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1. Introduction

The research presented in this thesis concerns string theory and quantum
field theory in the framework of the gauge-string correspondence. This
correspondence has been one of the most exciting areas in theoretical
physics for the last decades and basically states the equivalence between
certain quantum field theories and string theory in curved background.
On one side of the correspondence we have gauge field theories, they
are quantum field theories which have a “gauge group” as a symmetry,
and which constitute the building blocks of the Standard Model and
of our current understanding of the universe. On the other side of the
correspondence is string theory, a candidate for a theory of quantum
gravity and an area which has enriched various fields of mathematics
over the years.

The prime example of the gauge-string correspondence is the so-called
AdS/CFT duality put forward by Maldacena [1], which proposes the
exact correspondence between string theory in AdS5 × S5 and N = 4
supersymmetric Yang-Mills (SYM). One of the remarkable features of
the proposal is that it connects two theories with different dimension-
ality: A string theory in five-dimensional Anti-de Sitter space and a
four-dimensional field theory living in its boundary. But even more sur-
prising is the fact that the map between the two theories is such that
N = 4 SYM at large values of the coupling constant is mapped to
weakly coupled strings. This phenomenon has significant implications
as some of the most challenging problems in field theory involve strong
coupling, a regime where perturbation theory proves insufficient. There-
fore, through this duality we can gain new insights into strongly-coupled
quantum field theories by studying string theory in curved background.

At present moment the AdS/CFT duality remains a conjecture, as
there is no mathematical proof despite the large amount of evidence sup-
porting it. However, its possible implications in physics and mathemat-
ics can not be overstated as it could give us new insights into strongly-
coupled phenomena like the confinement of quarks and the description
of the mass spectrum of hadronic particles, a problem for which there is
no theoretical explanation and is considered by the Clay Mathematical
Institute to be among the seven Millennium Prize problems.

The focus of the present thesis is in further developing the tools for
the string theory computation of a certain class of observables: Wilson
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loops. In quantum field theory Wilson loops are observables arising in
many physical situations like the propagation of particles in the presence
of gauge fields and are also very convenient for understanding strongly
coupled phenomena, like confinement. Mathematically, they are defined
through the trace of a path-ordered exponential transported along a
contour C. There are several techniques for the calculation of these
quantities in field theory, for instance perturbation theory or lattice
simulations using computers. However, if one desires a better analytic
understanding of these observables at strong coupling, a regime where
perturbation theory breaks down, it is necessary to use more sophisti-
cated techniques. Due to the strong/weak nature of the gauge-string
correspondence, insights into this type of computations for a strongly
coupled field theory can be achieved by computing the corresponding
quantities in weakly coupled string theory.

As beautiful as this idea sounds, in practice it is very difficult as
string theory in curved backgrounds has many open questions and even
in perturbation theory only the first and, in very few backgrounds and
configurations, second (also called 1-loop) terms have been successfully
computed. In the string theory formalism, the dual to the Wilson loop
is given by the path integral of a string which ends on a curve C at the
boundary of AdS. At first order in the coupling parameter, contributions
come from the string action evaluated at a classical solution. Meanwhile,
the 1-loop term comes from the contribution of second-order fluctuations
around the classical solution, a problem which in principle reduces to
the evaluation of determinants of differential operators. The difficulties
in this type of calculations are many, both from a technical standpoint
(divergencies, possible zero-modes, choice of boundary conditions, etc.)
and from a conceptual point of view as string theory has not only many
fields, but also many symmetries, making the evaluation of the path
integral difficult as double counting must be avoided.

Fortunately, due to remarkable progress in the field theory side com-
ing from the use of localization and matrix models [2], there are exact
predictions at all orders in the coupling constant for a few cases where
the field theory and the Wilson loop have a very high degree of symme-
try. These cases provide an ideal set up to deepen our understanding
of how these computations should be done in string theory and serve
as perfect tests for new techniques. The hope is that by learning from
these computations, we can extend our knowledge of perturbative string
theory calculations further and eventually make predictions for strongly
coupled field theories.

The simplest Wilson loop configuration there is corresponds to a string
whose geometry is a straight line in Anti-de Sitter space, also called
Wilson line. This configuration has a trivial expectation value when the
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field theory in question is N = 4 SYM: 〈W 〉 = 1. The later is due to
the large amount of supersymmetry preserved by this configuration as it
is 1/2 BPS, thus preserving 16 Poincaré supercharges. From the string
theory perspective, this configuration was first studied for the case of
AdS5 × S5 in the pioneering work [3], where the expectation value of
the Wilson line was computed up to 1-loop in string theory obtaining
perfect matching with the field theory prediction.

This test of the AdS/CFT duality, as well as the related technical
machinery developed for string theory in curved backgrounds, opens
the door to the possibility of testing other gauge-string dualities. The
quantum field theory described by N = 4 SYM is in a way a “toy model”
of the field theories describing our universe, as N = 4 SYM has a large
amount of supersymmetry and has conformal symmetry. As a “toy
model”, N = 4 SYM is very useful since it is a perfect testing ground in
which to test approaches to more complex theories, but at the end of the
day one would like to extend current techniques to field theories closer
to reality. One such theory is N = 2∗ Yang-Mills, a cousin of N = 4
SYM whose field content has a massive multiplet breaking conformal
symmetry. This field theory has a string theory dual, the so-called Pilch-
Warner background [4, 5], which is a distant cousin of AdS5 × S5 with
a considerably more complicated field content. Unlike AdS5 × S5, the
Pilch-Warner background is not integrable making calculations in this
string theory a very non-trivial task.

Despite the much more complicated field content and the technical dif-
ficulties involved, in paper I we successfully calculated the 1-loop contri-
bution to the string partition function corresponding to the Wilson line
in the Pilch-Warner background and showed its divergence-free nature.
By making use of methods from spectral functions, theory of differential
operators and identities for isospectral operators, we managed to dra-
matically simplify the calculation and reproduce the field theory result
of [6]. Furthermore, with these new mathematical tools in hand, we
reproduced the earlier result for the Wilson line in AdS5 × S5 [3, 7] in
an elegant and relatively simple manner. The perturbative calculation
in I, first of its kind for nonconformal theories, serves as a showcase
for the power of spectral function methods in string theory Wilson loop
calculations. Moreover, it paves the way for precision testing of the
gauge-string correspondence for nonconformal theories.

The second simplest Wilson loop configuration is perhaps a circular
Wilson loop in AdS, a problem whose all-loop answer is known from
field theory but whose string theory calculation in AdS5 × S5 at 1-loop
has been an open question for almost a decade. In the field theory side,
the result at all orders in perturbation theory was first conjectured in
the foundational work [8], and then proven using localization in [2]. In
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the string theory side of the duality, the picture is much less clear as
several attempts coming from Gel’fand Yaglom [9, 10] and heat kernel
methods [7] had led to diverging results and mismatch with field theory
predictions. These perplexing results suggest that perhaps the tech-
niques used, or the way they are implemented, are not adequate for the
problem at hand. Possible explanations of why past calculations have
failed are also attributed to the possibility of zero-modes of the “ghost”
operators appearing from the gauge fixing procedure, or ignorance on
what are the right boundary conditions of these spectral problems. Fur-
thermore, if one considers the circle to have a winding k, the situation
gets even worse as previous calculations have all found different results
[9, 11].

In order to leave the question of ghost zero-modes aside, whose contri-
butions are related to the string world-sheet geometry, previous studies
considered the ratio of two circular Wilson loops: the one mentioned
above living entirely on AdS and at a point in S5, and one which ad-
ditionally extends in a S2 ⊂ S5 describing a latitude. Using Gel’fand
Yaglom, previous independent perturbative 1-loop computations failed
to reproduce the results from localization in field theory [12, 13], and a
perturbative heat kernel approach only reproduced the first term in a se-
ries expansion of the 1-loop result for small latitude angle [14]. Recently,
a similar computation using zeta function regularizarion also obtained
a mismatch with the field theory prediction [15]. In paper II, using
contour integration methods and the spectral function methods applied
previously in the Pilch-Warner calculation of paper I, we obtained the
same 1-loop result as existing Gel’fan Yaglom computations [12, 13] plus
an additional contribution, successfully solving this open problem. The
additional piece at the heart of the problem comes from careful consider-
ation of the conformal transformation required for the evaluation of the
functional determinants in the cylinder. This beautiful result highlights
the importance and desperate need for a better understanding of the
mathematical machinery required for these perturbative string theory
calculations.

This thesis is organized as follows: In chapter 2 the basic string theory
concepts required are introduced, in chapter 3 Wilson loops are intro-
duced in the context of the gauge-string correspondence. Chapter 4
briefly reviews several techniques used for the computation of functional
determinants. Chapters 5 and 6 concern the string theory 1-loop compu-
tation of the straight line in the Pilch-Warner background and the ratio
of latitude and 1/2 BPS circular Wilson loops in AdS5 × S5. Finally, in
chapter 7 the main results are summarized and several open problems
are mentioned.
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2. String theory in curved backgrounds

Originally, string theory started in the 1960’s as a model of hadrons but
it later became apparent that this theory could describe a consistent
theory of quantum gravity. General relativity, the theory which explains
gravitational interactions, is (at least perturbatively) non-renormalizable
which is a problematic issue as it would require the introduction of in-
finitely many parameters to absorb divergences. The later problem can
be solved by the radical proposal of replacing point-like particles by one-
dimensional objects called “strings”. This proposal leads to a smoother
UV behaviour and the existence of a massless spin two particle called
“graviton” which interacts according to covariance laws of general rela-
tivity. Besides being a consistent theory of quantum gravity perturba-
tively, string theories lead to gauge groups that can include the Standard
Model, consequently opening the exciting possibility of unifying gravity
and the other fundamental forces under a single theoretical framework.

In addition to the mathematical consistency and possibilities of grand
unification, string theory exhibits many interesting features to be stud-
ied. Among these are the existence of extra dimensions, supersymmetry
and dualities. String theory has several formulations connected by an
intricate web of dualities. In the present thesis we will focus exclusively
on type IIB string theory as this is the one relevant for the calcula-
tions presented later. We will start by introducing this string theory
in the Green-Schwarz formulation in section 2.1. Later in sections 2.2
and 2.3, we present the two supergravity backgrounds considered in our
calculations: AdS5×S5 and the Pilch-Warner background, respectively.

2.1 Green-Schwarz type IIB superstring

A string is described by a 1+1 dimensional “worldsheet” moving in a
10 dimensional “target space” (see examples in figure 2.1). The coordi-
nates along the worldsheet will be denoted by τ and σ, where τ is the
proper time coordinate while σ is the spatial coordinate along the string.
The metric tensor along the worldsheet will be denoted by hij where
{i, j} ∈ {1, 2}, while in the target space the coordinates are denoted by

13



Figure 2.1. Wordsheets of an open spinning string and of a closed string.

Xμ = Xμ(τ, σ) and the metric tensor by Gμν with {μ, ν} ∈ {1, .., 10}.
The most general bosonic Lagrangian density is given by

LB =
1

2

√
hhij∂iX

μ∂jX
νGμν +

i

2
εij∂iX

μ∂jX
νBμν , (2.1)

where the worldsheet metric is in Euclidean signature, Gμν is the tar-
get space metric in the string frame and Bμν is an antisymmetric B-field.

