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Abstract

In this thesis, I study fluctuations and rare events of time-additive observables of discrete-time

Markov chains on finite state spaces. The observable of interest is the mean node connectivity

visited by a random walk running on instances of an Erdős-Rényi (ER) random graph. I imple-

ment and analyze the Adaptive Power Method (APM) which converges to the driven process,

a biased random walk defined through a control parameter that simulates trajectories corre-

sponding to rare events of the observable in the original dynamics. The APM demonstrates good

convergence and accurately produces the desired quantities from a single trajectory. Due to the

bulk-dangling-chain structure in the ER graph, the driven process seems to undergo a dynami-

cal phase transition (DPT) for infinitely large graphs, meaning the behavior of the trajectories

changes abruptly as the control parameter is varied. Observations show that the random walk

visits two distinct phases, being de-localized in the bulk or localized in the chain. Through two

simpler models capturing the bulk-dangling-chain property of the ER graph I study how the DPT

occurs as the graph size increases. I observe that the trajectories of the driven process near the

transition show intermittent behavior between the two phases. The diverging time scale of the

DPT is found to be the average time that the random walk spends in a phase before it transitions

to the other one. On the ER graph the trajectories are also intermittent but the form of the time

scaling remains open due to computational limits on the graph size.
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Introduction

In Isaac Asimov’s Foundation series Golan Trevize traveled through the galaxy searching from

planet to planet in a seemingly random fashion. But he ended up finding what he looked for:

Earth. Often we are constrained on the paths that we take, for example that we only drive our

cars on roads or that Golan Trevize gets advise on which planet to visit next only one at a time.

With no prior knowledge one can only choose randomly from the paths and after very long times

will eventually visit every possible place. Fortunately, there is a sense of a better randomness if

one wants to find a specific place or path. This is like taking educated guesses and observing that

after some time many small steps in the right direction add up to where one wishes to go. In this

manner random walks on graphs can be tweaked to find rare events, like finding Earth in the

vastness of the galaxy.

In this thesis, I focus on an adaptive random walk running on a random graph. The random

walk exhibits its adaptive nature by actively steering itself towards sampling rare events. This is

critical for understanding how the rare events are realized in time.

Loosely speaking, graphs are collections of points connected by lines. They are used as a

mathematical tool to describe network structures found in both man-made and natural contexts.

Human-made networks include the internet, transportation networks and information networks,

e. g. citation networks, while social networks describe various interactions between humans or

agents. In nature, examples are chemical reaction networks, neural networks and food webs [1–3].

Although graphs do not require to be embedded into a physical space, there exist metrics defining

the shortest paths, walks and other spacial quantities [3]. One can therefore use the intuition

built on spacial setups also for abstract graphs. The ability of graphs to capture a diversity of

structures makes them a versatile tool for the study of networks.

Graphs are also utilized as the underlying state space of dynamical processes. The dynamics

for some of these processes is given by a random walk, where the walker jumps from one node

to another according to a set of rules. Random walks based on Markov chains, which do not

have memory, are easy to implement and can even be studied analytically. This makes them

a widely applicable tool to study physical systems where one only focuses on the interactions

between the nodes. Examples of such processes are infection spreading, traffic, searching on

networks and diffusion [1–3]. The network structure may also be changed by a dynamical process

embedded in it, for example percolation where links are created and destroyed over time [1]. In

statistical physics one is often interested in a set of internal micro-states of a system, e. g. a gas or

fluid made up of many particles, that is represented by a graph and where the random walker

transitions between these states. The long time behavior of the random walk then gives insights

into the emergence and stability of macro-states [4, 5].

Along the random walk one can define time-additive observables which may represent

statistical mechanics quantities such as energy, work or entropy production associated with the
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steps taken [6]. For large times the observables converge to their typical value. But as we can only

study random walks for a finite time this intrinsically leads to fluctuations in the value observed.

Large Deviation Theory is the right framework to look at the probability distribution of these

fluctuations [5, 7]. It describes the probability distribution in a logarithmic scale and thus allows

to estimate the probabilities of very unlikely observable outcomes, called rare events. Although

rare events occur with very low probabilities their strong effects dominate and lead the future

dynamics of the system whenever they happen. A severe example are mass-extinction events in

the Earth’s history where a majority of species dies out over a very short period of time. Given the

large deviation quantities one can construct a driven or auxiliary process, which is a modified

random walk. The typical value of the driven process is a rare event of the original Markov process

which would otherwise be exponentially hard to sample directly [7, 8]. The driven process is

steered into sampling the desired rare event by a single external control parameter thus enabling

one to study how these events occur.

A numerical method in finding the driven process is based on a stochastic control scheme

which was first implemented by Borkar et al. [9] in the context of modelling a network of commu-

nication links. Based on that, the Adaptive Power Method algorithm formulated by Coghi and

Touchette [10] is an adaptively learning random walk which converges to the driven process. The

algorithm was implemented for continuous time and space Markov chains and, especially, it

allows to study non-equilibrium systems modelled by Markov chains [11].

In my thesis I implement the Adaptive Power Method algorithm by Coghi and Touchette [10]

in discrete space and time. The method allows to compute the large deviation functions of the

mean degree observable and sample rare events. I consider Erdős-Rényi random graphs which

are easy to construct, widely known, and often used as a playground to understand structure and

dynamics of more complicated networks [6, 12, 13]. The benefit of the adaptive power method is

that it can even efficiently sample rare events on networks where the global structure is unknown.

Further, the analysis of the algorithm indicates that the driven process on the Erdős-Rényi graph

might show a first order dynamical phase transition for infinitely large graphs. This means

that dynamically in the trajectories leading to a particular fluctuation of the mean degree two

different phases corresponding to the bulk and the chain of the graph are observed. By explicitly

constructing the driven process and looking at its trajectories I study what happens for bigger

and bigger graphs, potentially approaching the dynamical phase transition. The association is

that a dynamical phase transition coincides with a diverging time scale [14]. In the search for the

diverging time scale I consider two simpler models where I study intermittency and the mean

waiting time in the two phases. The insights found are then applied to the Erdős-Rényi graph

model. Gaining a thorough understanding of how the adaptive power method works and where

it can still be improved lays the basis for applications on real world networks.

My thesis is divided into three chapters. Chapter 1 introduces the required theoretical back-

ground on graphs, Large Deviation Theory and the Adaptive Power Method algorithm. The

numerical analysis of the algorithm is covered in chapter 2. Taking cue from observations in the

analysis chapter that indicate a dynamical phase transition, I move onto studying this critical

phenomenon in more detail in chapter 3.
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Chapter 1

Theoretical Background

This chapter covers the definitions and concepts that build up to the central algorithm of my

thesis, the Adaptive Power Method. I start with the definitions of a graph and a random walk.

Further, the basics of Large Deviation Theory are introduced and the last sections will cover a

special random walk, the Driven Process. Eventually, I state the algorithm of the Adaptive Power

Method.

1.1 Graphs

A graph, also called a network, is often used to describe the structure of a system in a simplified

way [1]. The connection between different parts of the system, called nodes, is represented by a

link between them, called an edge.

Mathematically a graph is a tuple of two sets: nodes V and edges E. The nodes or vertices of

a graph are elements in the countable vertex set V . Most often V is defined to be the integers

1, . . . , N under the assumption that it is finite with a total number of elements N = |V |. The

second set E contains the edges where every edge is a tuple of two nodes, for example (3, 8),

connecting them. An edge is called undirected when the order of the two nodes does not matter,

so (3, 8) and (8, 3) are the same edge. In short, the graph can be written as G = (V,E). In this

thesis I only deal with undirected and finite graphs, so |V | < ∞.

Random graphs are special graphs where the edges follow a random distribution. This means

that one cannot speak about a specific graph with exactly given V and E but only of ensembles of

graphs. In the ensemble the number of nodes is fixed to N , so V = {1, . . . , N} and the procedure

of constructing a specific E and thus the graph is specified. Let the total number of edges be

denoted by M = |E|.
The Erdős-Rényi (ER) random graph can be constructed via two different ensembles [3]. I

will use the canonical ensemble where N is fixed before hand and an edge between any two nodes

is drawn with probability p. This results in an expected number of edges per node ⟨M⟩G
N = p(N−1)

2 ,

where ⟨M⟩G means the expectation value of M , the random variable for the number of edges,

computed over the graph ensemble G. The probability distribution of generating a graph with

M = m edges is

P(M = m) =

(N(N−1)
2

m

)
pm(1− p)

N(N−1)
2 −m, (1.1)

where N(N−1)
2 is the total number of possible edges [1]. P(M = m) is a binomial distribution so

the probabilities of generating all individual graphs with m edges are the same.

9



David C. Stuhrmann

2
2

3

2

2

4

1

1

2

2
3

2

4

2

Figure 1.1: Largest connected component of an Erdős-Rényi random graph instance starting from N = 15
nodes and with k̄ = 3. The labels are the node degrees.

In comparison, the micro-canonical ensemble of the ER graph is defined by the set of all

graphs with N nodes and m edges and selecting one graph out of that set with a uniform prob-

ability. In the large graph limit N → ∞ with fixed ⟨M⟩G
N these ensembles become equivalent

[3].

