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Abstract

In July 2012, a particle in the mass region of 125 GeV was discovered at
CERN’s Large Hadron Collider (LHC). As predicted by the Standard Model,
this particle would be required by the theory to maintain gauge symmetry
and invariance by introducing proper mass eigenstates; this particle is of
course the Higgs boson. Much work has been done, in theory and in experi-
ment, to understand this particle and how it interacts.

In this paper, we look at how the Higgs particle fits into the standard
model, and more specifically, we look at the important di-photon decay of
the Higgs boson. This particular decay channel is analyzed and compared to
known results. We then probe higher order corrections to the theory and try
to understand how future calculations may take shape.
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Introduction

The Standard Model of Particle Physics has been extremely successful
and accurate in describing and theorizing interactions of elementary particles.
Owing to the high energy capabilities of the LHC, the missing piece of the
puzzle was found. The existence of the Higgs Boson had been theorized
since the 1960’s with calculations of its behavior in the SM well documented.
Although the SM is incomplete, (i.e baryon symmetry, dark matter, neutrino
mass, quantum gravity, etc.) it has done an extraordinary job in predicting
most interactions.

In this paper, our main goal is to understand the specific process of Higgs
decay width to two photons Γ(h → γγ). With this in mind, we look at the
SM as a whole; its symmetries and content. Since the standard model is a
broken gauge theory, it is important to understand what this means and what
causes this. We then detail the Higgs mechanism and its physical properties
while looking at its production mechanism(s) at the LHC, along with its
main decay channels.

The importance of h → γγ lies in the clarity of its final state and its
Higgs mass signature; the final states of the photons can be measured quite
precisely. Even so, this channel is one of the least likely, with a branching
ratio of around 0.2%; as we will see this is due to coupling strengths of
the Higgs boson. It is well documented in the literature that the total decay
width of the Higgs is calculated to be around 4 MeV. This is incredibly narrow
for a particle of this size, but this is to be expected since these measurements
scale with the Higgs coupled masses. Since the Higgs does not couple directly
to photons, these processes are calculated at the one-loop level. In this paper,
we will detail the Higgs di-photon decay channel and compare our findings
with the literature. In doing so, we will also ask questions about future
research and experimental avenues.
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1 Gauge Theories in the Standard Model

The Standard Model is a spontaneously broken, non-abelian gauge theory
that contains elementary particles (the language may change, but for the sake
of sanity in this paper particles and fields will interchange equally). The cor-
responding field theory is a combination of free and interacting Lagrangians,
which themselves are built by gauge symmetries. These gauge symmetries
describe local transformations of the Lagrangian that leave it invariant; this
is needed for a renormalizable Lagrangian, and in turn an consistent field
theory. In this section we lay out the fundamentals of gauge symmetries for
the abelian case, then the non-abelian gauge field theory becomes readily
available with some slight modifications.

1.1 Abelian Gauge Field Theory

The first case we will look at is the simple Quantum Electrodynamics
(QED) Lagrangian; this will help illustrate the gauge structure and dynamics
of a system. We write the QED Lagrangian as,

L = 1

4
FµνF

µν + ψ̄(i /Dµ)ψ −mψ̄ψ, (1)

where we use the notation /D ≡ γµDµ and our field strength tensor is given
in terms of the gauge field,

Fµν = ∂µAν − ∂νAµ. (2)

Keep in mind also that throughout this paper we will drop spacetime de-
pendence; however, this is only for brevity, all fields can be written as ψ(x),
for example. ψ can then be described as taking the form of the electron or
positron fields, we can write that as:
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ψ(x) = ⎧⎪⎪⎨⎪⎪⎩
ξ(x) qψ = −1
η(x) qψ = +1

As required by gauge invariance, the covariant derivative is defined by

Dµψ = (∂µ + ieqψAµ)ψ(x) (4)

where qψ is a placeholder for the corresponding fields charge. By construction,
the QED Lagrangian is invariant under U(1) local gauge transformations
which take the form

ψ → exp[ieqψΛ(x)]ψ(x)
Aµ(x)→ Aµ(x) + ∂µΛ(x). (5)

Understand that the transformation of the field ψ can carry a negative
sign in the exponent if the charge is opposite of the example above. This
U(1) transformation can be applied to any field in the theory; for example, a
complex scalar field Φ(x), as will be included later. Symmetries correspond-
ing to U(1) transformations are quite trivial but this very simple example
can be extended to understand more complex Lie groups and algebras.

1.2 Non-Abelian Gauge Theory

We can generalize the previous section by replacing the specific U(1)
gauge group with some general non-abelian gauge group; we will call this G.
This symmetry group, G, contains a set of Lie groups along with U(1). The
ones of most interest for our purposes include, SU(n), SO(n), and U(1) (there
are some others including Sp(n), but we wont need this here). We will now
take a general field, this can be any field in the theory, and we will denote it
as φi(x). Our general gauge transformation is then given by

φi(x)→ U j
i (g)φj(x). (6)

Here the indices are dimensional representations and g is an element that
exists in G. We can then define our transformation matrix locally as
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U(g(x)) = exp[−igΛa(x)T a]. (7)

Here T a are generators of the theory (Lie Group) and g are our gauge
couplings (in QED, ’e’). It is important to make the distinction between local
transformations and global; local transformations will depend on spacetime
coordinates. Linearly independent generators determine the dimension of the
Lie group that satisfy the commutator

[T a, T b] = ifabcT c. (8)

Writing out the matrix elements in adjoint representation, the generators
are then connected to the structure constants by

(T a)bc = −ifabc (9)

From here it will be useful to understand the infinitesimal version of the
group element from Eq. (7) just as we have with our matter and gauge
fields. This is simply given by expansion of the exponent as

U(g(x)) ≈ I − igΛa(x)T a, (10)

We can now follow a similar recipe to build a non-abelian gauge field theory.
Following Eq. (6) and Eq. (10), we can reconstruct the group elements
through infinitesimal gauge transformations. This transformation is given
by

φi(x)→ φi(x) + δφi(x)
δφi(x) = −igΛa(x)(T a)jiφj(x), (11)

this behavior will be the focus of building the theory. Our goal in this
section is to understand the Yang-Mills Lagrangian and the consequences of
the non-abelian structure. We begin by displaying the Lagrangian so that
we can unpack it piece by piece:

L = −1

4
(F a

µν)2 + ψ̄(i /D)ψ −mψ̄ψ. (12)

The extra index in our field strength is a consequence of our non-abelian
gauge symmetry. We now want to turn our focus to the gauge field Aµ(x).
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Since we want to describe describe transformations, it is useful to use the
matrix-valued representation of our gauge field as

Aµ(x) ≡ gAaµ(x)T a. (13)

We want to do something similar with the covariant derivative. For a
matter field that transforms according to the symmetry group G, we have a
matrix representation of the covariant derivative given by

(Dµ)ji = δji ∂µ + igAaµ(x)(T a)ji . (14)

Looking at Eq. (5), the gauge field transforms as

Aµ → UAµU
−1 − iU(∂µU−1) (15)

where this satisfies our condition on the covariant derivative

DµΦ ≡ (∂µ + iAµ)Φ→ UDµΦ. (16)

this equation and Eq. (9) allows us to write down our transformation law
for the gauge field; namely

Aaµ → Aaµ + δAaµ(x)
δAaµ(x) = gfabcΛbAcµ + ∂µΛa.

(17)

One then defines the adjoint representation of the covariant derivative as

Dab
µ ≡ δab∂µ + gafabcAcµ. (18)

We now have all the non-abelian machinery to understand the field strength
tensor given previously in the Yang-Mills Lagrangian in Eq. (11). It will
be quite visible when looking at the gauge invariant kinetic energy term,
where the consequence of the non-abelian nature occurs. Remember that
the commutator of our covariant derivatives is defined by

[Dµ,Dν]Φ = i{∂µAν − ∂νAµ + i[Aµ,Aν]}Φ. (19)

In the QED case, the field strength tensor does not include this extra
gauge field commutator (based on its simple group symmetry). We now
have a dependence and relationship on these classes of generators, and thus
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we have a redefinition of the field strength tensor with the replacement Aaµ
and Dab

µ ,

F a
µν = ∂µAaν − ∂νAaµ + gfabcAbµAcν . (20)

The nature of our non-abelian structure gives more complexity to the trans-
formation of this field strength. The extra term becomes extremely important
in our analysis, as it generates three and four-point functions in the theory
(these being self interactions of the gauge fields). Here we have focused on
the gauge term in the Lagrangian; however, it is then simple to construct any
matter dependent Lagrangian term. Simply by replacing ∂µ → Dµ and then
requiring the appropriate matrix representation (generator) for each matter
field. These matter fields become of utmost importance when looking at bro-
ken symmetries in the theory; this we will see in detail with the inclusion of
the Higgs mechanism.
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2 Feynman Rules

Constructing the Feyman Rules for our gauge theory is quite straight
forward. In most cases, the usual Feynman rules allow one to take contrac-
tions at different orders of perturbation theory (S-matrix expansion). For our
purposes, we will look mainly into functional methods as it becomes most
instructive in identifying some ’outcast’ terms.

When writing down these Feynman rules, one must write down the prop-
agators of the theory; here, the issue arrises when looking at the gauge field
propagator. If we look at the abelian case, we can solve the corresponding
Green’s function to arrive at a term (gµν ◻ −∂µ∂ν)∂µ = 0. This terms carries
the implication that the the object inside the parentheses is not invertible (as
one would do to solve for the gauge propagator; these create singularities in
our functional integral). The solution(s) to this problem are Faddeev-Popov
ghost fields detailed below. The general idea is to constrain the gauge by
fixing it directly. We define our functional integral as

∫ DA exp iS[Aaµ] (21)

where

S = ∫ d4x[−1

4
F a
µνF

µν
a ] (22)

is our action integral of the gauge field. The derivation follows, as is well
documented from Peskin and Schroeder [1]. Since this integral is invariant
under all local gauge transformations, we introduce a parameter such that
F (Aaµ) = 0; this is simply our gauge fixing condition and is easily established
by introducing a functional delta function (note that this term has no relation
to our field strength tensor F a

µν ; F is just some chosen function). For this to
be mathematically accurate, we also require that this term, when inserted
into the functional integral, be equal to one. This term takes the form

1 = ∫ DΛ(x)δ(F (Aaµ))det(δ(F (Aaµ))
δΛ

) , (23)
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where here it is important to understand that we have gauged transformed
our field Aaµ according to Eq. (17), i.e

Aaµ(x) = Aaµ + gfabcΛbAcµ + ∂µΛa. (24)

This can also be written, and is sometimes regarded in the literature, by its
adjoint representation

(AΛ
µ)a = Aaµ + ∂µΛa + gfabcΛbAcµ

= Aaµ + 1

g
(DµΛ)a . (25)

We can insert Eq. (23) into Eq. (21), and due to gauge invariance, change
the order of integral such that our integral takes the form

∫ DAeiS[Aaµ] =)∫ DΛ∫ DA eiS[Aaµ]δ(F (Aaµ))det(δ(F (Aaµ))
δΛ

) . (26)

We now have an integral over A that is constrained by the delta func-
tion to physically relevant field configurations. To specify our gauge fixing
function, we can work in the Lorentz gauge and set

F (Aaµ) = ∂µAaµ(x) − ωa(x), (27)

where ωa(x) can be treated as a scalar for our purposes. We then evaluate

the determinant term as det ( δ(F (Aaµ))δΛ ) = det(1
g∂µD

µ). Inserting this and Eq.

(25) into our integral gives us

∫ DAeiS[A] = det(1

g
∂µD

µ)∫ DΛ∫ DA eiS[A]δ(∂µAaµ(x) − ω(x)). (28)

To manipulate this integral one step further, a Gaussian weighting func-
tion is introduced. We then integrate over all over all ωa(x); one can see the
delta function will ’pick out’ our gauge factor

= N(ξ)∫ Dωexp [−i∫ d4x
(ωa)2

2ξ
]det(1

g
∂µD

µ)∫ DΛ×
∫ DA eiS[A]δ(∂µAaµ(x) − ωa(x))

= N(ξ)det(1

g
∂µD

µ)∫ DΛ∫ DA eiS[A]exp [−i∫ d4x
1

2ξ
(∂µAaµ)2] .

(29)
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In our case we can just as easily drop the term N(ξ) as it serves as some
normalization constant. All all we have really done with this is added a term
proportional to the derivative of our gauge field, essentially

∫ DAexp [i∫ d4x[L − 1

2ξ
(∂µAaµ)2] , (30)

and our Green function can now be solved quite easily with our new term
ξ fixing our issue of singularity. We also can quickly deal with our term in
the determinant; this is identified as our Faddeev-Popov ghost fields. These
fields are well documented and given by anti-commuting fields; namely,

det(1

g
∂µD

µ) = ∫ DcDc̄exp[i∫ d4x c̄(−∂µDµ)c]. (31)

Now that we have identified all fields, we can rewrite our functional integral
given by Eq. (21) and Eq. (28) by including our ghost fields,

∫ DA exp[i∫ d4(x)( − 1

4
F a
µνF

µν
a )] =

= ∫ DAµDcDc̄ exp [i∫ d4x[LYM − 1

2ξ
(∂µAaµ)2 + c̄(−∂µDµ)c] . (32)

Here, we have abbreviated our original Yang-Mills Lagrangian; this is simply
the non-abelian case of Eq. (1).