Additionally, there is a term coupling the dilaton Φ to the worldsheet
metric

LFT =
1

4π

√
hR(2)Φ, (2.2)

where R(2) denotes the worldsheet Ricci scalar. The role of this term,
usually referred as Fradkin-Tseytlin term, is not fully understood in the
literature for the case of the Green-Schwarz string [16] but will play a
key role in the computation of paper I. The bosonic action resulting
from both of these contributions is

SB =

∫
d2σ

(√
λ

2π
LB + LFT

)
. (2.3)

The fermionic action for the Green-Schwarz string in a generic back-
ground is known perturbatively up to fourth order in fermions [17], how-
ever, for our purposes it is sufficient to consider the expression up to
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second order. For the type IIB superstring this fermionic piece is [16]

L
(2)
F = Ψ̄I

(√
hhijδIJ + iεijτ

IJ

3

)
/Ei

(
δJKDj +

τ
JK

3

8
∂jX

νHνρλΓ
ρλ

+
eΦ

8
FJK /Ej

)
ΨK . (2.4)

In the expression above H is the NS-NS three-form and the fermionic field ΨI

with I ∈ {1, 2} is a 32-component Majorana-Weyl spinor subject to the con-
straint Γ11ΨI = ΨI . We use the notations /Ei = ∂iX

μEμ
ν̂Γν̂ and Γμ̂1μ̂2...μ̂n =

Γ[μ̂1Γμ̂2 ...Γμ̂n] where Eμ
ν̂ is the veilbein and Γμ̂ are Dirac matrices, while Dj

and FJK are defined by [16]

Dj = ∂j +
1

4
∂jX

μωμ
α̂β̂Γα̂β̂ ,

FJK =

2∑
n=0

1

(2n+ 1)!
F̃

μ̂1μ̂2...μ̂2n+1

(2n+1) Γμ̂1μ̂2...μ̂2n+1
σJK
(2n+1) ,

where F̃(i) are the R-R field strengths, ωμ
α̂β̂ denotes the spin-connection and

σ(n) are 2× 2 matrices defined in terms of the Pauli matrices τi by

σ(1) = −iτ2 , σ(3) = τ1 , σ(5) = − i

2
τ2 .

In order to notationally distinguish target space indices and those of its cor-
responding tangent space, we have added a hat to the later. Naturally, the
hatted and unhatted indices are connected by means of the vielbein Eν̂

μ.

The NS-NS three-form is defined by H = dB, while the R-R fluxes are given
in terms of the superpotentials C(i) by

F̃(1) = dC(0),

F̃(3) = dC(2) + C(0)dB,

F̃(5) = dC(4) + C(2) ∧ dB,

where the five-form is self-dual ∗F̃(5) = F̃(5) and the fluxes satisfy the Bianchi
identities

dF̃(i) = F̃(i−2) ∧ dB ∀i ∈ {3, 5}.
In order to consistently define a supergravity background in which strings prop-
agate, one must specify its field content which for the type IIB case amounts
to

Gμν , Bμν , Φ, F̃(1), F̃(2), F̃(5),

which must satisfy the supergravity equations.
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Figure 2.2. Images of anti-de Sitter space and the sphere.

Naturally, the string action resulting from equations (2.1), (2.2) and (2.4),
has many symmetries including invariance under Poincaré transformations,
reparametrizations of the worldsheet, Weyl transformations and κ-symmetry.
These symmetries can be used to choose a convenient gauge where for instance
the worldsheet metric is diagonal and the fermionic degrees of freedom are
reduced in half, as will be discussed later.

2.2 Strings on AdS5 × S5

As discussed earlier, superstrings propagate in 10 dimensional supergravity
backgrounds. For type IIB supergravity the most studied example is perhaps
AdS5 × S5 due to the prominent role it plays in the AdS/CFT duality. Here,
we will briefly review its geometry, field content and its symmetries.

The metric of AdS5 in Poincaré coordinates is written as

ds2AdS =
1

z2
(
dx2

μ + dz2
)
, (2.5)

where μ = {1, .., 4} and z � 0.
Meanwhile, in Hopf coordinates S5 is described by

ds2S = dψ2 + sin2ψ dϕ2 + cos2ψ
(
dφ2

3 + cos2φ3 dφ
2
1 + sin2φ3 dφ

2
2

)
, (2.6)

where {ψ, φ3} ∈ [
0, π

2

]
and {ϕ, φ1, φ2} ∈ [0, 2π).
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In order to visualize these spacetimes more easily, it is sometimes convenient
to use “global coordinates” given by [18]

X1 + iX2 = sinψ cosφ3e
iφ1 ,X3 + iX4 = sinψ sinφ3e

iφ2 , X5 + iX6 = cosψeiϕ,

Yn =
xn

z
∀n ∈ {0, ..., 3} , Y4 =

−1 + z2 + x2
μ

2z
, Y5 =

1 + z2 + x2
μ

2z
.

In these coordinates the metric tensors of (2.5) and (2.6) can be written as

ds2AdS = ηMNdYMdYN with ηMN = (−1,+1, ...,+1,−1) ,

ds2S = δMNdXMdXN with δMN = (+1,+1, ...,+1,+1) ,

with the coordinates satisfying

δMNXMXN = 1, −ηMNYMYN = 1.

In figure 2.2 the AdS2 and S2 spacetimes are presented in these coordinates.

The field content of AdS5 × S5 is relatively simple since the only non-zero
field besides Gμν is the R-R five-form F̃(5). The later takes the value

F̃(5) =
1

z5
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz

+ sinφ3 cosφ3 sinψ cos3ψ dψ ∧ dϕ ∧ dφ1 ∧ dφ2 ∧ dφ3.

Mathematically, AdS5 and S5 can be seen as the cosets

AdS5 =
SO (4, 2)

SO (4, 1)
, S5 =

SO (6)

SO (5)
,

where in order to include fermions one replaces the orthogonal groups with spin
groups. In general, type IIB superstring theory in the AdS5 × S5 background
is a sigma-model with a target space given by the coset

PSU (2, 2|4)
SO (4, 1)× SO (5)

,

where SO (4, 1)× SO (5) is the group of local Lorentz transformations and
PSU (2, 2|4) contains the bosonic subgroup SO (4, 2)×SO (6). Naturally N =
4 SYM, the gauge theory dual of AdS5 × S5, has the same symmetry group.

2.3 The Pilch-Warner background
We will now present the main features and field content of the Pilch-Warner
background. This supergravity background has for field theory dual N = 2∗,
which is a massive deformation of N = 4 super Yang-Mills. Unlike AdS5 ×S5,
in the Pilch-Warner background all fields of type IIB supergravity take a non-
trivial value and the background itself is non-integrable due to it being much

17



less symmetric.

The metric tensor for the Pilch-Warner background in the Einstein frame
is1 [4, 5]

ds2E =
(cX1X2)

1
4

√
A

[
A

c2 − 1
dx2 +

1

A (c2 − 1)
2 dc2 +

1

c
dθ2 +

cos2 θ

X2
dφ2

+A sin2 θ dΩ2

]
, (2.7)

where c ∈ [1,∞) and dΩ2 denotes the metric of a deformed three sphere

dΩ2 =
σ2
1

cX2
+

σ2
2 + σ2

3

X1
. (2.8)

In equation (2.8) the one-forms σi, with i ∈ {1, 2, 3}, satisfy
dσi = εijkσj ∧ σk,

and are defined in the SU(2) group-manifold representation of S3

σi =
i

2
tr(g−1τidg), g ∈ SU(2),

where τi are the Pauli matrices.
In equation (2.7) the functions A, X1 and X2 are given by

A = c− c2 − 1

2
ln

c+ 1

c− 1
,

X1 = sin2 θ + cA cos2 θ,

X2 = c sin2 θ +A cos2 θ.

The dilaton-axion for the Pilch-Warner background is given by

e−Φ − iC(0) =
1 + B
1− B , B = e 2iφ

√
cX1 −

√
X2√

cX1 +
√
X2

, (2.9)

while the two-form potential A(2) = C(2) + iB is defined as

A(2) = eiφ (a1 dθ ∧ σ1 + a2 σ2 ∧ σ3 + a3 σ1 ∧ dφ) , (2.10)

with

a1 (c, θ) =
i

c

(
c2 − 1

)1/2
sinθ ,

a2 (c, θ) = i
A

X1

(
c2 − 1

)1/2
sin2θ cosθ ,

a3 (c, θ) = − 1

X2

(
c2 − 1

)1/2
sin2θ cosθ.

1Compared to the references [4, 5, 19] in our notation A = ρ6. Additionally the angle
θ was redefined by θ → π/2− θ.
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Meanwhile, the four-form potential C(4) is defined as

C(4) = 4ω dx0 ∧ dx1 ∧ dx2 ∧ dx3, (2.11)

with

ω (c, θ) =
AX1

4(c2 − 1)
2 .

From the above equations it is relatively easy to compute the different type IIB
R-R and NS-NS fluxes of the theory.

The Pilch-Warner geometry asymptotes to AdS5×S5 close to the boundary.

This can be easily seen by taking the limits c → 1+ z2

2 and dc → zdz for small
z in equation (2.7). Doing this to first order in z results in

ds2E =
dx2 + dz2

z2
+ dθ2 + cos2θdφ2 + sin2θdΩ2, (2.12)

which is the usual metric of AdS5 × S5 presented in section 2.2 (up to rela-
bellings) with dΩ2 = σ2

1 + σ2
2 + σ2

3 describing the usual three-sphere.
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3. Wilson loops in AdS/CFT

The concept of Wilson loop was originally introduced by K. Wilson in the
1970’s in an attempt to better understand the problem of confinement in quan-
tum chromodynamics (QCD) in a non-perturbative manner [20], a problem
that to this day is still unsolved and is one of the Millennium prize problems.
Wilson loops are useful for the study of gauge field theories as these observ-
ables contain information on the underlying theory and can also play the role
of order parameter in the study of confinement.

In the last decades Wilson loops have been commonly used in the study of the
AdS/CFT duality as a clearer picture of Wilson loops appeared at both sides of
the duality due to the D3-brane picture. The holographic dual of Wilson loops
was proposed in the works [21, 22]. In the string theory picture, the dual to
the Wilson loop is given by the partition function of a string embedded in AdS
such that its worldsheet ends at the boundary on the contour described by the
field theory loop. In the strong coupling limit, the string theory calculation of
Wilson loops corresponds to the study of minimal areas of classical strings in
AdS5 × S5.

Having a holographic picture of these observables, it is in principle possible
to test the AdS/CFT duality by computing Wilson loop expectation values
at both sides of the correspondence (see for instance [23]). Due to advances
from supersymmetric localization [2], expressions are known for several Wilson
loop configurations in supersymmetric theories at all orders in the coupling.
The aim of the present thesis is to further expand these tests by doing the
corresponding string calculations beyond leading order.

It is also important to mention that interest in Wilson loops in AdS/CFT
goes beyond testing the duality as Wilson loops over light-like polygons are
conjectured to be dual to scattering amplitudes [24, 25, 26]. This surprising
feature allows for the possibility of transferring knowledge from Wilson loops to
the study of other observables. Study of hidden symmetries of Wilson loops is
also an active area of research as the AdS/CFT duality connects Wilson loops
in N = 4 SYM to integrable classical strings on AdS5 × S5. In this setup,
progress has been made in studying Yangian symmetry at strong and weak
coupling [27, 28], as well as in the study of the master and bonus symmetries
[29, 30].

In this chapter, we will introduce several important physical concepts rele-
vant for the calculations of papers I and II. Section 3.1 presents a very brief
introduction to the AdS/CFT duality. In section 3.2 we review the concept
of Wilson loop in field theories and in particular for the case of N = 4 super
Yang-Mills. Later, in section 3.3 the string theory picture of the Maldacena
Wilson loop is presented. Finally, in section 3.4 we introduce the Wilson loop
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configurations studied in papers I and II, namely; the Wilson line, the circular
Wilson loop and the latitude Wilson loop.

3.1 The AdS/CFT duality
In physics, dualities are of great value as they provide a bridge between a priori
totally different physical theories. By providing a link between two equivalent
descriptions, dualities increase our understanding of theories at a fundamental
level. The gauge-string correspondence has several realizations, the AdS/CFT
duality proposed by Maldacena is the classic example, but there are other du-
alities connecting for instance AdS4 × CP 3 and ABJM [31], or N = 2∗ and
string theory in the Pilch-Warner background.

In its “strongest version” the AdS/CFT duality states the exact equivalence
of N = 4 super Yang-Mills with SU(N) gauge group and type IIB superstring
theory on AdS5 × S5. In the field theory side the parameters of the theory
are the rank of the gauge group N and the value of its coupling constant gYM.
Meanwhile, on the string theory side the parameters of the theory are the
string coupling constant gs and the ratio L/

√
α′ with L denoting the radius of

curvature of AdS5 × S5 and α′ being related to the string length squared [32].
According to the AdS/CFT dictionary, the parameters of these two theories
are connected by

λ = g2YMN =
L4

α′2 , g2YM = 4πgs, (3.1)

where we introduced the ’t Hooft coupling constant λ. For practical reasons it
is difficult to test this duality for arbitrary values of these parameters, thus it
is convenient for calculation purposes to take certain limits. Non-perturbative
results in string theory are few, thus it is sometimes convenient to explore the
weak coupling limit of string theory gs � 1 for fixed values of L/

√
α′, which

physically amounts to considering classical strings. From the r.h.s. of (3.1)
we see that this corresponds to the Yang-Mills coupling gYM being very small,
and from the l.h.s. of (3.1) this would imply having λ/N to be small too. The
later can be achieved by considering N → ∞ for a fixed value of λ, which
is referred to as the ’t Hooft limit. From the field theory side all non-planar
Feynman diagrams vanish in this limit and consequently it is also called the
“planar limit”. Thus, in this limit, classical strings in AdS5×S5 are dual to the
planar limit of N = 4 SYM: This is usually referred to as the “strong version”
of the duality.