In a graph each node has a specific number of neighbors K, that is other nodes with which it

shares an edge, called the node degree. The expected node degree of the ER graph ensemble is

⟨K⟩G = k̄ = p(N − 1) = 2⟨M⟩G
N . In practice it is convenient to specify k̄ and compute p = k̄

N−1

when varying the graph size N because k̄ should stay constant in the limit N → ∞.

The degree distribution P(K = k) of the canonical ER graph ensemble, that is the probability

that a node has degree K = k, is also binomial [1]. Each node can be connected with up to N − 1

other nodes where an edge is created with success probability p, thus

P(K = k) =

(
N − 1

k

)
pk(1− p)N−1−k. (1.2)

In the limits N → ∞ and p → 0 but with fixed k̄ = p(N − 1), the degree distribution becomes a

Poisson distribution, i. e.

P(K = k) = e−k̄ (k̄)
k

k!
. (1.3)

Because the edges of the ER graph are created randomly it is important to know more about

the connectivity of the graph. A walk on a graph is a sequence of nodes where the previous and

next node have to be connected by an edge [3]. Through a walk one can reach two nodes, start

and end, which do not necessarily have direct connection via an edge between them.

All nodes that can be reached through walks form a connected component of the graph. The

ER random graph can have more than one component, which means that some nodes cannot be

reached by a walk because they lie on another (disconnected) component. In the case of k̄ > 1

the graph will contain a largest connected component which includes almost all the nodes as

N → ∞ [15]. This largest connected component will be used equivalently for the ER random

graph in all following sections.

Figure 1.1 shows the largest connected component of a realization of the ER graph with

parameters N = 15 and k̄ = 3. The nodes (blue circles), are labeled with their node degree k and

the lines connecting the nodes represent the edges. A special part of the graph shown is the so

called dangling chain. This includes a node of degree 1 followed by one or more nodes of degree

2, seen in the upper right of the graph in figure 1.1. The nodes that are not in a dangling chain are

referred to as the bulk of the graph.
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CHAPTER 1. THEORETICAL BACKGROUND

1.2 Random Walks

A random walk is in general any process where the system is in one specific state at a time and

can move from one state to another with a certain probability. This requires a state space V

which can for example be the set of nodes of a graph. In the later sections, V will always be the

set of nodes of the largest connected component of an ER graph, see figure 1.1 for an example.

The type of random walk that I consider in this thesis is a discrete-time Markov chain

X = (X0, X1, . . . , Xt−1) on a finite state space given by the graph G. The sequence X of t

states needs to fulfill the Markov property which means that the probability of making a new

step Xt in the sequence only depends on the last state of chain Xt−1 [16]. Given a realization

x = (x0, x1, . . . , xt−1) where xl ∈ V for all l = 0, . . . , t − 1, the Markov property means that the

probability of the realization

P(X = x) = P(X0 = x0)
t−1∏
l=1

P(Xl = xl | Xl−1 = xl−1) (1.4)

is factorized into one-step conditional probabilities P(Xl = xl | Xl−1 = xl−1) =: P(xl | xl−1). The

term finite state space for the chain comes from the definition of V , it requires that V is finite,

and discrete time means that the sequence of states is indexed by the integer time l = 0, . . . , t− 1.

The transition probability P(j | i) is the probability to make a step to node j under the

condition that the previous node was i. Since the state space V is finite thus indexed from 1 to

N , the transition probabilities can be written as a matrix Π(i, j) = P(j | i). In this form Π is a

row normalized stochastic matrix meaning Π(i, j) ≥ 0 forall i, j ∈ V and
∑

j∈V Π(i, j) = 1 for all

i ∈ V .

The Markov chain is called ergodic if it is irreducible, that means each pair of states can be

connected by a walk between them, and aperiodic, which means that the return time to a state is

random [16]. If the state space comes from an ER graph, then ergodicity is achieved by choosing

the largest connected component as the state space.

The unbiased random walk (URW) on a graph assigns equal probability to step to any of the

neighbors of node i. Its transition matrix is

Π(i, j) =
A(i, j)

ki
, (1.5)

where the adjacency matrix element A(i, j) is one if the nodes i and j are connected by an edge

and zero otherwise. ki =
∑

j∈V A(i, j) is, as before, the degree of node i.

On the random walk trajectory X one can define observables. Given a function f : V −→ R
that assigns a value to the nodes, the one-point additive observable

Ct =
1

t

t−1∑
l=0

f(Xl) (1.6)

is defined in terms of the chain X. Ct is the average of all node values mapped by f that the

random walk encounters. For f(i) = ki mapping to the node degree, the resulting observable

Ct =
1

t

t−1∑
l=0

kXl
(1.7)

is the mean visited degree of the random walk.
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All the information to compute the one-point additive observables is contained in the empir-

ical occupation measure

ρt(i) =
1

t

t−1∑
l=0

δXl,i ∀i ∈ V, (1.8)

where δa,b is the Kronecker delta. This is a vector which counts the number of visits of each node

normalized by the length t of the Markov chain. With the empirical occupation measure the

observable is computed as

Ct =
∑
i∈V

f(i)ρt(i). (1.9)

For an ergodic Markov chain the empirical occupation measure converges in the limit t → ∞
to the stationary distribution p. The stationary distribution is the solution to the eigenvalue

problem pΠ = p. This results in the ergodic theorem which states that the time average Ct

converges to the ensemble average [17]

c∗ = lim
t→∞

Ct =
∑
i∈V

f(i)p(i), (1.10)

where c∗ is called the typical event or ergodic value of the observable Ct. The URW, whose

transition matrix is equation (1.5), has the stationary distribution

p(i) =
ki
2M

∀i ∈ V, (1.11)

where M = 1
2

∑
i∈V ki is the total number of edges [2].

1.3 Large Deviation Theory

The observable Ct is a function of the random walk X and thus a random variable. One can ask

for the probability P(Ct = c) that the observable takes the value c. This probability distribution is

concentrated around c∗ and values c around it are called fluctuations of Ct.

The key idea of large deviation theory is that the distribution of the observable can be written

as

P(Ct = c) ≍ e−tI(c), (1.12)

where the function I(c) ≥ 0 is called the rate function [5, 7]. The symbol ≍ means that Ct follows

the large deviation principle [5], which is that the limit

I(c) = lim
t→∞

−1

t
logP(Ct = c) (1.13)

exists and is finite. The larger the rate function, the less likely the fluctuation c. The most likely

value is the minimum and zero of I which is the typical value c∗ introduced in equation (1.10) [5].

The Gärtner-Ellis theorem [5] allows to compute the rate function indirectly. With the scaled

cumulant generating function (SCGF)

Ψ(s) = lim
t→∞

1

t
logE[etsCt ] (1.14)

12
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the rate function I is the Legendre-Fenchel transform

I(c) = sup{sc−Ψ(s) | s ∈ R} (1.15)

of Ψ if the latter is differentiable. The moment generating function (MGF) G(s) = E[etsCt ]

appearing in the SCGF can be computed in most cases easier than P(Ct = c) and so the step via

the Gärtner-Ellis theorem from Ψ to I is the common one to take. The expectation E[−] in the

MGF G can be evaluated over the distribution of the realizations of the Markov chain P(X = x)

or over the desired distribution P(Ct = c). Inserting the large deviation approximation (1.12) into

equation (1.14) leads to a heuristic derivation of (1.15) [5].

The supremum can be simplified in the case of a differentiable Ψ, such that, given the unique

solution s̃ to c = Ψ′(s̃), the rate function I is just the Legendre transform

I(c) = s̃c−Ψ(s̃) (1.16)

of Ψ. The same relation appears in equilibrium statistical mechanics where the micro-canonical

entropy is the rate function and its Legendre transform is the canonical free energy which is a

SCGF function [5]. The inverse temperature has the role of the parameter s.

In the setting where the observable Ct is obtained from the random walk (section 1.2) the

SCGF is determined by an eigenvalue problem as shown below. First compute the MGF that is

the expectation over all possible trajectories:

G(s) = E[etsCt ] (1.17)

=
N∑

x0,...,xt−1=1

P((X0, . . . , Xt−1) = (x0, . . . , xt−1))e
tsCt , (1.18)

where the x0, . . . , xt−1 are summed over all possible states, which are the N nodes of the graph.

