2 ≈
M2

x− y
, (4.20)
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since most eigenvalues are on a distance |x − y| ∼ μ � M. The full kernel
then becomes the Hilbert kernel of equation (4.9) with the shifted numerator
1+ (MR)2.

A more detailed study, though, reveals a very rich structure in N = 2∗ SYM;
the theory undergoes an infinite number of phase transitions with increasing
coupling.

This was first observed in [49] where the integral equation was studied in
the decompactification limit R → ∞. An analytical solution was found for
ρ for a coupling up to the first critical value λ(1) ≈ 35.4, corresponding to
μ(λ(1)

c ) = M
2 . The phase transitions with λ as order parameter can be explained

by new very light excitations in the hypermultiplet that enter the spectrum each
time there is a resonance

Mi j = |ai −a j ± M| ≈ 0 . (4.21)

The analytical solution of [49] cannot be extended into the strong phase but
numerics and subsequent analysis has painted the following picture.

• For λ ≤ λ(1)
c , the density has a similar shape to (π

√
μ2 − x2)−1, with the

inverse square-root singularities at the boundaries. This is also in accor-
dance with results for pure N = 2 SYM, obtained from the very large
mass limit. For finite R, the density has square-root behavior at the
endpoints ±μ but with peaks that grow as R increases. In the decom-
pactification limit, the peaks are not resolved but turn into the inverse
square-root singularities.

• At λ = λ(1)
c , the first phase transition occurs and two cusps appear at both

ends of ρ at ±μ = (M)/2. This is a forth order transition.

• As λ increases beyond λ(1)
c , the amplitudes of the cusps grow and they

move towards x = 0 as more and more pairs of eigenvalues contribute to
the resonance (4.21).

• A second phase transition occurs at λ(2)
c ≈ 83 when the width of the

eigenvalue distribution hits 2M. The two cusps of the former transition
meet at x = 0 and two new appear at the endpoints.

• The pattern keeps repeating itself into an ever increasing number of tran-
sitions and corresponding cusps as λ increases. The critical values ap-
proach λ(n)

c ≈ π2n2 for asymptotically large λ while the underlying shape
of the distribution is shifting from convex to concave.

• In the strict strong coupling limit, there is an infinite number of phase
transitions and the eigenvalue distribution averages out to the Wigner
semi-circle (4.19).

Several contributions have since been made to the incremental understand-
ing of this theory. An endpoint analysis was done in [50] while an ansatz for
the strong-coupling phase was proposed in [51]. A wider scope of theories
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were considered in [52, 53] making connection to the Seiberg-Witten curve.
[54] studied Wilson loops of higer rank symmetric and anti-symmetric repre-
sentations which was compared to a D-brane construction in the holographic
dual in [55]. The first corrections to the effective string tension in the Pilch-
Warner background could be computed in [41].

Paper III aimed to put the ansatz for the strong phase of [51] on firmer
ground, making connections to the holographic dual, and to compute the next-
to-next-to-leading order corrections to the free energy and susceptibility. The
result showed why no phase transition has yet been observed in the holo-
graphic dual since it occurs in the NNLO for which the string corrections have
not been computed. It is, however, of perturbative origin so a direct compari-
son should be possible.
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5. Spin-chains and integrability

Spin-chains were the first systems found with quantum integrability and have
been an active field of research ever since. The first break-through came with
Bethe’s ansatz for the Heisenberg model in the early 1930’s onto which several
major developments have been built. Baxter was responsible for many of these
during the 70’s and the algebraic Bethe ansatz came out of the quantum inverse
scattering method of the Leningrad-school centered around Faddeev.

This chapter introduces models and formalisms from these historic devel-
opments relevant for the applications in the appended papers. It is aimed to be
self-contained and draws heavily from many of earlier expositions of the sub-
ject, above all from [56]. For other examples of good introductory references,
see [57–60]. The section about Q-functions and Q-operators is more or less
condensed parts of [61].

5.1 The Heisenberg XXX1/2 spin-chain
The Heisenberg spin-chain was proposed in the early days of quantum me-
chanics as a simple quantum model for magnetism. It models a one-dimensional
lattice of particles whose only interactions are through their spin. We will be-
gin with restricting to spin-1/2 particles.

The lattice can have different boundary conditions but the most studied
spin-chains are (semi-)periodic; a schematic illustration of such a chain can
be found in figure 5.1. The periodic chains will dominate in this thesis and we
will only make a few remarks on chains with open boundary conditions.

The Hilbert space for a spin-chain of length L is a tensor product of the
local Hilbert spaces Hl at each site,

H =H1 ⊗H2 ⊗ · · ·⊗HL . (5.1)

Since we are looking at a chain of spin-1/2 particles, the local Hilbert spaces
are Hl =�

2, spanned by the two vectors |↑〉 and |↓〉. They can be acted upon
by the standard spin matrices

S i = 1
2σi , (5.2)

expressed in terms of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.3)
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Figure 5.1. The semi-periodic Heisenberg-chain is a one-dimensional lattice of L
particles that interact with their nearest neighbors through spin-spin interactions. The
boundary conditions (B.C.) can be either fully periodic or contain some sort of twist.
We will study twisted boundary conditions in a later section of this chapter (sec. 5.5).

A state vector in the full Hilbert space can be written as

|↑〉⊗ |↓〉⊗ · · · ⊗ |↑〉 = |↑↓ · · · ↑〉 ∈ H (5.4)

and the local action of a spin matrix on such a state at position l is denoted

S i
l = ⊗ ⊗ · · · ⊗S i⊗︸︷︷︸

site l

⊗ · · ·⊗ . (5.5)

The spin matrices for the full Hilbert space H is the sum of the local action on
all sites,

S i =

L∑
l=1

S i
l , (5.6)

and we denote it with the same symbol as the single space spin-matrices above.
The Hamiltonian for the XXX1/2-chain1 couples the spins at neighboring

sites through

H = 4
L∑

l=1

(
1
4

− �S l · �S l+1

)
= 4

L∑
l=1

(
1
4

−S 3
l S 3

l+1 −
1
2

S +l S −
l+1 −

1
2

S −
l S +l+1

)

= 2
L∑

l=1

(
1−Pl,l+1

)
, (5.7)

where Pl,l+1 denotes the permutation of site l and l+ 1. The boundary condi-
tions are perfectly periodic, which means that

S i
L+1 = S i

1 . (5.8)

1The name XXX comes from the fact that all the spin couplings in each spin-space direction
are equal. A more general Hamiltonian can have a different coupling for the S 3

l S 3
l+1-term,

which is called the XXZ-chain. If all directions have different coupling, it is logically named
the XYZ-chain. All these models are integrable but they will not be relevant for this thesis.
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We will look at a different boundary condition later on.
The Hamiltonian (5.7) enjoys a lot of symmetries. It is both translation and

parity invariant and does also satisfy

[H, �S ] = 0 , (5.9)

i.e. it has full SU(2)-symmetry. This means that the number of down spins,
|↓〉, is conserved and we denote this number as M. We will view the down
spins as excitations, called magnons, in a sea of spin-up and write

|Ω〉 = |↑↑ · · · ↑〉 (5.10)

as a reference state, also referred to as the spin-chain vacuum. Note that it has
energy eigenvalue zero.

These are the manifest symmetries but the Hamiltonian (5.7) does in fact
have a lot more symmetries. By virtue of them, it is possible to construct the
energy eigenstates and hence diagonalize the entire Hamiltonian. The Heisen-
berg spin-chain is hence a solvable model and the first and most studied among
integrable lattice models.

Let us look at two very different methods of accomplishing this diagonal-
ization which in the end, as they should, yield the same result.

5.2 Coordinate Bethe Ansatz
The first approach is the coordinate Bethe ansatz (CBA) which was proposed
by Hans Bethe already in 1931 [62]. It assumes the wavefunction to be a spin-
wave, an eigenstate to translations, of M magnons that is parametrized by M
(pseudo)-momenta p = (p1, p2, · · · , pM). The ansatz reads

|Ψ〉 = Ψs1,s2,...,sL |s1s2 · · · sL〉 =
∑
σ∈S M

∑
1≤n1<...<nM≤M

eipσi niSσ(p)|n1,n2, · · · ,nM〉 ,

(5.11)

where sl runs over ↑,↓, repeated indices are summed over and |n1, · · · ,nM〉 is
a state vector with down spins at sites n1,n2, · · · ,nM . We will sometimes write
the collective labels |s〉 and |n〉 for the ket-notations in (5.11).
σ denotes elements in the permutation group S M and the final object in the

ansatz, Sσ, is very important. It is the product of S-matrices corresponding to
the permutation σ, e.g.

S 1432 = S 34S 24S 23 , (5.12)

where a single S-matrix governs the scattering when two excitations pass each
other,

S i j = −
1+ ei(pi+p j) −2eip j

1+ ei(pi+p j) −2eipi
. (5.13)
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For equation (5.12) to be well-defined, the S-matrices must satisfy the com-
patibility condition of two equivalent permutations:

S 12S 13S 23 = S 23S 13S 12 , (5.14)

which obviously is the case here.
The Bethe state |Ψ〉 is an eigenstate to the translation operator Û by con-

struction with the eigenvalue being

Û |Ψ〉 = e−i
∑

i pi |Ψ〉 , (5.15)

where

Û |i1, i2, . . . , iL〉 = |iL, i1, . . . , iL−1〉 . (5.16)

Hence, the total momentum of a Bethe state is

ptot =

M∑
i=1

pi . (5.17)

Since we in this thesis employ the spin-chain picture to compute quantities
related to single-trace operators in field theories, we will need to impose the
zero momentum condition

M∑
i=1

pi = 0 (5.18)

to consider translationally invariant states, thus mirroring the cyclicity of the
trace.

It is often convenient to instead of the momenta parametrize the ansatz
through the variables

ui =
1
2

cot
pi

2
, (5.19)

called rapidities, such that

eipi =
ui+

i
2

u− i
2

, S i j =
ui −u j − i
ui −u j+ i

. (5.20)

We will use both notations, choosing which ever is the most practical for the
current purpose.

5.2.1 The Bethe equations
The goal with the ansatz |Ψ〉 was to get eigenstates to the Hamiltonian but
acting with H on |Ψ〉 does not immediately confirm this. A direct computation
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shows that the momenta (or rapidities) must satisfy the non-linear equation
system

eipkL
∏
j�k

S k j = 1 , (k = 1,2, . . . ,M) (5.21)

or equivalently in rapidities(
uk + i/2
uk − i/2

)L ∏
j�k

uk −u j − i
uk −u j+ i

= 1 . (5.22)

These are called the Bethe equations and a solution to them is a set of Bethe
roots. They guarantee that the ansatz indeed produces an eigenstate and they
determine the energy eigenvalue through

E = 2
M∑

k=1

1
u2

k +
1
4

= 8
M∑

k=1

sin2 pk

2
. (5.23)

The Bethe equations are, however, hard to solve in practice. There are many
solutions and not all of them correspond to physical spin-chain states, e.g. only
solutions with distinct2 roots are physical solutions. Note also that the Bethe
roots may be complex.

Many methods have been devised to solve the Bethe equations and we will
discuss a highly efficient method, developed in [63], in chapter 7. Another
recent method connects the Bethe equations with algebraic geometry but we
will not follow that approach here [64].

5.2.2 The spectrum
A curious fact of the Bethe equations (5.22) is that we can add a rapidity
uM+1 sitting at infinity and still have a solution. This is related to the SU(2)-
symmetry of the model. Since the spin-operators S i commute with the Hamil-
tonian we can lower the spin of an eigenstate

(S −)n|Ψ〉 (5.24)

and still have an eigenstate with the same energy, as long as n is not large
enough to annihilate the state. This is the same as adding a magnon with zero
momentum.

Bethe states on the form (5.24) are called Bethe descendants and the total
spectrum arranges itself according to the irreducible decomposition of the L-
tensor representation of SU(2). Each (physical) solution to the Bethe equations
corresponds to a highest weight state in this decomposition. The spectrum is

2Strictly speaking, this holds for finite roots. There is an exception for zero momenta/infinite
rapidities discussed below.
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Table 5.1. Reference table for the different operators in the algebraic Bethe ansatz.

Name Symbol Acts in
Lax operator La,l(u) Va ⊗Hl

Monodromy matrix Ma(u) Va ⊗H
R-matrix R12(u,v) Va1 ⊗Va2

Transfer matrix T (u) H
Creation operator B(u) H

thus highly degenerate. It also means that we need to have M ≤ L/2 in order
to have a meaningful description.

The local Hamiltonian in the summand of equation (5.7) can in this spirit
be viewed as the projection onto the triplet in the decomposition of Hl ⊗Hl+1.

5.2.3 Norm of Bethe states
The norm of a Bethe state in the coordinate ansatz can be written through a
determinant of its rapidities in a formula called the Guadin norm [65, 66]. It is
expressed in terms of the logarithm of the left hand side of the Bethe equations
(5.22), such that they read

eiΦk = 1 (5.25)

The Gaudin norm is then

〈Ψ|Ψ〉 =
M∏

k=1

(u2
k +

1
4 )det

i, j

∂Φi

∂u j
. (5.26)

Assuming that we have a good way of solving the Bethe equations, we have
now diagonalized the Hamiltonian with access to both eigenstates and their
corresponding eigenvalues. But we have not yet seen the full amount of sym-
metry that the system possesses. We hence move to a method in which this is
much more apparent.

5.3 Algebraic Bethe Ansatz
The coordinate Bethe ansatz is very direct in its physical interpretation. That is
somewhat obscured in the Algebraic Bethe Ansatz (ABA) but that is the price
we pay for transparency of the integrable structure. The formalism is built on
a number of objects and for clarity they are listed in table 5.1, provided as a
reference for when they are consecutively introduced in the text.

The overall goal is still to diagonalize the spin-chain Hamiltonian (5.7) but
with control over all the symmetries in the theory. We denote the infinite
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number of charges Qn, the Hamiltonian being one of them, and since they are
all symmetries we have

[Qn,Qm] = 0 . (5.27)

We can collect them in an operator valued function

T (u) = exp

⎛⎜⎜⎜⎜⎜⎝i∑
n

(u− i
2 )n

n! Qn

⎞⎟⎟⎟⎟⎟⎠ (5.28)

called the transfer matrix. The variable u is called the spectral parameter and
we can ensure the commutativity (5.27) of the entire tower of charges by re-
quiring

[T (u),T (v)] = 0 (5.29)

for any two values u,v of the spectral parameters. We will now show how to
construct this transfer matrix.