Having already taken the limits of N → ∞ and gs → 0, there are only two
arbitrary parameters left in the duality: λ in the N = 4 SYM side and L/

√
α′

on the AdS5 × S5 side of the duality. As we mentioned in the introduction
of chapter 1, quantum field theories at strong coupling concern some of the
most challenging problems in theoretical physics, as perturbation theory breaks
down. Taking the strong coupling limit corresponds to doing λ → ∞ in the
field theory side and

√
α′/L → 0 on the string theory side. Being L the radius
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of curvature of AdS5×S5 and α′ being given by the square of the string length,√
α′/L → 0 corresponds to considering strings of point-particle nature. The

later are described by type IIB supergravity in AdS5×S5. The duality between
supergravity in AdS5×S5 and the N = 4 SYM in this planar and λ → ∞ limit
is usually referred to as the “weak version” of the duality.

It is important to keep in mind the above limits as the aim of the present the-
sis is to study Wilson loop perturbative computations in string theory, which
amounts to considering string theory in the limit gs → 0. In principle, due
to localization, the Wilson loop configurations studied here are understood for
arbitrary values of λ in the field theory side. However, in the string theory side
only the classical contributions are fully understood, being the semiclassical
contributions the object of study of the present thesis.

A natural check of the duality concerns the symmetries on both sides. As
discussed in section 2.2, string theory in AdS5 × S5 has PSU(2, 2|4) symme-
try. In the field theory side one has the same symmetry, though it emerges
in a different way. N = 4 SYM is a conformal theory preserving N = 4 su-
persymmetry: Supersymmetry in this case implies the existence of 16 Poincaré
supercharges and conformal symmetry is responsible for an additional 16 super-
charges, all of these symmetries form PSU(2, 2|4). Naturally, having the same
symmetry is not a sufficient condition for the two theories to be equivalent, but
it is a necessary condition.

An additional feature of the correspondence is also the fact that it realizes
the holographic principle. The later is an idea in physics which states that the
information contained in a d-dimensional volume is encoded in its d−1 bound-
ary area. In the AdS/CFT duality the way to think about it is by considering
AdS5 as the “bulk” gravitational theory, while 4-dimensional N = 4 SYM lives
at its “boundary”; being the two theories equivalent, all the information con-
tained in the “bulk” of AdS is encoded in its lower dimensional gauge theory
dual N = 4 SYM.

Finally, we conclude by mentioning that due to the ever increasing literature
on the topic, any review on the AdS/CFT duality falls short of presenting a
complete picture. However, it is worth mentioning that the duality has found
applications in many areas of physics; providing new insights into relativistic
hydrodynamics [33, 34], the quark-gluon plasma [35], condensed matter sys-
tems [36, 37, 38], etc. By offering the possibility of studying quantitatively
strongly coupled physical phenomena, the duality is a potential window to
understanding physics that would be unaccessible by other methods.

3.2 Wilson loops in field theory
In field theory, Wilson loops are operators describing the parallel transport
of a very massive quark along a closed path C and physically correspond to
the phase factor acquired by the quark field in such process. For the case of
Yang-Mills with SU(N) as gauge group, the formula describing the Wilson loop
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operator in the fundamental representation is [32]

W (C) =
1

N
tr P exp

[∮
C

ds (iAμẋ
μ)

]
, (3.2)

where Aμ(s) is the gauge field lying in the Lie algebra, xμ(s) is a parametriza-
tion of C, P denotes path-ordering of the fields in terms of s, and the trace is
taken over the fundamental representation. By definition W (C) is a non-local
operator and it is also gauge-invariant.

The expectation value of Wilson loop operators 〈W (C)〉, which is the phys-
ical quantity we will be interested in, plays an important role as it gives infor-
mation on the field theory in question. In principle, knowledge of all Wilson
loop configurations is sufficient for reconstructing the gauge potentials of the
theory [39]. For instance, the quark anti-quark potential can be written in
terms of the Wilson loop expectation value

V (R) = − lim
T→∞

1

T
ln 〈W (C (R, T ))〉 ,

where the contour C is a rectangle of sides R and T , with R � T .

The Wilson loop operator for the case of N = 4 super Yang-Mills was
proposed by Maldacena and it is given by [21, 22]

W (C) =
1

N
tr P exp

[∮
C

ds
(
iAμẋ

μ + |ẋ|Φin
i
)]
. (3.3)

Compared to (3.2) the Maldacena Wilson loop introduces an extra coupling in
the exponential, which depends on the scalar fields Φi of N = 4 SYM and on
a unit-norm six-vector ni(s) that maps every point in C to a point in S5.

A priori such a formulation for Wilson loops in N = 4 super Yang-Mills is
non-trivial as this field theory has massless matter and transforms under the
adjoint representation. To circumvent these issues the proposal in [21] starts
with a SU(N + 1) N = 4 SYM field theory and introduces massive quarks
by means of a breaking of symmetry SU(N + 1) → SU(N) × U(1) such that
the corresponding W-bosons acquire a mass and transform in the fundamen-
tal representation of SU(N). This breaking of symmetry from SU(N + 1) is
such that the scalars of this theory, which are valued in su(N + 1), break into
the massless scalars of su(N) plus fields transforming in the fundamental (and
anti-fundamental) representation of su(N) which have mass due to the Higgs
mechanism. The phase factor in the propagator of such fields in background
gauge and scalar fields is in fact the Maldacena Wilson loop [40].

3.3 Wilson loops in string theory
The string theory dual of the Maldacena Wilson loop expectation value is given
by the partition function of a string whose worldsheet Σ ends on a contour C at

23



Figure 3.1. Holographic picture of a Wilson loop: The string worldsheet is in
the bulk of AdS and encloses C at the boundary.

the boundary of AdS, as seen in Figure 3.1. The superstring partition function
is given by [21]

〈W (C)〉 = Z =

∫
DXμDΨDhij e−SString(h,X,Ψ),

where the integration is carried over the target space coordinates Xμ, the
fermionic fields Ψ and the worldsheet metric hij .

At a glance it is easy to see that the expression above is not well defined as
it has overcounting over physically equivalent configurations which are related
by Weyl and diffeomorphism transformations. Therefore, in order to make
sense of the path integral, it is necessary to do gauge-fixing. We first fix the
worldsheet metric to be given by the metric induced by a classical solution
Xcl

μ (τ, σ) ending at the required geometry in the boundary of AdS

hij = ∂iXcl
μ (τ, σ) Gμν (Xcl) ∂jXcl

ν (τ, σ) , (3.4)

where the classical string solution satisfies the boundary condition

Xcl
μ (τ, σ)|∂Σ = xμ (s) ,

with the r.h.s. being previously defined in section 3.2. In order for this gauge-
fixing procedure to produce the correct measure of the path integral, it is
necessary to introduce the Faddeev-Popov ghosts. Additionally, it is also nec-
essary to fix the fermionic κ-symmetry in order not to double count fermionic
degrees of freedom. There are many ways to fix the later, here we do as in
[3, 9] and impose Ψ1 = Ψ2 = Ψ. These considerations result in

〈W (C)〉 = Z =

∫
DXμDΨ e−SString(X,Ψ) det1/2P †P,
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where the determinant on the right is due to the Faddeev-Popov procedure.

Following the semiclassical quantization procedure of [3] for the Green-
Schwarz string, we expand the string embedding coordinates Xμ around the
classical solution Xμ

cl

Xμ = Xμ
cl + δXμ = Xμ

cl + Ea
μξa, (3.5)

where δXμ denote quantum fluctuations around the classical solution and ξa

their corresponding projection into tangent space. The later will be the default
basis in which to consider bosonic fluctuations since fermions are only defined
in the tangent space and, due to supersymmetry, both path integrals should
be treated in a similar manner.

By expanding the bosonic Lagrangian density (2.1) up to second order
in fluctuations and integrating by parts, one finds the structure LB (X) =
LB (Xcl)+ ξKBξ where linear terms in ξ vanish due to the equations of motion
and KB denotes second order differential operators. Meanwhile, the expansion
in fluctuations for the fermionic piece (2.4) results in LF (X,Ψ) = Ψ̄KFΨ with
KF denoting differential operators linear in derivatives. By replacing in the
path integral it is easy to see that both fermionic and bosonic integrals are of
Gaussian type, thus obtaining

〈W (C)〉 = Z = e−SString(Xcl)
det1/2KF

det1/2 KB

det1/2P †P. (3.6)

The expression above for the string partition function is composed of two pieces,
each one with a different functional dependence on λ. We now present the main
features of each.

3.3.1 The classical action

The contribution coming from the classical action SString(Xcl) is obtained by
evaluating equations (2.1) and (2.2) at the classical solution. Physically, this
contribution corresponds to the leading term of the Wilson loop expectation
value at strong coupling (λ 
 1) and its dependence on the ’t Hooft coupling
is of the form SString(Xcl) =

√
λ Const. In the literature, such classical contri-

butions are well understood and in general agree with field theory predictions.
For the case of the AdS5 × S5 background, classical contributions have a

nice geometrical interpretation. Due to the absence of B-field and dilaton, the
only non-vanishing contribution comes from the Polyakov action evaluated at
the classical solution. The later is understood to have the following structure

〈W (C)〉 λ�1
= exp

[
−
√
λ

2π
Aren (C)

]
,

where Aren denotes the “renormalized” area of the worldsheet. In principle,
direct evaluation of the Polyakov string at the classical solution results in a
divergent result. The reason for this divergence resides in the existence of the
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1/z2 singularity of the metric tensor at the boundary. The way to regularize this
divergence is by considering the integration volume to start from a small cutoff
z = ε close to the boundary. The regularization procedure can be summarized
by considering

Aren (C) = lim
ε→0

[
A (C)|z�ε −

L

ε

]
,

where L denotes the perimeter around C. Another way to think about the reg-
ularization procedure is by implementing the Legendre transform of Z, which
amounts to dropping the 1/ε divergences in the final result [40].

It is important to keep in mind that for more complicated supergravity back-
grounds with non-trivial dilaton, like the Pilch-Warner background, one has an
additional contribution coming from the Fradkin-Tseytlin term. This contri-
bution is classical in nature and will play an important role in the calculations
of paper I.

3.3.2 The semiclassical partition function

Contributions to the semiclassical partition function come from the evaluation
of the functional determinants in (3.6) and will be the focus of the present
thesis.

In principle, provided that the functional determinants considered do not
have zero modes, the semiclassical partition function would have a dependence
on λ of the form λ0. If the spectrum in one of the determinants has zero modes,
each would contribute with a factor λ−1/4 to the determinant. The later can
be seen more clearly through the use of collective coordinates when evaluating
the determinants [41].

Before proceeding, we will briefly present some features of the individual con-
tributions to the semiclassical partition function. The fermionic contribution
comes from fixing κ-symmetry and evaluating the terms in between Ψ̄ and Ψ in
(2.4) at the classical solution. In principle, being Ψ a 16-component spinor, the
resulting differential operator will be a 16×16 matrix. The later can be usually
reduced to much simpler 2× 2 blocks by choosing a convenient representation
of Dirac matrices. Naturally, the choice of gauge and Dirac matrices does not
change the physics of the problem, but the expressions involved become much
simpler. The resulting differential operators KF will be linear in derivatives
with respect to τ and σ. Since it is customary (although not necessary) to
consider determinants of operators of a Laplace type −∇μ∇μ, the fermionic
operators in KF are sometimes squared and one studies the determinant of the
later [42].