Then use the Markov property in equation (1.4) to expand the probability of the realization

P((X0, . . . , Xt−1) = (x0, . . . , xt−1)) = P(X0 = x0)

t−1∏
l=1

P(Xl = xl | Xl−1 = xl−1) (1.19)

= p(x0)

t−1∏
l=1

Π(xl−1, xl), (1.20)

where in the last line I abbreviate p(x0) = P(X0 = x0) which is the distribution of the initial

condition. Because the observable Ct is one-point additive, the exponential

etsCt = es
∑t−1

l=0 f(xl) (1.21)

=
t−1∏
l=0

esf(xl) (1.22)

can be written as a product as well. Define the tilted matrix

Π̃s(i, j) = esf(i)Π(i, j), (1.23)

13



David C. Stuhrmann

and insert equations (1.20) and (1.22) into equation (1.18) to simplify the MGF

G(s) =
N∑

x0,...,xt−1=1

p(x0)e
sf(xt−1)

t−1∏
l=1

esf(xl−1)Π(xl−1, xl) (1.24)

=
N∑

x0,...,xt−1=1

p(x0)e
sf(xt−1)

t−1∏
l=1

Π̃s(xl−1, xl) (1.25)

=
N∑

xt−1=1

esf(xt−1)

 N∑
xt−2=1

· · ·

(
N∑

x1=1

(
N∑

x0=1

p(x0)Π̃s(x0, x1)

)
Π̃s(x1, x2)

)
· · · Π̃s(xt−2, xt−1)


(1.26)

=
N∑

xt−1=1

N∑
x0=1

p(x0)Π̃
t−1
s (x0, xt−1)e

sf(xt−1). (1.27)

In the last step the sums are grouped together into the repeated vector-matrix multiplications

with Π̃s. The expectation value is therefore the dot product of the vectors pΠ̃t−1
s and esf(−).

For large t the repeated product of Π̃s is dominated by the left eigenvector ls corresponding

to the largest eigenvalue ζs of Π̃s. ζs is largest in the sense that it has the largest absolute value of

all existing eigenvalues of Π̃s. Assuming p and ls are normalized such that their elements sum to

one, then pΠ̃t−1
s ≈ ζt−1

s ls and

G(s) ≈ ζt−1
s

N∑
x=1

ls(x)e
sf(x) (1.28)

= ζt−1
s as. (1.29)

The constant as =
∑N

x=1 ls(x)e
sf(x) does not depend on t, thus

Ψ(s) = lim
t→∞

1

t
log(G(s)) (1.30)

= lim
t→∞

1

t
log(ζt−1

s as) (1.31)

= lim
t→∞

t− 1

t
log(ζs) +

1

t
log(as) (1.32)

= log(ζs). (1.33)

The problem of computing the SCGF in the case of and discrete-time Markov chains on finite

state spaces is reduced to finding the dominant eigenvalue ζs of the titled matrix Π̃s [6].

1.4 Driven Process

To simulate rare events c, which are values of Ct far off from c∗ where P(Ct = c) is very small,

one can use the driven process [7, 8]. This is a modified Markov process depending on the

parameter s and whose typical event is a rare event of the unbiased random walk (URW). The

asymptotic equivalence of the driven process with the URW conditioned on c is described in

detail by Chetrite and Touchette [18].

14
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The central idea is to bias the original Markov process, which yields the distribution P(Ct = c),

to yield a new distribution

Ps(Ct = c) =
etsc

E[etsc]
P(Ct = c) (1.34)

≍ etsc

e−tΨ(s)
e−tI(c) (1.35)

≍ e−tIs(c), (1.36)

where equations (1.12) and (1.14) were used and in the last step the terms in the exponent were

grouped into a rate function for the driven process

Is(c) = I(c)− (sc−Ψ(s)). (1.37)

By the Gärtner-Ellis theorem (1.15) it follows that the specific c = Ψ′(s) is a minimum and zero of

Is(c). Thus the rare event c of the URW becomes a typical event of the driven process.

Chetrite and Touchette [18] state in Appendix E that the driven process has the following

transition matrix

Πs(i, j) =
Π̃s(i, j)rs(j)

ζsrs(i)
. (1.38)

The tilted matrix Π̃s is defined in equation (1.23) and ζs is the dominant eigenvalue of Π̃s with the

corresponding right eigenvector rs. The Perron-Frobenius theorem for non-negative matrices

ensures that ζs > 0 exists and that all components of rs are positive [19]. From the definition it

follows that
∑N

j=1 Πs(i, j) = 1 for all i = 1, . . . , N .

The construction of the driven process is explained in appendix C of Chetrite and Touchette

[20] and appendix E of Chetrite and Touchette [18]. The stationary distribution of Πs is ρs(i) =

ls(i)rs(i) for all i = 1, . . . , N where ls is the corresponding left eigenvector of Π̃s.

The main difficulty in simulating the driven process is in finding the dominant eigenvalue

and the corresponding right eigenvector of the tilted matrix. After that the transition matrix in

equation (1.38) can be used to directly simulate trajectories. The next sections go into the details

of solving the eigenvalue problem Π̃srs = ζsrs.

1.5 Power Method

The power method is a relatively simple iteration scheme to compute the dominant eigenvalue

and eigenvector of a matrix M ∈ RN×N . Each iteration step l consists of the matrix-vector

product r(l+1) = Mr(l) which updates the estimated right eigenvector r. Assume that a basis

of N eigenvectors vi of M with eigenvalues λi sorted decreasingly |λ1| > |λ1| > · · · > |λN | exist.

Then the initial condition

r(0)s =
N∑
i=1

civi (1.39)
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is a linear combination of the eigenvectors and the coefficients ci are uniquely determined by

the initial condition. The repeated matrix-vector product results in

r(l)s = M lr(0) (1.40)

=
N∑
i=1

ciM
lvi (1.41)

=
N∑
i=1

ciλ
l
ivi (1.42)

= λl
1

(
c1v1 +

N∑
i=2

ci

(
λi

λ1

)l

vi

)
. (1.43)

Because λ1 is the dominant eigenvalue, i. e. it has the largest magnitude, all factors obey to∣∣∣∣ λi

λ1

∣∣∣∣ < 1 ∀i = 2, . . . , N. (1.44)

So in the limit

lim
l→∞

(
λi

λ1

)l

= 0 ∀i = 2, . . . , N (1.45)

and r(l) converges to v1. The speed of the convergence depends on the eigenvalue gap |λ1| − |λ2|
as the factor λ2

λ1
is the largest one and thus dominantes the sum in equation (1.43).

After each step l the estimate of λ1 is given by the ratio

r(l+1)(i0)

r(l)(i0)
(1.46)

at some fixed index i0 ∈ {1, . . . , N}. For numerical stability it is better to rescale the vector r(l+1)

to avoid its norm from diverging or going to zero.

1.6 Adaptive Power Method

In this section, I will introduce the Adaptive Power Method (APM) to compute the dominant

eigenvalue and eigenvector of the tilted matrix Π̃s. First, the algorithm is stated and then expla-

nations of individual steps and an extension follow.

The APM simulates a random walk where it starts as the unbiased random walk (URW) and

finishes as the driven process [10]. During the random walk the eigenvalue ζs and the eigenvector

rs are learned such that the final transition matrix is the one of the driven process in equation

(1.38). The variables of the driven process are labeled with a superscript (l) to indicate the value

at the time step l.

The initialization of the algorithm is done by starting with the transition matrix of the URW in

equation (1.5). The unbiased dominant eigenvalue is ζ0 = 1 with an unbiased right eigenvector

of all ones, since Π is a row normalized stochastic matrix. The value of s is selected and kept fixed.
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The initial values at l = 0 are

Π(0)
s = Π, (1.47)

r(0)s = (1, . . . , 1)T , (1.48)

ζ(0)s = 1, (1.49)

γ(0) = (1, . . . , 1)T , (1.50)

a0 = 1, (1.51)

x0 initial node, (1.52)

C(0)
s = f(x0). (1.53)

During each step l = 1, . . . , t− 1 do the following:

1. Use the label i = xl−1 for the previously visited node.

2. Select a new node j = xl with the probabilities given by the row vector Π(l−1)
s (i,−).

3. Save the observable increments

C(l)
s = f(j) and K(l)

s = − log

(
Π(i, j)

Π
(l−1)
s (i, j)

)
. (1.54)

4. Update the i-th component of the right eigenvector

r(l)s (i) = r(l−1)(i) + al−1

(
esf(i)γ(l−1)(i)

ζ
(l−1)
s

− r(l−1)(i)

)
. (1.55)

5. Update the eigenvalue

ζ(l)s = max{r(l)s (m) : m = 1, . . . , N}. (1.56)

6. Update the normalization factor

γ(l)(i) =
N∑

m=1

Π(i,m)r(l)s (m). (1.57)

7. Update the i-th row in the transition matrix

Π(l)
s (i,m) =

Π(i,m)r
(l)
s (m)

γ(l)(i)
for all m = 1, . . . , N . (1.58)

8. Update the learning rate al = l−α
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For a long enough time t each value at the final step l = t − 1 converges to the one of the

driven process in equation (1.38). The approximate values are

Πs ≈ Π(t−1)
s , (1.59)

rs ≈ r(t−1)
s , (1.60)

ζs ≈ ζ(t−1)
s , (1.61)

Ψ(s) ≈ Ψs := log(ζ(t−1)
s ), (1.62)

c∗ ≈ Ct,s :=
1

t

t−1∑
l=0

C(l)
s , (1.63)

I(c∗) ≈ Kt,s :=
1

t− 1

t∑
l=1

K(l)
s , (1.64)

Ψ(s) ≈ Ψt,s := sCt −Kt. (1.65)

The value c∗ is the typical value of the driven process and the solution to the equation s = I ′(c∗)

or c∗ = Ψ′(s), where the parameter s is the one selected in the beginning.