The first step is to introduce what is called an auxiliary space Va; it can in
principle be any vector space but we will start by setting Va = �

2, as is the
case for the local Hilbert spaces Hl. It is purely a mathematical tool with no
physical meaning but it is central to the construction. Each auxiliary space
comes with a spectral parameter associated with it.

The basic building block for the ABA is the Lax operator Lal(u), which acts
in the tensor product space Va ⊗Hl and depends on the spectral parameter u
corresponding to Va. It reads

La,l(u) = uI+ iσi ⊗S i = (u−
i
2

)I+ iP , (5.30)

where I is the identity operator and P is the permutation operator

P(a⊗b) = b⊗a . (5.31)

Written as a matrix in the auxiliary space, with elements that are operators in
Hl, the Lax operator can also be written as

La,l(u) =
(
u+ iS 3

l iS −
l

iS +l u− iS 3
l

)
. (5.32)

We can multiply a number of Lax operators that share the same auxiliary
space, and hence spectral parameter, into

Ma(u) =La,L(u)La,L−1(u) . . .La,1(u) . (5.33)

The resulting object Ma(u) is called the monodromy matrix and taking the
trace over the auxiliary space, we finally obtain the transfer matrix

T (u) = tra Ma(u) . (5.34)
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To ensure the commutation relation (5.29) we need to have

tra1⊗a2 Ma1(u)Ma2(v) = tra1⊗a2 Ma2(v)Ma1(u) . (5.35)

This is warranted by the existence of an intertwining matrix, called the R-
matrix, which acts in the tensor product of two auxiliary spaces Va1 ⊗Va2
such that

R12(u,v)M1(u)M2(v) =M2(v)M1(u)R12(u,v) . (5.36)

Here we have abbreviated the auxiliary space subscripts to only their num-
bers which we will mostly do as long as it does not create confusion with the
enumerating of the physical local Hilbert spaces.

However, if we want to relate the product of three monodromy matrices
M1M2M3 to M3M2M1 we can do that in two different ways, just as for
the S-matrices in the coordinate ansatz. The consistency condition on the R-
matrix is

R12(u,v)R13(u,w)R23(v,w) = R23(v,w)R13(u,w)R12(u,v) (5.37)

and it is called the Yang-Baxter equation. The existence of an R-matrix that
obeys the Yang-Baxter equation is fundamental to quantum integrable systems
and is what underlies the commuting tower of charges.

An explicit solution to the R-matrix is

Ra1a2(u,v) = Ra1a2(u− v) = (u− v)I+ iP , (5.38)

which we observe is the same as the Lax operator when Hl =V = �2, just
with a shifted spectral parameter.

We now have a construction which lay bare the integrable structure and we
have access to all of the commuting charges via

Qn+1 = −i
dn

dun logT (u)
∣∣∣∣
u= i

2
, n ≥ 0 . (5.39)

Among these, we have the momentum operator which is related to Q1 since
T ( i

2 ) is proportional to the translation operator, while Q2 is the spin-chain
Hamiltonian (5.7) (up to normalization and a shift).

To fully solve the model, however, we need the simultaneous eigenstates to
all of these charges.

5.3.1 Bethe states in the ABA
The monodromy matrix can be seen as a matrix in the auxiliary space with
entries that are operators in the full physical space H ,

M(u) =
(
A(u) B(u)
C(u) D(u)

)
. (5.40)
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The relation (5.36) determines the commutation relation between these opera-
tors and with some algebra it can be shown that B(u) acts as a creation operator
and C(u) as an annihilation operator on the reference state |Ω〉. Moreover, the
state

|u〉 = B(u1)B(u2) . . .B(uM)|Ω〉 (5.41)

is an eigenstate to the transfer matrix provided that the set of M spectral pa-
rameters u satisfy a condition. Again, this turns out to be the Bethe equations
(5.22). The calculation is a bit lengthy but can be found in detail in [56].

The transfer matrix eigenvalue of |u〉 is

T (u)|u〉 = Λ(u|u)|u〉 ,

Λ(u|u) = (u+
i
2

)L
M∏

k=1

u−uk − i
u−uk

+ (u−
i
2

)L
M∏

k=1

u−uk + i
u−uk

, (5.42)

and we stress again that u must satisfy the Bethe equations (5.22) in order for
this to hold.

The eigenstates |u〉 in the algebraic Bethe ansatz are proportional to the
Bethe states in the coordinate ansatz but not identical.

5.3.2 A note on open boundary conditions
Although we exclusively deal with closed spin-chains in this thesis, there is
also an ample literature on integrable spin-chains with open boundary con-
ditions. The algebraic Bethe ansatz for these chains is very similar. It ac-
counts for the boundaries by double-row transfer matrices in which two prod-
uct chains of Lax operators are included, but with different orderings:

T̃a = tra
(
K̃a(u) La,L(u)La,L−1(u) . . .La,1(u) Ka(u) L1,a(u)L2,a(u) . . .LL,a(u)

)
.

(5.43)

The matrices Ka and K̃a are called reflection matrices and describe the actual
boundary conditions. They have to satisfy the reflection equation, also called
the boundary Yang-Baxter equation,

Rab(u− v)Ka(u)Rba(u+ v)Kb(v) = Kb(v)Rab(u+ v)Ka(u)Rba(u− v) (5.44)

in order for the double-row transfer matrices T̃ to commute and hence pre-
serve integrability.

We will not delve deeper into the subject of open spin-chains but instead
move on with these comments only as a reference for the next topic.
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5.4 Matrix Product States
There exists a certain class of states in the spin-chain Hilbert space called
Matrix Product States (MPS). They are of the form

|MPS〉 = tr
(
A(i1)

1 A(i2)
2 . . .A

(iL)
L

)
|i1, i2, . . . , iL〉 , (5.45)

where the spin-site indices il run over all dimensions in Hl (i.e. over ↑,↓ in
our present case) and A(il)

l are matrices of dimension dl × dl+1, where dl are
called the bond dimensions. In fact, all states in H can be written on this form
for sufficiently large bond dimensions so the term MPS normally refers to the
subset of such states for which dl do not scale with the system size L [67].

These states will become relevant for one-point functions in N = 4 SYM
with a defect, studied below in chapter 3.

MPSs are common in tensor networks and have been used as initial states
in quantum quenches. In fairly recent work, [68] studied what type of an MPS
is integrable.

The theories considered are one-dimensional lattice models in which the
integrability tower of commuting charges obeys the reflection property

ΠQnΠ = (−1)nQn , (5.46)

where Π is the parity operator. The MPS is furthermore required to be p-
periodic, i.e.

Û p|MPS〉 = |MPS〉 . (5.47)

The MPSs we will encounter in this thesis have all bond dimensions being
equal and are translationally invariant.

The proposed definition for an integrable MPS under these conditions is
that it is annihilated by all the odd charges:

Q2n+1|MPS〉 !
= 0 , n ≥ 1 . (5.48)

Equivalently, it can be phrased as⎧⎪⎪⎪⎨⎪⎪⎪⎩ 〈MPS|Û p−2T (u)T (−u)|MPS〉 !
= 1+O(uL) ,

〈MPS|ΠÛ p−2T (u)T (−u)Π|MPS〉 !
= 1+O(uL) ,

(5.49)

for small u.
The condition (5.48) is implied by the stronger requirement

ΠT (u)Π|MPS〉 = T (u)|MPS〉 , (5.50)

which also implies a p-periodicity of 2. We will mainly use this condition
below.
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5.4.1 A note on MPSs from reflection matrices
It was shown in [68] that, under certain conditions on the R-matrix, an inte-
grable MPS can be constructed from a type of reflection matrices satisfying
equation (5.44). A similar approach was used in [69] where the MPS arising
in the setting of N = 4 SYM with a defect could be reconstructed from par-
tial Néel states3 through the use of non-diagonal reflection matrices, providing
integrability methods for calculating MPS-overlaps with Bethe states.

It would be interesting to investigate further what of these approaches could
be adapted to the twisted Heisenberg chain, which we now will introduce.

5.5 Heisenberg XXX1/2 with twisted boundary condition
Let us now return the question about the boundary conditions and modify them
slightly. Before gluing together the two ends of the chain, we twist them by
inserting a phase β. This twist parameter is the correspondence in the spin-
chain picture to the deformation parameter in the β-deformed N = 4 SYM
theory in section 3.1. We can implement it by changing the identification (5.8)
into

S ±
L+1 = e∓iβLS ±

1 , S 3
L+1 = S 3

1 . (5.51)

Apart from this change, the Hamiltonian keeps the form the expression (5.7),

H̃ = 4
L∑

l=1

(
1
4

−S 3
l S 3

l+1 −
1
2

S +l S −
l+1 −

1
2

S −
l S +l+1

)
, (5.52)

but where we have added the tilde to indicate the now twisted boundary con-
dition.

The resulting system is still an integrable spin-chain but the former SU(2)-
symmetry is now broken. What remains is the Cartan U(1), with [H̃,S 3] = 0,
so the excitation number M is still conserved.

We now move on to diagonalize this twisted spin-chain following closely
the recipes of the former sections.

5.5.1 Coordinate Bethe Ansatz
The coordinate Bethe ansatz still works for the twisted boundary conditions,
with only some minor adjustments. However, to better reflect the operators
in the field theory, we choose to work in another basis. With the similarity

3The Néel state is the state with alternating spin-up and spin-down and the Mth partial Néel
state is the state with M spin-down distributed in all ways such that there always is an odd
number of spin-up in between each pair of spin-down.
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transformation

C(β) = e−iβLS 3
⊗ e−iβ(L−1)S 3

⊗ · · ·⊗ e−iβS 3
, (5.53)

we can write the Hamiltonian in the form

Hβ =C(β)H̃C(β)−1 , (5.54)

Hβ = 4
L∑

l=1

(
1
4

−S 3
l S 3

l+1 −
1
2

eiβS +l S −
l+1 −

1
2

e−iβS −
l S +l+1

)
. (5.55)

The point of this is that the boundary conditions again are periodic as in equa-
tion (5.8) which makes the translations and cyclic states behave just as before.
Although it is more customary in the study of integrable spin-chains to keep
the twist in the boundary condition, we work with this basis since the map to
single-trace operators is more direct.

The Hamiltonian Hβ is diagonalized by the ansatz

|Ψ〉 =
∑
σ∈S M

∑
1≤n1<...<nM≤M

ei(pσi+β)niSσ(p)|n1,n2, · · · ,nM〉 , (5.56)

if the momenta satisfy the now twisted Bethe equations

eipkLeiβL
∏
j�k

S k j = 1 ,
(
uk + i/2
uk − i/2

)L

eiβL
∏
j�k

uk −u j − i
uk −u j+ i

= 1 . (5.57)

The S-matrix stays the same, i.e. it is still given by equation (5.13) (or (5.20)).
Note, however, that the expression for the total momentum is changed. The

translation eigenvalue is no longer related only to the sum of momenta but
rather to

ptot =

M∑
k=1

(pk +β) (5.58)

since Û acts just as before. The zero momentum condition from the trace
cyclicity does hence involve a term with the twist.

5.5.2 The spectrum
The broken SU(2)-symmetry lifts all the degeneracy such that every solution
to the twisted Bethe equations gives a state with a distinct energy eigenvalue,
still given by

E = 2
M∑

k=1

1
u2

k +
1
4

. (5.59)

The twist does only enter the energy implicitly through the Bethe roots.
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Another important aspect of the lifted spectrum is that it simultaneously
holds a dual spin-chain. Just as well as we consider the M spin-downs as
excitations, we could view the L−M spin-ups as excitations in a sea of M spin-
downs. The corresponding Bethe equations are identical but with a sign flip
for the twist β, where there is now a new set of L− M dual Bethe roots vk ∈ v.
We will return to this feature in section 5.6 in the context of Q-functions.

5.5.3 Algebraic Bethe ansatz
The twist enters the algebraic Bethe ansatz as a constant twist matrix κ in the
auxiliary space. Specifically, the monodromy matrix becomes

Ma(u) =
(
eiβL/2 0

0 e−iβL/2

)
La,L(u) . . .La,1(u) . (5.60)

This retains the integrable structure as long as

[κ1 ⊗ κ2,R12] = 0 (5.61)

since that ensures that the equation (5.36) still holds and that in turn the twisted
transfer matrix

T (u) = tra

[(
eiβL/2 0

0 e−iβL/2

)
La,L(u) . . .La,1(u)

]
(5.62)

still commutes at different values of the spectral parameter.
The R-matrix in (5.38) is in fact GL(2)-invariant such that it satisfies equa-

tion (5.61) for any (2×2)-dimensional matrix κ. We can thus clearly see that
the insertion of the diagonal matrix in the monodromy matrix (5.60) is com-
patible with integrability.

Everything from the periodic ABA in section 5.3 goes through with only
the modification of the Bethe equations into the twisted version in (5.57). This
construction yields the Hamiltonian H̃ with the twisted boundary conditions.

If we would like to obtain Hβ directly from the logarithmic derivative of the
transfer matrix, we could instead start with the twisted Lax operator

La,l(u) = (u− i
2 )e−iqa∧qlIal+ iPal , (5.63)

where qa ∧ ql is a truncated version of (3.2) to our two-dimensional space.
The transfer matrix is then built from a monodromy matrix without the twist
matrix κ.

5.6 Q-functions
There is a third, and perhaps the most elegant, way of obtaining the spin-chain
spectrum and it goes through what is called Q-functions and Q-operators.
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Consider the Bethe equations (5.57). We can reformulate them in terms of
the Q-polynomials, corresponding to each eigenstate,

A−(u) =
M∏

k=1

(u−uk) , A+(u) =
L−M∏
k=1

(u− vk) , (5.64)

such that ⎛⎜⎜⎜⎜⎜⎝u+ i
2

u− i
2

⎞⎟⎟⎟⎟⎟⎠L

e±iβL = −
A∓(u+ i)
A∓(u− i)

, u ∈ u,v , (5.65)

captures the Bethe equations for both viewpoints on which the direction of the
excitations is.

As a consequence, there has to exist another polynomial T (u) such that

T (u)A∓(u) = e±iβL/2
(
u+ i

2

)L
A∓(u− i)+ e∓iβL/2

(
u− i

2

)L
A∓(u+ i) (5.66)

holds for all eigenstates and all complex values of the spectral parameter u.
The right hand side has to be a polynomial proportional to A∓(u) since it shares
the same roots, v or u, depending on the sign. That T (u) is independent of this
sign is however not apparent but is proved in [61]. In consequence,

T (u) = 2cos
βL
2

L∏
k=1

(u−wk) , (5.67)

for some roots wk to match the orders on both sides.
Equation (5.66) can be rewritten as a second order difference equation

T (u)Q(u) =
(
u+ i

2

)L
Q(u− i)+

(
u− i

2

)L
Q(u+ i) (5.68)

for the function Q(u) with the two linearly independent solutions

Q±(u) = e±uβL/2A±(u) . (5.69)

These are called Baxter Q-functions, after they were first introduced by Baxter
for the 8-vertex model in [70].