The bosonic contribution comes from expanding the ten coordinates in (2.1)
around the classical solution. Depending on the field content involved, it is
sometimes convenient to use the following expression from which one can read
the differential operators after partial integration and projecting the fluctua-
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tions to tangent space [43]

L
(2)
B =

1

2

√
h
[
Gμν (Xcl)Diξ

μDiξν +Rμναβ (∂iX
μ
cl)

(
∂iXβ

cl

)
ξνξα

−1

2
(∂iX

α
cl)

(
∂jX

β
cl

)
εijξμξν∇μHναβ +

1

4
(∂iX

ν
cl)

(
∂iXβ

cl

)
HμναH

α
βλξ

μξλ
]
,

where εij is the Levi-Civita tensor, ∇ is the covariant derivative, hij was
defined in equation (3.4) and

Diξ
μ = ∂iξ

μ + Γμ
να (Xcl) (∂iX

α
cl) ξ

ν +
1

2
εi

j (∂jX
ν
cl)H

μ
ναξ

α.

When evaluating the functional determinants it is important to remember that
each spectral problem corresponds to a differential operator, a set of boundary
conditions and an inner product. The inner product is important in the evalu-
ation of the functional determinants as the later should only have contributions
from normalizable fluctuations. The norm of fluctuations (in tangent space) is
given by the inner product〈

ξa, ξb
〉
=

∫∫ √
h ξaξbdτdσ.

The Faddeev-Popov determinant results from the Gaussian integration of
the ghost action. The later is of the form [3, 44]

LFP =
1

2

√
hhij

(
∇kεi∇kεj − R(2)

2
εiεj

)
.

After projecting on the worldsheet tangent space using the worldsheet veilbein

(εi = ei
ĵεĵ) and integrating by parts, it can be shown that the resulting opera-

tor is the same as the bosonic differential operator along directions longitudinal
to the string worldsheet.

The fact that the ghost and bosonic longitudinal modes result in the same
differential operator does not imply that the resulting determinants are the
same and that their contributions cancel. The reason for this is that the spec-
trum also depends on the boundary conditions imposed, and the later are not
the same for ghosts and bosonic longitudinal modes [3]. The difference in the
spectrum of ghosts and longitudinal modes is sometimes attributed for the
mismatch in semiclassical string partition function calculations. In particular,
presence of zero modes in one of the operators is commonly assumed to be
responsible for lnλ terms when evaluating ln 〈W (C)〉 [23].

In order to avoid these ambiguities we evaluate the ratio of two Wilson loops
with the same geometry in paper II, where the corresponding contributions are
expected to cancel between latitude and circular Wilson loops. Meanwhile, for
the case of the straight line the ratio of ghost and longitudinal mode deter-
minants is assumed to cancel. This is motivated by the fact that ghost zero
modes are not normalizable in this case and that similar ghost/longitudinal
mode cancelations have lead to correct results in string theory [9, 45]. Thus,
from now on when mentioning bosonic operators we refer exclusively to those
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along the eight directions transversal to the string worldsheet.

From the considerations above, the quantity that we will study is

〈W (C)〉 = Z = e−SString(Xcl)
det1/2KF

det1/2 KB

. (3.7)

In order to evaluate the determinants, we will impose Dirichlet boundary con-
ditions at the boundary of AdS. In principle, an eigenfunction of a second order
differential operator is given by the superposition of two solutions. In our pro-
cedure we choose those solutions that vanish at the boundary and are well
behaved in its neighbourhood. Due to the 2× 2 nature of fermionic operators,
it is often the case that one component vanishes while the other does not at
the boundary. For this fermionic cases we choose the superposition which is
finite approaching the boundary, as usually one of them diverges. More details
on the boundary conditions imposed are presented in chapters 5 and 6. The
technique used to evaluate the corresponding determinants is introduced later
in chapter 4.

3.4 Loop configurations
We now present the Wilson loop configurations considered in papers I and II.
Their geometry and localization predictions are shown for each case, and we
comment on the state of the corresponding string theory calculations.

3.4.1 The Wilson line

This Wilson loop operator corresponds to an infinite straight line with a contour
parametrized by xμ(s) = (s, 0, 0, 0). When the field theory considered is N = 4
SYM the result is

〈W (C)〉line = 1. (3.8)

The above result is a consequence of the Wilson loop operator commuting with
half of the 16 supercharges, making it BPS, and thus being protected from
quantum corrections [8]. From the holographic perspective, this is perhaps the
best understood configuration as the classical and semiclassical string parti-
tion functions in AdS5 × S5 have been shown to reproduce the field theory
result using several methods for the evaluation of determinants [3, 7, 9]. The
corresponding classical string solution is given by

zcl = σ, x0
cl = τ, (3.9)

while other coordinates vanish such that the classical string describes an in-
finitely long line in AdS with σ ∈ [0,∞) and τ ∈ [0, 2π].
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The Wilson line was considered in [6] for the case of N = 2∗ obtaining the
following field theory prediction at strong coupling

ln 〈W (C)〉line = ML

[√
λ

2π
− 1

2
+O

(
1√
λ

)]
, (3.10)

where M is the mass parameter and L is the length of C. In [46] the first term on
the r.h.s. was successfully matched with the classical string partition function
of the Pilch-Warner background. Obtaining the λ0 term in string theory is the
main result of paper I. In the process, we also reproduced the result (3.8) in a
simple and elegant manner. The classical string solution for the Pilch-Warner
background has naturally the same geometry and is parametrized by ccl = σ
and x0

cl = τ in the coordinates of section 2.3.

3.4.2 The circular Wilson loop

The circular Wilson loop operator is 1/2 BPS and its parametrization is given
by

xμ (s) = (cos s, sin s, 0, 0) , ni (s) = (0, 0, 1, 0, 0, 0) .

In the field theory side, in N = 4 SYM the expectation value for this operator
was conjectured to be described by a Gaussian matrix model in [8, 23] and
its result was proven using supersymmetric localization in [2]. The expectation
value for this Wilson loop is known for all values of the rank of the gauge group
(N) and all values of λ. In the planar limit the result is

〈W (C)〉circle =
2√
λ
I1

(√
λ
)
, (3.11)

which has the following behaviour at strong coupling

ln 〈W (C)〉circle =
√
λ− 3

4
lnλ− 1

2
ln

π

2
+O

(
1√
λ

)
. (3.12)

In the string theory side, this Wilson loop is described by the following classical
solution describing a circle in the boundary of AdS

xμ
cl =

(
cos τ

coshσ
,
sin τ

coshσ
, 0, 0

)
, zcl = tanhσ, ψcl = 0, ϕcl = any,

while the angles φi with i ∈ {1, 2, 3} are arbitrary constants. In the expression
above σ ∈ [0,∞) and τ ∈ [0, 2π].

The string theory computation of (3.12) in AdS5 × S5 has only been suc-
cessful at leading order in λ. The first term in equation (3.12) is reproduced by
considering the string action evaluated at the classical solution. The lnλ term
has been conjectured to be produced by the normalization of ghost zero-modes
in the partition function. Meanwhile, the remaining term in (3.12) is under-
stood to come from fluctuations around the classical solution. Despite several

29



attempts [7, 9, 10], exact matching of (3.12) with string theory calculations has
not been achieved for the last term, while the lnλ term has not been properly
explained.

This Wilson loop can also be studied in the case when it has a winding k,
in which case the equations (3.11) and (3.12) are valid after the substitution
λ → k2λ. The dependence on k is also a mystery from the string theory side
as calculations based on Gel’fand-Yaglom [9] and heat kernel methods [11, 14]
have lead to discrepancies with localization results.

3.4.3 The latitude Wilson loop

The latitudeWilson loop operator describes a family of Wilson loops parametrized
by an angle θ0 describing a latitude in a S2 ⊂ S5 and finishing in a circle at
the boundary of AdS. The operator is 1/4 BPS and is parametrized by

xμ (s) = (cos s, sin s, 0, 0) , ni (s) = (sin θ0 cos s, sin θ0 sin s, cos θ0, 0, 0, 0) .

It is easy to see that the above Wilson loop in N = 4 SYM reduces to the
1/2 BPS circular Wilson loop described in section 3.4.2 when θ0 = 0, while for
θ0 = π/2 it corresponds to the Wilson loop studied in [47]. The predictions
from localization for its expectation value are obtained through the substitution
λ → λ cos2θ0 resulting in [48]

〈W (C)〉latitude =
2√

λ cos θ0
I1

(√
λ cos θ0

)
in the large N limit and

ln 〈W (C)〉latitude =
√
λ− 3

4
lnλ− 3

2
ln cos θ0 − 1

2
ln

π

2
+O

(
1√
λ

)
at strong coupling.

The corresponding classical string solution describes a circle in the boundary
of AdS and extends into an S2 ⊂ S5

xμ
cl =

(
cos τ

coshσ
,
sin τ

coshσ
, 0, 0

)
, zcl = tanhσ,

cosψcl = tanh (σ + σ0) , ϕcl = τ, (3.13)

where τ ∈ [0, 2π], {σ, σ0} ∈ [0,∞) and σ0 is written in terms of θ0 as

tanhσ0 = cos θ0.

The string theory computation of this Wilson loop has not been considered
independently as the particular case θ0 = 0 is already problematic. Instead,
efforts have been done on studying the ratio between the semiclassical partition
functions of a latitude with arbitrary angle θ0 and the case θ0 = 0 (which was
described in section 3.4.2). The hope is that since both worldsheets have the
same topology, measure factors and possible ghost contributions would cancel.
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This ratio of Wilson loops is understood at leading order in λ in terms of
the classical actions [48]. However, computations of the semiclassical string
partition function in AdS5×S5 led to discrepancies with the localization result
when the determinants were evaluated using the Gel’fand-Yaglom method [12,
13]. Agreement was reached at first order in perturbation theory for very small
θ0 using a series expansion of the heat kernel [14], and more recently using zeta
function regularization [15]. In paper II perfect agreement was reached with
the localization prediction for this ratio at all orders in θ0.
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4. Functional determinants

As we discussed in the previous chapter, in the framework of the gauge-string
duality, the string theory computation of Wilson loops consists in the eval-
uation of a string partition function around a classical string configuration.
At first order at strong coupling, contributions come from the minimal area
described by the string worldsheet. Meanwhile, computation of 1-loop cor-
rections to the string partition function reduces to the problem of evaluating
determinants of several differential operators. The later is a highly non-trivial
task as determinants of differential operators themselves are usually divergent
quantities.

Evaluation of determinants of differential operators plays an important role
in theoretical physics, as it is a technique appearing extensively in many areas
of physics and mathematics. Motivation to study such techniques in physics
comes for example from the study of effective actions appearing in relativistic
and non-relativistic many-body physics, tunnelling and nucleation processes
[49, 50], lattice gauge theories, gauge fixing and Faddeev-Popov determinants,
evaluation of entanglement entropy, etc. Despite the widespread appearance of
functional determinants in mathematical physics, exact results are only known
for few cases like the Klein-Gordon or Dirac operators on spheres or tori. For
differential operators on arbitrary backgrounds the picture is not so clear and
at times one has to rely heavily on approximation methods.

Historically, the recurrent appearance of differential operators in theoretical
physics came partly due to the appearance of Quantum Mechanics [42]. Later,
it became known that the spectrum of such operators can be described in terms
of spectral functions, the most commonly used being the heat kernel. This
method played an important role in the understanding of quantum corrections
due to the work of DeWitt in the 1960’s [43]. Later, it was realized that
information on the spectrum of differential operators could be encompassed
in terms of the zeta function of the operator. More sophisticated techniques
like the Gel’fand-Yaglom method [51] have received widespread use, as they
allow for the computation of functional determinants without requiring full
knowledge of the eigenfunctions in question.

In this chapter we will briefly discuss the main features of some of these
methods in section 4.1. In section 4.2, based on the previous section, we review
some results for the contribution of conformal factors to functional determi-
nants relevant for the calculation in paper II. Section 4.3 presents identities
which will simplify the calculation in paper I. Then in section 4.4 we motivate
the method based on the scattering phaseshifts, which will be used later for
the calculation of 1-loop string corrections of Wilson loops in papers I and II.
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4.1 Zeta function & heat kernel
Due to the large amount of literature on the subject, we only present the main
features of these techniques which will be useful later in section 4.2. Heat ker-
nel and zeta function techniques will not be explicitly used in this thesis for the
evaluation of determinants. However, identities from these approaches will be
useful in the calculation of paper II for a check on the underlying assumptions.
The presentation of the topic in this section is largely based on [42, 43] with
many details deliberately swept under the rug.