It is useful now to understand the formulation of further functional cal-
culations. One could use the usual Feynman rules and Green’s functions to
solve for propagators, but here we outline the differences between Green’s
functions and the path integral formulation. If we begin by just looking at
the gauge portion of our Lagrangian

L = −1

4
F a
µνF

µν
a − 1

2ξ
(∂µAµ)2, (33)

we can manipulate this equation by integrating by parts to write this in a
more useful way; namely

L = 1

2
Aµa(gµν ◻ +(1ξ − 1)∂µ∂ν)Aνa +O(A). (34)

Note here we have used the notation ◻ ≡ ∂µ∂µ do identify the d’Alembert
operator. The Green’s function is then quite simply defined as
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LG(x − x′) = δ(x − x′) (35)

where L is a linear differential operator and G is the corresponding propa-
gator; this is why we write the Lagrangian as we did above; we can easily
identify the operator portion of the Lagrangian. Our Green’s function for
our system is then straightforward and given by

(gµν ◻ +(1
ξ
− 1)∂µ∂ν)Dνλ

F (x − y) = δ(4)(x − y)δλµ. (36)

Simply inverting this equation and Fourier transforming to momentum space
we arrive at our propagator for our gauge field

iDµν
F (k) = −i

k2 + iε(gµν − (1 − ξ)k
µkν

k2
). (37)

The prescription iε is needed for convergence of our contour path integral.
This term fixes our boundary conditions above (or below) the complex plane
and tells us exactly how we integrate in the complex plane, moving the
poles from a non-unique axis dependence; this gives us a unique solution and
corrects singularities.

As we can see now, our propagator depends on our choice of gauge, ξ, in
this paper we will regularly use the Feynman gauge: ξ = 1. We compare this
now to the result that we obtain when using the path integral formulation.
We have shown the basis of our functional integral from Eq. (21), now
we want to understand functional methods. To do so, we need to define
functional derivatives and the generating functional. We first define the
generating functional for some field φ(x) as

Z[J] ≡ ∫ Dφ exp[i∫ d4x(L + J(x)φ(x))]. (38)

Here there has been an added source term J(x)φ(x). This additional term
makes it incredibly easy to now derive correlation functions by taking func-
tional derivatives. These derivatives have some special properties and they
are given as follows:

δ

δJ(x)J(y) = δ(4)(x − y) and
δ

δJ(x) ∫ d4y J(y)φ(y) = φ(x). (39)
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We also have more complex derivatives that require chain rule manipulations,
such as:

δ

δJ(x)exp[i∫ d4y J(y)φ(y)] = iφ(x)exp[i∫ d4y J(y)φ(x)]. (40)

If we then have derivative dependence in our integral, we can simply integrate
by parts

δ

δJ(x) ∫ d4(y)∂µJ(y)V µ(y) = −∂µV µ(x). (41)

We now have all the machinery to define and understand our two point (and
higher) functions. Notice that each functional derivative brings down the
term φ, these field contractions will indeed give us the propagators we are
after. Our two point function is then defined as

⟨Ω∣T (φ(x)φ(y))∣Ω⟩ = 1

Z0

( − i δ

δJ(x))( − i δ

δJ(y))Z[J]∣J=0. (42)

In this definition, Z0 = Z[J = 0] and our derivatives are functions of
the source terms. One can easily take higher order correlation functions by
taking more derivatives; this is easily generalized as we will show. To under-
stand how we can easily derive correlation functions, we will explicitly show a
simple example then use the same technique for our non-abelian gauge fields.

If we take φ(x) to be the Klein Gordon field, we can write our generating
functional as

∫ d4(x) [L + Jφ] = ∫ d4(x)[1
2
φ(−∂ −m2 + iε)φ + Jφ]. (43)

Note that we have dropped the index and spacetime dependence for brevity.
Now what we can do is make a clever shift in our field by identifying the
corresponding Green’s function for the field operator, i.e the propagator for
the scalar field φ(x) (these are the same steps taken to arrive at Eq. (34)).
the field is now given by

φ(x)′ = φ(x) − i∫ d4(y)DF (x − y)J(y), (44)

10



inserting this change of variables into Eq. (42), we arrive at a new generating
functional exponential term of

∫ d4(x)[L + Jφ] =
= ∫ d4(x)[1

2
φ
′(−∂2 −m2 + iε)φ′]

−∫ d4xd4y
1

2
J(x)(−iDF (x − y)J(y).

(45)

In terms of our generating functional, this is exactly what we want. we
have a term that is our original Lagrangian but now dependent on φ

′

, and
then we have a term that is only source terms with a propagator. to write
this explicitly, this is given as

Z[J] = ∫ Dφ′exp[i∫ d4xL0(φ′)]exp[−i∫ d4xd4y
1

2
J(x)(−iDF (x−y)J(y)].

(46)
The term dependent on φ

′

is simply Z0 and will be cancelled out when
looking at Eq. (42). From this point we can foreshadow our answer just by
looking at this equation and what we now know about functional derivatives.
For the sake of completeness, we take our two point function of the Klein
Gordon field, i.e

⟨Ω∣T (φ(x)φ(y))∣Ω⟩ =
= − δ

δJ(x1) δ

δJ(x2)exp[ − i∫ d4xd4y
1

2
J(x)(−iDF (x − y)J(y)]∣

J=0
= − δ

δJ(x1)[ − 1

2 ∫ d4yDF (x2 − y)J(y) − 1

2 ∫ d4xJ(x)DF (x − x2)]Z[J]
Z0

∣
J=0=DF (x1 − x2).

(47)

This method indeed works for any higher point function as well. Using
the same methods, one can show quite easily that

⟨Ω∣T (φ1φ2φ3φ4)∣Ω⟩ ==DF (3 − 4)DF (1 − 2) +DF (2 − 4)DF (1 − 3) +DF (1 − 4)DF (2 − 3), (48)
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this is a combination of all possible contractions, just as is the case if one
were to use the S-matrix formalism and contract fields. The formalism of the
derivation above will be precisely how we arrive at our non-abelian gauge
field propagator. We can now use these methods to solve the Lagrangian we
have introduced

L = −1

4
F a
µνF

µν
a − 1

2ξ
(∂µAaµ)2 + (∂µc̄a)Dac

µ c
c. (49)

If we look at each term in the same way we have done in the derivation
above (for the Klein Gordon field), we can easily deduce the propagators for
the theory. One finds the propagators given by

Dab
G (k) = iδab

k2 + iε
Dµν
F (k) = −i

k2 + iε(gµν − (1 − ξ)k
µkν

k2
). (50)

Here we recover the same propagator for our gauge field as we did when
solving the corresponding Greens function. These are both related to the
propagator in configuration space by a simple Fourier transformation; for
our purposes, it will be more useful to write these propagators in momentum
space. The functional approach to deriving propagators is somewhat straight-
forward and instructive; however, to understand the interaction terms that
produce vertex contributions, we must expand our Lagrangian. We under-
stand this by looking at our Yang-Mills Lagrangian; writing it as L = L0+Lint,
where the interaction term is just a power series expansion in g. This expan-
sion is taken to non-linear terms with a matter field given by ψ;

L = L0 + gAaλψ̄γλT aψ − gfabc(∂κAaλ)AκbAλc − 1

4
g2(f eabAaκAbλ)(f ecdAκcAλd).

(51)
Here one can just read off vertex contributions while understanding that

derivatives bring down momentum dependence. It is instructive to under-
stand this with the use of Feynman Diagrams (see Fig. 1). The first diagram
in the figure is read from the first non-linear term in the expansion; one can
clearly see how the symmetry groups play a role at this level. The ideas
proposed here will be key in understanding the Standard Model Lagrangian
and its particle content.
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3 The Standard Model

The Standard Model of Particle Physics encompasses all interactions of
elementary particles, and although it is an intimidating equation, it can be
well understood using gauge theory and symmetries. We want to be able
to describe strong, weak, and electromagnetic interactions that take place
between the particles described in Table 1. To do so, we must outline each
theory contained in the SM; namely the strong nuclear force, the weak nuclear
force, and the electromagnetic force.

3.1 Gauge Theory and Particle Content of the Stan-
dard Model

To build up the gauge theory of the Standard Model, we can start by in-
troducing the notation GSM to encompass our gauge group. The theory is self
contained by a combination of Quantum Chromodynamics and Electroweak
Theory.

3.1.1 Quantum Chromodynamics (QCD)

QCD is mediated by massless gluon fields interacting with themselves and
quarks with the free field Lagrangian for a single quark written, naively, as

L0 = 3∑
i=1 q̄i(i /∂ −mq)qi. (52)

Quarks themselves have different colors: red, blue, green; summed over here)
and a corresponding anti-particle. The theory is governed by the gauge group
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SU(3) with transformations obeying

qi → q
′

i = Uijqj, (53)

with a transformation matrix defined by

U(εa) = exp(−i 8∑
a=1 εa

λa
2
) . (54)

Here we have emphasized the sum over N2 − 1 parameters (as this will be
different for each gauge group). Note also that λa are traceless generators
defined as the Gell-Mann matrices that obey the Lie algebra

[λa, λb] = 2ifabcλc. (55)

Two unique requirements of QCD are as follows: the three colors must be
connected through gauge transformations, and quarks and anti-quarks must
transform differently. These requirements tell us directly that are already set
in an irreducible representation of a gauge group; thus, they are not some
subgroup of SU(2). We can then define the covariant derivative as

(Dµq)i = [(∂µ + igsGµ
a

λa,ij
2
)q]i, (56)

explicitly writing out the matrix indices. Knowing the construction of the
field strength tensor, we can write out our QCD Lagrangian as

LQCD = −1

2
(GµνG

µν) + Nf∑
f=1 q̄f(i /D −mf c)qf . (57)

We have also introduced our strong gauge coupling constant gs that is
some measure of the strength of quark-gluon interactions. The theory is con-
sistent with our analysis of non-abelian gauge theories stated earlier. Soon,
our covariant derivative will be self-consistent with GSM ; however, until we
understand each piece we will build it in pieces.

3.1.2 Electroweak Theory

Since we are not incredibly interested in QCD in this paper, we have
simply summarized the main points to understand the Lagrangian and its
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gauge group. However, it is of utmost importance that we detail electroweak
theory as this will be the main driver of the physics we discuss. Even though
we could deal with weak interactions separate from QED, it is instructive to
combine them as we will need to in any case. The symmetry of the Standard
Model is largely held up by electroweak interactions as we will come to see.
To understand the intricacies of the theory we must first start by knowing
how leptons are dealt with. With six leptons coming in families of three,
there can only be a choice of SU(2) doublets or singlets.

Table 1: Particle Content of the Standard Model
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Leptons are split into left-handed and right-handed components as follows
(with ψi being a sum over leptons, for example):

ψiL = (1 − γ5)ψi
2

, ψiR = 1

2
(1 + γ5)νi(x). (58)

The uniqueness of Electroweak theory comes from the fact that left-
handed and right-handed components transform according to different gauge
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groups, and the theory is mediated by massive gauge bosons; W ±
µ , Z0

µ, and
Aµ. As we now know, each one of these corresponds to a generator of their
respective gauge group G. The only way in which one can construct a unique
algebra with four generators is a crossed gauge group of G = SU(2) × U(1).
We then need to construct a linear combination of the operational genera-
tors of the theory. We assign the generators of SU(2) as Ti where i = 1,2,3;
remembering also that U(1) has a hypercharge described by Y . Then we can
write the total electric charge operator, Q, as

Q = T3 + 1

2
Y. (59)

We are now able to more specifically identify the corresponding transfor-
mations. our left-handed fields transform according to SU(2)

ψiL(x)→ eiα
a(x)τaψiL(x), (60)

where generators are identified as the Pauli matrices such that τa = σa/2, and
our right-handed fields transform under the U(1)Y gauge transformations as

ψiR → eiβ/2ψiR. (61)

This can be written, for completeness, as

G∝ SU(2)L ×U(1)Y = eiαa(x)τaeiβ/2 (62)

where the subscripts gives clarity to the corresponding field and classification.
Notice also that our hypercharge shows up in our gauge transformation in
the β term; when we introduce the Higgs field and its corresponding vacuum
expectation value (henceforth ”vev”), this transformation leaves the theory
invariant (this puts an extra requirement on αa).

We can now begin to build up the Lagrangian of the theory by under-
standing the gauge conditions and other constraints. Because of the different
transformations of left and right-handed fields, parity and charge conjuga-
tion are broken. However, we have seen the combined transformation given
by Eq. (62) leaves the theory invariant; this is CP symmetry. In this way
W ± bosons couple to left-handed doublets and right-handed antifermions.
With this in mind we can start with a simple free Lagrangian for the theory;
keeping our particle content in mind from Table 1, we have

L0 = iψ̄j(x)γµ∂µψj(x) (63)
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As we have previously explained, to preserve invariance we must introduce
a gauge dependent covariant derivative. We now have four gauge bosons in
the theory, so we write this as

Dµψi(x) = [∂µ − igW a
µ(x)τa − ig′Bµ(x)]ψi(x); (64)

now the Lagrangian above can be written as

L0 = iψ̄j(x)γµDµψj(x). (65)

We can then build up our gauge kinetic terms by first writing them ex-
plicitly as

Bµν ≡ ∂µBν − ∂νBµ

W i
µν = ∂µW i

ν − ∂νW i
µ + gεijkW j

µW
k
ν .

(66)

An important note is that we can also write W̃µν ≡ σi
2 W

i
µν , as this is a

common construction in the theory. Also, one can compare notation here
to the general gauge theory described in Section 1 where we used gauge
indices a, b, c; all we have done now is specifically describe SU(2) with gauge
indices i, j, k (this is just by use of convention). Since we already have the
recipe for constructing gauge kinetic terms, we just need to identify that
Bµν is invariant under our gauge transformation and W̃µν transforms in the
covariant way just as our non-abelian gauge field Aaµ. With this information,
the kinetic terms of the Lagrangian are written as

L ∝ −1

4
BµνB

µν − 1

4
W i
µνW

µν
i . (67)

Now one may ask the question, how can you write a mass terms that cou-
ples to fields that transform differently? This question becomes an important
one as left and right-handed fields would be ’mixed’ in writing these mass
terms; as we know this cannot be possible. This then would assume that
the fields contained in the theory, as we have written it, are indeed massless
(of course we know this to be untrue). This is something we will deal with
when introducing the Higgs field; for now, it will suffice to understand the
interactions of Electroweak theory without the details of mass and symmetry
breaking.
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3.2 Electroweak Interactions

In the process of understanding Higgs di-photon decay, we will detail
calculations that describe interactions of Electroweak theory. With this in
mind, we will take this section to describes the types of interactions with-
out detailed calculation. These types of interactions are given as follows:
charged-current interactions, neutral-current interactions, and gauge boson
self-interactions.