Equation (5.68) can be promoted to an operator equation

T (u)Q(u) =
(
u+ i

2

)L
Q(u− i)+

(
u− i

2

)L
Q(u+ i) , (5.70)

for the commuting operators T and Q, such that equation (5.66) holds for their
respective eigenvalues. Here, T is in fact the transfer matrix (5.34).

It is possible to prove the commutativity of T , Q+ and Q− through a general-
ized Lax operator construction, where the former two-dimensional σi in (5.30)
are replaced by Ji and the auxiliary space Va is taken to be the module for the
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j-representation of sl(2). j can be the half-integer of the (2 j+1)-dimensional
spin representations but is allowed to take any complex values.

The transfer matrices resulting from a trace of such Lax operators are de-
noted T j, or T +j for the infinite dimensional representations. The twist β func-
tions as a regulator in the infinite sums of these traces.

From the construction of Q±, written below in equation 5.79, it can be
shown that

f (β)T j(u) = Q+(u+ i j+ i
2 )Q−(u− i j− i

2 )−Q−(u+ i j+ i
2 )Q+(u− i j− i

2 ) ,
(5.71)

with f (β) = 2isin(βL/2) and j required to be a half-integer. This immediately
implies the two special cases j = 0 and j = 1

2 . The former gives

f (β)uL = Q+(u+ i
2 )Q−(u− i

2 )−Q−(u+ i
2 )Q+(u− i

2 ) , (5.72)

and combining this with the equation for j = 1
2 yields equation (5.68).

Consider again the case j= 0 in equation (5.72). If we define two additional
and trivial Q-functions,

Q∅ = uL , Q12 = 1 , (5.73)

we get from equation (5.72) the relation for the eigenvalues

Q∅Q12 ∝ Q++(u)Q−
−(u)− Q+−(u)Q−

+(u) , (5.74)

where we have introduced the shorthand notation

g±(u) = g
(
u± i

2

)
, g[n](u) = g

(
u+n i

2

)
, (5.75)

for any function g of the spectral parameter. This is an example of what is
called a QQ-relation and they will play a central role in chapter 7.

We can depict the QQ-relation by taking the Dynkin diagram of SU(2),
placing the two Q-functions Q± at the node and extend it with two more nodes
for the trivial Q-functions Q∅ and Q12, as in figure 5.2. Although somewhat
trivial for the group SU(2), we can view the QQ-relation (5.74) as connecting
the Q-functions along this diagram. This concept will be a lot more useful
when considering systems with larger symmetry groups.

A second important aspect of equation (5.72), or the QQ-relation (5.74),
is that they contain the full set of Bethe equations for the system. Shifting
u → u+ i

2 and dividing both sides of the equation by themselves but with the
opposite shift u → u− i

2 yields the Bethe equations whenever u ∈ u,v.
We have thus seen, though briefly, that the Q-operators extend the com-

muting family in the integrable system and that their eigenvalues are the Q-
functions carrying the Bethe roots.

62



Figure 5.2. The Q-functions of the twisted SU(2) spin-chain placed on an extended
Dynkin diagram with the SU(2)-node in the middle. They satisfy the QQ-relation of
equation (5.74). Diagrams of this type are very useful for keeping track of the QQ-
relations for chains with larger symmetry groups, as we will see in chapter 7.

Their actual construction is through a sort of factorization of the generalized
Lax operator such that they can be viewed as transfer matrices corresponding
to the two Lax operators

L+(u) =
(
u−h a+

−a− 1

)
, (5.76a)

L−(u) =
(

1 a+

a− u−h

)
, (5.76b)

where {a−,h,a+} make up the harmonic oscillator algebra in the Holstein-
Primakoff representation4 of sl(2). From these building blocks, we have

Q±(u) =
e±1

2βLu tra
[
e−iβLh L±(u) · · ·L±(u)

]
tra

[
e−iβLh

] , (5.79)

where there are L Lax operators in the product and the traces are taken over
the auxiliary Fock space of the oscillator representation.

Although it is not directly apparent from this presentation, it follows from
the construction that

f (β) T +j (u) = Q++(u+ i j) Q−
−(u− i j) , (5.80)

and that

[T j(u),Q±(v)] = [Q+(u),Q−(v)] = [Q±(u),Q±(v)] = 0 . (5.81)

As such, they can be viewed as a sort of factorization of the transfer matrix
and, in a sense, the most fundamental objects in the integrable structure of
operators.

4The oscillator algebra is as usual [h,a±] = ±a±, [a−,a+] = 1 and h = a+a− + 1
2 . The sl(2)-

generators in the j-representation are constructed as

J−
j = a+ , J+j =

(
2 j−a+a−)a− , J3

j = j−a+a− , (5.77)

or

J−
j = a+

(
2 j−a+a−) , J+j = a− , J3

j = j−a+a− . (5.78)
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5.7 Higher rank spin-chains
Having reviewed the most important concepts for the SU(2)-spin-chain, we
can change each local physical Hilbert space Hl to a representation of GL(N|K).
Still, there is a way to extend the success of the Bethe ansatz through what is
called the nested Bethe ansatz. This gives equations for N+K −1 sets of Bethe
roots, u(a)

k with a = 1, · · · ,N +K −1, belonging to each node in the Dynkin di-
agram. Let us exemplify this for u(N|K).

The Bethe equations can be summarized very neatly with only two cases,
depending on whether the corresponding node is bosonic or fermionic, or in
the p-grading, whether pa = pa+1 or not. For the bosonic nodes, the Bethe
equations read

Ma∏
j=1

u(a)
k −u(a)

j + i

u(a)
k −u(a)

j − i

Ma−1∏
j=1

u(a)
k −u(a−1)

j − i
2

u(a)
k −u(a−1)

j + i
2

Ma+1∏
j=1

u(a)
k −u(a+1)

j − i
2

u(a)
k −u(a+1)

j + i
2

= −1 (5.82)

while for the fermionic nodes, with pa � pa+1, they are

Ma−1∏
j=1

u(a)
k −u(a−1)

j − i
2

u(a)
k −u(a−1)

j + i
2

Ma+1∏
j=1

u(a)
k −u(a+1)

j − i
2

u(a)
k −u(a+1)

j + i
2

= 1 . (5.83)

The number of roots Ma of each type naturally depends on what representation
the relevant state is part of. Furthermore, the “endpoints” at a = 0 and a =
N +K are supplemented with fixed trivial roots u(0)

k and u(N+K)
k .

The equations (5.22) for SU(2) clearly fits into the formulation, with M0 = L
fixed roots which all are u(0)

k = 0 and, at the other end, M2 = 0. Note also
how this fits with the trivial Q-functions and the “extended” Dynkin diagram
introduced in equations (5.73) and figure 5.2, respectively.

The non-compact case is a little bit different and, as we saw from the 1-loop
dilatation operator (2.67), the relevant spin-chain Hamiltonian of N = 4 SYM
has PSU(2,2|4) as symmetry group. We will, however, approach the higher
rank spin-chain of PSU(2,2|4) from the viewpoint of Q-systems in chapter 7
and will not need the explicit expressions. For further reading on the nested
Bethe ansatz and supersymmetric spin-chains, see e.g. [71–73].

5.7.1 Q-operators for the PSU(2,2|4) spin-chain
To construct Q-operators for the full spin-chain corresponding to the single-
ton representation of PSU(2,2|4) appearing in planar N = 4 SYM, we need to
modify the Lax operators (5.76) again. To accommodate all possible excita-
tions, the oscillator formalism for sl(2) needs to be promoted to the full set of
oscillators of section 2.3.2.

For the actual construction, we refer to [61, 74–77]. There is an addi-
tional complication in obtaining the explicit matrix elements as compared to
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the SU(2)-case. Again, non-compact directions are introduced with the full
PSU(2,2|4) and extra care is needed [78].

The larger Dynkin diagram now opens up for a much larger set of QQ-
relations. In order to keep track of them, we label each Q-operator with two
multi-indices according to the p-grading, A for indices with p = 0 and I for
indices with p = 1. Each Q-operator can then be written as QA|I , where A and
I have zero up to four ordered indices ranging from 1 to 4.

We will return to this notation and the QQ-relations in greater detail in
chapter 7.
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6. N = 4 SYM with a defect

We have already discussed two types of deformations of N = 4 SYM in chap-
ter 3. We now turn our attention to a third, and slightly different, way of
modifying this theory while still making use of integrability. We will intro-
duce a defect which in effect will give a setup very reminiscent of CFTs with
boundaries, pioneered by Cardy [79].

Such a defect allows for new two-point functions and non-trivial one-point
functions which have been the focus of a series of papers exploiting integra-
bility techniques to arrive at compact determinant formulas in terms of Bethe
rapidities [9–11, 80–86]. We will review the necessary background from these
papers which underlies much of Paper I and II.

6.1 N = 4 SYM with a defect
As we saw in section 2.5, N = 4 SYM is dual to a D3-brane setup in string
theory on AdS5 × S 5. There is a way of introducing a probe1 D5-brane into
the picture with a three-dimensional intersection with the stack of D3-branes,
such that a number k of the D3-branes dissolve into the D5-brane. This is due
to a background gauge field having k units of flux through an S 2-part of the
D5-brane. This brane setup was studied in [7, 87] but our focus will be on the
dual field theory [88].

The gauge/gravity duality is still applicable but the inserted D5-brane cor-
responds to the introduction of a defect into the N = 4 SYM theory. It resides
at the orthogonal coordinate value x⊥ = 0 and is thus a codimensional-one ob-
ject, reflecting the intersection between the D3- and the D5-branes. The defect
alters the action into the sum

S = S N=4+S def , (6.1)

where the original action of N = 4 still goverens the bulk fields, i.e. fields in
the region x⊥ > 0, while the second term S def contains new interacting fields
confined to the defect and couplings between them and the original fields of
N = 4. A sketch of the setup can be found in figure 6.1.

In the present work, we will only stay at treelevel at which the fields of the
defect never come into play; hence we leave S def aside [11]. In fact, only the
scalar fields from N = 4 SYM will play a role in the following.

1meaning that any backreaction is neglected
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6.1.1 Symmetries
The introduction of a defect breaks several of the symmetries present in N = 4
SYM. Most obviously, translation symmetry in the x⊥-coordinate is broken
and so are the rotations and boosts in the Lorentz group that involve the x⊥-
direction. This breaks the Lorentz symmetry from SO(1,3) down to SO(1,2) �
SU(2). Similarily, only the conformal transformations that map x⊥ = 0 onto
itself survive, that is dilatations and three of the special conformal transfor-
mations. The four-dimensional conformal group SO(4,2) is thus reduced to
SO(3,2).

As the superchargers anticommute into translations, there is also a loss of
supersymmetry. Only half of the supercharges are preserved and the same
goes for the superconformal charges. Consequently, the R-symmetry group is
reduced from SU(4) to SO(3)×SO(3) and the maximally remaining symmetry
of the total group PSU(2,2|4) is OSP(4|4). Depending on the explicit action
on the defect, there may be even more symmetries broken when introducing a
defect.

6.1.2 Correlation functions
The broken conformal symmetries relax some of the restrictions put on the
correlation functions, discussed in section 2.4. As translation along the x⊥-
coordinate no longer is a symmetry, the defect CFT now allows for one-point
functions of the form

〈O〉 =
C

xΔ0
⊥

, (6.2)

for some constant C, which is a meaningful quantity if we still demand canon-
ical normalization of the two-point functions, as in equation (2.54).

The orthogonal coordinate also provides an additional conformal cross-ratio

ξ =
|x− y|2

4x⊥y⊥
(6.3)

and permits non-vanishing two-point functions between operators of different
scaling dimensions

〈OA(x)OB(y)〉 =
f (ξ)

xΔA
⊥ yΔB

⊥

, (6.4)

with f being some function of the cross-ratio.
Note that both these go to zero when the distance from the defect is compa-

rably large, in accordance with the correlation functions in a theory without a
defect or a boundary.
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Figure 6.1. The left illustrates the D-brane construction in the holographic dual,
where k D3-branes are absorbed into the D5-brane and the three-dimensional inter-
section corresponds to the defect in N = 4 SYM. The latter is showed to the right as
a codimensional-one surface (here as a projection onto three of the four dimensions)
residing at x⊥ = 0 separating the two regions of different gauge groups SU(N − k) for
x⊥ < 0 and (broken) SU(N) for x⊥ > 0.

6.1.3 Vacuum solution
The defect also breaks the gauge symmetry in that it is compatible with non-
zero vacuum expectation values for the scalars. On the x⊥ < 0 side of the
defect, the gauge group is broken from SU(N) down to SU(N − k) by infinite
scalar expectation values. This is where the number k of absorbed D3-branes
in the string theory dual appears in the gauge theory. It can be any non-negative
integer and constitutes thus a new scalable parameter which is not there for the
original theory.

On the other side where x⊥ > 0, the gauge group is a spontaneously broken
SU(N) where again only SU(N − k) effectively remains. The field theory situ-
ation and its correspondence with the brane setup are, as stated, illustrated in
figure 6.1.

For the explicit classical solution, we turn to the equations of motion which
for the complex scalars in S N=4 read

∂2

∂x2
⊥
φi =

[
φ j,

[
φ j,φi

] ]
. (6.5)

They are implied by the stricter Nahm equation

∂

∂x⊥
φi =

i
2
εi jk

[
φ j,φk

]
. (6.6)

It has a classical solution in which three of the six real scalars ϕi acquire a
non-zero expectation value

ϕcl
i = −

1
x⊥

ti ⊕0(N−k), i = 1,2,3, (6.7)

while the other ϕcl
j with j = 4,5,6, are zero. Here, we have introduced the

shorthand 0(n) for the (n×n)-dimensional zero matrix and the generators ti of
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SU(2) in a unitary (k×k)-dimensional representation. As such, they satisfy the
well-known algebra

[ti, t j] = iεi jktk. (6.8)

This split of the six scalars reflects the R-symmetry now being SO(3)×SO(3).