Let K be a self-adjoint second order differential operator, its determinant
can be written in the form

ln detK = −ζ ′ (0;K) , (4.1)

where ζ(s;K) is the zeta function of K. The later is usually defined in terms
of the eigenvalues λ of K through

ζ (s;K) =
∑
λ

λ−s, (4.2)

where we assume that λ ∈ R and λ > 0.
From the equation above, explicit knowledge of all eigenvalues λ would in

principle lead to the calculation of the determinant. However, it is not im-
mediate that this series converges as for large values of λ the r.h.s. of (4.2)
converges if Re s > n/2 where n denotes the dimensionality of the manifold
(n = 2 in our case as the string worldsheet is 2 dimensional). Analytic exten-
sion of the zeta function can be done for values of s in the rest of the complex
plane. Moreover, this expression can also be extended to operators with nega-
tive eigenvalues and Dirac type operators. These extensions will not be used in
our work as our calculations do not rely on the zeta function method, however
zeta function methods have recently been used in the study of latitude and
circular Wilson loops in [15] and [52].

One of the main advantages of the zeta function method is its simplicity
and the fact that it is easily connected to other methods for evaluation of
determinants, in particular the heat kernel method. The later is a widely used
method based on knowledge of a function K(x, y|t) satisfying

(∂t +Kx)K (x, y|t) = 0, K (x, y|0) = δ(n) (x− y) , (4.3)

where K(x, y|t) is usually referred to as the “heat kernel”. Despite the relative
simplicity of (4.3), the heat kernel is only known for few Laplace and Dirac
operators in very symmetric manifolds like the sphere or flat-space. For more
complicated geometries, like that of the Pilch-Warner or the latitude Wilson
loop, the corresponding heat kernel is not known.

The heat kernel of the operator K can be written in the form

K (x, y|t) = 〈x| e−tK |y〉 , (4.4)
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and tracing over x and y leads to

K (K; t) = K (1,K; t) =

∫ √
h K (x, x|t) dxn

=
∑
λ

e−tλ, (4.5)

where in the first line we used the definition of the “heat trace”

K (f,K; t) = Tr
[
f e−tK] (4.6)

evaluated for a “smoothing function” f = 1. Meanwhile, the second line of
(4.5) is a consequence of taking the trace of (4.4).

The bridge between the heat kernel and zeta function methods is made by
the equation

ζ (s;K) =
1

Γ (s)

∞∫
0

ts−1K (K; t) dt, (4.7)

which is a direct consequence of (4.2) and the second line of (4.5). Equation
(4.7) connects the heat trace of the operator K with its zeta function, making it
possible to calculate detK provided one knows the heat kernel K(x, y|t). The
determinant of K can be written in terms of the heat trace as

ln detK = − lim
s→0

d

ds

1

Γ (s)

∞∫
0

ts−1Tr e−tKdt. (4.8)

We conclude our presentation of the heat kernel method by introducing the
“heat kernel coefficients” which are the coefficients ap in a series expansion of
the heat trace for t → 0

K (f,K; t) =

∞∑
p=0

ap (f,K) t(p−n)/2. (4.9)

The heat kernel coefficients are very useful as they depend on information
on the operator, the manifold and the boundary conditions, and can provide
information on the functional determinants as will be shown in section 4.2.
Depending on the imposed boundary conditions, an expression for the heat
coefficients may or may not be known in the literature. For later use, we
present the coefficient a2(f,K) for Dirichlet boundary conditions

a2 (f,K) =
1

(4π)
n/2

⎡⎣∫
M

√
h Tr

(
f

(
R

6
− E

))
dxn

+

∫
∂M

√
g Tr

(
f

3
Kj

j − 1

2
∇nf

)
dxn−1

⎤⎦ , (4.10)
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where Ki
j is the extrinsic curvature at the boundary, gij is the metric at the

boundary, ∇n the covariant derivative projected along the direction normal to
the boundary and E comes from writing the operator in “covariant form”

K = −hijDiDj + E, (4.11)

whereDi can have Riemann and gauge connections parts. When the operator of
interest is linear in derivatives, as is usually the case for fermions, one considers
the square of the operator.

Several identities presented in this section for the heat kernel will be useful
for a check on the assumptions of paper II. This check is based on the machinery
developed in the next section.

Before finishing our discussion on the main features of the heat kernel
method, we discuss their role in string theory Wilson loop computations. De-
spite the fact that the heat kernel method can not be used for the straight
line computation of paper I due to ignorance on the heat kernel for the Pilch-
Warner geometry, heat kernel computations of the straight line in AdS5 × S5

have successfully reproduced the field theory prediction [7].
The heat kernels needed for the 1/2 BPS circular Wilson loop computation

are known [53, 54, 55, 56], but there is a mismatch with the field theory pre-
diction [7]. For the case of the latitude Wilson loop studied in paper II, no
expression is know for the heat kernel, however, a perturbative result starting
from the known heat kernel of the case θ0 = 0 led to reproducing the local-
ization result at first order in perturbation theory of the ratio of circular and
latitude loops [14].

Using the heat kernel of the circular Wilson loop and the Sommerfeld for-
mula, the case of the k-winding circular Wilson loop was studied in [11], leading
to a mismatch with field theory predictions. In spite of the vast mathematical
literature on this method, its applications for the string theory calculation of
Wilson loops seem rather behind.

4.2 Determinants & conformal factors
The operators considered in paper II have a factor depending on σ in front of
the ∂2

τ and ∂2
σ derivatives. The method we use to evaluate determinants, which

will be introduced in section 4.4, requires this factor to be −1. The dependence
of determinants in terms of these factors is given through the Seeley coefficients
introduced in the previous section. We will first show how the dependence on
the conformal factors is encoded in the heat kernel coefficients and then we will
derive concrete expressions for bosonic and fermionic operators.

The bosonic operators of interest can all be written in the canonical form

K(α) = e 2αφ
(−δijDiDj + E

)
, (4.12)

where α ∈ [0, 1] is a constant, φ is a scalar function depending on the worldsheet
coordinates, the derivative can have a “gauge” part Dj = ∂j + iAj , while Aj

and E are n× n matrices which can depend on both τ and σ.
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On the other hand, the fermionic operators of interest in paper II are 2× 2
Dirac operators of the form

D(α) = e
3αφ
2

(
iγjDj + γ3a+ 1v

)
e−αφ

2 , (4.13)

where the contraction is done with the Euclidean metric, a and v are scalar
functions depending on the worldsheet coordinates, while Dj = ∂j + iAj with
Aj a 2×2 matrix that can depend on {τ, σ} and is proportional to the identity
matrix. Just as for bosons α ∈ [0, 1] is a constant parameter and φ is a scalar
function depending on worldsheet coordinates. To make direct comparison with
the fermionic operators of paper II, it is convenient to use the following basis

γτ = −τ2, γσ = τ1, γ3 ≡ −iεμνγ
μγν/2 = τ3.

We are interested in how the determinants of the operators (4.12) and (4.13)
change when the parameter α takes the values α = 0 and α = 1. When α = 1
we will recover the operators obtained from the Green-Schwarz action, while
α = 0 produces the operators for which we will calculate the determinants
with the phaseshift method. The dependence of the determinants on α can be
explicitly shown using expressions from section 4.1 and following the arguments
in [3].

From equation (4.12) it is easy to see that

∂

∂α
Tr e−tK = 2t

∂

∂t
Trφ e−tK. (4.14)

Differentiating (4.8) with respect to α and replacing the expression above re-
sults in

d

dα
ln detK = 2 lim

s→0

d

ds

s

Γ(s)

∫ ∞

0

dt ts−1 Trφ e−tK. (4.15)

The integrand above can be badly behaved around t = 0. To perform this
integral we use the expressions (4.6) and (4.9) for the heat trace, as well as the
identity ∫ ∞

0

dt tsf(t)
s→0
=

1

s
res
t=0

f(t) + regular.

Doing so results in
d

dα
ln detK = 2a2(φ|K). (4.16)

In summary, the dependence of functional determinants on the conformal fac-
tor is through the DeWitt-Seeley coefficient a2.

Using equations (4.10) and (4.11), it can be shown that the DeWitt-Seeley
coefficient for the bosonic operator defined in (4.12) is

a2 (φ,K) =
1

4π

∫
dσ2

(αn
3
φδij∂i∂jφ− φ TrE

)
+

n

24π

∮
ds (2αφ∂nφ− 3∂nφ).

Integrating with respect to α we finally obtain

ln
detK(1)

detK(0)
=

1

2π

∫
d2σ

(n
6
φδij∂i∂jφ− φTrE

)
+

n

12π

∮
ds (φ∂nφ− 3∂nφ) .

(4.17)
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To compute how the determinant of the fermionic operator in (4.13) depends
on the conformal factor, we must first bring it to the canonical form (4.11) by
squaring, which results in

D2(α) = e 2αφ
[
−∇i∇i +

α

2
∂i∂

iφ+ a2 − v2

+ εij (∂ia+ αa∂iφ) γj +

(
1

2
εijFij + 2av

)
γ3

]
, (4.18)

where contractions are done with the Euclidean metric δij and

∇j = Dj − ivγj − iα

2
εjk∂kφγ

3. (4.19)

Following the same arguments used for bosons, it can be shown that for the
fermionic operator

d

dα
ln detD2 = 2a2(φ|D2). (4.20)

By explicit computation using equations (4.10) and (4.18), the DeWitt-Seeley
coefficient for the fermionic operator results in

a2
(
φ,D2

)
= − 1

2π

∫
dσ2

(α
6
φδij∂i∂jφ+ φ

(
a2 − v2

))
+

1

12π

∮
ds (2αφ∂nφ− 3∂nφ).

Integration over α results in the final expression for fermions

1

2
ln

detD2(0)

detD2(1)
=

1

2π

∫
d2σ

[
1

12
φδij∂i∂jφ+ φ

(
a2 − v2

)]
− 1

12π

∮
ds (φ∂nφ− 3∂nφ) . (4.21)

Equations (4.17) and (4.21) will play an important role in the computation
of paper II as they give us information on how the determinants are affected
by this conformal factor, which needs to be removed in order to evaluate the
determinants.

4.3 Isospectral operators
Depending on the operators being studied, it is sometimes possible to make
statements on the spectrum of two operators without having to explicitly cal-
culate all the set of eigenvectors and eigenvalues. Take for instance the second
order differential operators given by

KI = L†L, KII = LL†, (4.22)

where L and L† denote operators linear in derivatives. By simple algebra it is
easy to see that

KIL
† = L†KII, KIIL = LKI.
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These relations, also called “intertwining relations” allow to map the spectrum
of one operator into another. Let us consider ψI and ψII eigenfunctions of KI

and KII satisfying

KIψI = ΛIψI, KIIψII = ΛIIψII. (4.23)

It is easy to see to check that

KI

(
L†ψII

)
=

(KIL
†)ψII = L†KIIψII = ΛII

(
L†ψII

)
,

KII (LψI) = (KIIL)ψI = (LKI)ψI = ΛI (LψI) .

Thus, L†ψII is an eigenvalue of KI and LψI is an eigenvalue of KII. In this way,
one can map the eigenvalues and eigenvectors of one operator into the other.
Operators of the type (4.22) are commonly called “isospectral” operators as
the spectrum of the two can be identified up to zero modes.

In principle, when considering the evaluation of determinants it is not suf-
ficient for the operators to be isospectral in order for their determinants to be
the same. To see this more clearly one may think of the eigenfunctions ψI and
ψII as each being a superposition of two solutions to the spectral problems in
(4.23). In order for the eigenvalues of ψI and ψII to contribute to the determi-
nants of KI and KII, the eigenfunctions must satisfy the boundary conditions
of the problem. Imposing boundary conditions fixes the coefficients in the su-
perpositions of ψI and ψII. If the choice of boundary conditions is compatible
with the map

ψI ∝ L†ψII, ψII ∝ LψI.

then it is possible to identify the eigenfunctions contributing to the two deter-
minants and the later will be the same.

Operators of this type are commonly seen in supersymmetric quantum me-
chanics. Due to the underlying supersymmetry of string theory it is not entirely
surprising to find that some of the operators appearing in semiclassical string
partition functions share this property. The later is the case for a fraction of
the operators appearing in the computation in paper I which will simplify the
calculations considerably.