1.6.1 Explanation of the APM

The form of the transition matrix of the driven process, equation (1.38), can be simplified to

Πs(i, j) =
Π(i, j)rs(j)

γ(i)
(1.66)

where γ(i) = ζsrs(i)e
−sf(i) is the row normalization factor.

The iterative update of the right eigenvector rs, equation (1.55), is a modified version of the

power method, see section 1.5. Below I start from the matrix-vector product Π̃srs and rewrite the

i-th component of that product:

r(l)s (i) = (Π̃sr
(l−1)
s )(i) (1.67)

=
N∑
j=1

Π̃s(i, j)r
(l−1)
s (j) (1.68)

=
N∑
j=1

esf(i)Π(i, j)r(l−1)
s (j) (1.69)

=

N∑
j=1

esf(i)
Π(i, j)

Π
(l−1)
s (i, j)

r(l−1)
s (j)Π(l−1)

s (i, j) (1.70)

= esf(i)E
Π

(l−1)
s

[R(l−1)
s (i, j)r(l−1)

s (j)]. (1.71)

In the last step I introduce the likelihood ratio

R(l−1)
s (i, j) =

Π(i, j)

Π
(l−1)
s (i, j)

=
γ(l−1)(i)

r
(l−1)
s (j)

(1.72)

and the sum over j with the weighting factor Π(l−1)
s (i, j) is written as an expectation value with

this transition matrix Π
(l−1)
s , which is the transition matrix of the APM at time step l.
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The argument inside the expectation simplifies to

R(l−1)
s (i, j)r(l−1)

s (j) =
γ(l−1)(i)r

(l−1)
s (j)

r
(l−1)
s (j)

(1.73)

= γ(l−1)(i). (1.74)

Putting things together this updates the i-th component of the right eigenvector after one

step of the Markov chain by the rule

r(l)s (i) = esf(i)γ(l−1)(i). (1.75)

As i = xl−1, only one component of rs gets updated. For most vector norms this would re-

quire a renormalization. A solution is to use the infinity or maximum norm where ∥rs∥∞ =

max{|rs(m)| : m = 1, . . . , N} and fixing the norm to be ζs = ∥rs∥∞. Then the updated component

or rs only needs to be divided by the eigenvalue ζs as the matrix-vector product scales the vector

by the eigenvalue, see equation (1.46). The update rule

r(l)s (i) =
esf(i)γ(l−1)(i)

ζ
(l−1)
s

(1.76)

automatically normalizes rs in the maximum norm to ζs.

The last modification that is missing to get to equation (1.55) is the introduction of a learning

rate al ∈ (0, 1]. This is needed because the change

∆r(l)s (i) =
esf(i)γ(l−1)(i)

ζ
(l−1)
s

− r(l−1)
s (i) (1.77)

between the update in equation (1.76) and the previous value is stochastic. Even as the APM

converges one expects fluctuations in ∆r
(l)
s (i) which are noisy around zero, these need to be

counter balanced [10]. The update rule in equation (1.55) adds the stochastic update from

equation (1.77) scaled by the learning rate al to the i-th component of rs. In order to avoid that

the noise accumulates and breaks the convergence, al is decreased towards zero for large l.

The update of the normalization factor γ(l) in step 6 and the update of the transition matrix

Π
(l)
s in step 7 follow because a component of rs appearing in them is changed. The eigenvalue is

updated in step 5 by taking the maximum value of the components of rs because the normaliza-

tion of rs is chosen to be ζs in the maximum norm.

The APM simulates a Markov chain whose transition matrix converges to the one of the driven

process. Thus the additive observable Ct,s in equation (1.63) converges to the typical value of

the driven process c∗. This is the rare event that I want to simulate and which follows from the

solution to c∗ = Ψ′(s) or s = I ′(c∗), see the Gärtner-Ellis theorem. That the observable Kt,s

from equation (1.64) converges to the value of the rate function I(c∗) is a result of the special

form of the driven process. For a derivation, see section 2 of Carugno et al. [21]. Given the two

observables Ct,s and Kt,s, the second estimate of Ψ(s) is the empirical Legendre-transform Ψt,s

from equation (1.65).

In the end the APM allows to compute the value of the SCGF Ψ(s) in two ways. The first is

Ψs = log(ζs) via the logarithm of the estimated dominant eigenvalue ζs while the second one is

Ψt,s = sCt,s −Kt,s via the above mentioned additive observables Ct,s and Kt,s.
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1.6.2 Transfer Learning

A convergence speed-up of the APM is achieved through a transfer learning scheme [10]. In

this scheme the final eigenvector rs and transition matrix Πs are used as the initial conditions to

learn the new eigenvector rs+∆s and transition matrix Πs+∆s where the s-parameter is changed

only by a small amount ∆s. The number of iterations needed to learn the updated eigenvector is

then reduced because the difference between the initial rs and the final rs+∆s is small for small

∆s. The transfer learning procedure can be repeated by starting at s0 = 0 and arriving at a final s1
after s1−s0

∆s epochs, which are the time step segments of fixed s. The learning rate al needs to be

reset after each epoch.
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Chapter 2

Numerical Analysis

The algorithm of the Adaptive Power Method (APM) was described in the previous chapter. This

chapter covers the numerical analysis of the method. First, I look at the convergence time of the

APM and how the transfer learning scheme improves it. I also study how the SCGF and the rate

function that are computed via the APM compare to the exact forms. In the second half, I go over

the effect of the learning rate and compare the APM with the power method. In the end, I briefly

show how the APM could be extended to condition on a fixed value of the observable Ct = c,

rather than fixing the tilting parameter s.

2.1 Convergence of the APM

During each step l of the APM the values of Ψ(l)
s , Cl,s, Kl,s and Ψl,s are saved. They are now

analyzed as time series of discrete time l. In order to have a reference exact value for the dominant

eigenvalue ζs and thus Ψ(s), I used Python’s linear algebra eigenvalue solver to solve for the

dominant eigenvalue and eigenvector directly.

I first look at the SCGF Ψs computed as the log of the dominant eigenvalue ζs of the tilted

matrix in equation (1.23). Figure 2.1 shows the time series of Ψ1, left plot (a), and Ψ−1, right plot

(b), for t = 106 steps. The solid lines are obtained by averaging over 100 repeated simulations

and the shaded area represents the standard deviation. For reference the exact value of Ψ(s)

is indicated by the dashed horizontal lines. Plotted in different colors are the curves for four

different graph sizes from 50 to 400 nodes increasing by factors of two.

The initial condition ζ
(0)
s = 1 translates to Ψ

(0)
s = 0, which is outside the view in plot (a)

because of the semi-logarithmic scale. For s = 1 the SCGF is positive and larger than 1 as seen in

figure 2.1 (a) so the convergence happens from below. The number of steps needed to converge

to the exact value Ψ(s) increases, though not very drastically, with the graph size N as one can

see from the wider error bands.

In the case s = −1 the convergence is much slower than for s = 1. A delay is visible in figure

2.1 (b) where Ψ−1 stays at zero for an initial period. This behavior is due to the initial conditions

of ζs and rs in equations (1.48) and (1.49). A negative SCGF, as for Ψ−1, corresponds to ζs ∈ (0, 1).

Because the maximum component of rs is normalized to be ζs and initially all components of rs
have the value 1, the APM first has to visit all nodes of the graph before ζs is updated for the first

time. This is visible in plot (b) where the period of Ψ(l)
−1 = 0 increases with the graph size N . After

this initial period the averaged SCGF drops quickly and even falls below the exact value before

converging to Ψ(−1).
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Figure 2.1: Averaged time series of the SCGF Ψ
(l)
s = log(ζ

(l)
s ) from the APM. The value of s is changed from 1

to −1 between the left (a) and right (b) plot. The dashed line shows the exact value and the shaded area the
standard deviation computed over 100 repetitions of the APM. The different color curves correspond to the
different graphs sizes N . The fixed parameters are k̄ = 3 and α = 0.1.

The parameters k̄ = 3 and α = 0.1 used in these simulations of the APM are the same

throughout the rest of the chapter.

2.1.1 Transfer Learning

The convergence of the APM improves when transfer learning is used. Especially for s < 0 the

effect becomes important. Transfer learning, described in section 1.6.2, means that the already

learned information of the right eigenvector rs and the transition matrix Πs for a previous value

of s is used as the starting point of the APM with new value s+∆s. The APM is thus divided in

epochs of different s values.

The time series of Ψ(l)
s with transfer learning is shown in figure 2.2. The APM is run for 5

epochs and 10 000 steps per epoch, thus in total only 50 000 steps compared to the 106 steps

before. The initial epoch starts at s = 0 and the change between epochs is ∆s = 0.25.

In the left plot (a) of figure 2.2 the time series converges to Ψ(1) in a very clear step function

shape. The error is reduced significantly and in all epochs. The step function shape indicates

that the APM converges in each epoch to the temporary value Ψ
(l)
s .