Representation for ti
The (k×k)-dimensional representation for ti can be constructed from the single-
entry matrices Ei

j, which are zero everywhere except of a 1 at position (i, j).
Dressing them with the constants

ci =
√

i(k − i) , di =
1
2

(k −2i+1) , (6.9)

we can build the matrices

t+ =
k−1∑
i=1

ciEi
i+1 , t− =

k−1∑
i=1

ciEi+1
i . (6.10)

These are the common raising and lowering matrices such that the standard ti
in equation (6.8) are

t1 =
t+ + t−

2
, t2 =

t+− t−
2i
, t3 =

k∑
i=1

diEi
i . (6.11)

These matrices satisfy the transposition relations

tT
1 = t1 , tT

2 = −t2 , tT
3 = t3 , (6.12)

which will be used later when studying the integrable properties of this theory.

When k = 2.
In the special case of k = 2, the ti are just the ordinary Pauli matrices ti =

σi
2 and

satisfy the Clifford algebra in three dimensions. On top of the transposition
relations above, they hence have the special products

t2
1 = t2

2 = t2
3 =

1
4
, {ti, t j} = 0 for i � j, (k = 2) . (6.13)

6.2 Treelevel one-point functions
The classical solution in the defect theory allows composite single-trace oper-
ators built only out of scalars to have non-zero treelevel one-point functions.
Thanks to integrability surviving in the defect theory, there is a neat determi-
nant formula for these expressions. It is valid for the full scalar sector but let
us focus on the SU(2)-subsector and build it step by step. This restriction is
also what is relevant for Paper I and II.
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6.2.1 SU(2)-subsector
As mentioned in section 2.1, the SU(2)-subsector consists of operators built
out of two complex scalars, which inside the trace are interpreted as sites with
spin-up and spin-down, respectively. Let us choose

φ1 ↔ |↑〉 and φ2 ↔ |↓〉 . (6.14)

An operator in the SU(2)-subsector of length L can then be written as

OΨ = Ψi1...iL tr
(
φi1φi2 . . .φiL

)
, (6.15)

where i� = 1,2 and the Bethe wavefunction Ψ from the ansatz (5.11) ensures a
well-defined scaling dimension.

Substituting the classical solution for φcl
i�

, we obtain the treelevel one-point
function

〈OΨ〉tree =
(−1)L

xL
⊥
Ψi1...iL tr

(
ti1 . . . tiL

)
= (−1)L

(
1
2g

) L
2 1

√
L

CΨ
xΔ0
⊥

, (6.16)

in accordance with the general form (6.2).
We can now reinterpret this expression as a scalar product in the spin-chain

picture, which will pave the way to the determinant formula. The normaliza-
tion of the constant CΨ was chosen with this in mind.

6.2.2 One-point functions as spin-chain overlaps with an MPS
Looking at the one-point function, we device a spin-chain state that through a
scalar product with a Bethe state precisely reproduces CΨ in equation (6.16).
Evidently, that state has to be

〈MPS| = tr
(
〈↑|t1+ 〈↓|t2

)⊗L
, (6.17)

where the trace is over the resulting product of tis. Recalling the discussion
about matrix product states in section 5.4, this clearly falls into the category.

The constant CΨ in the one-point function (6.16) can now be written as

CΨ =
〈MPS|Ψ〉
√
〈Ψ|Ψ〉

, (6.18)

where the Bethe state |Ψ〉 obviously corresponds to the single-trace operator
in (6.16).

The overlap (6.18) is normalized but is still sensitive to the overall phase of
the Bethe state. We remove this ambiguity simply by always requiring CΨ to
be real and positive.
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Selection rules

From equation (6.18), we immediately get some selection rules for overlaps
with Bethe states.

• Both the length L and the number of excitations M in |Ψ〉 need to be even.
This follows from the traces of tis and the fact there are two similarity
transformations2 U and V of ti with the properties

Ut1U−1 = t1 , Ut2,3U−1 = −t2,3 , Vt1,2 = −t1,2 , Vt3V−1 = t3 .
(6.20)

Inserting these into the traces instantly yields tr(. . . ) = (−1)M tr(. . . ) and
tr(. . . ) = (−1)L tr(. . . ).

• The MPS is integrable in the sense of equation (5.48). As such, it is
annihilated by all odd charges Q2n+1 and only unpaired3 Bethe states can
have a non-zero overlap, i.e. the rapidities necessarily have the structure

u = {u1,u2, . . . ,uM/2, −u1, . . . , −uM/2} . (6.21)

Overlaps with descendants

Recall the discussion about (Bethe) descendants in section 5.5.2. The overlap
with the MPS of such a state is expressible in terms of the overlap with its
highest weight state. Explicit calculations suggest that

〈MPS|(S −)n|ΨM〉 =
n!( L

2 − M)!(
n
2

)
!
(

L−2M−n
2

)
!
〈MPS|ΨM〉 , (6.22)

as the action on the MPS in such an overlap is

(S +)n|MPS〉 =
n!( L

2 − M)!(
n
2

)
!
(

L−2M−n
2

)
!
|MPS〉+S −|. . .〉 . (6.23)

The second term is orthogonal to the highest weight state leaving only the first
in equation (6.22). [85]

6.2.3 Overlap formula
We will work our way up to the final determinant formula for the SU(2)-
subsector step by step, following the actual process in which it was found.

2The explicit matrices are

U = U−1 =

k∑
i=1

Ei
k−i+1 , V = V−1 =

k∑
i=1

(−1)iEi
i . (6.19)

3As the spin-chain Hamiltonian is parity invariant, all energy states come in parity pairs except
parity invariant eigenstates. They are hence called unpaired all though the invariance ironically
implies a pair structure for the momenta.
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First we will look at the spin-chain vacuum, then the special case k = 2, from
which we will build a recursion formula to reach the full result in (6.37).

The vacuum

The simplest state to consider is the spin-chain vacuum |Ω〉 which corresponds
to the BPS-operator tr(ZL). The overlap with the MPS is

CΩ,k =
〈MPSk|Ω〉
√
〈Ω|Ω〉

= tr
(
tL
1

)
(6.11)
=

k∑
i=1

dL
i . (6.24)

This can be written in the form of a Bernoulli polynomial with index L+1,

CΩ,k = −
2

L+1
BL+1

(
1−k

2

)
, (6.25)

from which it is clear that CΩ,k is a polynomial in k of degree L+1.

The case k = 2 and general M
At the heart of the determinant formula lies a relationship between the overlap
with the MPS and the norm of the Bethe state. Recall the Gaudin norm (5.26)
of a coordinate Bethe state. For an unpaired state with rapidities on the form
(6.21), the matrix simplifies to the block form

∂Φi

∂u j
=

(
G1 G2
G2 G1

)
, (6.26)

such that the determinant factorizes into

det
(
∂u jΦi

)
= detG+ detG− . (6.27)

Explicitly,

G±
i j =

[
G1 ±G2

]
i j =

2
(ui −u j)2+1

±
2

(ui+u j)2+1

+

[
L

u2
i +1/4

−
M/2∑
l=1

(
2

(ui −ul)2+1
+

2
(ui+ul)2+1

)]
δi j . (6.28)

The remarkable relation is that the overlap with the MPS can be written as

〈MPS|Ψ〉 = 21−L

√√√M/2∏
i=1

u2
i +1/4

u2
i

M/2∏
i=1

(
u2

i +1/4
)
detG+ . (6.29)

Dividing with the norm gives the formula for k = 2

Ck=2 = 21−L

√√√M/2∏
i=1

u2
i +1/4

u2
i

detG+

detG− = 21−L

√
Q( i

2 )
Q(0)

detG+

detG− , (6.30)

repackaged in the Q-functions of section 5.6.
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General k
The result (6.30) for k = 2 can be extended to general k by a recursion relation.
To arrive at it, we need the transfer matrix of the spin-chain, but built from a
slightly changed Lax operator,

T (u) = tra(LaL · · ·La1) , L(u) = I+
i

u− i
2

P . (6.31)

The action of the Lax operator on an auxiliary space and H� is

La�
(

ik
2

) (
t(k)
1 |↑�〉+ t(k)

2 |↓�〉
)
= τ(k)

1 |↑�〉+τ(k)
2 |↓�〉 (6.32)

with the (2k ×2k)-dimensional matrices

τ(k)
1 =

⎛⎜⎜⎜⎜⎝ k+1
k−1 t(k)

1 0
2

k−1 t(k)
2 t(k)

1

⎞⎟⎟⎟⎟⎠ , τ(k)
2 =

⎛⎜⎜⎜⎜⎝t(k)
2

2
k−1 t(k)

1
0 k+1

k−1 t(k)
2

⎞⎟⎟⎟⎟⎠ . (6.33)

We can shift the ks within the τ(k)
i by means of a similarity transformation A,

to be found in [81]. The effect is

Aτ(k)
i A−1 =

⎛⎜⎜⎜⎜⎝t(k+2)
i 0
∗i

k+1
k−1 t(k−2)

i

⎞⎟⎟⎟⎟⎠ , (6.34)

where we denote the irrelevant lower left block with ∗ in blissful ignorance,
granted by the trace and the upper right vanishing block.

The transfer matrix trace over the product of such matrices then provides a
recursion relation for the MPS,

|MPSk+2〉 = T
(

ik
2

)
|MPSk〉−

(
k+1
k −1

)L

|MPSk−2〉 . (6.35)

Inserting this into the overlap together with the transfer matrix eigenvalue
(5.42) leads to the sought after relation for the constant Ck

Ck+2 = Λ
(

ik
2 | Ψ

)
Ck −

(
k+1
k −1

)L

Ck−2 . (6.36)

The solution to this relation gives the final expression for the determinant for-
mula in the SU(2)-subsector

Ck = iLTk−1(0)

√√
Q( i

2 )Q(0)

Q2( ik
2 )

detG+

detG− , (6.37)

where

Tn(u) =

n
2∑

l=− n
2

(u+ il)L
Q

(
u+ n+1

2 i
)

Q
(
u− n+1

2 i
)

Q
(
u+ (l− 1

2 )i
)

Q
(
u+ (l+ 1

2 )i
) . (6.38)
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The recursion relation only proves this formula for even k but it holds also
for all odd k that has been explicitly calculated.

C3 and C2 are related through Q-functions,

C3 = 2L Q(0)

Q( i
2 )

C2 , (6.39)

but a proof of formula (6.37) for odd k is yet missing.

Large k
We noted above that the vacuum overlap (6.25) is a polynomial in k of degree
L+1. The determinant formula (6.37) allows us to note the scaling with k for
any number of excitations.

If both L and M are of order 1 but we let k be large, we can approximate
the sum in Ck as

Ck

k → ∞
∼ 2L−MC2

M/2∏
i=1

u2
i

k/2∑
l=1

lL−2M , (6.40)

which gives us the general overlap scaling

Ck

k → ∞
∼

⎛⎜⎜⎜⎜⎜⎜⎝ 2M−1

L−2M+1
C2

M/2∏
i=1

u2
i

⎞⎟⎟⎟⎟⎟⎟⎠kL−M+1+O(kL−M) . (6.41)

This power law will no longer hold below when we consider the β-deformed
version of this setup.

6.2.4 Larger subsectors
The determinant formula (6.37) has consecutively been extend. The first result
for the SU(3)-subsector was found in [82] while the full SO(6)-scalar sector
was covered by [84]. It has thus been shown that the MPS which captures
the defect is integrable for the entire scalar sector and that any treelevel one-
point function of single-trace operators built from scalars can be written in a
determinant form depending on the rapidities. As the SU(2)-result is sufficient
for our purposes, we refer to the references for the actual formulas.

6.3 Propagators in presence of the defect
Having discussed the treelevel one-point functions, the next natural step is
to consider two-point functions. That necessarily involve knowledge of the
propagators which, in presence of the defect, turns out to be a non-trivial task.
They were worked out in detail in [11] from which we repeat the, for us, most
relevant results.
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To study the propagating fields, we split the scalars into their classical and
propagating parts,

ϕi = ϕ
cl
i + ϕ̃i . (6.42)

The action consequently splits into kinetic terms and “mass” terms, plus a
number of new cubic and quartic interactions. Restricting to terms only con-
taining scalars, we get

S ϕ,kin =
2

g2
YM

∫
d4x tr

(
−

1
2
∂μϕ̃i∂

μϕ̃i

)
, (6.43)

S ϕ,mass =
2

g2
YM

∫
d4x

1
2

tr
(
[ϕcl

i ,ϕ
cl
j ][ϕ̃i, ϕ̃ j]+ [ϕcl

i , ϕ̃ j][ϕcl
i , ϕ̃ j]

+[ϕcl
i , ϕ̃ j][ϕ̃i,ϕ

cl
j ]+ [ϕcl

i , ϕ̃i][ϕcl
j , ϕ̃ j]

)
.

(6.44)

Already looking at the scalars alone, we see that the classical values, inter-
preted as masses, generate a lot of mixing. The mass matrix is not diagonal
in flavor nor color indices and in the full action there is also a mass mixing
between the scalars and the gauge field, due to the covariant derivative.

We use the word “mass” in a wide sense here as the classical values have
a coordinate dependence in form of x−1

⊥ . We shall nevertheless see that these
terms produce actual masses in a reinterpretation of the propagators as being
inside an AdS geometry.

6.3.1 Diagonalizing the field type and flavor indices
We can see the structure of the mass mixing in a clearer way if we split the
scalars into the two SO(3)-representations ϕ̃i, with i = 1,2,3, and those with
capitalized indices ϕ̃I , for which I = 4,5,6. We replace the classical values
with the expression (6.7) and introduce the notation4

Li = ad(ti) = −x⊥ [ϕcl
i , ·] . (6.45)

The cyclicity of the traces lets us rearrange the commutators in the action
(6.44) into

tr
(
− ϕ̃IL2ϕ̃I − ϕ̃iL2ϕ̃i+2iεi jkϕ̃iL jϕ̃k

)
. (6.46)

Writing this with the flavor space matrices

S 1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝0 0 0
0 0 −i
0 i 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , S 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 0 0 i
0 0 0
−i 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , S 3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝0 −i 0
i 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (6.47)

4We will in the following let it be understood whether the (N − k) × (N − k) block of zeros is
included or not.
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which satisfy the SU(2)-algebra

[S i,S j] = iεi jkS k , (6.48)

it is now clear that the mass mixing of the scalars has the same form as the
text book diagonalization of electrons in an atom. In this analogy, the scalars
ϕ̃I only have an orbital angular momentum while ϕ̃i experience a spin-orbit
coupling:

tr
(
− ϕ̃IL2ϕ̃I +Φ

T(− L2+2 L ·S
)
Φ
)
. (6.49)

Here we temporarily wrote the vector Φ = (ϕ̃1, ϕ̃2, ϕ̃3)T.
This structure persists when diagonalizing the full (bulk) action of the the-

ory where also the gauge field enters the bosonic part. We pack the bosonic
fields into the two collecting vectors

Φorb =
(
A0,A1,A2, ϕ̃4, ϕ̃5, ϕ̃6

)T , Φs-o =
(
ϕ̃1, ϕ̃2, ϕ̃3,A3

)T , (6.50)

which lets the full bosonic mass part of the action be written as

S b,mass =
2

g2
YM

∫
d4x

1
x2
⊥

tr
(
ΦT

orb
(
−

1
2

L2)Φorb+Φ
T
s-o

(
−

1
2

L2+2L ·S
)
Φs-o

)
(6.51)

where now the “spin”-matrices need to be updated to

S 1 = −
1
2

(
0 σ2
σ2 0

)
, S 2 =

i
2

(
0 �

−� 0

)
, S 3 =

1
2

(
σ2 0
0 σ2

)
. (6.52)

They again satisfy the SU(2)-algebra and their irreducible decomposition5

brings Φs-o into two spin-1/2 representations

U†S iU =
(1

2σi 0
0 1

2σi

)
, Φs/o := U†Φs-o =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
iϕ̃1+ ϕ̃2
−iϕ̃3 − A3

−iϕ̃3+A3
−iϕ̃1+ ϕ̃2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.54)

This prepares the field types and flavor indices such that the propagators can
be diagonalized through the well-known procedure of addition of angular mo-
menta. But for this we also need an appropriate basis in color space.