4.4 Phaseshifts & determinants
The method we will use to evaluate the functional determinants in papers I
and II relies on explicit calculation of the eigenfunctions and eigenvalues of the
differential operators. The operators we are interested in can be reduced after
Fourier expansion in the τ coordinate into 1-dimensional operators of the form

K = −∂2
σ + V (σ) , (4.24)

with the following asymptotic behaviour

K∞ = lim
σ→∞K = −∂2

σ + V∞, (4.25)
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where V∞ = V (∞) is a constant.
The spectrum of this type of operators can be qualitatively divided in

three parts. The first one consist on a continuum of exponentially increas-
ing/decreasing functions. The second is a continuos spectrum of oscillating
functions. The third is composed by a finite number of discrete bound states.
Naturally, to evaluate functional determinants it is necessary to choose a set
of boundary conditions and an inner product. In principle, the determinant
must only receive contributions of eigenfunctions that satisfy both the bound-
ary conditions and that have a finite norm.
In flat space, exponentially increasing functions, and in most cases bound
states, will not have a finite norm. Meanwhile, the boundary conditions we
are interested in consist of Dirichlet boundary conditions at the origin1

ψ(σ = 0) = 0. (4.26)

This type of boundary condition excludes exponentially decreasing functions
and some of the discrete parts of the spectrum. Thus, we are left with oscillating
functions and a finite number of discrete eigenfunctions contributing to the
determinant.

As discussed previously, evaluation of determinants of elliptic differential
operators usually results in divergences. The reason for this is that the deter-
minant in question consists of an infinite product of eigenvalues. Consequently,
one needs a regularization prescription. One option, as for instance done in the
zeta function formalism of section 4.1, consists in removing the divergent pieces
in such a way that only the physically meaningful finite piece remains. Another
possibility, which is the one we will use, consists on considering the ratio of two
determinants instead of evaluating individual determinants. The justification
for this resides in the fact that in many cases the divergent pieces cancel each
other, obtaining a finite result.

An ideal differential operator to use as a regulator in the ratio is the corre-
sponding asymptotic operator K∞. Given the asymptotic differential operator
(4.25), it is easy to see that the spectral problem

K∞ψ∞ =
(−∂2

σ + V∞
)
ψ∞ = E∞(p) ψ∞

has for solutions plane waves of wave number p. After imposing the boundary
condition at the origin, the asymptotic eigenfunctions are of the form

ψ∞ ∝ sin (pσ) ,

with eigenvalue

E∞ (p) = p2 + V∞.

Meanwhile, the original spectral problem

K ψ =
(−∂2

σ + V (σ)
)
ψ = E(p) ψ (4.27)

1In paper I, the coordinates are such that σ ∈ [1,∞). Consequently, the boundary
condition used is ψ(σ = 1) = 0.
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can be seen as a Schrödinger problem with potential V (σ). Depending on the
potential V (σ), analytic solutions for ψ(σ) may be found as in paper II or one
may need to resort to numerics as in paper I. In any case, since K limits to K∞
for large σ, the eigenfunctions ψ(σ) will behave as plane waves asymptotically

lim
σ→∞ψ(σ) ∝ sin (pσ + δ(p)) ,

where δ(p) is a phaseshift generated by the potential.
Physically, one can think of the continuum spectrum of K as consisting of

plane waves coming from infinity and interacting with the potential close to
the origin. This scattering of the incident wave with the potential will produce
a shift depending on the momentum p of the incident wave.

To evaluate the determinant we put the system in a box, which introduces
an IR regulator R that corresponds to the length of the box. At a very large
σ = R we impose the quantization condition on the scattering states

pR+ δ(p) = πn,

which basically amounts to ψ (R) = 0. This quantization condition implies a
density of states

ρ(p) =
dn

dp
=

δ′(p)
π

+
R

π
.

Meanwhile, for the asymptotic operator, for which there is no scattering, the
quantization condition is

pR = πn, ρ∞(p) =
dn

dp
=

R

π
, (4.28)

due to the absence of the potential.
In terms of the densities of states we have that

ln
detK
detK∞

=
∑
n

EBS
n +

∞∫
0

ln
(
p2 + V∞

)δ′(p)
π

dp, (4.29)

where the sum is over the discrete eigenvalues of K and the integration is
over the ratio of continuum of states. This equation will be used later on for
evaluating the different determinants considered in papers I and II.

As we mentioned earlier, the spectral problems we will consider can be re-
duced to one dimension by Fourier expanding in the worldsheet direction τ .
Consequently, for the problems of interest the r.h.s. of (4.29) will have sum-
mation/integration over Fourier frequencies.

Naturally, since we will consider the superstring, operators of Dirac type will
enter in the calculations of papers I and II. Operators of this type are not of the
form (4.24), but we can square its eigenvalues and use (4.29). The reason why
this works is that for the 2 × 2 Dirac operators considered, decoupling of the
components leads to spectral problems of the type (4.27) for each component.
Since the components are coupled, it is not always possible to impose (4.26)
to both components. Instead, we will impose this condition to only one of the
components picking the better behaved solution at the origin. We will discuss
this in more detail when doing the calculations of chapters 5 and 6.
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5. Wilson line in the Pilch-Warner background

In this section we compute the semiclassical string partition function for the
straight line in the Pilch-Warner background which is the main result of paper
I. As we discussed in section 3.4, this configuration is dual to the Wilson line
of N = 2∗ and its prediction from localization at strong coupling is

ln 〈W (C)〉line = ML

[√
λ

2π
− 1

2
+O

(
1√
λ

)]
. (5.1)

Here we calculate this quantity from the string side of the gauge-string corre-
spondence based on the concepts introduced in chapters 2, 3 and the techniques
presented in chapter 4. For convenience we set M = 1, dependence on this vari-
able can be easily recovered by dimensional analysis.

The string theory dual to the Wilson line in N = 2∗ is given by the classical
string solution

x1
cl = τ, ccl = σ, (5.2)

with τ ∈ [−L/2,L/2] and σ ∈ [1,∞), while all other fields are set to zero. From
the gauge fixing procedure discussed in section 3.3, the worldsheet metric takes
the value of the induced metric (3.4) resulting in

ds2w.s. =
A

σ2 − 1
dτ2 +

1

A(σ2 − 1)
2 dσ

2, (5.3)

where now A ≡ A (σ).

Using the field content presented in section 2.3, we proceed in sections 5.1
and 5.2 to compute the classical and semiclassical pieces entering equation (3.7).
Later, in section 5.3 we discuss several aspects concerning the evaluation of the
functional determinants. Finally, in section 5.4 we discuss the end result, as well
as the numerical setup needed for its calculation. To keep the presentation brief
several technical details are omitted here, the reader interested in technicalities
is referred to the original work in paper I.

5.1 The classical partition function
Computation of the contribution coming from the classical partition function
follows from our discussion in section 3.3.1

SB (Xcl) =

√
λ

2π

∫
reg

dτdσ

(σ2 − 1)
3/2

= −
√
λ

2π
L, (5.4)
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where integration over τ was performed in the interval −L/2 to L/2, while for
σ the interval was from 1 + ε2/2 to infinity. The later is a consequence of the
coordinate c from Pilch-Warner being related to the holographic coordinate of
AdS by c → 1 + z2/2 for small z and the cutoff ε being located at z = ε. As
discussed in section 3.3.1, we use the regularization prescription of removing
the 1/ε divergences in the final result. From combining (3.7) and (5.4), we see
that the result above reproduces the localization prediction (5.1) at order λ1/2.

Since the Pilch-Warner background has a non-trivial dilaton, there is a con-
tribution from the Fradkin-Tseytlin term presented in equations (2.2) and (2.3).
Evaluation of this term at the classical solution results in

SFT (Xcl) =
L

2π

∞∫
1

dσ

σ
√
σ2 − 1

=
L

4
. (5.5)

Comparison of this result with the localization prediction (5.1) shows that this
term corresponds to half of the λ0 final result. The other half results from
the evaluation of quantum fluctuations around the classical solution and their
respective determinants.

Writing both contributions together, we obtain the following result for the
classical piece of the partition function

SString (Xcl) = −L

(√
λ

2π
− 1

4

)
. (5.6)

5.2 The semiclassical partition function
We now proceed to compute the contributions coming from the semiclassical
string partition function, just as explained in section 3.3.2. First, in sections
5.2.1 and 5.2.2 we present the bosonic and fermionic operators obtained from
the Green-Schwarz action by expanding up to second order in fluctuations.
Then, in section 5.2.3 we collect all contributions and use several identities to
simplify the computation.

5.2.1 Bosonic operators

Expanding the bosonic action to second order in fluctuations and projecting in
the tangent space (recall δXμ = Eμ

â ξ
â), we obtain a structure of the form

SB =
∑
a

∫
dτdσ

√
h ξâKaξ

â,
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where summation is over the eight coordinates transversal to the worldsheet
and the operators Ka are given by

Kx = −∂2
τ −A2(σ2 − 1)∂2

σ +A (4− 3Aσ) ∂σ, (5.7)

Kφ = Kx − 2Aσ

σ2 − 1
, (5.8)

K±
y = Kx + 1− A

(
σ2 + 1

) [
4σ + 3A(σ2 − 1)

]
4σ2(σ2 − 1)

± A

σ
∂τ , (5.9)

where Kx corresponds to fluctuations along the three AdS coordinates transver-
sal to the worldsheet, while {Kφ,K+

y ,K−
y } are three operators corresponding

to fluctuations in the deformed five-sphere with each having multiplicity 1, 2
and 2, respectively.

In the expansion of the bosonic action, the operators K+
y and K−

y originally
appeared coupled as a 2 × 2 second order differential operator, but through a
similarity transformation the later was brought to a block diagonal form with
K±

y in the diagonal components.
In order for the operators above to have the structure K = −∂2

τ + ..., we also
performed a rescaling of fluctuations of the form

ξâ →
√

A

σ2 − 1
ξâ

and used partial integration. This rescaling of fluctuations will be compensated
by a similar rescaling for fermionic operators, thus preserving the measure of
the path integral.

In terms of these operators, the bosonic contribution to the semiclassical
partition function (3.7) is given by

detKB = det3Kx detKφdet
2K+

y det
2K−

y . (5.10)

5.2.2 Fermionic operators

The computation of second order fluctuations for the fermionic case amounts
to evaluating equation (2.4) at the classical solution. Using the orthonormal
frame

E0̂ ∝ dx0, E1̂ ∝ dx1, E2̂ ∝ dx2, E3̂ ∝ dx3, E4̂ ∝ dc,

E5̂ ∝ dθ, E6̂ ∝ σ1, E7̂ ∝ σ2, E8̂ ∝ σ3, E9̂ ∝ dφ,

the basis for Dirac matrices presented in [57], the field content of the Pilch-
Warner background and the κ symmetry gauge fixing discussed in section 3.3,
we obtain the following result

L
(2)
F =2

√
h χ̄

[√
c(1)γ

1̂∂τ +
√
c(2)γ

4̂∂σ + c(ω)γ
4̂ − cRR

(5) γ
1̂4̂

−cRR
(1) γ

1̂4̂9̂ − icNSNS
(3)

(
γ1̂5̂6̂ − γ1̂7̂8̂

)
+ icRR

(3)

(
γ5̂6̂9̂ − γ7̂8̂9̂

)]
χ. (5.11)
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In the expression above χ is a 16-component spinor, the γμ̂ are 16×16 matrices
defined in [57] and the coefficients c(i) are defined by

c(1) =
σ2 − 1

A
, c(2) = A

(
σ2 − 1

)2
,

c(ω) = − 1

2
√
A

, cRR
(1) = − 1

4σ

√
A
(
σ2 − 1

)
,

cRR
(3) = − (2σ +A)

√
σ2 − 1

4σ
√
A

, cNSNS
(3) =

√
A (σ2 − 1)

4σ
,

cRR
(5) =

4σ − (
σ2 − 1

)
A

4σ
√
A

,

where the c(1) and c(2) terms are the kinetic terms, the term with c(ω) comes
from the spin connection, cNSNS

(3) is the contribution of the NSNS three-form,

while the coefficients {cRR
(1) , c

RR
(3) , c

RR
(5) } are the contributions of the RR fluxes.

Since we want the coefficient in front of ∂τ in (5.11) to be σ independent,
we perform the following rescaling

χ → 1

c
1/4
(1)

χ =

(
A

σ2 − 1

)1/4

χ.