When looking at the right plot (b) in figure 2.2 the first two epochs of Ψ(l)
−1, that is up to step

l = 20 000, resemble very much what is shown in figure 2.1. The second epoch, where s = −0.25,

absorbs the time that is needed for the APM to first change Ψ
(l)
−1 from zero, thus in the later

epochs this period is not present. One can see that the convergence time to the temporary values

of Ψ(l)
−1 is decreased and also the error is reduced. The time series become a similar step function

as for the case s = 1.

The benefit of the transfer learning and the step function shape is that the value Ψ(s) can be

extracted for intermediate values of s. The time per epoch influences the accuracy as the APM

needs to converge well enough in each epoch. Its value needs to be chosen according to the

graph size N and increment ∆s. A similar behavior as described above for Ψ(l) is observed for

the estimator Ψt,s whose plots are omitted to avoid redundancy.
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Figure 2.2: Averaged time series of the SCGF Ψ
(l)
s = log(ζ

(l)
s ) from the APM with transfer learning. The time

series consist of 5 epochs with 5000 steps each. The solid line are averages over 100 repetitions and the
shaded area the standard deviation thereof. The different colors correspond to the different graph sizes N
and the dashed lines show the exact value of Ψ(s). The parameters used in the APM are k̄ = 3, α = 0.1 and
∆s = 0.25.

2.1.2 Rate Function

The pairs (Ct,s,Kt,s) computed with the transfer learning of the APM represent the rate function

(RF) of the unbiased random walk. By the point-wise empirical Legendre transform Ψt,s =

sCt,s −Kt,s one gets the SCGF as the pairs (s,Ψt,s). Both functions are shown in figure 2.3 for a

graph of size N = 400 with different times t per epoch ranging from 500 to 4000. The data points

represent the average of 100 simulations where the error bars represent the standard deviation.

The left plot (a) shows the SCGF whose exact curve was computed by finding the exact

eigenvalue of the titled matrix and taking the logarithm of it. Notice that the error bars are

only along the y-axis because the parameter s is kept fixed during each epoch of the APM and

thus does not contain an error. The Legendre transform of the SCGF is the rate function which

is shown in the right plot (b) of figure 2.3. The exact curve was computed as the numerical

Legendre-Transform of the exact SCGF. Here, the data points obtained from the APM have an

error along both the x- and the y-axis because both quantities Ct,s and Kt,s are observables that

are averaged over 100 simulations of the APM.

The APM results of the SCGF align very well with the exact function for s > 0 for all different

times t per epoch. For s < 0 the data points lie below the exact SCGF, which is due to the Legendre

transform and that the data points of the rate function lie above the exact rate function. When

doubling the time t the SCGF gets closer to the exact function also for s < 0. In the region of

small negative s the SCGF seems to develop a kink, that is its slope changes rapidly.

That the estimates of the rate function shown in figure 2.3 (b) lie always above the exact curve

(black line) is expected. Whenever a sampling method is used, implicit constraints are added

into the larger system where the rate function I, in terms of the observable Ct, is an infimum of

a higher dimensional rate function. See Touchette [5] for more on the infimum optimization

process called contraction. These constraints on the infimum lead to an over-estimation of the

rate function I by the APM [20].

Similar to the SCGF, the rate function obtained by the APM is very close to the exact one when

c > c∗ ≈ 4 for all values of t plotted. When c < c∗ the accuracy depends strongly on the time t per

epoch. For the shortest time span per epoch t = 500 (blue dots) the rate function shows a clear
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Figure 2.3: Scaled cumulant generating function (SCGF) Ψ(s) and rate function (RF) I(c) computed from
the APM with transfer learning. The graph size is N = 400 with k̄ = 3. The number of iterations per epoch t
is increased by factors of 2. Each data point is an average over 100 repetitions of the APM and the error bars
are the standard deviations. The APM SCGF is (s, sCt −Kt) and the rate function (Ct,Kt), where the exact
SCGF is the logarithm of the exactly computed eigenvalue of the titled matrix and the exact rate function is
the numerical Legendre transform of the exact SCGF. The APM is run with α = 0.1.

dip. In this case the APM does not have enough time to visit the whole graph during the first

epochs, recall figure 2.1 (b). This means that the estimators Ct,s and Kt,s actually do not sample

the true values during those epochs. For longer times t the accuracy of the APM increases and

the almost linear section of the rate function is recovered. Nevertheless, the difference to the

exact I remains the largest along the linear stretch, which is by the Legendre-Fenchel transform

related to the kink of the SCGF.

The limits of s for the SCGF Ψ in figure 2.3 (a) are fixed to be exactly s = ±1 while the limits

for c in the rate function are determined by the asymptotic slopes of Ψ. These slopes represent

the minimally and maximally visited averaged degrees on the graph. If there exists a dangling

chain then the minimum is always 1.5 as the random walk spends most of its time on the end of

the chain (degrees 1 and 2). In contrast, the maximum depends on two neighboring nodes of

largest degrees.

The behavior can be seen in the stationary distribution of the driven process which is shown

on a graph representation in figure 2.4. The colors describe the value of the stationary distribution
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Figure 2.4: Stationary distribution of the driven process for (a) s = 1 and (b) s = −1. The graph is the largest
connected component of an ER graph with N = 15 and k̄ = 3. Node labels are the degrees of the nodes.
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Figure 2.5: Time series of the averaged absolute error of the SCGF during the APM. The form of the learning
rate is varied between (a) with a decreasing learning rate al = l−α and (b) with a constant learning rate
al = α. The curves for different values of α are shown. The solid lines correspond to s = 1 and the dashed
ones to s = −1 simulations. Averaging is done over 100 trajectories with a graph of size N = 50 and k̄ = 3.

on each node which highlights on which nodes the random walk spends most of the time. In

the case (a) it is s = 1, and the nodes with the highest degrees 4 are visited the most while in the

other case (b), where s = −1, the nodes in the dangling chain are visited (degree 1 and 2). The

yellow color of the chain nodes in (b) shows that most of the stationary distribution weight is in

the chain meaning that the random walk is localized there. In (a) the weight is spread out over

more nodes in the bulk (green and blue color) indicating that the random walk is de-localized.

2.2 Learning Rate

The learning rate al = l−α is a decreasing sequence with time l. If one is unfamiliar with stochastic

approximation this might seem a bit unintuitive as the effect of the update weighted by al is

decreased. It is important to keep in mind that the update is noisy and only on average steers in

the right direction, so the learning rate influences how strong the effect of the noise is. Under

certain circumstances a constant learning rate al = α for all l could give still acceptable results if

α is chosen small enough [22]. In this section I investigate the effect of a constant learning rate

on the APM with a small graph size of N = 50 with k̄ = 3.

The absolute error |Ψs −Ψ(s)| is shown in figure 2.5. The curves are based on an averaged Ψs

over 100 trajectories of length t = 106. The case s = 1 is plotted in solid lines while s = −1 are the

dashed lines. Colors indicate the different values of the learning rate parameter α. Surprisingly,

in comparison between the left (a) where the learning rate is the decreasing sequence and the

right (b) with the constant learning rate the error is not significantly different. Similarly, the plots

of the rate function (t = 2000) for both cases of the learning rate, shown in figure 2.6, do not show

a significant difference. One can only see that the value α = 0.1 in the decreasing learning rate

case yields very good results while for the constant learning rate this would be for α = 0.5.

While this does not allow to make a general conclusion, it shows that for small graph sizes

N = 50 and the topology of the ER graph the noise in the update of the dominant eigenvector rs
components seems to be not too large. Thus the constant learning rate performs comparably

well as the decreasing learning rate sequence and it explains why the relatively slowly decaying

sequence for α = 0.1 is optimal.
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Figure 2.6: Rate function I(c) computed from the APM through transfer learning with t = 2000 steps per
epoch and in total 50 epochs. The learning rate is changed from (a), decreasing learning rate al = l−α, to
(b), constant learning rate al = α. The colors show the results for different values of α. The APM is repeated
100 times to compute the average and the standard deviation which is shown by the error bars.

2.3 Comparison with the Power Method

The power method (PM) described in section 1.5 is a well known method for solving for the

dominant eigenvalue of a matrix. I compare the convergence of the power method with the APM

for different graph sizes. The absolute error of the SCGF Ψ(s) = log(ζs) computed with these

two methods is shown in figure 2.7. The solid lines correspond to s = 1 and the dashed ones to

s = −1.

In plot (a) of figure 2.7 the APM with transfer learning is simulated over 10 epochs with 1000

steps per epoch. The error decreases significant only in the last epoch which is due to the transfer

learning which just reduces the total number of steps needed. The final error after 10 000 steps is

in the order 10−1 to 10−3 and is lower for smaller graph sizes N .

The power method shown in (b) converges much faster and can reach even machine precision

with an error below 10−14. One can see that for larger graph sizes N and s = −1 the convergence

becomes slower. An example is the dashed green curve for N = 200 which only decreases to an

error of 10−9 after 1000 iterations. In order for the power method to converge, I need to use a

learning rate as seen in the APM. A constant al = α = 0.1 is sufficient because of the deterministic

nature of the method. Note that the value of α influences the speed of convergence.