5The basis change is done through

U =
1
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−i 0 0 i
1 0 0 1
0 i i 0
0 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.53)
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6.3.2 A matrix basis for Li and fuzzy spherical harmonics
Viewed from the lens of non-commutative geometry, the operator L2 is the
Laplacian on the fuzzy sphere. It is diagonalized by the square matrices called
the fuzzy spherical harmonics Ŷm

�
which have the orbital and magnetic eigen-

values � and m, respectively. Much in accordance with the regular spherical
harmonics, we have

L2Ŷm
� = �(�+1)Ŷm

� , L3Ŷm
� = mŶm

� . (6.55)

If we decompose the fields in color space into the upper left k × k block with
indices s, s′, the lower right (N − k) × (N − k) block with indices a,a′ and the
remaining two rectangular parts (also isolating the trace)

φ = [φ]s
s′E

s
s′ + [φ]a

a′Ea
a′ +φtr

(
(N − k)�k + k�N−k

)
+ [φ]s

aEs
a + [φ]a

sE
a

s ,
(6.56)

we can make use of the fuzzy spherical harmonics in the k × k block:

[φ]s
s′ =

k−1∑
�=1

�∑
m=−�
φ�,m[Ŷm

� ]s
s′ . (6.57)

Here φ represents any of the field combinations resulting from the flavor diag-
onalization in the previous section.

The (N − k) × (N − k) block and the trace part are both annihilated by Li
and are hence massless. The rectangular parts transform in the k-dimensional
representation of SU(2) but we will actually not need them for this thesis.
As we only will consider treelevel two-point functions, there will only be a
single Wick contraction in each operator such that the product of the remaining
classical scalar fields will kill everything but the upper k × k block (see for
example equation (6.76) below).

We will however need some more properties of Ŷm
�

.

Some identities for the fuzzy spherical harmonics

The fuzzy spherical harmonics form an orthogonal basis for the (k×k)-dimen-
sional traceless matrices. Their explicit components are

[Ŷm
� ]s

s′ = (−1)k−s
√

2�+1
( k−1

2 � k−1
2

s− k+1
2 m −s′+ k+1

2

)
, (6.58)

expressed in terms of the Wigner 3 j symbol.
Their orthogonality implies

tr
[(

Ŷm
�

)†Ŷm′
�′

]
= δ��′δmm′ or tr

[
Ŷm
� Ŷm′
�′

]
= (−1)mδ��′δm+m′,0 , (6.59)
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since
(
Ŷm
�

)†
= (−1)mŶ−m

�
. They transform in the spin-� representation of SU(2)

and as tensor operators, they obey

LiŶm
� = [t(k)

i , Ŷ
m
� ] =

�∑
m′=−�

Ŷm′
�

[
t(2�+1)
i

]�−m′+1

�−m+1
= mŶm

� , (6.60)

where t(n)
i naturally is the ti generator in the n-dimensional representation.

Finally, we write out the explicit linear combinations of fuzzy spherical
harmonics that make up the SU(2)-generators;

t1 = ck
(
Ŷ−1

1 − Ŷ1
1

)
, (6.61a)

t2 = ick
(
Ŷ−1

1 + Ŷ1
1

)
, ck =

(−1)k+1

2

√
k(k2 −1)

6
, (6.61b)

t3 =
√

2ckŶ0
1 . (6.61c)

6.3.3 The bosonic propagators
Having completed the diagonalizing procedure for the bosons above, each
field component φ in Φorb and Φs/o now appears in the Lagrangian as

−
1
2
∂μφ∂

μφ−
1
2

m2

x2
⊥
φ2 , (6.62)

where the mass m2 is �(� + 1) for the k × k block of the fields in Φorb, � =
1, . . . ,k − 1, and �(�− 1) and (�+ 1)(�+ 2) for the same block of the fields in
Φs/o.6

The scalar propagator corresponding to the expression (6.62) is then the
solution to (

−∂μ∂μ+
m2

x2
⊥

)
Km2

(x,y) =
g2

YM

2
δ(x− y). (6.63)

This expression can be related to the propagator in AdS4, as alluded to above.
We will now show how.

Rephrasing the propagator for a general dimension d as

Km2
(x,y) =

g2
YM

2
K̃(x,y)

(x⊥y⊥)
d−1

2

, (6.64)

we get an equation for K̃:(
−x2

⊥∂μ∂
μ+ (d −1)x⊥∂⊥+m2 −

d2 −1
4

)
K̃(x,y) = xd+1

⊥ δ(x− y) . (6.65)

6See [11] for a derivation of the latter expressions

78



This is in fact the same as for the propagator in AdSd+1 in the Euclidean coor-
dinates

gμν =
1
x2
⊥
δμν ,

√
g =

1
xd+1
⊥

, (6.66)

as is seen from (
−∇μ∇μ+ m̃2

)
KAdS(x,y) =

δ(x− y)
√

g
(6.67)

⇐⇒(
−x2

⊥∂μ∂
μ+ (d −1)x⊥∂⊥+ m̃2

)
KAdS(x,y) = xd+1

⊥ δ(x− y) .

We hence conclude that

Km2
(x,y) =

g2
YM

2
KAdS(x,y)

(x⊥y⊥)
d−1

2

, with m̃2 =m2 −
d2 −1

4
. (6.68)

One explicit representation of the AdS-propagator is

KAdS(x,y) = (x⊥y⊥)
d
2

∫
dd�k
pπ

ei�k·(�x−�yIν
(
kx<⊥

)
Kν

(
kx>⊥

)
. (6.69)

Here (only) we have temporarily set k = |k| and where x<⊥ and x>⊥ is the smaller
and larger of x⊥ and y⊥, respectively. Iν and Kν are the modified Bessel func-
tions with

ν =

√
m2+ 1

4 . (6.70)

The general d is kept for the usefulness in the dimension regularization but
for our purposes we can replace it with d = 3.

6.3.4 The scalar propagators in the flavor basis
The final step to obtain the propagators for ϕ̃i and ϕ̃I is to back-track the diago-
nalization procedure and write them in linear combinations of the propagators
for the fields in Φs/o and Φorb. We refer again to [11] for the details while we
present the final result for the scalars:

〈[ϕ̃i(x)]s
s′[ϕ̃ j(y)]r

r′ 〉 = δi j

∑
�,m

[
Ŷm
�

]s

s′

[
(Ŷm
� )†

]r

r′
K�1(x,y)

− iεi jk

∑
�,m,m′

[
Ŷm
�

]s

s′
[
(Ŷm′
� )†

]r
r′
[
t(2�+1)
k

]�−m+1

�−m′+1
K�2(x,y) , (6.71)

where

K�1(x,y) =
�+1
2�+1

K�(�−1)(x,y)+
�

2�+1
K(�+1)(�+2)(x,y) , (6.72)

K�2(x,y) =
1

2�+1

(
K�(�−1)(x,y)− K(�−1)(�+2)(x,y)

)
, (6.73)
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Figure 6.2. A single contraction between a length L SU(2)-operator and a length-two
operator results in an expression interpretable as a spacetime-dependent operation in
the spin-chain corresponding to the one-point function of the longer operator. The xs
indicate the classical fields.

and we by K�(�−1) mean Km2=�(�−1), etc. The other three scalars have the diag-
onal propagators

〈[ϕ̃I(x)]s
s′[ϕ̃J(y)]r

r′ 〉 = δIJ

�∑
m=−�

[
Ŷm
�

]s

s′

[
(Ŷm
� )†

]r

r′
K�(�+1)(x,y) . (6.74)

With the propagators in our hands we can move on to the work and results
of Paper I.

6.4 Treelevel two-point functions with length two
operator

There exists an interesting special case of two-point functions in the defect
N = 4 SYM theory that combines all the aspects we have covered in this chap-
ter. Namely, the two-point function between an SU(2)-subsector operator OΨ,
as in equation (6.15), and an operator built out of any two (complex) scalars,

OY1Y2 = tr(Y1Y2) , Y1,Y2 ∈ {φ1,φ2,φ3, φ̄1, φ̄2, φ̄3} . (6.75)

Note that we have redefined the symbol Y in this section to denote any complex
scalar.

A contraction between these two operators can be interpreted as an operator
in the spin-chain picture that corresponds to the one-point function of OΨ,
conceptually illustrated in figure 6.2. Let us sketch how that comes about; the
details and full result are to be found in Paper I.7

The one-contraction two-point function reads

〈OΨOY1Y2〉1 contr. =

L∑
l=1

Ψi1...iL tr
(
φcl

i1
. . .φil . . .φ

cl
iL

)
tr
(
Y1Ycl

2
)

+ (Y1 ↔ Y2)

(6.76)

7The notation differs in some aspects. Most notably, the scalars φ denote real scalars in the
paper but complex scalars here and elsewhere in the thesis.
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and thanks to the second trace the contraction yields a (k × k)-dimensional
matrix

[Til,Y1Y2]s
s′ = 〈[φil]

s
s′[Y1]r

r′ 〉[Y
cl
2 ]r′

r . (6.77)
This matrix is special as the orthogonality (6.59) and tensor operator property
(6.60) of Ŷm

�
conspire together with the basis relation (6.61) such that Til,Y1Y2

always can be written in terms of the generators ti. Further more, it turns out
that the contraction is zero whenever T ∝ t3. This makes it possible to view
the contraction as an operation on the spin-chain site in the Bethe state |Ψ〉 that
corresponds to OΨ. The sum over l in (6.76) turns the site-wise action into the
spin-chain operators S ± and S 3. We have

〈OΨOY1Y2〉1 contr. =

L∑
l=1

Ψi1...iL tr
(
φcl

i1
. . . (Til,Y1Y2 +Til,Y2Y1) . . .φcl

iL

)
∝ 〈MPS|QY1Y2 |Ψ〉 .

(6.78)

The spin-chain operator QY1Y2 contains matrix elements built from the prop-
agators and thus carries the spacetime dependence that we have suppressed in
this section. Their precise form are written in Paper I but we note here that the
action of QY1Y2 splits into two cases depending on whether the classical values
Ycl

1 and Ycl
2 are equal or not.

• Case Ycl
1 = Ycl

2 . The Bethe states are eigenstates to QY1Y2 and the two-
point function is proportional to the one-point function of OΨ:

〈OΨOY1Y2〉1 contr. =
(
c↑(L− M)+ c↓M)〈OΨ〉tree . (6.79)

The (spacetime dependent) coefficients c↑ and c↓ are written in the ap-
pendix of Paper I.

• Case Ycl
1 � Ycl

2 . In this case, QY1Y2 induces spin-flips increasing and low-
ering the spin by one in the two resulting terms. The condition that only
unpaired Bethe states may have non-vanishing overlap with the MPS
then implies that OΨ must correspond to a Bethe descendant, |ΨL,M+n〉 =
(S −)n|ΨL,M〉, where n is odd. Using the overlap (6.22) and the norm
(5.26), the result is

〈OΨL,M+n OY1Y2〉1 contr =(
c+n

(
L−2M −n+1

)
C+L,M,n+ c− C−

L,M,n

)
〈OL,M〉tree (6.80)

with

C±
L,M,n =

(n∓1)!
(

L
2 − M

)
!(

n∓1
2

)
!
(

L−2M−n±1
2

)
!

√
(L−2M −n)!
n!(L−2M)!

. (6.81)

Again, the coefficients c+ and c− carrying the propagators are listed in
Paper I.
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6.5 β-deformed N = 4 SYM with a defect
The results presented in this chapter inspired the question whether the inte-
grable structure, and in particular the determinant formula for one-point func-
tions, survive in the β-deformed theory. This was the underlying inquiry of
Paper II. The results were only partly conclusive and are summarized below
in section 6.5.2.

6.5.1 Vacuum solution in the β-deformed theory
The first step is to see whether there is any similar setup at all. Starting from
the β-deformed N = 1 superspace action (3.7), it was shown in Paper II that
there is indeed a β-deformed vacuum solution in very close analogy to the
non-deformed solution in (6.7).

By solving for the auxiliary fields D and Fi and factorizing the kinetic and
potential terms for the scalars, it is possible to write the Lagrangian in two neg-
atively semi-definite terms whose simultaneous vanishing yields an extremum.
The resulting, so called, BPS equations are

[φ̄i ,φ
i] = 0 , (6.82a)

−
∂

∂z
φi = ig εi jk[φ̄ j , φ̄k]∗ . (6.82b)

Expanding the ∗-commutator and writing them in the real scalar fields ϕi, we
find the solution

ϕcl
i = −

1
z

ti ⊕0(N−k), i = 1,2,3, (6.83)

where again ϕcl
j , j = 4,5,6, are zero. This is on the form identical to the un-

deformed solution (6.7) but the matrices ti now satisfy the q-deformed SU(2)-
algebra8

ti = iεi jk [t j, tk]q , (6.84)

where the q-commutator is defined as

[ti, t j]q = qi j tit j −
1

qi j t jti (6.85)

and qi j = qsgn(i j). Here, sgn(i j) is +1 whenever (i j) are taken in cyclic order
from (123) and −1 otherwise. The deformation parameter β is contained in
q = e

i
2β.