This rescaling of the sixteen spinor components compensates the scaling per-
formed to the eight bosonic transversal fluctuations, leaving the measure of the
partition function unchanged.

After rescaling and choosing a convenient basis for the γμ̂’s, it is possible to
rewrite (5.11) in a 2× 2 block diagonal form

L
(2)
F = 2

√
h

⎡⎣ 4∑
j=1

(
ψ̄2j−1 ψ̄2j

)
τ3D0

(
ψ2j−1

ψ2j

)

+
6∑

j=5

(
ψ̄2j−1 ψ̄2j

)
τ3D+

(
ψ2j−1

ψ2j

)

+

8∑
j=7

(
ψ̄2j−1 ψ̄2j

)
τ3D−

(
ψ2j−1

ψ2j

)⎤⎦ ,

where

D0 =

(
∂τ −L†

−L ∂τ

)
, D± =

(
∂τ ± 1± A

σ −L†

−L ∂τ ∓ 1

)
, (5.12)

with the definitions

L = A
√
σ2 − 1 ∂σ, L† = −A

√
σ2 − 1 ∂σ +

2√
σ2 − 1

,

L = A
√
σ2 − 1 ∂σ − A

√
σ2 − 1

2σ
, L† = −A

√
σ2 − 1 ∂σ +

4σ −A
(
σ2 − 1

)
2σ

√
σ2 − 1

.

(5.13)
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In terms of the determinants D0 and D±, the fermionic contribution to the
semiclassical partition function is given by

detKF = det4D0 det
2D+ det2D−. (5.14)

5.2.3 Putting everything together

Combining the bosonic and fermionic contributions to the semiclassical parti-
tion function

det1/2KF

det1/2KB

=
det2D0 detD+ detD−

det3/2Kxdet
1/2Kφ detK+

y detK−
y

.

This expression can be greatly simplified. The first simplification comes from
realizing that time reversal relates the following operators

K±
y |τ→−τ = K∓

y , D±|τ→−τ = −τ3D∓τ3.

Since the determinants are time reversal invariant, we have that

detK+
y = detK−

y , detD+ = detD−. (5.15)

An additional simplification comes from noticing that the bosonic operators
Kx and Kφ can be written in terms of the operators defined in (5.13)

Kx = −∂2
τ + L†L, Kφ = −∂2

τ + LL†. (5.16)

Thus, these two operators are isospectral as explained in section 4.3. This
property, combined with the choice of boundary conditions, implies detKx =
detKφ.

Additionally, we have that squaring the operator D0

(τ3D0)
2
= −

(Kx 0
0 Kφ

)
implies

det2D0 = detD2
0 = detKx detKφ. (5.17)

Taking all these considerations into account, the semiclassical string parti-
tion function simplifies considerably

det1/2KF

det1/2KB

=
det2D−
det2K+

y

.

The operators K±
y can also be expressed through the operators in (5.13)

K±
y = −∂2

τ + LL† +
A

σ
+ 1± A

σ
∂τ .
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Using the following identity for block matrices

det

(
A B
C D

)
= det

(
AD −BD−1CD

) if [C,D]=0
= det (AD −BC) ,

we have that

detK∓
y = det

(
∂τ ± 1± A

σ −L
−L† ∂τ ∓ 1

)
. (5.18)

From equations (5.12) and (5.18), we can rewrite the result for the Wilson
line as

〈W (C)〉line = e−SString(Xcl)
det2 (∂τ −HF )

det2 (∂τ −HB)
, (5.19)

where

HB =

(
1 + A

σ L
L† −1

)
, HF =

(−1 L
L† 1 + A

σ

)
, (5.20)

and the term in the exponent is given in (5.6).

5.3 The spectral problems
After Fourier expanding around the worldsheet τ direction, we are left with
a one-dimensional problem. The spectral problem we are interested in corre-
sponds to

HB,F χ = E χ. (5.21)

In principle, the most general solution to such equation corresponds to a su-
perposition of two solutions χi with i ∈ {1, 2}. In the neighbourhood of σ → 1
the solutions in each superposition will behave as

lim
σ→1

χi =

(
(σ − 1)

αi

(σ − 1)
βi

)
, (5.22)

where αi and βi are constants. In order for χi to be an eigenvalue of HB,F , it
must satisfy equation (5.21) in the region of σ close to 1. The later imposes
strict constraints on the αi’s and βi’s of each solution χi in the superposition,
fixing their values. Our boundary condition amounts to choosing the solution
χi that has larger αi and βi as physically it will be better behaved at the origin,
while the other solution is potentially problematic in the limit σ → 1.

As discussed in section 4.4, we are only interested in the continuos part
of the spectrum which is characterized by oscillating functions of plane-wave
behaviour for σ → ∞. Exponential functions can not satisfy the boundary
condition at σ = 1 while simultaneously being normalizable. The density
of states of the oscillating functions is parametrized by the derivative of the
phaseshifts, which at large σ = R are subject to the quantization condition

pR+ δ(p) = πn ⇒ dn

dp
=

δ′(p)
π

+
R

π
. (5.23)
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To evaluate each functional determinant we consider the ratio of the determi-
nant of the operator we are interested in, over the determinant of its asymptotic
operator H∞ = limσ→∞ HB,F . The later is our regularization prescription
for all determinants in the partition function. Introduction of the bosonic
and fermionic asymptotic operators does not alter the partition function as it
amounts to multiplying by 1 in a convenient way since

(H∞)
2
=

(
−4

9
∂2
σ + 1

)
1.

The spectral problem of the asymptotic operators is given by

H∞ χ∞ = E∞(p) χ∞,

where the components of χ∞ are plane waves with wave number p and

E∞(p) = ±
√

4

9
p2 + 1

is the corresponding eigenvalue parametrized in terms of p. The quantization
condition for the asymptotic operator is

pR = πn ⇒ dn

dp
=

R

π
.

Consequently, the effective density of states entering the ratio of determinants
will be given by δ′(p)/π, while we parametrize the eigenvalues of KB,F by
E(p) = E∞(p).

With this regularization prescription, the (regularized) determinants will be
given by

ln det (∂τ −H) =
L

2π

∞∫
−∞

∞∫
0

[
dδ+ (p)

dp
ln (iω − |E (p)|)

+
dδ− (p)

dp
ln (iω + |E (p)|)

]
dp

π
dω,

where the sign of ± |E (p)| comes from the sign in (5.21) and δ±(p) denotes the
corresponding phaseshift. Integration by parts of this equation leads to

ln det (∂τ −H) =
L

2π

∞∫
−∞

∞∫
0

[
δ+ (p)

iω − |E (p)| −
δ− (p)

iω + |E (p)|
]
d |E (p)|

dp

dp

π
dω

= − L

2π

∞∫
0

[
δ+ (p) + δ− (p)

] d |E (p)|
dp

dp,

where in the last step we integrated over ω picking up a half-residue at infinity.
Combining the expression above with the classical contribution to the string
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Figure 5.1. Numerical results for the phaseshifts.

partition function of (5.6) and replacing in (3.7), we find that

ln 〈W (C)〉line = L

(√
λ

2π
− 1

4
− Δ

4

)
, (5.24)

where

Δ =
4L

π

∞∫
0

[
δ+F (p) + δ−F (p)− δ+B (p)− δ−B (p)

] d |E (p)|
dp

dp. (5.25)

5.4 Numerics
Due to complicated expressions in the spectral problems, an analytical expres-
sion for the phaseshifts was not found. Instead, we resulted to calculate the
δ±B,F (p) numerically and then numerically integrate (5.25).

The metric has a problematic behaviour at σ = 1, thus we take a small
parameter ε = 10−6 and impose boundary conditions at σ = 1 + ε using our
knowledge from (5.22)

χi(σ = 1 + ε) =

(
εαi

εβi

)
. (5.26)

For a given value of p, we solve numerically for the eigenfunctions with the
boundary condition (5.26) and at a large value of σ = σmax we read the phase-
shifts by fitting the eigenfunctions. We do this for σmax = 103 and for p in the
range [pmin = 10−1, pmax = 50] in intervals of δp = 10−1, resulting in approx-
imately 500 points per phaseshift. The resulting curves for each phaseshift in
terms of p are presented in figure 5.1.

After computing each phaseshift in terms of p, we numerically integrate ob-
taining

Δ = 1.01± 0.03. (5.27)
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Figure 5.2. Integrand Δ′ as a function of p. The area under the curve is Δ of
equation (5.25).

This result combined with (5.24) matches the localization prediction (5.1).

The integrand in (5.25) tends to zero as p becomes larger as can be seen
in figure 5.2, which makes the area Δ a finite quantity. To understand the
behaviour of the integral at large p, in paper I we performed a WKB expansion
of the phaseshifts

δ(p) = pδ0 + δ1 +
1

p
δ2 + ... (p → ∞)

and analytically evaluated the first four coefficients δi, showing explicit cance-
lation up to O(p−3). This non-trivial cancellation guarantees that Δ is well
behaved at ∞ and it also explains the similar linear behaviour obtained for all
δ±B,F (p) at large p.
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6. Ratio of latitude and circular Wilson loops in
AdS5 × S5

The ratio between the expectation value of a latitude Wilson loop and a circular
Wilson loop in N = 4 SYM at strong coupling is according to localization

ln
〈W (θ0)〉
〈W (0)〉 =

√
λ (cos θ0 − 1)− 3

2
ln cos θ0 +O

(
λ−1/2

)
, (6.1)

where θ0 ∈ [0, π
2 ) denotes the polar angle in a S2 ⊂ S5 and λ is the ‘t Hooft

coupling constant.
The string theory calculation of (6.1) in AdS5 × S5 is the main result of

paper II. Here we present how to do this computation following the formalism
presented in section 3.3 and using the functional determinant techniques of
sections 4.2 and 4.4.

As discussed in section 3.4.3, the string configuration dual to the latitude
Wilson loop is described by a string solution ending in a circle at the boundary
of AdS and extending into a latitude in the five-sphere.

Following the gauge fixing prescription discussed in section 3.3, the world-
sheet metric is chosen to be the metric induced by the classical solution (3.13)

ds2w.s. = Ω2
(
dτ2 + dσ2

)
, (6.2)

where τ ∈ [0, 2π], {σ, σ0} ∈ [0,∞) and

Ω2 =
1

sinh2σ
+

1

cosh2 (σ + σ0)
.

For convenience we use the parameter σ0 instead of θ0, where the two are
related by

cos θ0 = tanhσ0. (6.3)

In terms of σ0, the localization prediction for the ratio is given by

ln
〈W (σ0)〉
〈W (∞)〉 =

√
λ (tanhσ0 − 1)− 3

2
ln(tanhσ0) +O

(
λ−1/2

)
. (6.4)

In section 6.1 we present the contribution coming from the classical string
partition function. Section 6.2 concerns the contributions to the semiclassical
partition function and their calculation. The different pieces are collected in
section 6.3. Several technical details are omitted in the present text, the reader
interested in them is suggested to see paper II.
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6.1 The classical partition function
The classical contribution to the string partition function is calculated using
the regularization prescription of section 3.3.1

SB (Xcl(σ0)) =

√
λ

2π

∫
reg

Ω2dτdσ = −
√
λ tanhσ0, (6.5)

where the integration in τ is over the interval [0, 2π] while for σ the interval is
[ε,∞). As discussed in section 3.3.1, the 1/ε divergences are dropped from the
final result.

For the ratio of the latitude and circular Wilson loops, the relevant quantity
is given by

SB (Xcl (σ0))− SB (Xcl (∞)) = −
√
λ (tanhσ0 − 1) , (6.6)

which perfectly matches the localization prediction (6.4) at order
√
λ.