Overall the power method converges faster and to lower errors than the APM. This is expected

since it updates the whole eigenvector rs during each iteration while the APM changes only one

component per step. The strength of the APM lies in that it simulates a random walk so the matrix

Πs does not need to be present in its full form. Only the local information of the neighbors of a

node i, that is Πs(i,−), is needed. This is specifically an advantage if one has no prior knowledge

of the network and thus the full transition matrix or when the latter one is time dependent. See

Di Bona et al. [13] for a maximally spreading APM in unknown networks.

Another advantage of the APM is the transfer learning which allows to compute the dominant

eigenvalue for a range of s values in one simulation and update Πs along the way. For the power

method where s has to be fixed the whole time this is not possible, and one would need to

compute the eigenvalues for each s separately which involved constructing Π̃s repeatedly.
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Figure 2.7: Absolute error of the SCGF computed (a) with the APM with transfer learning and (b) with the
power method (PM). The solid lines correspond to s = 1 and the dashed lines to s = −1. The graph size N
is doubled between the simulations. The fixed parameters where k̄ = 3 and α = 0.1 for both methods. The
APM curve is computed as the average over 100 repeated simulation.

2.4 Learning the s-parameter

The APM is introduced in section 1.6 with the parameter s chosen beforehand and controlling

the algorithm. The value of the observable c that is realized by the APM is related to s via the

derivative of the SCGF Ψ′(s) = c. But this requires the SCGF Ψ to be known and in a format where

the derivative can be evaluated. For larger graphs computing the SCGF can be computationally

too expensive. I show a modified transfer learning of the APM that can be used to simulate a

trajectory for a desired value of c. This concept was initially introduced in the APM by Borkar

et al. [9].

The idea is to fix a value of c and let the value of s be learned. This is done by adding another

stochastic approximation scheme. A simple updating scheme which works as a proof of concept

is

s(e+1) = s(e) − be(Ct,s − c), (2.1)

where be is another learning rate and e the index of the epoch. During each epoch e the APM is

run with a fixed s(e) and a value of Ct,s is obtained. The error Ct,s − c then determines the update

of s. Similar to the previous learning rate, see step 8 of the APM, the be is a decreasing series

learning rate

be = b0e
−β (2.2)

with the exponent β and a scaling constant b0 as parameters. The speed with which be decreases

is slower than the one of al because the former is only changed in between epochs while the

latter changes after every step. The value of b0 influences mainly the first update of s.

An example of learning the s value for three different values c = 2, 3 and 4 is shown in figure

2.8. The left plot (a) shows the time series of Ct,s and the right plot (b) shows the value of s at

that time during the simulation. The epoch length is 6000 iterations and the graph size is N = 50

with k̄ = 3. The parameters for the learning rate in equation (2.2) are b0 = 0.1 and β = 1.2, whose

values were found by trial and error.

The plots show that the convergence of Ct,s is not perfect which is expected since it is a

random variable and thus shows fluctuations. But the general magnitude of s and its sign were
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Figure 2.8: Simulations of the transfer learning APM to learn the parameter s on a graph with N = 50 and
k̄ = 3. Three values c = 2, 3 and 4 are used. The left plot (a) shows the estimate Ct,s over all epochs. The
corresponding values of s in every epoch are plotted in (b).

learned, see right hand side (b) of figure 2.8. Values of c that are larger than the typical value c∗

correspond to s > 0 while values of c that are less than the typical value correspond to s < 0.

With further improvements this opens the usage of the APM to applications where the SCGF of a

system is unknown or incomputable and conditioning on a fluctuation c is desired.
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Chapter 3

Dynamical Phase Transition

In this chapter I investigate closer how the kink in the SCGF related to the driven process on

the ER graph develops, which is believed to indicate a dynamical phase transition (DPT) . By

large deviation theory the value of the observable Ct which is realized by the driven process is

the fluctuation c = Ψ′(s). Thus if the SCGF Ψ has a discontinuity in the derivative this means

that the observable cannot be sampled at that point by the driven process.

The SCGF previously seen in figure 2.3 has two sections where it becomes asymptotically

linear. These are the cases where s → ±∞. In between, the derivative of the SCGF, which is the

value c of the observable as a function of s, transitions from one asymptotic value to another.

This transition becomes steeper as the graph size N increases (compare figure 3.12). It is thought

that in the limit N → ∞ this becomes a discontinuity and so the SCGF develops a kink. By the

Legendre-Fenchel transformation this kink transforms into a linear section in the rate function

(compare figure 2.3).

The values of c to the left and right of the discontinuity describe the difference dynamical

phases. The typical trajectories that realize those fluctuations show a very different behavior.

The idea was already briefly touched in the previous chapter where I describe the rate function.

There figure 2.4 shows the stationary distribution on a small ER graph from which it becomes

clear that the trajectories to the right of the critical point are de-localized in the bulk and have a

value of c ≈ c∗ while the trajectories to the left are localized in the chain with c ≈ 1.5.

How do the trajectories of the driven process at the critical value s∗ where the SCGF develops

a kink look like? The driven process simulates trajectories corresponding to c = Ψ′(s∗) that is

a weighted average of the values in the two phases, and these trajectories are the most likely

ones of the unlikely URW trajectories that sample c. In correspondence to equilibrium phase

transitions where most often a correlation length scale diverges, I am looking in this case of a

dynamical version of a phase transition for a diverging time scale [14]. Whitelam [23] argues that

the DPT should be studied by phenomenology, that is finding the mechanism that leads to the

singularity in the SCGF which may break the large deviation principle at that point, such that the

driven process would not be defined. A candidate I focus on is intermittency and an intrinsic

time scale of the trajectories which I call the mean waiting time (MWT) to hop from a phase to

another.

Before studying the ER graph model, I look at two simpler models to check for intermittency

and the connection of the MWT to the transition region. When I increase the length of the

trajectories proportional to the MWT such that the large deviation principle holds again, then

this rescales the SCGF around the transition point and the kink in the limit disappears. The first
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Figure 3.1: The SCGF Ψ(s) and its first derivative for the 2-state model. The system parameter b is increased
to get a sharper transition of c around s∗ = − log(2) and thus a kink in Ψ.

model is a reduction of the graph into two states representing the chain and the bulk. After that

I study a 4-state model which is based on a fully connected graph that has one dangling chain

attached. In the last section I will come back to the ER graph and apply the insights gained from

the simpler models.

3.1 2-State Model

The most coarse grained model for the two phases seen in the ER graph is a 2-state model

introduced by Carugno et al. [24]. The state 1 corresponds to the chain and contributes an

observable value of 1 while the other state b is the bulk whose contribution is b > 1. The

assumptions for the transition probabilities are set such that the probability to go from the chain

to the bulk is always 1
2 while the probability to go from the bulk to chain is 1

b . So for larger b the

probability to move out of the bulk becomes lower. This is reasonable as in the ER graph the bulk

grows as N increases while the chain stays roughly the same in size. For a sketch of the 2-state

Markov chain see figure 3.2. The two circles represent the two states while the arrows indicate

the transitions labeled with their transition probability.

The observable defined in the 2-state model is

Ct =
1

t

t−1∑
l=0

f2(Xl), (3.1)

1 b1
2 1− 1

b

1
2

1
b

Figure 3.2: Sketch of the 2-state model and its transition probabilities. The system parameter is b ∈ (1,∞).
The labels on the edges represent the transition probabilities between the states (circles).
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Figure 3.3: Trajectories of the 2-state model simulated with the driven process at s∗ = − log(2) where
c ≈ 0.5. The system parameter b is increased between the subplots.

where

f2(X) =

 1
b , X = 1

1, X = b.
(3.2)

such that Ct ∈ [0, 1] is a scaled mean degree.

The SCGF Ψ of this model can be with low computational cost computed via direct diagonal-

ization. The value of the observable as a function of the tilting parameter s is obtained by taking

the derivative of Ψ. Both functions are shown in figure 3.1 where s ∈ [−2, 0] and b is increased

from 50 to 500. As b gets larger, the SCGF develops a kink at s∗ = − log(2) [24] and the curve of c

approaches a step function (black curve). For finite but large b, when there still exist a transition

region, s∗, the position of the maximum of Ψ′′, already coincides with the analytical value. The

value of c at the transition point s∗ is c = 0.5, which means that the random walk needs to spend

equal amounts of time in both states. This is because the rewards of both states are 1
b ≈ 0 and 1

as b → ∞.

The trajectories simulated with the driven process at criticality are shown in figure 3.3. The

trajectory length is t = 10 000 of which only the first 1000 steps are shown. In all cases the random

walk transitions back and forth between the two states and the fluctuation value c is around 0.5.

As b increases one observes that the time between the transitions becomes on average longer. A

quantity characterizing the scaling is the mean waiting time (MWT) which is the average of the

time segments that the random walk spends waiting in one state before it finally moves to the

other state. Given a trajectory, the MWT is easily computed by the total time spent in the state

divided by the number of transition away from that state.

The MWT over a range of b values from 100 to 20 000 is shown in figure 3.4. It is the average

over 100 trajectories and the error plotted as the standard deviation (shaded area) is very low and

barely visible. Both curves for the MWT of the phase 1 and b follow the same form
√
b (dashed

black curve). The agreement between both phases is expected because the time spent in both

states is almost the same. Also the total occupation times of the two states are complementary

and the number of transitions from each state can maximally differ by one.