Explicit expressions for a (k×k)-dimensional representation for the SU(2)q-
algebra are written in Paper II. But as we move to the spin-chain picture of this
setup, we will need some of the properties of ti.

8We keep the same notation ti and update their definition to deformed generators.
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Some properties of the SU(2)q-representation

The representation matrices ti for the SU(2)q-algebra differ from the unde-
formed case in an important aspect. The transposition property (6.12) does no
longer hold in general. Instead they satisfy

{t1, t2, t3}T = {t1,−Ṽt2Ṽ−1, t3} (6.86)

where the matrix Ṽ is diagonal with entries q
(
2(k−2)+6

)
i−2i2 , i = 1, · · · ,k.

Only the special case k = 2 retains the transpositions of (6.12). In fact, they
are proportional to the undeformed matrices with

ti = 1
cos(β/2) ti =

1
cos(β/2)

1
2σi , (k = 2). (6.87)

The similarity transformations U and V from equations (6.20) do however
still yield the same relations for the deformed representation, i.e.

Ut1U−1 = t1 , Ut2,3U−1 = −t2,3 , Vt1,2 = −t1,2 , Vt3V−1 = t3 . (6.88)

6.5.2 Spin-chain picture and the β-deformed MPS
As above, we now restrict our attention to the two scalar-subsector9 and study
the same set of operators.

The transition to the spin-chain picture is entirely analogous to the unde-
formed discussion above, with the spin-chain now having a twist such that the
Hamiltonian is given by (5.55). However, there are some significant differ-
ences regarding the MPS.

First and foremost, the definition (5.48) of an integrable MPS is no longer
relevant in the twisted spin-chain. The reason is that the behavior (5.46) of the
charges under parity is changed to

ΠQnΠ = (−1)n Qn

∣∣∣∣
β→−β
, (6.89)

such that the odd charges no longer annihilate the MPS. The selection rule that
singles out unpaired Bethe states is hence missing and, as of yet, no replac-
ing condition has been found. This naturally breaks any hope to transfer the
determinant formula from the undeformed theory directly.

Equation (6.89) also makes the β-deformed MPS irrelevant for the direct
construction of MPSs in [68]. These rely on the parity behavior of the unde-
formed theory.

The broken SU(2)-symmetry of the spin-chain also obstructs the avenue to
study integrability properties of the MPS via the Neél state, as also mentioned
in section 5.4.1.

9With the broken R-symmetry, the nomenclature of an SU(2)-subsector is no longer strictly
correct.
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What remains is however the selection rule of even L and M since the
same similarity argument goes through, thanks to equations (6.88). The MPS
seems10 to be parity invariant and that it is possible to find a similarity trans-
formation in the auxiliary space such that

ΠT (u)Π|MPS〉 = T (u)|MPS〉 . (6.90)

With these remarks on the lack of a determinant formula, some additional
results of the simplest overlaps were presented in Paper II.

Simple examples of overlaps

Without a general formula, we cannot make a full comparison with the unde-
formed theory. The simplest overlaps are however enough to highlight some
interesting differences when the β is introduced.

The most striking change is the scaling with k, which we saw in equation
(6.41) was kL−M+1 for the undeformed overlaps. For any non-zero β, this is
changed to an underlying linear scaling for all the considered examples, i.e.
for M = 0,2 with general L and L = 8,M = 4.

Spin-chain vacuum.
The operator tr(φL

1 ) was found to have the overlap

〈MPS|Ω〉 = tr(tL
3 ) =

k∑
i=1

dL
k,i =

2
(sinβ)L

�k/2 ∑
i=1

[
sin β(k+1−2i)

2

]L

=
1

(2sinβ)L (−1)
L
2

L∑
m=0

(−1)m
(
L
m

)
sin βk(L−2m)

2

sin β(L−2m)
2

, (6.91)

with the k-scaling

〈MPS|Ω〉
k → ∞
∼

1
(2sinβ)L

(
L

L/2

)
k+ · · · (6.92)

For this state, the overlap has purely linear k-asymptotics.

Two excitations.
The states with M = 2 have of course a more complicated expression and also
a more intricate scaling with k. The overlap reads

〈MPS|ΨM=2〉 =
1
2

1
(sinβ)L

k−1∑
i=1

[(
1−

cosβ+ cosβk
cosβ+ cos[β(k −2i)]

) (
sin β(k+1−2i)

2

)L−2

×
(
S (p) Yi(L,k,β, p)+Yi(L,k,β, p)

)]
(6.93)

10A proof for k > 2 is missing but numerics indicates that it holds for all k.
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Figure 6.3. The scaling with k of the overlap between the MPS and two examples
states with M = 2. The absolute values of the overlaps are plotted as dots and the gray
line is fitted from an ansatz written in paper II.

where we have packed the following into the symbols

Yi = ei(p+β) (L−1)− Lsi+ (si)L

(1− si)2 , si = ei(p+β) sin β(k−1−2i)
2

sin β(k+1−2i)
2

. (6.94)

The bar denotes complex conjugation and the S-matrix reduces to

S (p) = −
1+ e2iβ−2e−ip

1+ e2iβ(1−2eip)
(BAE)
= e−iL(p+β) (6.95)

due to the translational invariance condition

p = p1 = −p2 −2β. (6.96)

The k-scaling is an oscillation, with approximate period of βk, times and un-
derlying linear dependence. Some example plots can be seen in figure 6.3.

For further details, and the numerical analysis of the overlaps with L = 8,M =
4, we refer to paper II.
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7. Quantum Spectral Curve for the
β-deformation

We discussed three different formalisms for obtaining the spin-chain spectrum
in chapter 5. These have been exploited for the 1-loop calculations but are not
sufficient for higher perturbative orders of anomalous dimensions in N = 4
SYM. The push towards higher and higher number of accounted interaction
loops has gone through several methods, starting with the asymptotic Bethe
ansatz based on S-matrix analysis [30, 89], supplemented with Lüscher cor-
rections to account for finite-size effects1[90–96]. The thermodynamic Bethe
ansatz (TBA) combined the analysis of bulk and finite size and could further
be refined into the so called Y-system, T-system and the finite set of non-linear
integral equations of FiNLIE [97–117]. The most recent and refined method
of them is the Quantum Spectral Curve, which captures the information of the
TBA T-system in only a finite number of Q-functions [2, 3].

This chapter provides a minimal introduction to this formalism and a sum-
mary of the applications in Paper IV. For full accounts, see the provided ref-
erences and [4–6].

The name “spectral curve” stems from a construction in the string world-
sheet σ-model on the string theory side of the AdS/CFT correspondence, first
made in [118, 119]. Strings are one-dimensional objects and as they propa-
gate through spacetime, they sweep out two-dimensional surfaces, their world-
sheets, parametrized by the two coordinates τ and σ.

It is possible to define a so called Lax connection on the worldsheet. It is
a super-Lie algebra valued one-form which depends on the complex spectral
parameter u and satisfies the flatness condition

∂αLβ(u)−∂βLα(u)− [Lα(u),Lβ(u)] = 0 , α,β ∈ {τ,σ} . (7.1)

From this object we can construct the monodromy

M(u;τ) = Pexp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2π∫

0

dσLσ(u;τ,σ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7.2)

1The S-matrix approach starts out from infinite volume L → ∞ and the asymptotic Bethe ansatz
is only valid below the wrapping order.
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Figure 7.1. The worldsheet monodromy (7.2) is a path ordered integral of the σ-
component of the Lax operator around a closed path wrapping the worldsheet once.

by a path-ordered integral along a closed path that wrap around the worldsheet
once, see figure 7.1. The flatness condition (7.1) ensures that worldsheet time
translations simply amount to a similarity transformation of M, i.e.

∂τM = UMU−1 , (7.3)

such that its eigenvalues λ are conserved. As eigenvalues, they satisfy the
characteristic equation

det
(
M(u)−λ(u)

)
. (7.4)

It follows that λ(u) is a multi-valued function of u, or a single-valued function
on a multi-sheeted Riemann surface called the spectral curve.

Diagonalizing M, we can parametrize the eigenvalues as

M(u) = diag
(
eip1(u), . . . ,eip4(u)

∣∣∣∣eip1̂ (u), . . . ,eip4̂(u)
)

(7.5)

where the eight p are called quasi-momenta and have more preferable analytic
structures than λ(u). They form an eight-sheeted Riemann surface connected
by branch cuts with a structure inherited from (7.3). pi(u) are specified through
their large u-asymptotics, the periods around and through the cuts and their
action-variables, i.e. their integrals of u around the cuts. The asymptotics are
controlled by the string state weights of the symmetry group, including the
string energy.

The QSC can be viewed as the quantization of this spectral curve. Its basic
structure is a Q-system of 256 Q-functions which are all connected through
QQ-relations. In the QSC, the Q-functions are now multi-valued functions
of the spectral parameter while the limit g → 0 corresponds to the spin-chain
Q-system we touched upon in chapter 5.

The QSC has been developed both with and without twists. It has been suc-
cessfully used to calculate the anomalous dimensions perturbatively up to 11
loops analytically and to an incredible accuracy numerically, thus far outper-
forming all other known methods [5, 120].
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Solutions to the QSC

Each single-trace operator in N = 4 SYM corresponds to a solution to the
QSC, which as stated contains the anomalous dimension of the associated
multiplet. A large number of such solutions have been found perturbatively
and there is now plenty of explicit data in the literature, as well as many other
applications of the QSC [4, 5, 120–133].

The introduction of twists breaks the multiplets and naturally alter the so-
lution space of the QSC. Some of this is already known through other tech-
niques. For the β-deformation, these include regular QFT-calculations which
gave the complete 1-loop dilation operator and the four-loop anomalous di-
mensions of one-magnon of two-magnon SU(2) states in [134, 135], and for
one-magnon states to the first wrapping order in [136]. The TBA equations
and Y-system were generalized to the β-deformation in [137] and [138] while
four loop asymptotic Bethe ansatz calculations with Lüscher corrections were
done for length-2 and length-3 operators in the sl(2) sector in [139]. See also
results in [140, 141].

However, there is as of yet not as many known explicit results by use of the
twisted QSC and it was the goal of Paper IV to initiate such explicit analytical
applications of the QSC for the β-deformation of N = 4 SYM.

We saw in section 3.1 how the β-deformation killed several of the symme-
try generators. The parts of the N = 4 SYM multiplets connected by these
generators thus split up. Still, some of the symmetries remain which leads to
submultiplets, as it was called in Paper IV. The full structure of this splitting
is an interesting problem to work out. The scope of Paper IV was however
less ambitious; it aimed to find the leading solutions to a number of opera-
tors that join into the Konishi multiplet at β = 0, to perturbatively calculate
their anomalous dimensions and to display the features and challenges in the
explicit application of QSC to the β-deformed N = 4 SYM. The results are
briefly summarized in section 7.5 while we in the following will go through
how to get there.

7.1 The Q-system
We have already had a peek at some QQ-relations towards the end of chapter
5 and we now return to them.

The full set of Q-functions of an integrable system and their QQ-relations
constitute a Q-system. Our example for the SU(2)-chain had 22 = 4 Q-functions.
The full symmetry group PSU(2,2|4) of N = 4 SYM has a total of 28 = 256
Q-functions stemming from all possible duality transformations.

To organize them, we label each Q-function as in section 5.7.1, with two
anti-symmetric multi-indices A,I ⊇ {1, 2, 3, 4}, e.g.

Q12|134 = −Q21|134 = −Q12|143 . (7.6)
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Figure 7.2. The GL(4|4) Q-system is a lattice of 5×5 nodes where the 256 Q-functions
sit, arranged according to their number of indices. The grading can be indicated di-
rectly on this lattice, just as it was done in figure 2.2. Here the grading is exemplified
by 2222.

It is further very practical to combine the pictures of the grading path in figure
2.2 and the Dynkin diagram and place them all into a 5×5 lattice, as in figure
7.2. [4] developed a method for the untwisted QSC to extend this with Young
diagrams for the representations of the solution. We will, however, stick to
this 5×5 lattice.

The Q-functions satisfy two types of QQ-relations: bosonic that involve Q-
functions on a line and fermionic that involves Q-functions from all corners of
a single quadrant in the lattice:

bosonic: QA|IQAab|I =W
(
QAa|I ,QAb|I

)
, (7.7a)

QA|IQA|Ii j =W
(
QA|Ii,QA|I j

)
, (7.7b)

fermionic: QAa|IQA|Ii =W
(
QAa|Ii, QA|I

)
, (7.7c)

where the Wronskian is defined as

W(A,B) = A+B− − A−B+ . (7.7d)

They are also written and illustrated in figure 7.3.
Knowing all about the Q-system is, among other things, to know the entire

spectrum. However, the full system is a very redundant description. In fact, we
can generate the whole system from only knowing the single-index functions

Pa := Qa|∅ , Qi := Q∅|i , (7.8)

by sequential use of the QQ-relations in figure 7.3. These eight functions
are the analogue of the eigenvalues p in (7.5). The procedure is thoroughly
explained in either of the references [3, 142].

89



Figure 7.3. The two bosonic and the fermionic type of QQ-relations of equation 7.7
relate the Q-functions at the respective nodes according to QQ = Q+Q− − Q−Q+.

7.1.1 A dual system
There is a symmetry of the Dynkin diagram which we broke with our choice of
labeling of the Q-functions, the one of turning it upside-down. To incorporate
this symmetry in the construction, we can define a Hodge dual system with
the functions

QA|I := (−1)|A
′||I|εA′ AεI′ IQA′|I′ , (no sum over A′ and I′) (7.9)

where the set of Q-functions QA|I satisfies the same QQ-relations as the lower
index ones. Here |A| denotes the number of indices within the multi-index A.

7.1.2 Asymptotics
The asymptotics of the Q-functions are given by the quantum numbers of the
HWS operator which thus specifies its corresponding solution. This is where
the anomalous dimensions enter into the formalism. The quantum numbers λa
related to R-symmetry do naturally not involve γ, but the AdS-related quantum
numbers do and carry it according to

νi = νi
∣∣∣
g=0+

1
2 {−γ, −γ, +γ, +γ}i . (7.10)

The actual quantum numbers of PSU(2,2|4) are however the differences λa −
λa+1 and νi −νi+1 which allows the freedom of an unspecified shiftΛ into these
numbers. This is related to what is called a gauge symmetry of the Q-system.