3.2.1 Charged-Current Interactions

Remembering our CP symmetry and coupling constraints, we can write
a piece of the Lagrangian as

L ∝ gψ̄L(x)γµW̃µψL(x) + g′Bµyjψ̄j(x)γµψj(x), (68)

where yj are placeholders for the corresponding fermion hypercharges. To
understand the more specific couplings it is important to unpack the matrix
of W̃µ. To visualize this representation, we unpack the term in the following
way

W̃µ = 1√
2
(√2W 3

µ W +
µ

W −
µ −√2W 3

µ

) (69)

where the linear combinations of the W boson as written in the matrix is
given by

W ±
µ = (W 1

µ ∓ iW 2
µ)/√2. (70)

We can now write out an interaction term for our Lagrangian consisting of
this vector boson coupled to lepton and quark fields. Using Eq. (58) and
(69), the Lagrangian is written as

L ∝ g

2
√

2
[W +

µ (ūγµ(1 − γ5)d + ν̄eγµ(1 − γ5)e)] (71)

Here we have distinguished quark and lepton fields specifically to show
how the charged boson couples to the respective fields. This is an incomplete
description as we cannot define mass here, thus interactions would become
arbitrarily long range force producers.
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3.2.2 Neutral-Current Interactions

Given that the photon couples and interacts in the same way with both
left-handed and right-handed fermions, there must be some relationship be-
tween Wµ and Bµ, with the electromagnetic field. This relationship is given
by a simple rotation matrix

(W 3
µ

Bµ
) = ( cos θw sin θw− sin θw cos θw

) (Zµ
Aµ
) , (72)

and from this we can easily construct a Lagrangian by noticing the simple
matrix construction change from Eq. (71):

L ∝ ψ̄j(x)γµ(Aµ[gτ 3 sin θW + g′yj cos θW ] +Zµ[gτ 3 cos θW − g′yj sin θW ])ψj.
(73)

Here we see the structure produced by the generators τ while also noticing
that we can impose the coupling conditions such that, g sin θW = g′ cos θW = e,
the electric charge.

3.2.3 Gauge Self-Interactions

These interactions are quite straight forward and come from the kinetic
terms derived in Eq. (67). Expanding these terms, we find the Lagrangian
contains cubic and quartic interactions (self). SU(2) algebra requires that a
a pair of charged W bosons always couple to photons and Z bosons. If we
expand the Lagrangian in Eq. (67) to third order, we can get terms that
look like this:

L ∝ −ie cot θW [(∂µW ν− − ∂νW µ−)W +
µZν − (∂µW ν+ − ∂νW µ+)W −

µZν++W −
νW

+
ν (∂µZν − ∂νZµ)]. (74)

Terms and interactions given here are common in electroweak theory, espe-
cially when taking into account interactions with photons; to visualize this,
the Lagrangian above will reproduce a similar form but with the change
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Zµ → Aµ.
As we have touched on briefly in this section, we need to extend our un-

derstanding further if we are to describe actual electroweak processes. We
know through experiment (and of course, theory) that these physical gauge
boson (excluding the photon field) must be massive to mediate these interac-
tions. Since we have built up a Lagrangian through gauge symmetry without
mass terms, there must be a mechanism that breaks this symmetry. This is
what will be described in the next section and will allow us to understand
and predict physical processes.
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4 Spontaneous Symmetry Breaking

We now want to be able to describe and understand the Higgs mechanism
and how it gives rise to mass in the theory. This is paramount to understand-
ing physical interactions in the Standard Model and how the Higgs mediates
mass in the theory. We will start with a very simple symmetry breaking
model, in a discrete sense, then show how this works in a continuous model.
We then will have the machinery to detail the Higgs Mechanism.

4.1 Discrete Case

The idea of symmetry breaking can be easily show in the case of φ4 theory.
Given the Lagrangian

L = 1

2
(∂µφ(x))2 + 1

2
µ2φ2(x) − λ

4!
φ4(x), (75)

where we have just defined µ as our mass scale term (given by the replacement
m2 → −µ2), we can identify our potential as

V (φ) = −1

2
µ2φ2(x) + λ

4!
φ4(x). (76)

We want to then minimize the potential, by taking the derivative with respect
to φ, giving us the minimum-energy configuration of the classical field, or the
vacuum expectation value (vev) of φ(x), noted as φ0:

φ0 = ±v = ±
√

6

λ
µ. (77)

The broken discrete symmetry is easily seen if we make a simple change of
variables, e
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φ(x) = v + σ(x). (78)

Here we classify our field by a small perturbation from our vev, given by σ
It is then simple to rewrite our Lagrangian in terms of σ(x).

L = 1

2
(∂µσ(x))2 − 1

2
(2µ2)σ2(x) −

√
λ

6
µσ3(x) − λ

4!
σ4(x). (79)

This is a scalar field of mass
√

2µ and due to our redefinition of the field in
Eq. (78), any linear form of σ(x) is non-physical and should vanish. We also
now have σ3(x) and σ4(x) interactions; consequently our parity symmetry
is lost. In a discrete and simple case this is spontaneously broken symmetry.
We can also generalize this procedure for the continuous case.

4.2 Continuous Case

As we will use a very similar procedure as the discrete case, we will
summarize the results and comment on the differences. We are now dealing
with a set of i = 1,2, ...,N real scalar fields φi(x) such that our Lagrangian is
now

L = 1

2
(∂µφi(x))2 + 1

2
µ2(φi(x))2 − λ

4!
[(φi(x))2]2. (80)

The fields also are invariant under the transformations of the group O(N)
(i.e N dimensional orthogonal group). Minimizing the potential, we arrive
at the vacuum expectation value of

φi0 =
√

µ2

λ
. (81)

We then shift the fields by introducing a similar term as before but also
including a field π such that our fields are written as

φi(x) = (πk(x), v + σ(x)), k = 1, ...,N − 1, (82)

inserting this into our Lagrangian, we arrive at
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L = 1

2
(∂µπk(x))2 + 1

2
(∂µσ)2(x) − 1

2
(2µ2)σ2(x) −√λµσ(x)(π2

k(x) − σ2(x))−
−λ

4
(π2

k(x) + σ2(x))2.
(83)

Here we have introduced π fields that transform under N-1 dimensional
group operations of O(N). We lose the N-dimensional symmetry; however,
we do have N-1 symmetry which describes rotations of the π(x) fields. Just
as in the discrete case above, σ(x) represents a massive field whereas π is
massless. This can be understood simply by inspection of the Lagrangian.
More elegantly, we can see this by visualizing the potential from Eq. (80).
This is famously know as the Mexican hat potential and is invariant under
a global phase transformation, i.e exp[iθ]. What this tells us is there is
an entire circle at the bottom of this well-potential where the field can be
perturbed along with no requirement of energy. This is exactly the definition
of a massless field and a more general definition of this result is defined by
Goldstone’s theorem.

4.3 Goldstone’s Theorem

Goldstone’s Theorem states for every spontaneously broken continuous
symmetry, the theory contains a massless particle. If we are given a rotation
in N dimensions, the rotation can be that of any N(N-1)/2 planes. As we saw
in the linear sigma model, after a spontaneous symmetry breaking, we are
left with (N-1)(N-2)/2 symmetries. We can read off the number of leftover
symmetries is then just N-1 (if, in fact, we are dealing with N = 3; Hence we
have the massless field π in the previous example).

To show that this theorem is not only conceptually sound, but also mathe-
matically so, we must show that the general symmetry of a given Lagrangian
need not be a symmetry of φ0 (the vev). This is done by minimizing the
potential and identifying the mass eigenvalues evaluated at the vev. We can
take a set of fields, call them φa(x), and write a very general Lagrangian
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L = (kinetic terms) − V (φ). (84)

We then choose a constant field φa0 that minimizes V. When we expand V
about this minimum we arrive at our mass term in the form,

( ∂2

∂φa∂φb
V )

φ0

=m2
ab. (85)

This equality is a symmetric matrix whose eigenvalues give the masses of the
fields. We want to show that any symmetry that is not also a symmetry of
φ0, must have a zero valued mass eigenvalue. If we now take a transformation

φa → φa + αδa(φ), (86)

with δa just a placeholder function of all φ′s, the potential now must be
invariant under this transformation. This statement is the same as writing

V (φa) = V (φa + αδa(φ)). (87)

Differentiating with respect to φ and evaluating the field at the minimum,
we get

0 = (∂δa
∂φb
)
φ0

( ∂V
∂φa
)
φ0

+ δa(φ0) ( ∂2

∂φa∂φb
V )

φ0

. (88)

The first term in this equation vanishes because φ0 is a minimun of V. It
is then trivial that our mass term must be zero to satisfy the equation. This
is simply a general proof of what we have seen in the previous section. We
can identify this proof more specifically by attributing δa(φ0) as a generator
of the theory (in fact, it is this); for example, T a from out gauge theory. This
derivation corresponds to a broken generator such that T a(φ) ≠ 0. This case
will always correspond to a null mass eigenstate, and thus a massless field.

4.4 The Higgs Mechanism

We now have the machinery to understand the Higgs mechanism and its
crucial role in the Standard Model. This can be shown by introducing a
complex scalar field into our QED Lagrangian as follows
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L = −1

4
(Fµν)2 + ∣Dµφ∣2 − V (φ). (89)

It is important to note that this is indeed still a model that is a useful
description of how the mechanism works in practice. Here, we also retain
the usual U(1) symmetry fo the theory. It is then instructive to use the
Goldstone model to describe the potential V (φ) as

V (φ) = −µ2φ∗φ + λ
2
(φ∗φ)2. (90)

As described earlier, a choice of µ > 0 will spontaneously break our sym-
metry. When we do so, we will get a result identical to that of Eq. (81).
However, the subtlety lies in the choice of parameterization of the complex
field. The choice follows from that of (Peskin and Schroeder*) and is given
by

φ(x) = φ0 + 1√
2
(φ1(x) + iφ2(x)). (91)

Taking into account the value of the vev as given by Eq. (81), the po-
tential term can be rewritten such that the field φ1 acquires mass and φ2 is
massless. At first glance this can be seen as just a consequence of choice;
however, these fields are in fact Goldstone bosons and are paramount for
mass eigenstates. Although they are unphysical, we have seen in the section
before that they are required to account for the extra degrees of freedom.

We can do this same analysis with the kinetic energy term by expanding
it in terms of our new complex field. Upon expansion we have

∣Dµφ∣2 = 1

2
(∂µφ1)2 + 1

2
(∂µφ2)2 +√2eφ0 ⋅Aµ∂µφ2 + e2φ2

0AµA
µ + (. . .), (92)

where we have left out some higher order terms of the theory. What we want
to identify here is a peculiar term, namely a new mass values for our photon
field:

∆L = 1

2
m2
AAµA

µ, with m2
A = 2e2φ2

0. (93)

This is due to the non-vanishing vev and is only possible in the case where a
massless scalar particle creates a pole in the vacuum polarization amplitude.
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To see this more clearly, one can treat this mass term as a vertex in the
theory just as one would do with any Feynman diagram. What one finds is
a vacuum polarization amplitude that is properly transverse as required by
the theory; structurally, it take the form

Diagram = im2
A (gµν − kµkνk2

) . (94)

This is exactly the mechanism in which massive vector bosons acquire
their mass. It is quite popular in the literature to say that these boson ’eat’
the Goldstone bosons to acquire this extra degree of freedom. This is due
to the fact that one can choose a gauge such that this massless boson is
eliminated from the theory. There is also the fact that massive gauge boson
have three degrees of freedom while massless ones have two; these massive
fields gain an ’extra’ degree of freedom from this Goldstone boson. There
are indeed more intricacies to the quantization of spontaneously broken field
theory, but this description will help to understand the mechanism in a more
detailed analysis.
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5 The Higgs Boson

Until now, we have excluded mass from the theory, specifically when
describing massive vector bosons. The way we introduce, is by the inclusion
of the Higgs field. The importance of the Higgs cannot be understated; it is
necessary to make sense of the Standard Model. Now that we have shown
how the mechanism in which it is introduced produces mass terms, we now
want to understand its specific behavior in the theory.

We start by parameterizing the Higgs vev, remembering our structure
from Eq. (91), by

⟨φ⟩ = φ0 = 1√
2
(0
v
) . (95)

Since we are mainly concerned by the introduction of our mass terms, we
will focus on how φ0 couples in the theory (somewhat stepping away from an
analysis of the Goldstone bosons; these will return later).

5.1 Fermion Mass

Although the Higgs mechanism is imperative to the theory, it has been
theoretically hypothesized and necessary for decades. In order to be consis-
tent with the theories built up for gauge bosons, this scalar field must be
consistent in terms in gauge invariance and quantum number; the Higgs field
is thus a spinor of SU(2) with hypercharge Y = 1/2. Before introducing the
Higgs field, one could naively write a mass term for fermions as

∆Lf = −me(ēLeR + ēReL). (96)

Here we label ∆Lf to represent some piece of a Lagrangian that includes
fermions. The two objects in the above mass coupling equation do not couple
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or transform in the same gauge representation. Understand that Eq. (96)
is completely wrong; the structure of mass mixing does not maintain the
symmetry of the theory. Now, with the Higgs field and the use of Eq. (95),
we can introduce a dimensionless coupling constant and write it as

∆Lf = − 1√
2
λevēLeR + h.c. (97)

Where we have defined ’h.c’ as the hermitian conjugate of the previous term.
It is important to note that this coupling is a consequence of the the broken
symmetry caused by φ picking up a nonzero vev. One could write a more
general expression without breaking the symmetry (introduction of the vev)
by writing this as

∆Lf = −λeΨ̄LφψR + h.c. (98)

Here we emphasize the the left-handed object is indeed a doublet in the the-
ory that contracts with φ. The mass term for the electron is easily identifiable
from Eq. (97), and given by

me = λev√
2
. (99)

Mass terms for quarks are manifested in the same way with a little more
care given to the initial construction of the Lagrangian. In this way, masses
are all dependent on this vev value, and upon introduction of the actual
Higgs field (in unitary gauge), h(x), we see a structure that often takes the
form

Lf = −mf ψ̄fψf(1 + h
v
). (100)

The unitary gauge becomes useful when looking at the Higgs field simply
due to its ease of use in the theory. This is defined as

φ(x) = U(x) 1√
2
( 0
v + h(x)) , (101)

where U(x) is a general unitary matrix transformation. and will also be used
when showing the couplings in a full description of electroweak theory.
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5.2 Gauge-Boson Mass

In Section 3b, we saw the structure and behavior of gauge bosons in
electroweak theory. We now need to introduce the scalar field into the theory
to identify their respective mass spectrums. Our Higgs field needs to obey
the symmetry of the theory and thus transforms as

φ→ eiα
aτaeiβ/2φ. (102)

Here, τa = σa/2 are the usual Pauli matrices. Notice here the term consti-
tuting U(1) symmetry has been given a scalar field charge of +1/2. When
our scalar field has a parametrized vev as in Eq. (95), then a gauge trans-
formation with α1 = α2 = 0 and α3 = β leaves φ0 invariant. This is consistent
with Goldstone’s theorem due to this combination of generators producing
one massless gauge boson and three massive ones.