The scaling
√
b related to the kink in the SCGF was previously derived by Carugno et al. [24].

The new insight is the connection of the MWT to this scaling which you can think of by rescaling
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b(s− s∗) for the 2-state model with

Ψ(s∗) = s∗ = − log(2).

the time in figure 3.3 so that the MWT becomes constant. Figure 3.5 shows the SCGF which is

rescaled around s∗ by the factor
√
b. The rescaling to new coordinates

s̃(s) =
√
b(s− s∗) (3.3)

Ψ̃(s̃) =
√
b(Ψ(s(s̃))−Ψ(s∗)), (3.4)

where Ψ(s∗) = s∗ = − log(2), maps the SCGF to a new curve whose shape does not drastically

change with b and instead converges to a smooth function as b → ∞ (black). In the right plot (b)

of figure 3.5 you can see that also the derivative of the rescaled SCGF stays continuous for all b.

3.2 4-State Model

The next step towards the ER graph is a 4-state model or bulk-dangling-chain model. Here, the

bulk is a fully connected graph of N − 2 nodes which has a dangling chain of length 2 glued to it

[24]. The total number of nodes of that artificial graph is N . Since the bulk is fully connected all

nodes in it are equivalent and indistinguishable (degree N−3) except the one which is connected
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Figure 3.6: The SCGF and its first derivative for the 4-state model. The system parameter N is increased to
get a sharper transition of c around s∗ = − log(2)

2
.

to the chain (degree N − 2). This means the bulk can be reduced into two states: the group of

N − 3 nodes of degree N − 3, which has a non-zero probability in transitioning to itself, and the

one node of degree N − 2 which has the connection to the dangling chain. This allows to treat

the model by considering only 4 states grouped by their degrees: two for the chain (degree 1 and

2) and two for the bulk (degree N − 2 and N − 3). See figure 3.7 for a sketch of the 4-state Markov

chain. Nodes are labeled by their degree and the different sizes of the nodes make it easier to

distinguish between the chain (small) and the bulk (large).

Similar to the previous section the observable defined in the 4-state model is

Ct =
1

t

t−1∑
l=0

f4(Xl), (3.5)

where

f4(X) =



N̄−1, X = 1

2N̄−1, X = 2

(N − 2)N̄−1, X = N − 2

(N − 3)N̄−1, X = N − 3

(3.6)

1 2 N − 2 N − 3

1

1
2

1
2

1
N−2

N−3
N−2

1
N−3

N−4
N−3

Figure 3.7: Schematics of the 4-state model and its transition probabilities. The system parameter is N ,
i. e. the number of nodes in the bulk-dangling-chain model. Nodes are labeled by their degree in the
bulk-dangling-chain model and the different sizes of the nodes are used to distinguish between the chain
(small) and the bulk (large).
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trajectories simulated by the driven process at s∗ = − log(2)

2
, where the shaded are represents the standard

deviation. The trajectory length is t = 106 time steps.

is a scaled degree because N̄ = 1
N ((N − 3)2 + (N − 2)+ 2+ 1) is the averaged degree of the graph.

As N̄ scales proportionally to N for large N , it follows that Ct ≈ 1 in the bulk and Ct ≈ 0 in the

chain.

The SCGF of the 4-state model is computed via exact diagonalization of the titled matrix and

plotted in figure 3.6 (a). The interesting range is s ∈ [−1, 0] as the critical parameter value is

s∗ = − log(2)
2 [24]. The graph size N shown in figure 3.6 is doubled in steps from 50 to 200. Already

for N = 100 one sees a kink appearing in the SCGF and the derivative of Ψ, plot (b), becomes

almost a step function.

Analogous to the previous section 3.1, I look at the behavior of the MWT in the bulk and the

chain. The driven process is simulated with s∗ = argmax{Ψ′′(s) : s ∈ [−1, 0]} over a discrete grid

of s. The total time of the trajectories is t = 106 time steps from which the MWT of the combined

chain and bulk is computed. This is repeated 100 times to get an averaged MWT and the standard

deviation as the error, and the results are shown in figure 3.8. The range of N is from 10 to 1000.

The standard deviation is represented by the shaded area around the curves. Both, the MWT

of the chain (blue) and the bulk (orange) scale linearly with N and lie almost perfectly on the

dashed black line which shows the scaling with N and slope 1. This agrees with the observation

in the 2-state model where the MWT follows the scaling function very closely as well.

The reason why I choose to use s∗ as the maximum of the second derivative of the SCGF and

not the analytical value can be understood by looking at figure 3.9 (a), where the plot shows the

s∗ vs. the graph size N . The black dashed line represent the analytical value s∗ = − log(2)
2 . The

curve of s∗ is converging to the analytical value from above, but since the graph size is still too

small I cannot use the analytical value. The driven process at the transiton point is too sensitive

to small changes in s especially as N gets larger. On the other hand, in the 2-state model seen

before the difference to the analytical value is much smaller, as I also compute the MWT to larger

values of b than of N , so there I use the analytical value of s∗ directly.

An indication if the random walk is close enough at the transition is to look a the time

spent in the bulk and the chain. The right plot (b) in figure 3.9 shows the empirical occupation

measure, see equation (1.8), on the four states of the model. The bulk and the chain are visited

by the random walk in equal amounts, which means the empirical occupation measure is 0.5.

The distribution on individual nodes is different though. While the chain has an empirical
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Figure 3.9: Critical parameter s∗ and the empirical occupation measure for the 4-state model over different
graph sizes N . The length of trajectories is t = 106 and the empirical occupation measure is averaged over
100 trajectories. The standard deviation is shown as the shaded area around the curves.

occupation measure of about 0.25 on both nodes, the bulk is dominated by the big bulk, labeled

bulk 2, and the relative time spent in the node connecting the bulk and the chain, labeled bulk

1, goes to zero. That the empirical occupation measure is distributed like this over the four

states indicates intermittency. Also the trajectories at criticality shown in figure 3.10 indicate

intermittent behavior.

Intermittency means that the random walk spends some time in the chain before moving

to the bulk where it spends some time before moving back again to the chain. The opposite of

intermittency which the random walk could utilize to sample the fluctuation c = 0.5 would be to

jump back and forth only between the two inner nodes of the chain and the bulk. In that case the

occupation measure would be 0.5 on chain 2 and bulk 1 while on the other nodes it would be

close to zero.

The trajectories in figure 3.10 also show how the rescaling of time corrects the increasing MWT.

One can see that the number of transitions between the bulk and the chain stay approximately

the same as the time plotted is increased linearly with N . This means that the large deviation

principle is restored as the time t is increased simultaneously with N and thus the trajectories

look unchanged.

The scaling factor N which is seen in the MWT of the 4-state model (figure 3.8) was also

predicted by Carugno et al. [24]. Finally, this diverging time scale is used to rescale the SCGF

s̃(s) = N(s− s∗) (3.7)

Ψ̃(s̃) = N(Ψ(s(s̃))−Ψ(s∗)) (3.8)

to remove the kink. It is Ψ(s∗) = s∗ = − log(2)
2 because the SCGF in the limit N → ∞ has the slope

of 1 to the right of s∗ and goes through the origin. The rescaled SCGF is shown in figure 3.11 (a)

and its derivative in (b). For N → ∞ both curves converge to continuous functions meaning that

the large deviation principle holds again with the new rescaled time t̃ = tN .
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Figure 3.10: Trajectories of the 4-state model for different values of N simulated by the driven process with
s∗ = argmax{Ψ′′(s) : s ∈ [−1, 0]}. The plotted time is increased linear with N .
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2
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3.2.1 Intermittency Check

A heuristic check for intermittency which we see above was proposed by Whitelam and Jacobson

[14]. The idea is to look at the negative log-probability of different ways to realize a fluctuations c.

The function U(c) describes the negative log-probability of a two-step driven process at criticality,

i. e. with the transition matrix Πs∗ . I look at three cases with different fluctuations: starting and

staying in the chain c = 0, going from the chain to the bulk to the chain and vise versa c = 1
2 , and

starting and staying in the bulk c = 1. In terms of the transition matrix elements Πs∗(i, j) the U(c)

are

U
(1
2

)
= −1

2
log
(
2Πs∗(2, 3)Πs∗(3, 2)

)
(3.9)

U(0) = −1

2
log
(
2Πs∗(1, 2)Πs∗(2, 1)

)
(3.10)

U(1) = −1

2
log
(
Πs∗(4, 4)Πs∗(4, 4) + 2Πs∗(4, 3)Πs∗(3, 4)

+Πs∗(4, 4)Πs∗(4, 3) + Πs∗(3, 4)Πs∗(4, 4)
)
. (3.11)
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Figure 3.12: Averaged SCGF of the ER graph for graph sizes N ranging from 100 to 1200. The shaded area
shows the standard deviation over the averaging of 1000 graph realizations for N ≤ 500 and over 200 for
N ≥ 600.