The asymptotics are somewhat different in the twisted and untwisted for-
mulations of the QSC. For a full account of this, see [6]. Here we just exem-
plify them for the single-index function (7.8) in the β-deformation. They are
expressed in terms of

λ̂a = λa −
∑
b≺a

δxa,xb +
∑
i≺a

δxa,1+Λ , (7.11)

ν̂i = νi − i+1+
∑
a≺i

δxa,1 −Λ , (7.12)
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where we have introduced the twist factors

xa =
{
eiβ(nf2−nf3 ),eiβ(nf3−nf1 ),eiβ(nf1−nf2 ),1

}
a
. (7.13)

The β-deformed asymptotics for Pa and Qi are then

Pa ∼ Aaxiu
a u−λ̂a , (7.14a)

Pa ∼ Aax−iu
a uλ̂a−4δxa ,1+

∑
b�a δxa ,xb , (7.14b)

Qi ∼ Biu−ν̂i , (7.14c)

Qi ∼ Biuν̂i−
∑

a δxa ,1+3 . (7.14d)

The normalizations A and B also depend on the quantum numbers and are
subjected to rather strict conditions, though allow for some freedom of choice.

7.2 The Pμ-system
As stated, the full Q-system carries a lot of redundancy. There exists, however,
a very slim formulation that captures all of the information in only 14 func-
tions: the 2 × 4 functions P and six functions μab, with a,b anti-symmetric.
The system is accordingly called the Pμ-system and is very well-suited for
perturbative calculations.2

The primary idea is to use the precise analytic structures of these functions
and a key difference equation (eq. (7.23) below). In fact, this equation is also
solved by the central Q-functions Qab|i j and, as a consequence, μab have to be
linear combinations of them. μ control the analytic structure of P by relating
their values on different sheets. Let us make that statement a bit more precise
after presenting their individual structures.

Analytic structure of P

P, being just the single-indexed Q-functions (7.8), are multi-valued functions
of u. In the short cut formulation, P has one Riemann sheet with a single
branch-cut between the branch-points ±2g. The location of the branch-points
is the only place in the QSC where the coupling g appears explicitly. We
denote the values on the first Riemann sheet as P and the those on the second
sheet as P̃. This second sheet has an infinite number of cuts separated by i
between each pair of points ±2g+ i�. See the left hand side of figure 7.4.

Analytic structure of μ
μ has an infinite number of cuts on all its sheets but the first and the second
sheets are intimately connected. The values on the second sheet is the first
sheet shifted by i, that is to say

μ[2] = μ̃ . (7.15)

2There are also other compact formulations in the litterature, see e.g. [120].
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Figure 7.4. The analytic structure of P. To the left, there is a single cut on the first
Riemann sheet in the u-plane between the points ±2g and an infinite number of cuts
on the second sheet at ±2g+ i . The single cut is dissolved by the Zhukowsky map
x(u) which maps the first sheet, and hence P, to the region outside the unit circle while
the second sheet, P̃, is mapped into the interior. (The plot uses an example value of
g = 2.)

Importantly, it follows that both the expressions

μ+μ[2] and
μ−μ[2]√
u2 −4g2

(7.16)

are regular on the real axis.
Furthermore, QSC solutions that correspond to single-trace operators im-

pose powerlike asymptotics on μ, up to exponential factors of the twist, i.e.

μab ∼ (xaxb)iu ·uMab (7.17)

for some number Mab. The zero-momentum condition translates to the re-
quirement that

lim
u→0

μab

μ[2]
ab

= 1 . (7.18)

Relations

The functions μ connect the values of P on its two first sheets

P̃a = μabPb , P̃a = μabPb . (7.19)

Here we have introduced the upper-index μab which is related to the lower-
index μab through

μab = −
1
2
εabcdμcd

1
Pf(μ)

, Pf(μ) =
1
8
εabcdμabμcd . (7.20)

The Pfaffian Pf(μ) can be shown to be a constant that depends on the nor-
malization; it will enter as a g-expansion with determinable coefficients in the
perturbative calculations.
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Since all branch-cuts are of square-root type and we get back to the starting
point by passing twice, (7.19) only makes sense if

μabμ
bc = δca (7.21)

which indeed is the case.
Moreover, P, P̃ and μ are related through

μab − μ̃ab = −PaP̃b+PbP̃a (7.22)

which thanks to the analytic relations becomes a difference equation for μ,

μab −μ[2]
ab = −PaPcμ[1±1]

bc +PbPcμ[1±1]
ac . (7.23)

This equation is the main focus of the perturbative calculations in the Pμ-
system.

The Zhukowsky map

The Zhukowsky variable x is ubiquitous in the context of perturbative calcu-
lations in N = 4 SYM and its deformed cousins. It is a two-valued map of the
spectral parameter,

x+
1
x
=

u
g
. (7.24)

As such, we always denote x for the larger value |x| > 1 and replace x → x−1

for the smaller.
A crucial feature of the Zhukowsky map is that the single branch-cut on the

first sheet of P is mapped onto the unit circle in the x-plane. It separates the
first sheet, which is mapped to the outside region |x|> 1, from the second sheet
which is mapped onto the interior |x| < 1. Hence, the cut is in effect dissolved,
a fact that can be exploited when making an ansatz for P and P̃. An illustration
of the map is to be found to the right in figure 7.4.

7.3 Leading order Q-system
The starting point for the perturbative calculations is the leading solution in
g to the Q-system. It can be obtained through making an ansatz for a subset
of the Q-functions, called distinguished Q-functions. There is one of them at
each node in the Q-system and they are, up to overall exponentials and known
prefactors, all polynomials. We can thus label them with only two indices
a = |A| and s = |I| and choose the labeling of all the Q-functions such that

Qa,s := Q12...a|12...s , (7.25)
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e.g. Q2,3 = Q12|123. The distinguished Q-functions are all related by the
fermionic QQ-relations in figure 7.3. Specifically,

Qa+1,s =
Q+a+1,s+1Q

−
a,s −Q−

a+1,s+1Q
+
a,s

Qa,s+1
. (7.26)

The ansatz relies on the structure

Qa,s =

⎛⎜⎜⎜⎜⎜⎜⎝ a∏
ã=1

xiu
ã

⎞⎟⎟⎟⎟⎟⎟⎠ fa,s qa,s (7.27)

where fa,s(u) are simple and known rational functions of u called fusion factors
and qa,s(u) are polynomials.

A technique to choose the number Ma,s of roots of these polynomials, based
on Young diagrams, was developed for the untwisted case in [4]. Paper IV
proposed an adaption to the β-deformation inspired from this method, in which
the numbers of roots along the grading path stay the same as for β = 0. The
numbers of roots for the rest of the distinguished Q-functions can then be
inferred from the QQ-relations, paying attention to the fusion factors and to
which QQ-relations that involve exponential twist factors.

An ansatz can thus be made for Qa,s on the grading path

Qa,s =

⎛⎜⎜⎜⎜⎜⎜⎝ a∏
ã=1

xiu
ã

⎞⎟⎟⎟⎟⎟⎟⎠ fa,s(u)

⎛⎜⎜⎜⎜⎜⎜⎜⎝uMa,s +

Ma,s−1∑
k=0

ukca,s;k

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (7.28)

and all other Q-functions can be generated by the fermionic QQ-relations
(7.26). In that process, we can use our knowledge of the structure (7.27) to
collect a number of conditions to fix the ansatz coefficients ck. Dividing by the
exponentials and fusion factors, we know that the QQ-relations should give us
polynomials in u and we define the qa,s of Qa,s to be the quotient from this
polynomial division, while the remainders need all to vanish. The collection
of all such zero-remainder conditions fixes all the ansatz coefficients.

Once the numbers of roots are determined on the Q-system, it is possible
to make the starting ansatz on any path from Q∅|∅ to Q1234|1234, preferably
minimizing the number of introduced constants ca,s;k.

Notice that this procedure immediately gives the polynomials with the Bethe
roots as zeros and the described algorithm is, in fact, a very efficient way of
finding the solutions to the 1-loop Bethe equations.

7.3.1 From Qa,s to Pμ

With knowledge of the leading distinguished Q-functions, we can start build-
ing other leading Q-functions, in particular

Qa|∅,Q∅|i,Qa|i,Qab|i j,Qabc|i jk,Qabc|1234, (7.29)
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which are the ones needed for an efficient route to the leading Pμ-system. The
procedure is explained in [4] and briefly summarized in paper IV.

7.4 A perturbative algorithm
The real power of the Pμ-system shines through in the perturbative calcula-
tions. Vital to the algorithm is an ansatz for P expressed in the Zhukowsky
variable. The salient feature of this map is that the expansions in g of the
ansatz is convergent, not only for |x| > 1, but also in a finite region within the
unit circle3. That means that the ansatz for P also provides an ansatz for P̃

close to the unit circle. A finite number of coefficients are needed at each or-
der and, using the different relations and analytic requirements, it is possible
to fix them all, order by order.

The algorithm consists of five steps carried out at each order, starting from
the input of the leading Q-system and the first order ansatz for P and P̃. All
objects are written in terms of their expansions X =

∑
n g2nX(n).4

The steps are explained with detailed examples in both [5] and paper IV so
we only state them as an overview here:

Step 1 Make the ansatz of Paper IV for P(n), introducing a number of coef-
ficients to be fixed. Notably, the normalizations A and B contain the
anomalous dimension through their dependence on ν̂i and its expan-
sion in g thus enters among the constants to fix.

Step 2 Solve the n-loop order part of the difference equation (7.23) to get

μ(n)
ab . This is done through rewriting equation (7.23) as an inhomoge-

neous difference equation

∇μ(n)
ab = −P

(0)
a Pc

(0)μ
(n)
bc

[1±1]
+P

(0)
b Pc

(0)μ
(n)
ac

[1±1]
+U(n)

ab (7.30)

where all lower, and hence known, orders of μ are gathered into the
source term U(n)

ab . The difference operator is defined as ∇X = X −X[2]

and has the inverse Ψ(∇X) = X +P, with P being some i-periodic
function.

It can be shown [142], that the solution can be obtained as

μ(n)
ab =

1
4

Q(0)
ab|i j

[−1]
Ψ

(
Qcd|i j

(0)
[−1]

U(n)
cd

)
(7.31)

3More specifically, it is convergent all the way until the outermost of the infinite number of cuts
from the second u-sheet. See figure 7.4.
4There are solutions that involve also odd powers of g but those are not relevant for our scope.
See e.g. [5].
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where μ(n)
ab hence contain the constants introduced in step 1 through

the source term.
The action of Ψ only (re)produces exponential twist factors, poly-

nomials in u, shifted inverse powers (u+ ni)−m and Hurwitz η-func-
tions. These are all algebraic rings which ensures that all occurring
expressions can be written as four factor terms, with each factor ex-
clusively belonging to one of these function sets. The Ψ-operation is
hence closed. More details on Ψ can be found in [5], Paper IV or in
the appendix of [142].

Step 3 Impose the regularity conditions on μ, i.e. expand the expressions
(7.16) to order g2n and demand that all poles vanish. This fixes a lot
of the coefficients from step 1.

Step 4 Define P̃(n) from the relations (7.19). In this process it is also re-
quired to expand the Pfaffian Pf(μ) =

∑
n g2n Pf(μ)(n) as an additional

coefficient to fix (the lower orders have already been fixed).

Step 5 Lastly, compare the obtained expressions of P̃(n) in step 4 with the
general ansatz and fix the remaining coefficients entering at order
g2n.

This procedure normally fixes all coefficients such that all objects X(m≤n) can
be used in the next iterative step for order g2(n+1).

7.5 Results and challenges for β-deformed Konishi
multiplet

Paper IV aimed to adapt and apply the method to find the leading solution
and the following perturbative algorithm for the Pμ-system to the β-deformed
Konishi multiplet. Eight different operators were considered and their anoma-
lous dimensions were calculated to various loop orders through a Mathemat-
ica-implementation. The computational success was, however, strongly solu-
tion dependent and the obtained results varied from the eight-loop anomalous
dimension for the simplest operators while only a two-loop result could be
reached for the most challenging one. The complications met were compu-
tationally technical in nature, rather than conceptual, and consisted of either
twist-dependent square-roots in the leading solutions or quickly growing ratio-
nal expressions in x. The latter occurred particularly for the example operator
with all xa different.

The computational performance reflected these complications. In general,
all computation times scaled roughly exponentially with the loop order, a pat-
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Figure 7.5. The scaling of computation times for four example operators, here la-
beled as in Paper IV with their potential field content. The ZZ̄ to the left has no twist,
the operator D2

12Z2 has a simple solution, the D2
12ZX contains

√
6 and ZΨ̄22 contains

the more complicated square root
√

x
(
2x2+5x+2

)
. The total computation time is

logarithmically plotted as the thick black line. The fractional computation times (in
per cent) for the individual steps in the perturbative algorithm are indicated with the
shaded colored regions and are independent of the scale on the y-axis. The computa-
tion times and reached loop orders are heavily affected by the presence of the square
roots.

tern that held for all the considered solutions. The comparison between so-
lutions, though, depends on the details of the involved expressions. An il-
lustration can be found in figure 7.5 where the computation times are plotted
for operators without twist, with twist and a simple solution, with a simple
square-root in the solution and, finally, with a complicated square-root. As in
Paper IV, we label the solutions with a term of possible field content, in this
case ZZ̄, D2

12Z2, D2
12ZX and Zψ̄22.

As an example of the results for the anomalous dimensions, we restate the
eight-loop expansion for the operator with the field content ψ11F11:

γ(1) = 12 (7.32)

γ(2) = −48

γ(3) = −12
(
c1 −29

)
γ(4) = −192ζ3

(
c1 −4

)
+348c1 −1440ζ5 −2844

γ(5) = 96ζ3
(
29c1 +43

)
+2880ζ5

(
c1 −4

)
−7380c1 −5184ζ23 +30240ζ7 +22548

γ(6) = 6912ζ23
(
c1 −4

)
−44832ζ3c1 +192ζ3c2 +288ζ5

(
539−149c1

)
+336ζ7

(
334−109c1

)
+136428c1 −156c2

+155520ζ5ζ3 −218016ζ3 −489888ζ9 −143952

γ(7) = 576ζ23
(
−17c1 +3c2 −718

)
+597984ζ3c1 −7824ζ3c2

+576ζ5ζ3
(
863−149c1

)
−48ζ5

(
−13586c1 +95c2 +18267

)
+15120ζ7

(
30c1 −113

)
+451584ζ9c1 −2315988c1 +9984c2 +124416ζ33
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−1935360ζ7ζ3 +4639920ζ3 −993600ζ25 −1287072ζ9 +7318080ζ11 +170964

γ(8) = −
684288

5
Z(2)

11 +27648ζ33
(
5c1 +67

)
−1085184ζ23 c1 −71136ζ23 c2 −5217888ζ3c1

+248112ζ3c2 −1728ζ5ζ3
(
−233c1 +35c2 +2718

)
−4032ζ7ζ3

(
1573−28c1

)
−11520ζ25

(
11c1 −218

)
−9759936ζ5c1 +188400ζ5c2 −8016816ζ7c1 +92856ζ7c2

−4287840ζ9c1 −5575680ζ11c1 +36845004c1 −384636c2 −3255552ζ5ζ23
+9091296ζ23 +23224320ζ9ζ3 −78527184ζ3 −10106928ζ5 +22256640ζ5ζ7

+29792664ζ7 +13615584ζ9 +
93807648ζ11

5
−106007616ζ13 +17947824 ,

Here, ζi denote multiple zeta values (MZV), also formulated into the single-
valued MZV Z(2)

11 = −ζ3,5,3 + ζ3ζ3,5, and we have used the abbreviation cn =

cos(nβ).
For the other calculated anomalous dimensions and leading distinguished

Q-functions, we refer to Paper IV.
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8. Conclusions

This thesis has presented the theoretical background underlying a number of
exact results in three modifications of the supersymmetric field theory N = 4
SYM, namely N = 2∗ SYM, the β-deformation of N = 4 SYM and N = 4
SYM with a defect. These results are part of the larger endeavor to understand
quantum field theories in general and the link between gauge theories and
string theory through the holographic principle.