To see the details of this mass spectrum, we define the covariant derivative
acting on our scalar field as

Dµφ = (∂µ − igAaµτa − i2g′Bµ)φ. (103)

One must take care to denote proper coupling constants to the corresponding
gauge groups due to commuting variables (distinction given here by ’prime’).
To look at the form of these mass spectrums, we square the covariant deriva-
tive term and break the symmetry as

LKE = 1

2
(0 v) (gAaµτa + 1

2
g
′

Bµ)(gAbµτ b + 1

2
g
′

Bµ)(0
v
) . (104)

It is important to remember that our gauge bosons are related by matrix
operations that can be understood as a change of basis. We can then evaluate
this Lagrangian term by components, using Pauli matrices, given by

LKE = 1

2

v2

4
[g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2]. (105)

Now it is possible to identify these gauge bosons in components as
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W ±
µ = 1√

2
(A1

µ ∓ iA2
µ) with mass mW = gv

2
;

Z0
µ = 1√

g2 + g′2 (gA3
µ − g′Bµ) with mass mZ =√g2 + g′2v

2
.

(106)

We can identify the massless field as our photon field and is orthogonal to
Z0
µ;

Aµ = 1√
g2 + g′2 (g′A3

µ + gBµ) with mass mA = 0. (107)

In order to be able to write a general theory and have general fermion
couplings easily identifiable, we replace specific gauge contributions by gen-
eral gauge ones, i.e τa → T a and +1/2 → Y . With this substitution, we then
choose to write the covariant derivative in terms of general mass eigenstates:

Dµ = ∂µ − i g√
2
(W +

µ T
+ +W −

µ T
−) − i 1√

g2 + g′2Zµ(g2T 3 − g′2Y )
−i gg

′√
g2 + g′2Aµ(T 3 + Y ). (108)

Here we can easily identify the coefficient of Aµ as electric charge ,e,
and as we have seen before, the electric charge quantum number given by
Q = T 3 + Y . We can further symplify this expression by defining the weak
mixing angle; essentially this is the angle that appears in a change of basis
from (A3,B) to (Z0,A) and looks like a simple rotation

(Z0

A
) = (cos θw − sin θw

sin θw cos θw
) (A3

B
) , (109)

these matrix values are given by

cos θw = g√
g2 + g′2 , sin θw = g

′√
g2 + g′2 (110)

31



By simple manipulation of the covariant derivate, we can see the couplings
of the weak bosons in terms of the parameters of electron charge and our weak
mixing angle θw.

Dµ = ∂µ − i g√
2
(W +

µ T
+ +W −

µ T
−) − i g

cos θw
Zµ(T 3 − sin2 θwQ) − ieAµQ

with

g = e

sin θw
.

(111)

One can see now that at tree level calculations, all exchange processes be-
tween W and Z bosons can be described by three basic couplings. This
covariant derivative describes the couplings of gauge bosons to fermions;
however, it will be important to be precise when dealing with chirality.

5.3 The Higgs Lagrangian

Looking at Eq. (89) and (90), the introduction of this complex scalar
doublet gives the theory a new physical particle: the Higgs boson, h. As we
have already parametrized the scalar field in terms of the Higgs vev, we can
identify a full description of the Higgs Lagrangian as

Lφ = ∣Dµφ∣2 − µ2φ∗φ + λ(φ∗φ)2, (112)

where the covariant derivative is given by Eq. (64). We can then ask, what
does the Higgs mass profile look like? If we expand the potential energy term
about the minimum and evaluate the Lagrangian by our unitary parameter-
ization, we have

∆Lh = −1

2
m2
hh

2 −
√

λ

2
mhh

3 − 1

4
λh4. (113)

What we have done here is define a new field h(x) with a mass defined by
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mh =
√

λ

2
v. (114)

It is quite interesting, and convenient, that our mass terms for the theory
depend on this value v, but are all precisely determined by their respective
coupling constants (here denoted by λ). We have seen the structure of Higgs
couplings to fermions given by Eq. (100) and now want to identify couplings
to gauge bosons governed by the kinetic energy term in Eq. (112). This term
takes the form

Lh,G = 1

2
(∂µh)2 + [m2

WW
µ+W −

µ + 1

2
m2
ZZ

µZµ](1 + h
v
)2, (115)

where we have already defined the masses of the gauge bosons in Eq.
(106); we can also identify that there is a relationship of masses, namely
MZ cos θW =MW . With these definitions and couplings, we can define Feyn-
man rules for Higgs couplings which are given in Fig. (2). Given that cou-
plings to the Higgs boson are proportional to the mass gauge bosons in
electroweak theory, the Higgs boson is hard to detect.
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Figure 2: Feynman Rules For Higgs Couplings
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5.4 Higgs Phenomenology

Many properties of the Higgs boson can be probed by analysis of Higgs
to two photon decay. Even though it has a very low branching ration when
compared with other decays in the theory, the two photon decay process has
a very clean final state along with a clear mass signature for the Higgs boson.

The Higgs boson has an incredibly short lifetime at about 10−22 seconds;
this makes it extremely important to understand the behavior and energies
of other particles in Higgs interactions. This is in essence what is done at the
Large Hadron Collider (LHC); cross sections are analyzed while certain par-
ticles produced will give ’signals’ to look for the Higgs. Given enough energy,
the Higgs boson is created through a couple main fusion channels, these are:
gluon-gluon fusion, top-top fusion, Higgs-Strahlung, W-W fusion, and Z-Z
fusion. The main production mode at the LHC is gluon-gluon fusion. During
these processes, the Higgs inevitably decays into various final states. Any
decay that involves heavy fermions becomes difficult in measurement given
the wide signal mass of the fermions compared to the very narrow width
of the Higgs boson. As we now know, Higgs couplings are proportional to
the mass of the respective field; thus, heavier fermions will acquire higher
branching ratios.

With a predicted mass for the Higgs boson at 125 GeV, the branching
ratios for each decay channel can be analyzed; these are shown in Table 2.
Notice here that our decay of study has an incredible low branching ratio.
The Higgs boson does not couple directly to photons, this is a loop level de-
cay with intermediate fermions and gauge bosons. For massive vector bosons
W and Z, the couplings are proportional to the square of the boson mass;
whereas in the case of fermions, it is a linear relationship. This implies that
the dominant mechanisms for Higgs boson production and decay involve cou-
plings to these vector bosons.

The beauty of the specific mass and couplings of the Higgs boson is that
the theory remains calculable and consistent with perturbative analysis. Val-
ues of mH slightly greater than they are would cause the Higgs self-coupling
scale to be non-perturbative at the level of quartic coupling. The width of
the Higgs is proportional to the distribution of masses observed. Due to its
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very weak coupling, the width of the Higgs is very small compared to its
center of mass. For example, with a Higgs mass of 125 GeV, it has a decay
width of approximately 4 MeV.

Table 2: Branching Ratios of Higgs Boson Decays

Branching Ratios of H
Channel bb̄ τ−τ+ W +W − ZZ∗ gg cc̄ γγ Zγ
Br.(%) 57.7 6.32 21.5 2.64 8.57 2.91 0.228 0.154

The branching ratios given by Table 2 are calculated by a simple equation,

BR(h→∑
i

fi) = Γ(h→ ∑i fi)
ΓTOT

. (116)

Where the notation just sums over any final state decay over total decay of
the Higgs. To see how these decays will be calculated, it is instructive to
show a very simple Higgs tree level decay; this will also illustrate our Higgs
couplings.

5.5 Higgs Decay to Two Fermions

We can now analyze a general Higgs decay at tree level using the machin-
ery we have built up. Using the appropriate Feynman diagram and rules (as
according to Fig. 2), it is simple to calculate the transition amplitude, and
therefore the decay width. We will look at the general process of the Higgs
boson decaying into fermion/anti-fermion pairs M(h → ff̄) (this contains
the recipe for all quarks and charged leptons). When accounting for our ver-
tex contribution and the two outgoing fermions, we have a simple amplitude
of

MH→ff̄ = mf

v
ūs1vs2 , (117)
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where s1, s2 are the spins of the outgoing fermions. Since the decay width is
our end goal, we must identify the modulus squared of the amplitude given
by

∑
s1,2

∣M∣2 = Nc (mf

v
)2∑

s1,2

v̄s2(−p2)us1(p1)ūs2(p1)vs2(−p2). (118)

For now, Nc is just a placeholder for an associated field’s quantum num-
ber(s). We can then identify the identities that allow us to sum over the spin
operators and outgoing particles as

∑
s

us(p)ūs(p) = /p +m , ∑
s

vs(p)v̄s(p) = /p −m. (119)

We then apply gamma matrix identities that allow us to greatly simplify
our squared amplitude. We analyze the piece of the squared amplitude that
requires this attention:

∆ ∣M∣2 = Tr( /p1 +m)(− /p2 −m)= (γµpµ1 +m)(−γνpν2 −m)= −pµ1pν2Tr(γµν) −m2Tr(1)= −4p1 ⋅ p2 − 4m2

(120)

to avoid confusion, the structure of the trace is contained in the fermions
spinor indices; they would be contained in a structure like (/p +m)αβ. We
define the Higgs momentum by its rest mass, qµ = (Mh,0), we then have the
relation q2 = (p1 + p2)2 from conservation of momentum. This can also be
written as q2 = 2m2

f−2p1 ⋅p2 =M2
h . With the same relationships of momentum

and energy, we can write the final velocity of the fermions, ∣p∣, as

p = Mh

2
(1 − 4m2

f

M2
h

)1/2
. (121)

We can now write our amplitude in a more conventional form as,

∑ ∣M∣2 = Nc (mf

v
)2

2(M2
h − 4m2

f) = 2Nc (mf

v
)2

M2
hβ

2
f , (122)

where we have defined

β = (1 − 4m2
f

M2
h

)1/2 = 2∣p∣
Mh

. (123)
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We can now calculate our decay width given, defined below, in a general
sense as

dΓ = 1

2Ei
∣M∣2 (2π)4δ4(∑

i,f

Pi − Pf) d3pf(2π)3 1

2Ef
, (124)

Simply plugging in the appropriate values and accounting for phase space
dΩ, we arrive at a very clean result of

Γ(h→ ff̄) = Nc

m2
f

v2

Mh

8π
β3
f . (125)

Here we can see the width is proportional to the mass of the Higgs but
dominated by fermions mass while scaling inversely with the vev. The nature
of perturbation theory means there are always small corrections to be done;
whether these are QCD corrections (when dealing with quarks mostly) or
mixing corrections, this calculation gives us a good idea of the Higgs scale
in proportion to its mass. Looking at Table 2, we can now see the exact
structure of the branching ratios in relation to the mass of the fields.

We can go so far as to naively calculate the partial width of the process
Γ(h→ bb̄). Now it is important to note that using the equation derived above
is extremely naive due to a large QCD correction for quarks and running mass
(as we know the couplings of the Higgs to quarks has some different proper-
ties). However, we will use this equation using some rough numbers for the
bottom quark mass just to understand the scale of the calculation.

In doing so, we arrive at Γ(h → bb̄) ≈ 1.5 MeV; one can understand this
scale by identifying that the ratio m2

f/v2 << 1. To put this into perspective,
with QCD and quark mass corrections, this value actually reaches around 2.4
MeV; this is a large discrepancy as this accounts for around a 20 % difference
when calculating branching ratios. Since we know this branching ratio to be
above a 50% contribution to the Higgs width, we can comfortable estimate
the Higgs width to be a few MeV.

Owing to the fact that the bottom quark is incredibly heavy when com-
pared to other quarks in the theory (besides the top quark), it receives the
most corrections. If we look at the next most favored process of two tau
particle decay, this only contributes a few KeV to our total decay width.
The scales that we will deal with in our detailed analysis of two photon
decay will even be smaller than this, but more interesting physically and
computationally.
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6 Higgs Boson Decay to Two Photons

Because the Higgs does not couple directly with photons, the process is
mediated by fermion and W boson loops; the main contributor in the fermion
case are heavy quarks, this due to greater branching ratios as a proportional
to mass, as we have seen with our branching ratio percentages. The methods
of solving these loop contributions are fairly technical, but can be estimated
to get an order of magnitude estimate. When this is understood, it follows
to analyze these processes in great detail by using dimensional regularization
and loop integration techniques.

6.1 Fermion Loop Estimation

At one loop, only the heaviest fermions play a major role in the Higgs
boson width. If we look at Table 2, for the purposes of two photon decay, it
is completely consistent to only account for the heaviest quarks as the ampli-
tudes will scale with the mass of the fermion. We will generalize the fermion
loop calculation to illustrate the diagrams, schematics, and technique used
for setting up these calculations.