The labelling of the states is 1 to 4 corresponding from left to right in figure 3.7. Intermittency is

expected if U(0)+U(1)
2 < U( 12 ). This means that spending all the time on the two inner nodes and

sampling c = 1
2 is less likely than spending some time in the chain and the bulk and switching in

between. This is the case for the 4-state model as

U(0) ≈ 2.65 · 10−3 (3.12)

U(1) ≈ 2.65 · 10−3 (3.13)

U
(1
2

)
≈ 2.82 · 100. (3.14)

3.3 Erdős-Rényi Graph

In this last section I come back to the ER graph, where figure 3.12 shows the averaged SCGF

and its first derivative. The averaging is done for a fixed N over many graph realizations (1000

for N ≤ 500 and 200 for N ≥ 600). The shaded area represents the standard deviation of the

averaging.

One sees that the SCGF curves lie closer together for larger N . They develop a transition

point (believed to become a kink for N → ∞) which is seen more clearly by looking at the first

derivative c = Ψ′(s) which transitions from around 2 to 4 in the range s ∈ [−0.1, 0]. The transition

in c becomes sharper with increasing N although slower than it is seen in the two previous

models. The difficulty with the ER graph is that the individual graph realizations are created

randomly and the position of the transition point in the SCGF is not fixed. Thus the averaging

smoothens out the transition especially for smaller N .

The critical value s∗ where c has the steepest increase can be computed individually for all the

SCGFs contained in the averaging. The average of these s∗ is shown in figure 3.13 with the error

bars representing the standard deviation. In comparison the orange cross markers represent the

s∗ obtained from the averaged SCGF seen in figure 3.12 (a). Both estimates of s∗ as a function

of N seem to flatten out for N > 700 although the uncertainty is still significant. Also the s∗

from the averaged SCGF lies above the average of the individual s∗ values. Nevertheless, the

averaging helps in restricting the possible region where the critical s∗ lies in. With this knowledge
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Figure 3.13: Critical value s∗ vs. the graph size N . The black dots are the averages of the individual s∗

computed over 100 graph realizations and error bars are the corresponding standard deviations. The orange
crosses are the s∗ computed from the averaged SCGF.

it becomes easier to simulate the driven process as I fix s to a certain value in that range and

select the graphs for which the value is close enough to the transition point, i. e. s∗ ≈ s.

The criterion for estimating that the driven process is at the transition is to look at the

stationary distribution coarse grained into the chain and bulk. This is done before doing the

simulation as the construction of the driven process returns the stationary distribution over the

nodes, see section 1.4. After the simulation of the trajectory (length t = 107) the criticality is

checked again by computing the coarse grained empirical occupation measure.

For the coarse graining I first need to group the nodes of the ER graph into bulk and chain. For

the chain I consider all dangling chains of the ER graph. These are all the nodes of degree k ≤ 2

that are in the chains. The rest of the nodes of the graph make up the bulk. Special consideration

is needed to treat the nodes connecting the bulk and the chains which I call the gateways. Here I

applied a variable scheme where a gateway is accounted to the bulk if it is visited from the bulk

and as the chain if it is visited from the chain. Thus the random walk only changes the phase if it

transitons through the gateway from the bulk to the chain or vice versa.

In figure 3.14 segments of three trajectories are shown at different values of s, but for fixed

graph size N = 400. From left to right the plots are first above criticality s > s∗, at criticality s ≈ s∗

and below criticality s < s∗. The trajectories above and below criticality show that the random

walk spends most of the time in, respectively the bulk and the chain. Once in that phase it only

occasionally visits the other phase. The values of the observable c in these cases are dominated

either by the bulk or the chain. The trajectory at criticality, see middle plot for c = 2.64, is different.

Here the random walk transitions quite frequently back and forth between the bulk and the chain

so it samples an intermediate value of c. Below I list the computed empirical occupation measure

on the bulk and the chain for the trajectories together with the values of c and s.

bulk chain c s

0.895 0.105 3.54 −0.020

0.504 0.496 2.64 −0.042

0.004 0.996 1.70 −0.200

In the 4-state model (section 3.2) the driven process is at the transition point when the empirical
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Figure 3.14: Trajectories of the driven process for a graph size of N = 400. The values of s are from left to
right −0.020, −0.042 and −0.2 sampling different values c. The total length of the trajectories is t = 107

steps of which here is shown a segment of 10 000 steps.
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Figure 3.15: Trajectories at criticality of the driven process for three different graph sizes N . The total length
of the trajectories is t = 107 of which a segment of length 1000 is shown. The value of s∗ is from left to right
−0.054, −0.052 and −0.050 with corresponding c values 2.55, 2.55 and 2.67.

occupation measure in the bulk and the chain are equal. It becomes clear that also for the ER

model the driven process is at the transition point when the occupation measure is balanced, i. e.

0.5 for bulk and chain. This criterion is much more reliable than looking at the value of c at s∗ as

this depends on the minimum and maximum degree of the realized graph.

Similar to the critical trajectories of the 4-state model in section 3.2 the trajectories on the ER

graph show intermittency meaning that there are quite long stretches where the random walk

stays in one phase. Figure 3.15 shows trajectories (t = 107, but only a segment of 1000 steps is

plotted) of the driven process for three different graph sizes N = 200, 400 and 600. The value of

s∗ for these simulations is computed by finding the peak in the first derivative of the stationary

distribution coarse grained on the chain. This method is numerically more stable and practical

than looking at the second derivative of the SCGF as the latter one can have multiple maxima.

The achieved empirical occupation measures in the bulk and the chain are as desired very close

to 0.5, see below.

N bulk chain c s∗ MWT bulk MWT chain

200 0.493 0.507 2.55 −0.054 49 51

400 0.504 0.496 2.55 −0.052 67 66

600 0.507 0.493 2.67 −0.050 63 61

The mean waiting times (MWT) are computed as the total number of time steps spent in each

region (bulk or chain) divided by the number of transitions away from each region. Since there

are only two regions the number of transitions are almost always equal and can only differ by

one. Thus, as the empirical occupation measures on both phases are very close also the MWTs

are almost equal.
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Figure 3.16: The empirical occupation measure and the MWT for the ER graph model. Averages are over
900 to 1000 graph realizations where the empirical occupation measure in the bulk and chain is between
0.45 and 0.55. The error bars represent the standard deviation.

Based on the observation that the MWT computed for an individual realization does not

show a dependence on N I apply the stationary distribution check to generate many graphs and

average the obtained MWTs. For this I fix the value of s∗ to the averages shown in figure 3.13

and only compute the MWT for graphs where the empirical occupation measure in the bulk

and chain is within the interval [0.45, 0.55] as described above. This yields between 900 to 1000

accepted graph realizations where the overhead is that about 10 times more graphs are generated.

The averaged empirical occupation measure and the averaged MWT are shown in figure 3.16.

The different graphs sizes range from N = 100 to only 1100 because of limited computational

resources. One can see that the empirical occupation measure, though close to 0.5 gets more

unbalanced as N increases indicating that the method of generating graphs for a fixed s∗ becomes

less precise as N increases. Nevertheless, the MWT in plot (b) is little affected by the slight change

in the empirical occupation measure. Quite different to the 2- and 4-state model, the MWT does

not show a dependence on N but stays roughly constant within the errors. Also the magnitude of

about 20 is much smaller than what the other models predicted.

A drawback of the analysis on the ER model is that N does not span multiple orders of

magnitudes. Thus one cannot conclude how the MWT actually scales with N , only that, if it does,

is has to be very slow. That the average distances in the ER graph grow with log(N) [3] could be

a possible reason. Further analysis especially with more sophisticated methods in finding the

transition point is required in the future.
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Conclusion

In this Master thesis I studied fluctuations and rare events of time-additive observables defined

on discrete-time Markov chains on finite state spaces. The central quantity is the mean degree

of a random walk on an Erdős-Rényi (ER) random graph. I implemented the Adaptive Power

Method (APM), a modified random walk, that converges to the driven process and samples large

deviations of the observable of interest. The numerical analysis showed that through transfer

learning the convergence time of the APM is reduced and the scaled cumulant generating

function (SCGF) and rate function become computable from a single trajectory. Further, I

investigated the appearance of a dynamical phase transition (DPT) related to the development

of a kink in the SCGF. In two simpler models capturing the bulk-dangling-chain properties of

the ER graph it was found that the DPT is caused by intermittency in the trajectories and that

the mean waiting time (MWT) in the phases yields the correct rescaling of the SCGF in order to

remove the kink.

Future work is necessary to improve the APM, especially the fact that it needs to visit the whole

graph when s < 0 before sampling the correct fluctuation. Further development on the APM

conditioning scheme on a fluctuation could increase the applicability of the APM to real world

networks for studying the impacts of rare events. An open question on the DPT that remains is

the scaling of the MWT in the ER graph model. Using more advanced eigenvalue solvers could

help going to larger graphs sizes, but also simpler models which capture the same scaling could

be considered. Once again, we experience that even easily constructed problems, like the ER

graph and a random walk, show a rich behavior and give us a vast playground to ask questions.

Just as Golan Trevize, we learn much more on the way than at the final destination.

The source code of the adaptive power method is available under

https://github.com/dastu08/adaptive-power-method.
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