The concepts of supersymmetric localization, integrable spin-chains and
the Quantum Spectral Curve were introduced and their applications in the four
appended papers were summarized. The conclusions and some open questions
of these gathered works are:

• In the defect N = 4 SYM of Paper I, treelevel two-point functions of
SU(2)-operators and general length-two scalar operators can be calcu-
lated by the use of integrability techniques of the Heisenberg spin-chain
together with an integrable Matrix Product State (MPS), representing
the defect in the spin-chain picture. These results built on earlier work
on one-point functions in the same setting and could rephrase the two-
point functions as an operator in the spin-chain description of the one-
point function of the SU(2)-operator. The known determinant formula
for one-point functions could thus be reused.

The approach relies on the length being two of one of the involved
operators but as the one-point function results have been found for the
full scalar sector, a potential generalization could be to work out the
corresponding spin-chain operation for SO(6)-operators.

• Paper II combined the defect N = 4 SYM with the β-deformation and
found a vacuum solution analogous to the one in the undeformed case.
The β-deformed MPS describing the defect in this setup was, however,
shown to not correspond to any known notion of an integrable boundary
state and hence obstructing earlier paths to determinant formulas for the
one-point functions. Nevertheless, the simplest spin-chain overlaps with
the MPS were calculated and turned out to have an underlying linear
scaling dependence on a parameter k of the defect, in surprising differ-
ence to a power law dependence in the undeformed case.

This latter discrepancy would be interesting to investigate from a
holographic perspective. A confirming string theory comparison with
the k-scaling of the operator tr(Z . . .Z) in the undeformed theory was
done in [81] and it is an open question if a similar observation can be
made for the deformed setup.
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• Paper III employed localization in N = 2∗ SYM to probe the strong
coupling regime. An earlier proposed ansatz for the eigenvalue density
function of the vector multiplet scalar, accounting for the large number
of phase transitions accumulating at strong coupling, was put on firmer
ground through a connection to the dual string theory. The phase tran-
sitions were furthermore shown to occur at the third order in the strong
coupling expansion.

That observation implies that the phase transitions could be perturba-
tively accessed in the holographic dual. The string theory calculations
have as of yet not been pushed that far (the first correction was computed
in [41]) but could in principle be done.

• Lastly in this thesis, Paper IV adapted known applications of the QSC in
N = 4 SYM to the β-deformation, proposing algorithms for finding lead-
ing solutions and the perturbations around them. They were exemplified
for a number of operators belonging to the Konishi multiplet in the unde-
formed theory for which the anomalous dimensions were computed with
a Mathematica-implementation, confirming earlier results and adding
several loop orders.

Future avenues of research could be to apply the algorithms to the
L = 2 BMN vacuum multiplet and to classify all Konishi submultiplets.
Potential improvements of the implementation is also an important ques-
tion as the growing expressions of twist factors often quickly become
challenging.

These are but a few, though very concrete, directions to pursue in the large
effort of finding exact results in supersymmetric field theories and the overar-
ching aim to uncover the inner workings of quantum field theories.
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9. Sammanfattning

Kvantfältteori är den mest precisa beskrivning av den fysikaliska verkligheten
som mänskligheten har lyckats formulera. Kvantitativa förutsägelser har veri-
fierats av experiment upp till tolv siffrors noggrannhet vilket är långt bortom
alla andra forskningsresultat. Det är en fantastisk framgång och ett bevis på
kvantfältteorins betydelse för vår förståelse av naturen.

Snarare än en enskild teori är kvantfältteori ett matematiskt ramverk med
breda användningsområden, från kondenserade materiens fysik till de funda-
mentala elementärpartiklar som utgör de minsta beståndsdelarna i universum.
Den samlande egenskapen är att dessa fysikaliska objekt modelleras som ex-
citationer av en samling variabler kallade fält.

Den mest kända kvantfältteorin är standardmodellen som sammanfattar i
ett fåtal ekvationer alla elementärpartiklar och deras interaktioner via tre av
de fyra fundamentala krafterna: de starka och svaga kärnkrafterna och den
elektromagnetiska växelverkan. Modellen har varit extremt framgångsrik och
har verifierats i ett hissnande antal experiment i partikelacceleratorer världen
över.

Trots standardmodellens alla triumfer så finns det ett antal problem. Å ena
sidan har vi det stora konceptuella tillkortakommandet att den inte är kom-
plett. Varken den fjärde fundamentala kraften gravitation eller en förklaring till
mörk materia ingår, så den är bara giltig som approximation för situationer när
dessa är negligerbara1. Faktum är att det ännu inte finns en tillfredsställande
teori för kvantgravitation, dvs. en teori som både inkluderar de kvantmekanis-
ka principerna som råder på mikroskopiska avstånd och den attraktiva kraften
mellan massiva föremål. Den ledande kandidaten är strängteori, i vilken de
fundamentala objekten utgörs av en-dimensionella strängar vars vibrationer
(excitationer) ger upphov till de partiklar vi observerar.

Å andra sidan finns det stora praktiska utmaningar. Trots den mycket kom-
pakta och eleganta beskrivningen av elementärpartiklarnas fysik är mätbara
storheter i praktiken väldigt svåra att beräkna. I allmänhet får man ta till ap-
proximationer, i synnerhet störningsräkning i vilken alla interaktioner antas
vara små störningar ovanpå en lösning för hur systemet beter sig utan dem.
Interaktionsstyrkan beskrivs matematiskt genom ett antal kopplingskonstanter

1För alla hittills realiserbara experiment är effekterna av gravitation och mörk materia helt för-
sumbara varför resultaten är samstämmiga med standardmodellens förutsägelser. Vid beräk-
ningar av extrema system, så som svarta hål och the Big Bang, är standardmodellen dock inte
längre giltig.
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som i störningsräkningar antas vara små. Resultaten från sådana beräkningar
är därför bara giltiga under vissa omstädigheter.

Bristen på exakta resultat och insyn i dynamiken vid starka interaktioner är
stora hål i vår förståelse för, inte bara partikelfysik, utan för kvantfältteori i
allmänhet. För att få en tydligare bild av den verklighet som kvantfältteorier
beskriver krävs nya beräkningstekniker och någon form av exakta resultat som
kan vägleda den teoretiska forskningen.

Den supersymmetriska kvantfältteorin N = 4 Super-Yang-Mills (SYM) er-
bjuder precis sådana möjligheter. Tack vare sin stora uppsättning symmetrier
har ett antal nya matematiska metoder kunnat utvecklas och exakta resultat
fastställas.

Symmetrier, här i en vid matematisk mening, är det grundläggande språk
som används för att beskriva elementarpartiklar. De systematiseras genom vad
som inom matematiken kallas gruppteori och partikelfysikteorier klassifieras
därför utefter vilka symmetrigrupper de har.

N = 4 SYM har en mycket stor symmetrigrupp som innefattar maximal
supersymmetri och (super)konform symmetri. Den föregående är en hypote-
tisk symmetri mellan de två partikelfamiljerna bosoner och fermioner och den
senare innebär att teorin ser likadan ut oavsett på vilken skala den betraktas.

Trots att N = 4 SYM inte är en realistisk model för vad som har observe-
rats i naturen — supersymmetri saknar experimentell verifikation och konfor-
malitet utesluter partiklar med massa — så fungerar den genom sina många
förenklande symmetrier som ett teoretiskt laboratorium där idéer och nya tek-
niker kan utvecklas och testas. Tre sådana idéer, varpå denna avhandling vilar,
är den holografiska principen, supersymmetrisk lokalisering och integrabilitet.

Den förstnämnda är en föreslagen dualitet mellan vissa kvantfältteorier och
strängteori i en särskild geometri. Med “dualitet” menas att dessa två tillsynes
vitt skilda teorier i själva verket beskriver samma fysik. Detta är häpnadsväc-
kande eftersom de två teorierna har olika antal dimensioner; man kan betrakta
kvantfältteorin som att den lever på randen av strängteorins universum men
ändå fångar alla fysikaliska processer i sin beskrivning. Detta är vad som av-
ses med den holografiska principen. De två olika beskrivningarna kompletterar
varandra i och med att starka interaktioner i den ena motsvaras av svaga i den
andra. Därmed kan man använda störningsräkning på ena sidan av dualiteten
för att beräkna storheter vid starka interaktioner på den andra.

Den andra viktiga idéen, supersymmetrisk lokalisering, utnyttjar supersym-
metri till att förenkla partitionsfunktionen, en funktion som används för att be-
räkna väntevärden av fysikaliska storheter. Vanligtvis innefattar den en inte-
gral över alla möjliga fältkonfigurationer men som via lokalisering kan begrän-
sas till en delmängd av dem, ofta en offantlig förenkling då integrationsområ-
det kan reduceras från ett oändligt-dimensionellt rum till ett ändligt-dimension-
ellt. Det ger möjlighet att exakt beräkna ett antal (supersymmetriska) kvanti-
teter för godtyckliga värden på kopplingskonstanterna och kan således sprida
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ljus över parameterområden som inte är tillgängliga genom traditionell stör-
ningsräkning eller den holografiska dualiteten.

Det sistnämnda genombrottet i N = 4 SYM är förekomsten av integrabi-
litet. Att en model är kvantmekaniskt integrabel innebär löst att den besitter
ett oändligt antal symmetrigeneratorer (som alla kommuterar) vilket kan an-
vändas för att i princip beräkna alla dess fysikaliska storheter. N = 4 SYM
upptäckes inneha en sådan integrabel struktur via en spinkedje-analogi där
operatorers skaldimension kan beräknas på samma sätt som energinivåerna
i ett en-dimensionellt system av partiklar med spin. Tekniskt innebär det att
dilatationsoperatorn, i gränsen då gaugegruppens rank N går mot oändlighe-
ten (stora N-gränsen), verkar på komposita operatorer med ett enskilt matris-
spår såsom Hamiltonianen på en isotropisk spinkedja där varje lokalt Hilbert
rum är en representation av symmetrigruppen för fältteorin. I fallet för N = 4
SYM är detta gruppen PSU(2,2|4), eller eventuellt en undergrupp beroende
på operatorn. Upptäckten av integrabilitet i N = 4 SYM innebär att spektru-
met av skaldimensioner, vilket är ytterst centralt för en konform fältteori, kan
beräknas med kraftfulla spinkedje-tekniker kända och utvecklade under åtta
decenier.

Dessa metoder har möjliggjort en rad nya resultat i den unikt symmetriska
N = 4 SYM. Målsättningen är emellertid att förstå kvantfältteorier i allmänhet
så en viktig fråga är om, och i så fall hur, dessa lärdomar kan utökas till mer
generella modeller.

Ett tillvägagångssätt är att starta ifrån N = 4 SYM och sedan modifiera teo-
rin på ett kontrollerat sätt så att de utformade beräkningsteknikerna fortfarande
är applicerbara. Denna avhandling summerar fyra artiklar med resultat för tre
sådana modifikationer:

i) β-deformationen av N = 4 SYM vilken deformerar och bryter en inre
symmetri (R-symmerin SU(4)) men bibehåller konformalitet och (N =
1) supersymmetri,

ii) den massiva deformationen N = 2∗ SYM i vilken ett antal partiklar
ges massa (N = 2 hypermultipleten med två komplexa skalärer och två
fermioner). Det är således inte en konform teori då massan introducerar
en energiskala men har fortfarande (N = 2) supersymmetri.

iii) N = 4 SYM med en defekt, dvs. ett tre-dimensionellt objekt som pla-
ceras som en rand och delar rumtiden i två områden. Det bryter den fyr-
dimensionella konforma symmetrin och möjliggör nya fysikaliska stor-
heter (såsom en-punktsfuntioner och två-punktsfunktioner mellan ope-
ratorer med olika skaldimensioner).

Artikel I studerade ett specialfall av två-punktsfunktioner i N = 4 SYM med en
defekt. Trädgrafen för en operator i den så kallade SU(2)-sektorn och en opera-
tor bestående av två komplexa skalärer kunde tolkas som en spinkedjeoperation
och återföras på kända resultat för en-punktsfunktioner.
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I artikel II kombinerades den defekta N = 4 SYM med β-deformationen
och en vacuumlösning kunde hittas som gav de första resultaten för en-punkts-
funktioner i denna sättning.

Artikel III använde supersymmetrisk lokalisering för att studera fasöver-
gångar i N = 2∗ SYM vid stark kopplingskonstant. Det kunde fastslås att dessa
sker i nästnäst ledande ordningen varför motsvarande fasövergångar ännu inte
har observerats i N = 2∗ SYMs duala teori.

I den sista artkeln, artikel IV, anpassades den ledande integrabilitetsbasera-
de metoden för skaldimensionsberäkningar, den så kallade Quantum Spectral
Curve, till konkreta beräkningar i β-deformationen av N = 4 SYM. Algoritmer
för att finna ledande lösningar och sedan utöka dem genom störningsräkning
presenterades och applicerades på ett antal skaldimensioner, inklusive resultat
upp till åttonde loop-ordningen.

Vi är ännu långt ifrån en fullständig förståelse för kvantfältteorier och en dag
då förutsäglser för partikelexperiment kan göras med lätthet. Dessa exakta re-
sultat och utforskandet av de tekniker som möjliggör dem är dock ett steg på
vägen i denna gradvisa strävan.
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