Looking at Figure 3, we have a fermion loop with momentum l and our
Higgs field decays at rest, denoted by its rest mass mh = p+ k due to conser-
vation of energy and momentum. We can then use the appropriate Feynman
rules for Higgs-fermion vertices and fermion-photon vertices; this is given by

iMf = −imf

v
NcQ

2
f ∫ d4l(2π)4 Tr[i(

/l − /k +mf)(l − k)2 −m2
f

ieγν
i(/l +mf)
l2 −m2

f

× ieγµ i(/l + /p +mf)](l + p)2 −m2
f

εµ(p)εν(k).
(126)
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Here we have defined the photon polarization vector by ε and have also
defined place holders for color, Nc and charge, Qf .

What we want to do now is actually take somewhat of an effective field
theory approach (although we will not necessarily use the actual machinery of
EFT) to estimate what our loop factor will contribute to our total amplitude
and decay. A very naive choice is to look at the limit where mf >> mh; this
is, in fact, a very unphysical limit and should not be taken overly serious.
One can see that in this limit, as the mass of the fermion becomes large,
the loop momentum will in fact decouple. This leaves us with the ability to
expand the integral as 1/m2

f which gives us −ie2/m2
f to first order. Along

with the solid angle factor that comes by convention when integrating, we
can re-write this amplitude as

iMeff = −i(2)4m2
f

v
NcQ

2
f

−ie2

16π2m2
f

εµ(p)εν(k) = − 8e2

16π2v
NcQ

2
fε
µ(p)εν(k).

(127)
.

The factor of two comes from an identical diagram where the loop mo-
mentum is reversed; this is an invariant shift in the theory and contributes
the same amplitude. the factor of 4mf is factored out of the numerator terms
when tracing over Dirac matrices as we have done previously. Here we have
obtained an amplitude that does not depend on the momentum of the loop,
l. This is obviously a crude estimation but useful to visualize the structure
of these amplitudes.
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6.2 W Boson Loop and Γ(h→ γγ) Estimation

We can also use a similar technique for W boson loops as we did for the
fermion loop. Due to the necessary inclusion of Goldstone boson loops, the
total amount of diagrams for the process h→ γγ is 13, the majority of which
are W boson contributions. We will detail the diagrams and amplitudes
specifically in the next section; however, it is instructive to see the behavior
in a similar, albeit unphysical limit: mh << mW . Indeed this limit cancels
most cross-diagrams and integral contributions, but leaves us with a very
interesting coefficient that survives,

iMeff = 7
ie2m2

h(4π)2v ε(p)ε(k). (128)

This coefficient of ’7’ will become quite important when we discuss the
Goldstone boson theorem as it pertains to non-decoupling of the W-loop.
A simple statement of this feature is given in this limit; adding up contri-
butions from the integrals, all terms sum to zero except the terms that are
proportional to m2

h/m2
W . The expectation here is that in the limit we have

taken, this contribution would go to zero; but of course, it does not.
Now we have very crudely calculated our Feynman amplitudes and want

to pull out some actual numbers for our Higgs decay. The modulus squared
of our amplitude is a sum of all contributions (fermion and W boson) and
given by

∣M∣2eff = α2m4
h

16π2v2
[8NcQ

2
f − 7]2 ε(p)ε(k)ε(p′)ε(k′). (129)

Here we will estimate the polarization vectors by a factor of about 4 given
that we assume they are proportional to gµνgµν (this is not quite always the
case, but is sufficient in our estimate). We have also defined a dimensionless
constant α = e2/4π. We can then evoke Eq. (124) and integrate over phase
space given by

dΠLIPS = (2π)4δ4(Pi − Pf) d3pf(2π)3 1

2Ef
. (130)
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Plugging in our values, we get

Γeff(h→ γγ) = α2m3
h

4π2v216π
[8NcQ

2
f − 7]2 , (131)

where the contribution from phase space is simply 1/16πmh and dentical
photons give a factor of 1/2 in the decay width. In future analysis, polar-
ization vectors will give us terms proportional to mh; this is due to having
momentum dependence in the numerator when evaluating the integrals that
contract with these vectors.

Since we know only the heaviest quarks and the W boson play a signifiant
role, we can estimate the width of this channel using values for the bottom
quark and W boson. Using our calculation of the width above, we find the
partial decay is given by the value Γ(h → γγ) ≈ 0.0372 MeV. As expected,
this value is very small when compared to the mass of the Higgs.

If we want to see how accurate a calculation like this is, we can simply find
what this value would give us for a branching ratio. Using Eq. (116), and
the table above it, we can easily compare this value to that of an accepted
branching ratio (taking into account that we are assuming the Higgs total
width of about 4 MeV). Using our value from the estimated decay width and
we arrive at a branching percentage BR(h → γγ) ≈ 0.0093 or .93%. As it
stands now this value is actually still larger than that given our Table 2, in
fact by a factor of 3. We already know this limit is highly unphysical, so the
corrections when taking loop integration seriously must be of this magnitude.
This can tell us two things: corrections to the fermion loop decrease its value,
and/or corrections to the W loop (and Goldstones) increase its value based
on their subtractive relation to each other.

6.3 h→ γγ Analysis and Results

A full analysis of Higgs decay to two photons is given in this section. For
the sake of over complicating the results and interesting physics, the detailed
calculations will be moved to the appendix along with techniques used to
solve such problems. Here, we work in the Feynman gauge, ξ = 1, which
simplifies our free propagators.
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We begin with our fermion loop calculation, and for the sake of differ-
entiating between our estimation previously, we will relabel our outgoing
photons by p1 and p2 respectively (for the gauge boson loops, we will also
relabel our loop momentum; as we will see the theory will not depend on
loop momentums).

We start with looking at the Feynman diagram above and Eq. (126),
without making any estimations as we did before. The replacement of mo-
mentums gives us a similar looking equation as previously shown:

iMf = −imf

v
NcQ

2
f ∫ d4l(2π)4 Tr[i(

/l − /k +mf)(l − k)2 −m2
f

ieγν
i(/l +mf)
l2 −m2

f

× ieγµ i(/l + /p +mf)](l + p)2 −m2
f

εµ(p2)εν(p1).
(132)

From here, although mathematically technical, the steps are simple: we
simplify the numerator by contraction of indices along with Dirac matrix
identities, then evaluate the denominator using Feynman parameters and a
shift of variables, lastly we use dimensional regularization to take care of loop
momentum dependence and divergences. These techniques can all be found
in Appendix A. Applying these techniques we arrive at an amplitude of

iMf = − α

4πv
(m2

hg
µν − pν2pµ1)εµ(p1)εν(p2)I(τf)NcQ

2
f . (133)

When introducing Feynman parameters, we pick up ’coordinate’ dependent
integrals instead of loop momentum; here that is of the form

I(τf) = 1

∫
x=0

dx

1−x
∫
0

dz
1 − 4xz

1 − xzm2
h

m2
q

. (134)

43



We have used some useful notation for our mass terms as τf = m2
h/4m2

f .
Notice also the term in the parenthesis is Eq. (133), this is a very important
gauge invariant piece of our numerator. This is due to the issue of Lorentz
invariance when the Ward identity is taken into account. This is a state-
ment of polarization vectors; longitudinal polarizations of the photon are not
permitted in the theory. Mathematically the statement is this:

pµ1Mµ = 0. (135)

When estimating our loop integral in the previous section, this is the piece
we drop out and is structurally important. Also if we have being picky, the
amplitude is summed over all fermions that contribute to this decay process,
as previously stated only the heaviest quarks play a major role.

We now need to account for the other diagrams that contribute to this
amplitude; mostly depending on W boson contributions. Other than brute
force Feynman diagram reading and calculation, there is one fun way to see
that many of these cross-contributions of these diagrams actually cancel.
This can be show by writing our propagator in the Rξ gauge as

DW (q) = −i
q2 −m2

W

(gµν − qqν
m2
W

) + −i
q2 − ξm2

W

qµqν

m2
W

. (136)

When reading off the diagrams after using this form of the propagator,
one can take into account that the final answer cannot be gauge dependent;
as we know a choice of gauge is done by convenience and does not affect the
physics. With this in mind, it is clear than any contributions that are gauge
dependent must cancel with other cross-terms in the theory.

With the same techniques described in the derivation of the fermion loop
amplitude, we arrive at at a similar structure of amplitude given by

iMW = iα

4πv
(m2

hg
µν − pµ2pν1)εµ(p1)εν(p2)IW (τW ), (137)

where we have defined the variable

IW (τW ) = τ−1[6I1 − 8I2 + τW (I1 − I2) + I3], (138)

that is a combination of the following integrals, as evaluated from the Feyn-
man amplitudes, as
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I1 = 1

∫
0

dx log[1 − x(1 − x)τW ]
I2 = 2

1

∫
0

dx

1−x
∫
0

dy log[1 − xyτW ]
I3 = 1

∫
0

dx

1−x
∫
0

dy
(8 − 3x + y + 4xy)τW

1 − xyτW

(139)

It is also convenient that both our fermion contribution along with our
gauge boson take a nice compact form such that we can write the full am-
plitude as

iM(h→ γγ) = iα

4πv
(m2

hg
µν − pν2pµ1)εµ(p1)εν(p2)[Q2

fNcIf(τf) − IW (τW )].
(140)

Just as we have done previously, we will take the modulus squared of this
term and use this in our decay width equation. Before doing so, it will be
beneficial to evaluate the integrals and try to write them in a more compact
way. To do so, we have used Mathematica to solve both integrals (as they
both deal with polylogarithmic functions); after evaluation, we can write
these integrals as

F = IW (βW ) +∑
f

NcQ
2
fIf(βf)

IW (β) = 2 + 3β + 3β(2 − β)f(β)
If(β) = −2β(1 + (1 − β)f(β)).

(141)

Note the integrals defined in F are also redefined by evaluating the inte-
grals in Eq. (139). Here we have introduced the mass term as β = 4m2

f,W /m2
h,

where the subscript denotes which mass is in question, fermion or W boson.
The function we have defined, F (β) is given in terms of the mass parameters
by

f(β) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
arccsc2( 1

β−
1
2
) for β ≥ 0

−1
4
[ ln 1+√1−β

1−√1−β − iπ]2 for β < 1
(142)
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These results are consistent with the literature by use of a simple trigono-
metric identity that relates arccsc2(x) = arcsin2(1/x). This would give us the
same result in Marciano (et. al) [2], of arcsin2(β−1/2). With Eq. (140), we
can now write a very simple and concise form of our Higgs decay to two
photon width in terms of Higgs mass and the vev as

Γ(h→ γγ) = α2m3
h

256π3v2
∣F ∣2 (143)

We can take this further to match the literature by introducing the Fermi
constant

GF√
2
= 1

2v2
, (144)

this allows use to write our result in an identical fashion as in Marciano (et
al), namely

Γ(h→ γγ) = ( α
4π
)2
GFm3

h

8
√

2π
∣F ∣2. (145)

We can evaluate the precision of this theory by taking values for observ-
ables in the theory and seeing what numbers this gives us for our decay width,
and more telling, our branching function. Here, we use accepted generic
masses for the top quark, without running mass or loop corrections, with the
beta dependent F-function. What we find is a decay width of 8.26228× 10−6

GeV. If we then analyze this in our branching ratio in MeV, and using a full
Higgs width of 4 MeV, we get a branching ratio of 0.00206 or 0.206%. If
we then look at Table 2, we have come much closer to the accepted value
than we did in our estimation previously (remember we had a percentage
of .93% when estimating our loop contributions). If we want to compare
this width to the results obtained when estimating the loop values in the
beginning of this section, we can account for the extra order of magnitude
(proportional to 10−1) by understanding what happens when evaluating these
integrals. When dealing with divergent integrals, the process of dimensional
regularization gives us terms proportional to 1/16. Even if we estimate this
beforehand, there are further corrections made when squaring the momen-
tum dependent index structure.

Given our thorough calculation, we more than doubled our precision in
the theory just by evaluating the one loop processes at some level of detail;
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namely within 10% of accepted values. As previously stated, we can reach
greater precision by taking into account contributions from all fermion loops,
while also taking higher order loop calculations; this will be explored later,
but in a qualitative way. We want to find which corrections fit into the theory
to get us even closer to accepted values. Discrepancies of the above decay
width can also be attributed to choice of values for respective masses along
with evaluation of Eq. (141); these integrals have maximum and minimum
angular dependence that can change results. Here, we have used general
values without evaluating these maximums and minimums directly.
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7 Higgs Boson Decay: Advanced Topics

We can now begin to probe the fundamentals of our Higgs boson decay
process. We have briefly touched on the Goldstone boson theorem and how
this pertains to a non-decoupling amplitude in the theory. These two things
can be described in some finer detail. It follows to begin discussing ways
of approaching these problems by use of other means; namely, dispersive
methods and effective field theory. Along with this we can question how one
can arrive at greater perturbative precision in the analysis done in this paper.

7.1 Goldstone Boson Equivalence Theorem

It is useful now to think deeper about some limiting cases of the theory;
here we will see how our gauge bosons can be utilized. Simply put, the
Goldstone-Boson Equivalence Theorem states that at high energies (Λ >>
m2
W ), external longitudinal components of W ± and Z bosons are equivalent

to up to higher orders to Higgs-scalar theory. At his level one can replace W
and Z bosons by Goldstone bosons. As we have seen when developing the
theory and introduction of the Higgs, these bosons couple in similar ways to
our other gauge bosons; however, they have an even simpler structure. We
can follow the calculation of Marciano (et. al) [2], to understand how this
replacement replicates the structure we are after.

Working in the Landau gauge (ξ = 0) to avoid gauge boson-scalar mixing,
we have two diagrams, given by M(b) and M(f) in the appendix, where we
can write them as iM(b)

GB + iM(f)
GB. What we then find for the amplitude is
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iM(f)
GB = (2)igm2

he
2

2mW

εµ(p1)εν(p2)∫ d4k(2π)4 1

k2(k + p1)2(k − p2)2
iM(b)

GB = −2ie2gm2
hgµν

2mW
∫ d4k(2π)4 1(k + p1)2(k − p2)2 .

(146)

Here we have re-defined our loop momentum by k to emphasize these are
strictly Goldstone Bosons. There sum now gives us

iMGB = ie2gm2
h

mW

εµ(p1)εν(p2)∫ d4k(2π)4 k2gµν − 4kµkν

k2(k2 + 2k ⋅ p1)(k2 − 2k ⋅ p2) . (147)

We then expand the denominator in the usual way (Feynman parameters)
and apply a shift in variables to give us

iMGB = ie2g
m2
h

mW

εµ(p1)εν(p2) 1

∫
0

2dy

1

∫
0

dx∫ d4`(2π)4 Nµν

(`2 −∆)3 , (148)

where the numerator is defined by

Nµν(`) = `2gµν − 4`µ`ν − 2p1 ⋅ p2yzgµν + 2pµ1p
ν
2yz,

∆ =m2
hyz.

(149)

It is at this point one applies dimensional regularization, where we already
see the electromagnetic gauge invariance form the structure of the two terms
on the right of the numerator (when squared with polarization vectors this
contributes a term proportional to the Higgs mass). As this is done in detail
in the appendix, and this calculation follows in the same way, we can display
the result given by Marciano (et. al):

iMGB = α

2πv
εµ(p1)εν(p2)(gµνp1 ⋅ p2 − pµ2pν1). (150)

This amplitude exactly replicates the structure we obtain in our anal-
ysis of the Higgs decay to two photons, keeping in mind in our system
p1 ⋅ p2 = m2

h/2. Here we have acquired exactly the correct amplitude con-
tribution using the Goldstone boson equivalence theorem.
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7.1.1 Non-Decoupling

What this calculation does, is give us a greater understanding into the
non-decoupling of the W loop contribution to h → γγ, in the limit Λ >>
m2
W . It is because of the unique coupling of the Higgs to these Goldstone

bosons that the coupling constant does not go to zero. As we will see in
our breakdown of effective field theories, the various particles of the theory
acquire masses that are proportional to dimensionless couplings to the Higgs
vev. The idea of decoupling can be as simple as setting one of these constants
to zero; however, there is more to it. We have seen what happens when we
take the limit of mf >>mh, where we estimated the fermion loop by a vertex
contribution proportional to 1/m2

f . If we consider a case where the Higgs
boson is much heavier than the fermion, we can think of this as setting the
Yukawa coupling to zero; thus, the amplitude in this limit goes to zero.

Similar to what we did previously in the small Higgs limit, we can reverse
the argument and ask what happens if the Higgs boson is much heavier
than the W boson. In this limit, mW /mh → 0. This is equivalent to saying
the gauge coupling goes to zero. However, just as above, we have terms
proportional to gmw(p1 ⋅ p2)/m2

w, this is also equivalent to m2
h/v which is

exactly the term we have in our amplitudes. This term does not vanish as the
Higgs vev is the only fundamental energy scale of the theory (In electroweak
theory). This non-decoupling of the W loop is a direct consequence of the
theory and is nicely checked by the Goldstone boson equivalence theorem.

7.2 Dispersive Methods and Relations

We will now describe a non-perturbative approach to solving these scat-
tering amplitudes following from analytic properties of S-matrix. This is done
through the relationship between real and imaginary portions of the matrix
with the use of Cauchy’s theorem. If we view our fields as two-point correla-
tions functions, we have analytic functions proportional to the momentum,
p2. Using properties of imaginary integrals and functions, we can take in-
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termediate branch cuts. If we take Cauchy’s theorem seriously , we have a
discontinuity on the positive real axis and integrate as described below. Us-
ing the optical theorem (described below), we can relate this imaginary piece
of the amplitude to a sum of contribution from intermediate state particles.

Unitarity requires our S-matrix has the properties SS† = 1 where S =
I + iT . This allows us to write −i(T − T †) = T †T . We can generalize the
optical theorem for two-particle states as

⟨p1p2∣T †T ∣k1k2⟩ =∑
n

( n∏
i=1 ∫

d3qi(2π)3 1

2Ei
)⟨p1p2∣T †∣{qi}⟩⟨{qi}∣T ∣k1k2⟩. (151)

Here we know the T-matrix elements of the equation give us a structure
proportional to −i[M(k1k2 → p1p2) −M∗(p1p2k1k2)], from the relationship
of the T matrix above. We now have an object that can be written as

−i[M(k1k2 → p1p2) −M∗(p1p2 → k1k2)]
=∑

n

( n∏
i=1 ∫

d3qi(2π)3 1

2Ei
)M∗(p1p2 → qi)M(k1k2 → qi)

×(2π)4δ(4)(k1 + k2 − qi)δ(4)(k1 + k2 − p1 − p2)
(152)

We can write the integral relation above as an integral of final states of a
term M∗M . In the case this relates to forward scattering, we can then write

ImM(k1, k2 → k1, k2) = 2Ecmpcmσtotal(k1k2 →∑
f

pf) (153)

Here we have generalized specific values; for example, momentum and cross
section. This is a general form of the optical equation and relates our imagi-
nary amplitude element to the total cross section of final states; this theorem
will be necessary in understanding Feynman Diagrams in a non-perturbative
way.

What follows now is an explanation and derivation that shows how we
can use these ideas to describe Feynman amplitudes. The derivation follows
from Peskin and Schroeder [1], defining a complex variable, s. We now have
an amplitude defined asM(s), and define a variable s0 as a threshold energy
of a least mass multi-particle state; here for real s, s < s0 implies that M(s)
is real.

M(s) = [M(s∗)]∗. (154)
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As we saw before, there is a branch cut along the real axis, this starts at
s0 and creates a discontinuity which is given by the relation

DiscM(s) = 2iImM(s + iε). (155)

It is important to understand using this relation assumes on-shell virtual
particles; if not, we would lose our prescription of iε and our integrals would
be purely real. This idea is illuminated by looking at an example, specifically
in φ4 theory given by Eq. (75). We have an imaginary contribution to order
λ2 which has the amplitude contribution of

iδM = λ2

2 ∫ d4q(2π)4 1(k/2 − q)2 −m2 + iε 1(k/2 + q)2 −m2 + iε . (156)

Now, we could use Feynman Parameters as before; however, we would like to
verify our expression for the optical theorem. Working in the center of mass
(COM) frame, we have poles at

q0 = k0/2 ± (Eq − iε), q0 = −k0/2 ± (Eq − iε). (157)

Relative to the real q0 axis, two of these poles lie above and two below.
Peskin and Schroeder show that if the contour integral is closed below the
line, only one pole contributes to the discontinuity and is is the same as
writing

1(k/2 + q)2 −m2 + iε → −2πiδ((k/2 + q)2 −m2). (158)

This result leads to the amplitude contribution being

iδM = −2πiλ2

2 ∫ d3q(2π)4 1

2eq

1(k0 −Eq)2 −E2
q

= −2πiλ2

2

4π(2π)4
∞
∫
m

dEqEq ∣q∣ 1

2eq

1

k0(k0 − 2Eq) .
(159)

What is also shown here is one can replace the integral over the loop q by
integrals over the outgoing particles, and replaced the propagators by delta
functions. To the order of λ2, what is shown is that

DiscM(k) = 2iImM(k)
= i/2∫ d3p1(2π)3 1

2E1

d3p2(2π)3 1

2E2

∣M(k)∣2(2π)4(p1 + p2 − k). (160)
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This derivation shows that we can retrieve exactly the general optical theorem
argument by simply replacing propagators with discontinuities in the form of
delta functions. With this machinery in mind, we can now begin to describe
and follow the arguments mad in Melnikov and Vainshtein’s paper [3].

To do this, we define Cauchy’s theorem for some analytic function f(p2)
that exists inside the contour; specifically the contour is chosen to not cross
singularities (In our case this would apply to cuts along the real axis). We
then define the general Cauchy integral over the contour, γ, as

f(p2) = 1

2πi ∫
γ

dsf(s)
s − p2

. (161)

From here Melnikov and Vainshtein go on to use this theorem to explain
results using dispersion relations. If we want to naively use dispersion rela-
tions, we must define a form factor FW (s) as defined by Eq. (140) with a
slight change in notation given by

FW (s) = F∞W + FW (s) = 2 + 3β + 3β(2 − β)f(β). (162)

Here we have the behavior as s→ 0, or β →∞, defined by F∞W . If we naively
apply Cauchy’s theorem with this factor we find an integral relation

FW (s) = 1

π

∞
∫

4m2
W

ds1Im[FW (s1)]
s1 − s − iε . (163)

This is simply a statement of Cauchy’s theorem where we have also ap-
plied the optical theorem given by the first piece of Eq. (159). This is a
simple replacement where we only need to identify the imaginary piece as

Im[FW (s)] = 3π

2
θ(1 − β)β(2 − β)ln1 +√1 − β

1 −√1 − β . (164)

Notice here, all we have done is analyze Eq. (141) while the step function,
θ(1 − β), is introduced to take care of the singularity when β = 1.

Now it is important to understand what is actually being sought after in
this paper. The form factor above contains our beta dependence, in other
words, our mass and energy dependence of the process in question. The use
of dispersion relations allow us to extract the real part of the amplitude from
analysis of the imaginary part in a non-perturbative way. Until now we have
used the typical S-matrix prescription along with functional integrals; this
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process is highly perturbative and can be thought of as a sort of power series.
With this in mind, one may think all that needs doing is evaluation of

this imaginary integral. In doing so, we arrive at

FW (s) = 3β + 3β(2 − β)f(β). (165)

This implies that our asymptotic form factor term F∞W is in fact zero. How-
ever, we know that this is not true due to non-decoupling of the W-loop.
This tells us there must be some sort of interesting behavior to add to the
imaginary part of the form factor. As stated in Melnikov (et.al), the most
famous example of this is that of the Dirac form factor; when taken in this
limiting case, it is equal to 1.

For our case in question, we need a constant to pull out of the theory,
and more specifically, the integral. This must come as a physical argument
from the theory; if we remember what this missing factor of 2 actually is,
the choice is actually quite simple. If we choose to take the limit s→ 0, then
we know we can apply the Goldstone boson equivalence theorem. It follows
that we define a new function

FW (s) = 1

π

∞
∫

4m2

ds1ImFGB
W (s1)

s1 − s , (166)

defined by

ImFGB
W (s) = −πm2

H

β

s
ln

1 +√1 − β
1 −√1 − β . (167)

We have seen before, that this process accounts for our longitudinal de-
grees of freedom associated with the W bosons. If we take our limiting case
seriously, as we did in previous calculations of decay rates, then we find that
as s → 0 Eq. (166) becomes −2πm2

Hδ(s). Plugging this in to Eq. (165) we
get the result − lim

s→0
FW (s) = −2. (168)

This gives us exactly the contribution we need to form a complete description
of dispersive methods for the amplitude of Higgs decay to two photons.
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7.3 Higher Order Loop Corrections

Future measurements of Higgs decays, and more specifically the two pho-
ton decay channel, will require better theoretical predictions with an increase
in accuracy. Higher loop QCD corrections are made at the level of 4 loops,
N3LO (next-to-next-to-next-to-leading order, as stated in the literature). It
is argued that this level of correction is, in fact, not negligible and of the
same order of NNLO. Perturbative corrections come in at the level of two-
loop corrections; this contains running masses of quarks along with gluon
emission (jets). We now follow the computational work of Davies (et. al) [4],
to the correction of Higgs boson decay to two photons at four loops. From
these results, we interpret the data and try to understand the results.

These calculations are done in the heavy top quark mass expansion (i.e
2mt > mH). This work covers the points of theoretical uncertainty and also
percentage of full decay width (the focus is on top-quark contribution, as the
other fields are truly negligible). As we have seen previously, the amplitude
of this process take the form

Mh→γγ = εµ1εν2(k1 ⋅ k2g
µν − kµ2kν1)A(s), (169)

here we have used the notation of the literature where A(s) can be thought
of as a form factor, containing information about center of mass and internal
particles. In our paper A(s) has been calculated at the level of one-loop and
given by Eq. (140). The focus of Davies paper is the virtual contribution of
the top quark mass to the gluon-gluon-Higgs form factor, denoted as

At = Ãt(Q2
tAt,t +Qt∑

f

QfAt,f +∑
f

Q2
fAf,f), (170)

where Ãt is just a collection of constants proportional to the Fermi constant.
This is just our fermion (top quark) contribution to the form factor taken
to higher order. This is done computationally, as there are 5062 four-loop
Feynman diagrams. It is important to quote the result of NNLO real correc-
tions, as it will be combined with the corrections made in the analysis of the
paper. This is given by
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Γh→γγgg = m3
H

64π
Ãt(α(5)s

π
)2( 17

34020000
ρ4 + 37

136080000
ρ5 + 219759

2240421120000
ρ6),
(171)

defining ρ = m2
H/m2

t . It is important to note here that calculations are
done in the on-shell scheme as well as the modified minimal subtraction
scheme (M̄S); this is just a technique used during analysis of integrals to
absorb infinities in the theory. This is not necessarily important to under-
stand the results; however, just to emphasize there are different ways to do
the calculations.

When moving on to N3LO top quark contributions, we finally pick out
some interesting and unexpected physics. The paper gives results at each
level by top quark contribution to the decay width as

Γh→γγ × 106GeV −1 = 9.1322 + 0.1558 + 0.0029 − 0.0031 = 9.2878. (172)

This is written in terms of leading order through to N3LO, respectively.
What jumps out immediately is that NNLO corrections and N3LO correc-
tions are the same magnitude but different sign. In fact, in the on-shell
scheme, they are larger than that of NNLO corrections and almost cancel
each other out. Overall, the effect on the decay width is extremely small (av-
erage of 0.030%); however, future calculations will need precise theoretical
data as experiments become more precise.

7.3.1 Two-Loop Corrections

To understand how these higher order correction are actually obtained
and how they should be thought about, we can take a more detailed look
at NLO corrections to the results we have derived in this paper. First, we
can look at QCD corrections via virtual gluon exchange inside a quark loop
(quark triangle diagram with gluon exchange). Due to charge conjugation
and color conservation, single gluons cannot radiate; thus, corrections are a
simple rescale of our quark contributions. This correction depends on the
ratio of Higgs and quark masses. Where in our solutions previously, we have
parameterized our quark loop contributing factors as in Eq. (140), we now
have the parameterization
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F̃Q(τQ)→ FQ(τQ) × [1 +C(τQ)αs
π
]. (173)

What follows is an overview a dissection of analytical analysis given by
references [5,6]; however, we have changed the notation to match the results
posted in this paper while specifying that we are in fact dealing with quarks;
this given by the subscript ’Q’. The extra factor here is an expansion in terms
of our mass factor, τ = 1/β as defined after Eq. (143). the coefficient is given
by the expansion

C(τQ) = c1(τ) + c2(τ)log
µ2
Q

m2
Q

, (174)

were the coefficients c depend only on τ . As stated before, τ is defined by
the ratio of the masses, however, the running quark mass evaluated at the
renormalization scale is now used: i.e mQ(µ2

Q) (a typical selection is given
by µQ =mH/2).

We can then analyze what happens in the heavy quark limit, also known
as the low-energy theorem. We are given that in the limit m2

H << 4m2
Q,

C(τQ)→ −1. This produces an effective Lagrangian at NLO of

Leff = e2 α

2π
F µνFµν

h

v
[1 − αs

π
+O(α2

s)]. (175)

In the region of intermediate Higgs mass, QCD corrections are quite min-
imal; ranging on a scale of about 1 − 2% correction to leading order results.
In translation we can write it as

Γh→γγ × 106GeV −1 = Γ(LO) + Γ(NLO) = 9.1322 + 0.1558 (176)

These numbers are strictly for QCD corrections. It is only in unphysical
mass regimes of mH ≈ 600 GeV that we see a massive rescaling in terms of
corrections. It also becomes more apparent that corrections are small due
to subtractive terms that come from QED factors; things like light-fermion
contributions, which are also quite minimal. One would imagine with this
method, you could write higher order contributions into the theory as

F̃Q(τQ) = F (0)Q + αsπ F (1)Q + (αsπ )
2

F
(2)
Q +O(α3

s). (177)
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When taking limiting cases and expansions, one should always be cautious
of the results as they can be quite unphysical approximations. As a result,
higher order methods are done computationally or by use of effective field
theories.

7.4 Effective Field Theory: Higgs Structure

As briefly shown earlier in this paper, effective field theories (hereby,
”EFT’s”) are built as a useful model to describe the relevant physics of a
specific process at a level beyond the standard model. In this technique one
strives to only retain useful, useable information from the process in ques-
tion. In instances where predictions are extremely difficult, EFT’s are used
to focus on relevant energy scales and degrees of freedom by using dimension
6 operators at some cutoff scale. The framework is built up by three main
ingredients: Degrees of freedom, symmetries, and expansion parameters. In
essence, one could argue that most theories are EFT’s; in fact we have al-
ready employed a technique used by EFT’s in the previous section when
evaluating NLO contributions. We will touch on the basics of the theory as
are many subtleties that come with building these methods, experimental
and otherwise.

In building an electroweak/Higgs EFT, one must use a bottom-up ap-
proach. What this means is, we can write down all the operators for the
corresponding particles in the theory (that are associated to the symmetries
of the theory). We then choose some cutoff energy scale, here denoted by
Λ, where we can no longer accurately describe the physics. If we want to
display this in terms of a Lagrangian, this would look something like

LEFT = LSM +∑
i

Ci
Λ2
Oi. (178)

Here Ci are the associated Wilson coefficients; one can relate them to the
standard model coupling constants, but these have heavier degrees of freedom
dependence. A consequence of the Higgs field is its unique couplings; thus,
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we define operators of fermion fields separately as

L = L(4)SM +∑
X

CXQ
(6)
X +∑

f

C
′fQ

(6)
f , (179)

where X involves all other field of the theory. The Wilson coefficients are
suppressed by factors of 1/Λ2. In the literature there are 8 defined classes
of operators that contribute to (h→ γγ), they are as follows: X3, φ6, φ4D2,
ψ2φ3, X2φ2, ψ2Xφ, ψ2φ2D, ψ4. These are respectively, gauge field strength
tensor X, the Higgs doublet φ, covariant derivative D, and a general fermion
field ψ. In the building of these Lagrangians there are of course hermitian
conjugations that we have neglected here. This gives us 16 operators and
two extra CP-conserving operators, for a total of 18. Due to the restructure
of the Lagrangian, measured quantities of the theory are rescaled in terms
of new couplings based on Wilson coefficients. Consequently, the W boson,
Z boson, and Higgs mass are all redefined in terms of our new operator’s
coefficients. Since we will largely focus on a qualitative approach to EFT’s
here, it will suffice to show what this would look like;

MW = 1

2
ḡv

MZ = 1

2

√
ḡ2 + ḡ′2v(1 + ḡḡ′CφWBv2

ḡ2 + ḡ′2 + 1

4
CφDv2)

M2
h = λv2 − (3Cφ − 2φ + λ

2
CφD)v4,

(180)

As we have seen in our previous results, the amplitudes of the process
h → γγ depends on these parameters. In this renormalized form they are
also observables of the theory. Notice also that that our Wilson coefficients
have indices that denote their vertex coupling dependence. Along with this,
the fine structure constant is also redefined by ē by

ē = ḡḡ
′√

ḡ2 + ḡ′2(1 −
ḡḡ

′√
ḡ2 + ḡ′2CφWBv2) (181)

The question then becomes, how can one improve the one-loop calcula-
tion for Γ(h→ γγ) using these techniques? Hartmann and Trott [5], outline
this problem and show corrections to our one-loop process with the use of di-
mension 6 operators. This improvement on the theory is given by an effective
Lagrangian with the structure

59



Leff,(6) =∑
i

CiOi. (182)

In this analysis, the operators of most importance to us are given by

OHB = g2
1H

†HBµνB
µν ,OHW = g2

2H
†HW a

µνW
µν
a ,OHWB = g1g2H

†σaHBµνW
µν
a .

(183)

The Background Field Method is then applied to pull out interesting
physics in our problem. This comes in the form o

H = 1√
2
( √

2iφ=
h + v + δv + iφ0,

) (184)

where we parametrize our Higgs field into quantum and classical states. Here
the v + δv is the one loop classical background field and is also defined later
as v̄; however, this will not be extremely important for our calculation. We
can write down our effective Lagrangian relevant to the process Γ(h→ γγ) at
tree level. Since we already know our higher dimensional operator structure,
our effective Lagrangian is written as follows:

Leff = 1

2
(h2 + 2h

√
Zh(v√Zh + δv) + φ2

0)(NHB +NHW −NHWB)e2AµνA
µν

+(φ+φ−)(CHB +CHW +CHWB)e2AµνA
µν .

(185)
The first line of the Lagrangian are the corresponding operator counter

terms; these apply the appropriate renormalization constraints while taking
care of divergences. These counter terms are given simply by use of a matrix
that depends on our gauge couplings,

Oi = Zi,jOj. (186)

where Zi,j are given in terms of gauge couplings.
Looking at the effective Lagrangian, one can simply read off the relevant

tree level contributions. We can use a general definition of any decay am-
plitude based on calculations we have already done. This can be written
as ⟨φ∣F (p1)F (p2)⟩0 ∝ ⟨φF µνFµν⟩0⟨δMAB(φ)

δφ
⟩0, (187)
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where the first term contains our required polarization structure as dictated
gauge invariance, and the second term is a mass dependent eigenstate that
is proportional to the vev. Since we have written an effective Lagrangian to
describe a one-loop contribution, we can simply read of the amplitude as

⟨φ∣AA⟩0L(6) = ⟨φAµνAµν⟩0[g2
1CHB + g2

2CHW − g1g2CHWB]. (188)

We also have defined the first term as

⟨φAµνAµν⟩0L(6) = 4i[pν1pµ2 − (p1 ⋅ p2)gµν], (189)

which should be recognizable from our original results. From here is is quite
easy to write the full amplitude as

iAµν(h→ γγ) = 4i[pν1pµ2 − (p1 ⋅ p2)gµν](g2
1vC

HB + g2
1vC

HW − g1g2vC
HWB).

(190)
The gauge couplings here are defined in the usual way,

g1 = cos θW , g2 = sin θW . (191)

If we define our original standard model result from Eq. (139) as

⟨φ∣AA⟩1SM , (192)

then we can very nicely write down our improved contribution from an EFT
perspective as a full decay by

ΓSM+SMEFT (h→ γγ) = m3
h

4π
∣⟨φ∣AA⟩1SM + ⟨φ∣AA⟩0L(6) ∣2. (193)

Where the term outside of the modulus squared comes from squaring the
value ⟨φAµνAµν⟩0 and including the contribution from phase space. Knowing
the SM result, we can use this equation to see constraints on these Wilson
coefficients.

We can now ask questions about these results that lead to greater under-
standing. Parameterize our Wilson coefficients as proportional to 1/Λ2,we
can write something in the form as follows
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ΓSM+SMEFT (h→ γγ) = m3
h

4π
∣SM + 1

Λ2
(cos2 θWv + sin2 θWv − cos θW sin θWv)∣2.

(194)
For convenience, we have also used the relabeling

CHB +CHW −CHWB = Cγγ = 1

Λ2
(195)

What we can do now is ask what kind of constraints can we place on
the Wilson coefficients and Λ. The reason we use EFT analysis is to make
corrections to our values taken from the standard model. What we have
seen from our own calculations is that we could use corrections on our decay
width up to 5%.

If one simply takes a high energy scale of Λ = 1 TeV, (which is a reasonable
choice given the limits of experimental energies) one finds corrections to the
standard model result of about 3.14 MeV. This is a correction of almost
78% to the accepted results. If one quickly scan the literature for EFT
expectations, deviations from the standard model of about 1−15% are much
more realistic. With this in mind, we can find a fit to Λ that reflects these
values more accurately. What we find in doing so is an upper bound of Λ
around 3 TeV and a lower bound of about 1.5 TeV (to fit these percentage
corrections). This range of percentages easily covers what we would need for
our results; as spoken about before, we also have corrections in other areas
contained in the standard model theory.
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8 Conclusion

In this paper, we have analyzed the structure and building blocks of
the standard model by way of gauge theory while providing the necessary
Feynman rules. We then have displayed the structure of interactions in the
standard model, most specifically electroweak interactions. In doing so, we
were then able to introduce symmetry breaking and the Higgs boson; all of
this built up to be able to detail the calculation of Higgs boson decay to
two photons at one-loop. Finally, we considered methods away from pertur-
bation theory along with higher precision calculations in the form of higher
loop analysis and EFT’s.

In our detailed analysis, we found a decay width for the process h → γγ
to be 8.26228 × 10−6 GeV, or 0.00826228 MeV. Accepted values in the liter-
ature for this value are closer to 9 × 10−6 MeV. We can account for this by
more detailed analysis of the term F in Eq. (144), along with corrections to
quark mass, inclusion of all fermion loops, and higher order loop analysis.
We have looked at these other topics in limited detail to see scale. What we
also found is we can account for some loss in precision by the use of EFT
models in addition to standard model results. With the ever growing need
for theoretical precision, models such as these will continue to be included
and tested.

Using such models, one must be careful as to not take the results too
seriously. For example, having looked at dispersion relations in an attempt
to understand a non-perturbative approach, one must take into account this
is a delicate interplay between Goldstone’s theorem and known results of the
theory.

It is also worth noting that when using the Feynman gauge, one does
not see the instructive cancellations between gauge dependent parameters of
the Rξ gauge, or the simplicity of diagrams in the Unitary gauge. Both of
the latter gauges are much more common to work, as seen in the literature;
however, the Feynman gauge makes for a more intuitive approach when an-
alyzing the integrals.

Future work in this field, as touched on briefly, is centered around higher
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precision theories to match future higher energy experiments. The Higgs
di-photon channel is incredibly useful and well-studied due to its clear mass
signatures along with minimal ’noise’. Because of this, results of this pa-
per are of course, not novel; however, we have replicated the results with
full analysis to one loop. Furthermore, we have probed constraints on EFT
models to add predictive measurements beyond the standard model. Future
work in this field will be heavily influenced by EFT’s as available energies
and precision continue to grow. With experimental evidence of the Higgs
field relatively new, future experiments will hopefully be able to shine light
on either new physics, or corrections to our models.
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A Appendix

A.1 Evaluation of Loop Calculations and Amplitudes

A.1.1 Numerator and Gamma Matrices: Fermion Loop

Gamma matrices are a set of matrices, γµ = {γ0, γ1, γ2, γ3}, that ensure
proper Clifford algebra for anticommutation relations for spinors; they are
necessary for Dirac spin-1/2 fields in the theory. In matrix representation
they are as follow:

γ0 = ⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ , γ1 = ⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 −1 0 0−1 0 0 0

⎞⎟⎟⎟⎠ ,

γ2 = ⎛⎜⎜⎜⎝
0 0 0 −i
0 0 i 0
0 i 0 0−i 0 0 0

⎞⎟⎟⎟⎠ , γ3 = ⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 −1−1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠ .
All group algebra is defined by their commutation or anti-commutation re-
lationships, and gamma matrices are defined by

{γµ, γν} = γµγν + γνγµ = 2gµνI4. (196)

In most cases, gµν is generalized as the metric ηµν for use of gamma
matrices, for us this in not important. In practice, it will suffice to define the
following identities and properties of gamma matrices:
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γµγµ = 4I4

Tr[γνγµ] = 4gµν

γµγνγµ = −2γν
γµγνγλγµ = 4gνλI4

Tr(γµ) = 0

Tr(γµγνγλγρ) = 4(gµνgλρ − gµλgνρ + gµρgνλ).
(197)

The important note here is that any trace over an odd value of gamma
matrices is zero.

As we have previously generalized our derivations for fermions, we will
use the calculations below to speak strictly about quark loops with loop
momentum l and mass mq. We start with the same amplitude in Eq. (132)
and identify the numerator as

N νµ = (i)5e2[/l − /p1 +mq]γν[/l +mq]γµ[/l + /p2 +mq], (198)

keeping in mind that gamma matrices are position (in the equation) de-
pendent. The expression above can be further simplified using properties of
gamma matrices; to visualize this we write the numerator as

Tr[N νµ] = ie2Tr[m{/l, γν}γµ /p2 − /p1γ
ν{/l, γµ}m

+m/lγν{/l, γµ} −m /p1γ
νγµ /p2 +mγν/lγµ/l]

+ ie2m3
qTr[γνγµ].

(199)

Using the above identities, we can easily rewrite the numerator as

Tr[N νµ] = ie24mq[(4lµlν − l2gνµ) + 2(lνpµ2 − pν1lµ)− pν1pµ2 + pµ1pν2 + (m2
q − p1 ⋅ p2)gµν]. (200)

We will come back to this equation after evaluation of the denominator.
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A.1.2 Denominator and Feynman Parameters: Fermion Loop

We now want to see how we can manipulate the denominator in a way
that always us to use dimensional regularization. We can begin with defining
the denominator simply by

D = 1((l − p1)2 −m2
q)(l2 −m2

q)((l + p2)2 −m2
q) . (201)

For the following derivation, we drop the loop integration variable dl; this
will be evaluated in the next section. We will then invoke the use of Feynman
Parameter. In a statement, it allows us to separate the denominator by clever
use of a delta function. In mathematical terms, this is defined as

1

Dν1
1 D

ν2
2 ⋯DνN

N

= Γ (∑Ni=1 νi)∏N
i=1 Γ(νi)

∞
∫
0

N∏
i=1 dziz

νi−1
i

δ(1 −∑Nj=1 zj)
[z1D1 + z2D2 +⋯ + zNDN]∑Ni=1 νi .

(202)
Notice here how we could easily go back to our original denominator by use
of the delta function, so really we have not done anything yet. With the use
of this trick, we now have a denominator written as

I(D) = 1

∫
x,y,z=0

dxdydz
2δ(x + y + z − 1)[x((l − p1)2 −m2

q) + y(l2 −m2
q) + z((l + p2)2 −m2

q)]3 .
(203)

We then expand the terms such that we can use the delta function in a
systematic way, namely

I(D) = 1

∫
x,y,z=0

dxdydz
2δ(x + y + z − 1)[(x + y + z)l2 + xp2

1 − 2xlp1 + 2zlp2 + zp2
2 − (x + y + z)m2

q]3 .
(204)
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One can see that use of the delta function will simplify this expression greatly;
by doing just this we have a more compact function

I(D) = 1

∫
x=0

z=1−x
∫
z=0

dxdz
2[l2 + xp2

1 + 2l(zp2 − xp1) + zp2
2 −m2

q]3 , (205)

notice also that we lose our y dependence, this is a feature of Feynman
parameters that makes it such a useful tool. Seeing that we can complete
the square, we structure the denominator as

I(D) = 1

∫
x=0

z=1−x
∫
z=0

2dxdz[l2 + xp2
1 + 2l(zp2 − xp1)+(zp2 − xp1)2 − (zp2 − xp1)2 + zp2

2 −m2
q]3

= 1

∫
x=0

z=1−x
∫
z=0

dxdz
2[(l + zp2 − xp1)2 + xp2

1 − (z2p2
2 + x2p2

1 − 2xzp2p1) + xp2
2 −m2

q]]3
(206)

A feature of this particular channel that makes it quite a ’clean’ decay
is the fact that the outgoing photons are massless and their final states are
known easily. By using the property

p2
2 = p2

1 = 0, (p2 + p1)2 =m2
h, (207)

it is quite easy to see that the Higgs mass is only dependent on the rela-
tionship 2p1 ⋅ p2 = m2

h. This allows us to know have the denominator of our
integral much more compact and no longer a function of loop momentum,

I(D) = 1

∫
x=0

z=1−x
∫
z=0

dxdz
2[(l + (zp2 − xp1))2 + xzm2

h −m2
q]3 . (208)

From here we will be able to make a shift in variables and apply dimen-
sional regularization, realizing that this shift in variables will also change the
terms in our numerator.

68



A.1.3 Variable Shift and Dimensional Regularization: Fermion
Loop

We now want to look at Eq. (155) and write this in a compact way. We
make a shift in variables of

l + (zp2 − xp1) = `, xzm2
h −m2

q =∆, (209)

such that now we have an integral given by

I(D) = 1

∫
x=0

1−x
∫
0

dxdz
2[`2 +∆]3 . (210)

We now have to adjust the numerator because of our shift in variables to
`; while also utilizing the photon momentum properties of p2

1 =p2
2 = 0. We

write the numerator as

Nµν = 4[(`µ`ν + `µ(xpν1 − zpν2) + `ν(xpµ1 − zpµ2) + (xpν1 − zpν2)(xpµ1 − zpµ2)− (`2 + 2`(xp1 − zp2) − 2xzp1p2)gµν)]+ 2(`νpµ2 − zpν2pµ2 + xpν1pµ2 − pν1`µ + zpν1`µ + zpν1pµ2 − xpν1pµ1).
(211)

A nice property to invoke to simplify this expression is identifying that our
integral is symmetric; consequently any term linear in ` will be zero in inte-
gration. Dropping these terms and factoring, we get

Nµν = ie24mq[4`µ`ν + `2gµν + (4z2 − 2z)pν2pµ2 + (4x2 − 2x)pν1pµ1 − 4xzpν2p
µ
1+(2x + 2z − 4zx)pν1pµ2 + xz ⋅m2

hg
µν − pν1pµ2 + pµ1pν2 + (m2

q − p1 ⋅ p2) ⋅ gµν].
(212)

We now need to re-insert our loop dependent integration variable so that
we can evaluate the integral properly. With our now somewhat factored
numerator and condensed denominator, this is given by
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1

∫
x=0
∫ dxdz ∫ d4`(2π)4 ie24mq(2[4`µ`ν − `2gµν + (4z2 − 2z)pν2pµ2 + (4x2 − 2x)pν1pµ1][`2 +∆]3
+2(2x + 2z − 4zx)pν1pµ2 + 2xz ⋅m2

hg
µν − 2pν1p

µ
2 + 2pµ1p

ν
2 + 2(m2

q − 1
2m

2
h) ⋅ gµν[`2 +∆]3 )

(213)
Notice we have made the replacement m2

h = 2p2p1. Our main concern will
be the integral containing terms in `, namely

I(`) = ∫ d4`(2π)4 ( 8`µ`ν[`2 +∆]3 − 2`2gµν[`2 +∆]3) (214)

We also require µ = ν, without this requirement the integral also vanishes
due to our linearity argument. This then gives us the relationship

gµν`
µ`ν = `2

d
gµνg

µν (215)

Incorporating this into our integral, we now can write

I(`) = ∫ d4`(2π)4 2(4
d − 1)gµν`2

[`2 +∆]3 . (216)

We have now written the integral in a form that allows us to apply di-
mensional regularization. Using a Wick rotation, `0 → i`0, allows us to work
in euclidian space due to the new dependence of d4` = dΩ3d3`, where dΩ is
the area of a d-dimensional sphere; by definition

∫ dΩd = 2πd/2
Γ(d/2) . (217)

The integral then takes the form

I(`) = i2(4
d
− 1)gµν ∫ dΩd

(2π)d ∫
0

d`
`2`d−1

[`2 +∆]3 . (218)

This can even be manipulated further if we identify the beta function as

∫
0

d`
`d+1

[`2 +∆]3 = ∆d/2−2

2

Γ(2 − d/2)Γ(1 + d/2)
Γ(3) , (219)
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we can adjust our integral to take the form of the above equation as follows:

I(`) = ∫ d4`(2π)4 2(4
d − 1)gµν`2

[`2 +∆]3 = 2(4
d
− 1)d

2

1

4d/2πd/2 ∆d/2−2 Γ(2 − d/2)
Γ(3) . (220)

It is important to make sure the behavior is defined in the area of d = 4; or
else this technique becomes nonsensical. Introducing the variable 2ε = 4 − d,
or in other words, Γ(2 − d/2) = Γ(ε); we find the value of the integral to be

2(4
d
− 1)d

2

1

4d/2πd/2 ∆d/2−2 Γ(2 − d/2)
Γ(3) = 2ε(4π)2 (∆

4π
)−ε Γ(ε)

Γ(3) . (221)

This can be evaluated using the gamma function expansion: Γ(e) = 1
e −γ+O(e), with γ being the Euler-Mascheroni constant. Inserting this expansion

into our equation, we have

2ε(4π)2 (∆

4π
)−ε Γ(ε)

Γ(3) = 2ε(4π)2 (∆

4π
)−ε 1

ε − γ
2

, (222)

finally giving us a result to the integral that will be evaluated in the limit
ε→ 0 as the result below:

I(`) = i2(4
d
− 1)gµν ∫ dΩd

(2π)d ∫
0

d`
`2`d−1

[`2 +∆]3 = 1 − εγ(4π)2 . (223)

Taking our limit, we get a finite value of i
16π2 ; keep in mind this is only the

contribution from the ` terms in the numerator. The rest of the integral will
be denoted by I(τ) (i.e no ` dependence).

Now we gather the rest of the terms in the numerator that are now ’co-
ordinate’ dependent and evaluate them. The integral is given by

I(τ) = 1

∫
x=0

1−x
∫
0

dxdz 2ie24mq[(4z2 − 2z)pν2pµ2 + (4x2 − 2x)pν1pµ1 + (1 − 4xz)pν2pµ1
+(2x + 2z − 1 − 4zx)pν1pµ2 + (m2

q − 1

2
m2
h + xzm2

h)gµν] ×∫ d4`(2π)4 1[`2 +∆]3 .
(224)

We can easily use the same technique as before for the last term, which
will give us i

32π2∆ . The integral will also be multiplied by outgoing photon po-
larizations, but as we have seen before, the Ward identity states pµ2ε

λ
µ = 0 and
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pν1ε
λ
ν = 0. Many terms in the numerator now cancel due to this requirement

and we can now write out our full amplitude as

iM = −4m2
q

v
e2NcQ

2
q∫ ∫ dxdz( gµν16π2

+2[(1 − 4xz)pν2pµ1+(m2
q − 1

2m
2
h + xzm2

h)gµν]
32π2∆

)
×ελν(p1) ⋅ ελµ(p2).

(225)
Keeping the integral in terms of x and z, we can factor further to write a

clean expression for our amplitude:

iM = − e2

4π2v
NcQ

2
q(m2

hg
µν − pν2pµ1)If(τ)ελν(p1) ⋅ ελµ(p2). (226)

Here we have the same integral term I(τ) as in Eq. (134). This is exactly the
termused to contribute to the amplitude of h → γγ at the fermion (mainly
quark) level.
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A.1.4 W-Loop Diagrams and Amplitudes

The same techniques used above are used to gather amplitudes for W-loop
processes below. For the sake of redundancies, the diagrams are shown with
their respective amplitudes. Although the numerator structure is different,
applying the same recipe as above gives us the amplitude as in Eq. (137).
The diagrams for these processes are given by Figure 4 at the end of this
section. The diagrams have corresponding amplitudes shown below where
we have given shorthand notation for propagators written as

Ds(q) = 1

q2 −m2
W

and DW (q) = gµν

q2 −m2
W

, (227)

for the Goldstone boson and W boson respectively. Here we define q as our
loop momentum and also defined the sum of the outgoing photon momentum
p1+p2 = k as the Higgs rest mass. The amplitudes are then listed with respect
to the diagrams given in Figure 4, in the following way:

iM(a) = igmWgµν
2

(−ie2)[2gαβgρλ − gαρgβλ − gαλgβρ]εµ(p1)εν(p2)
×∫ dDq(2π)DDW (q)DW (q − k) (228)

iM(b) = igm2
h

2mW

(2ie2gρλ)εµ(p1)εν(p2)∫ dDq(2π)DDs(q)Ds(q − k) (229)

iM(c) = iM(d) = −4 ieggµα
2
(−iegνβ)εµ(p1)εν(p2)∫ dDq(2π)DDs(q)DW (q − p2)

(230)

iM(e) = igmWgµν(−ie2)∫ dDq(2π)DDW (q)DW (q − p1)DW (q + p2)
× [gγλ(2q − p1)µ − gλµ(2p1 − q)γ − gµγ(q + p1)λ]× [gρδ(2q + p2)ν − gδν(2p2 + q)rho − gνρ(q − p2)δ]

(231)
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iM(f) = − igm2
h

2mW

(−ie2)εµ(p1)εν(p2)∫ dDq(2π)D (2q + p2)ν(2q − p1)µ
×Ds(q)Ds(q − p1)Ds(q + p2) (232)

iM(g) = − i
2
gmW (−ie2)∫ dDq(2π)D (−1)(q − p1)µqν

×Ds(q)Ds(q − p1)Ds(q + p2) (233)

iM(h) = iM(i) = (2)−ig
2
(−iemWgµλ)εµ(p1)εν(p2)(−ie)∫ dDq(2π)D× (q − p1 − k)β[gρδ(2q + p2)ν − gδν(q + 2p2)ρ − gνρ(q − p2)δ]×DW (q)Ds(q − p1)DW (q + p2)

(234)

iM(j)= igmWgαβ(−iemW )2εµ(p1)εν(p2)∫ dDq(2π)D×Ds(q)DW (q − p1)DW (q + p2) (235)

iM(k) = iM(l) = ig
2
(−iemWgµγ)(−ie)∫ dDq(2π)D (p1 + 2p2 + q)µ(2q + p2)ν

×Ds(q)DW (q − p1)Ds(q + p2)
(236)

iM(m) − igm2
h

2mW

(−iem2
W )2εµ(p1)εν(p2)∫ dDq(2π)DDW (q)Ds(q − p1)Ds(q + p2).

(237)
In these derivations, we have generalized the integrals immediately to D-

dimensions. This is done to bring attention to the fact that they must be
carefully handled as we did in section A3, and not by mathematical necessity.
Along with this we have specifically written the Feynman rules in terms of
the coupling constants and mass terms.

After doing so, the sum of these integral contributions indeed reproduces
the result found in Eq. (138). As stated before, one can take these amplitudes
in any gauge. In fact, it is quite instructive to see all the divergent and ξ
dependent cancellations when working in the general Rξ gauge. As shown in
Marciano (et al) one is only left with the sum of two diagram contributions.
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Figure 4: Gauge Boson Diagrams
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