6.2 The semiclassical partition function
As discussed in section 3.3.2, contributions to the semiclassical partition func-
tion are the result of considering second order fluctuations around the classical
string solution. After Gaussian integration, the semiclassical piece is written
in terms of the determinants of differential operators [12, 13, 14]

Z1-loop(σ0) =
det1/2KB (σ0)

det1/2KF (σ0)
=

det2 D+ det2 D−
det3/2K1 det3/2K2 det1/2K3+ det1/2K3−

,

(6.7)
where the untilded operators on the right are defined through

K =
1

Ω2
K̃, D =

1

Ω
3
2

D̃Ω
1
2 , (6.8)

and the tilded operators

K̃1 = −∂2
τ − ∂2

σ +
2

sinh2σ
, (6.9)

K̃2 = −∂2
τ − ∂2

σ − 2

cosh2 (σ + σ0)
, (6.10)

K̃3± = −∂2
τ − ∂2

σ ± 2i (tanh (2σ + σ0)− 1) ∂τ

+ (tanh (2σ + σ0)− 1) (1 + 3 tanh (2σ + σ0)) , (6.11)

D̃± = i∂στ1 −
[
i∂τ ∓ 1

2
(1− tanh (2σ + σ0))

]
τ2

+
1

Ω sinh2σ
τ3 ∓ 1

Ω cosh2 (σ + σ0)
. (6.12)
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Figure 6.1. Graphical representation of the minimal surface of the worldsheet
in the induced metric (left) and on the flat metric of the cylinder (right). The
region σ > R of area s is removed by the regularization scheme.

The operator K1 physically corresponds to three fluctuation modes in AdS, K2

to three fluctuation modes along the five-sphere, while the K3± result from the
mixing of one fluctuation mode from the sphere and one from AdS. The oper-
ator D± is the operator resulting from the fermionic action after κ symmetry
gauge fixing. In the present problem, the bosonic determinants have periodic
boundary conditions in the τ coordinate, while the fermionic operators have
anti-periodic boundary conditions [9, 12, 13].

Despite the untilded operators being the original operators appearing when
expanding the Green-Schwarz action, for the purposes of computation it is
easier to evaluate the determinants of the tilded operators. The tilded and
untilded operators are connected through the formalism explained in section
4.2 and have the inner products

〈φ1 | φ2〉 =
∫

dτ dσΩ2φ†
1φ2, ˜〈φ1 | φ2〉 =

∫
dτ dσ φ†

1φ2, (6.13)

respectively. The transformation from the tilded to the untilded operators can
be seen as a conformal transformation. This transformation takes the string
from having the metric (6.2) of the disk, to the flat metric of an infinite cylinder.
This seemingly innocent transformation changes the topology of the worldsheet
since the point σ = ∞ is regular in the induced metric but not in the flat one as
seen in figure 6.1. Going from the spectral problem of the disk to the cylinder
requires an IR regularization, and it is an anomaly from this regularization
what solves the reported discrepancies with the localization result [12, 13].
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The procedure for evaluating the determinant of each untilded operator is
done in several steps

detK =

(
detK
det K̃

)
anom.

(
det K̃
det K̃∞

)
cyl.

det K̃∞. (6.14)

First, we calculate the ratio of the untilded and tilded determinants by em-
ploying the results presented in section 4.2, this corresponds to the first factor
in the r.h.s. of equation (6.14). Then, we proceed to evaluate the determi-
nant of the tilded operator by considering its ratio with the determinant of its
asymptotic operator. The later corresponds to the second factor in the r.h.s. of
equation (6.14) and computationally amounts to evaluating the relative phase-
shifts between the eigenfunctions of the two operators. Naturally, introducing
the asymptotic operator as regulator introduces the third factor in the r.h.s. of
(6.14). The asymptotic operators of (6.9), (6.10), (6.11) and (6.12) are given
by

K̃∞ = −∂2
τ − ∂2

σ, D̃∞ = iτ1∂σ − iτ2∂τ , (6.15)

and satisfy
(
D̃∞

)2

= 1K̃∞.

However, due to fermions and bosons having symmetric and antisymmetric
boundary conditions, the determinants of bosonic and fermionic asymptotic op-
erators do not cancel, leaving the semiclassical string partition function Z(σ0)
explicitly depending on the IR regulator. It is the remnant introduced by this
regulator what solves the previously found mismatch when considering the ra-
tio of the latitude and circle partition functions.

As discussed previously, the semiclassical partition function of the string
dual to the latitude Wilson loop has contributions of three types

Z1-loop (σ0) = ZCF (σ0)Zδ (σ0)Z∞ (σ0) , (6.16)

the contribution from the ratio of tilded and untilded operators ZCF (σ0), the
evaluation of the functional determinants in terms of phaseshifts Zδ (σ0) and
the regulators coming from the asymptotic operators Z∞ (σ0). We now proceed
to evaluate each of these contributions.

6.2.1 The phaseshifts

We calculate the determinant of the tilded operators by using their correspond-
ing asymptotic operators as regulators. This contribution is given by

Zδ (σ0) =
∏

β=1,2

(
det K̃∞
det K̃β

)3/2 ∏
α=+,−

(
det D̃α

det D̃∞

)2(
det K̃∞
det K̃3α

)1/2

(6.17)

and is calculated through the phaseshift method described in section 4.4.
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The spectral problem we are interested in corresponds to

K̃ψ = Eψ. (6.18)

As was explained in section 4.4, we are interested in the continuum spectrum,
where the eigenfunctions are oscillating functions since these will be normal-
izable and satisfy the boundary conditions at the origin. We impose for the
eigenfunctions ψ(σ = 0) = 0 and at large σ = R the quantization condition

pR+ δ(p, ω) = πn ⇒ dn

dp
=

1

π
∂pδ(p, ω) +

R

π
,

where p is the wave number of ψ, ω is the frequency resulting from Fourier ex-
panding in τ , n is an integer and δ(p, ω) is the phaseshift which in general can
depend on ω. The dependence of the phaseshift on ω is necessary for our calcu-
lations as the operators K̃3± have a linear derivative in τ . This linear derivative
can be seen as an ω dependent potential term after Fourier expanding.

The spectral problem for the asymptotic operator is given by

K̃∞ ψ∞ = (−∂σ
τ − ∂2

σ)ψ∞ = E∞(p, ω) ψ∞,

where p denotes the wave number of the plane wave ψ∞. It is easy to see that
Fourier expansion implies

E∞(p, ω) = ω2 + p2,

while the quantization condition for the asymptotic operators is

pR = πn ⇒ dn

dp
=

R

π
. (6.19)

Parametrizing the eigenvalues E = E∞(p, ω), the prescription from section
4.4 for determinants results in

ln
det K̃
det K̃∞

=
∑
ω

∞∫
0

ln
(
ω2 + p2

)
∂pδ (p, ω)

dp

π

= −2
∑
ω

∞∫
0

p

ω2 + p2
δ (p, ω)

dp

π
, (6.20)

where ω ∈ Z for bosons and ω ∈ Z + 1/2 for fermions. To carry out the
summation over ω it is convenient to use Matsubara frequencies, which amounts
to the replacements∑

ω∈Z

1 ⇒ π

∫
�
C

dω

2πi
cotπp,

∑
ω∈Z+1/2

1 ⇒ −π

∫
�
C

dω

2πi
tanπp,

where the contour C is presented in figure 6.2 and encloses the real axis in
the complex plane. After modifying the contour to encompass the upper and
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Figure 6.2. Contours of integration used for summing Matsubara frequencies.

lower arcs, complex integration over ω picks up poles at ω = ±ip. Denoting
δ±(p) = δ(p,±ip), the resulting determinants for periodic and anti-periodic
boundary conditions are

ln
det K̃
det K̃∞

= −
∞∫
0

cothπp [δ+ (p) + δ− (p)]dp (periodic), (6.21)

ln
det K̃
det K̃∞

= −
∞∫
0

tanhπp [δ+ (p) + δ− (p)]dp (anti-periodic), (6.22)

respectively. We will use these expression to calculate the determinants entering
equation (6.17).

For explicit computation of the phaseshifts, the spectral problem (6.18) re-
duces to

K̃|ω=±ip ψ = 0.

The resulting eigenfunctions for each operator are presented in paper II. The
corresponding phaseshifts with their multiplicities give

ln
Zδ (σ0)

Zδ (∞)
=

∞∫
0

dp

[
−4

(
arctan

p
1
2 + tanhσ0

− arctan
2p

3

)
tanπp

+

(
arctan

p

1 + tanhσ0
− arctan

p

2
+ 3 arctan

p

tanhσ0
− 3 arctan p

)
cothπp

]
.

To perform this integral we will first differentiate with respect to σ0 on both
sides, integrate over p, and then integrate over σ0. The final integration con-
stant can be fixed by a simple argument, as we will see later. Differentiating
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the expression above we obtain

d

dσ0
ln

Zδ (σ0)

Zδ (∞)
=

∞∫
0

dp

cosh2σ0

[
4 tanh (πp) p

p2 +
(
1
2 + tanhσ0

)2
− coth (πp) p

p2 + (1 + tanhσ0)
2 − 3 coth (πp) p

p2 + tanh2σ0

]

=
1

2
− 3

2
cothσ0 + tanhσ0.

Integrating in σ0 we obtain

ln
Zδ (σ0)

Zδ (∞)
= −3

2
ln (tanhσ0) + ln

(√
1 + tanhσ0

)
+C,

where C is a constant of integration. The later can be easily fixed by requiring

lim
σ0→∞

[
ln

Zδ (σ0)

Zδ (∞)

]
= 0,

obtaining the final result

ln
Zδ (σ0)

Zδ (∞)
= −3

2
ln (tanhσ0) + ln

√
1 + tanhσ0

2
. (6.23)

The result above differs from the localization prediction (6.4) by an extra term
and matches the results of the Gel’fand-Yaglom computations [12, 13].

6.2.2 Invariant regulators

The contribution resulting from using the asymptotic tilded operators as reg-
ulators amounts to

Z∞ (σ0) =
det4D̃∞
det4K̃∞

=

∏
ω∈Z+1/2

det4
(
ω2 − ∂2

σ

)
∏
ω∈Z

det4 (ω2 − ∂2
σ)

.

Using the phaseshift formalism and the asymptotic density of states (6.19), the
above can be written as

lnZ∞ (σ0) =
4R

π

⎡⎣ ∑
ω∈Z+1/2

∞∫
0

ln
(
ω2 + p2

)
dp−

∑
ω∈Z

∞∫
0

ln
(
ω2 + p2

)
dp

⎤⎦
= −8R

∞∫
0

p (tanhπp− cothπp) dp = R, (6.24)
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where we used Matsubara frequencies and contour integration.1

Now that we understand how does the partition function depend on the
regulator R, let us examine the later in more detail. The regulator R appears
by imposing Dirichlet boundary conditions on the eigenfunctions at a large but
finite value of σ = R. Geometrically, as seen in figure 6.1, employing this regu-
lator amounts to removing part of the minimal surface of the string. Naturally,
the area of the worldsheet removed depends on σ0 as so does the worldsheet
metric. Thus, taking a generic σ0-independent regulator has no invariant mean-
ing by itself as we need a diffeomorphism-invariant regularization.

The area s removed by this regularization procedure is given by

s =

2π∫
0

∞∫
R

Ω2dσdτ � 4π
(
1 + e−2σ0

)
e−2R.

Choosing this area to remain invariant in the regularization procedure amounts
to having a σ0-dependent regulator

R (σ0) = −1

2
ln (1 + tanhσ0)− 1

2
ln
( s

8π

)
.

Consequently, the net contribution of IR regulators to the ratio of latitude and
circle partition functions is given by

ln
Z∞ (σ0)

Z∞ (∞)
= R (σ0)−R (∞) = − ln

√
1 + tanhσ0

2
, (6.25)

which cancels the second term in (6.23).

6.2.3 Conformal factors

The term accounting for the ratio of tilded and untilded operators is explicitly
given by

ZCF (σ0) =
∏

β=1,2

(
det K̃β

detKβ

)3/2 ∏
α=+,−

(
detDα

det D̃α

)2
(
det K̃3α

detK3α

)1/2

.

To calculate this quantity we use equations (4.17) and (4.21) with the identifi-
cation that α = 1 corresponds to the untilded operators, while α = 0 the tilded
ones. Additional identifications needed are

φ = − lnΩ, a± =
1

Ω sinh2σ
, v± = ∓ 1

Ω cosh2 (σ + σ0)
,

E1 =
2

sinh2σ
, E2 = − 2

cosh2 (σ + σ0)
, E3± = − 2

cosh2 (2σ + σ0)
.

1Alternatively, a short computation of these integrals consists of comparing the in-
tegrals in the first lines of (6.20) and (6.24). After the identification R = δ′(p) →
δ(p) = Rp, we can then use the results (6.21) and (6.22) for periodic and anti-periodic
frequencies.
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It is easy to see that the surface terms in (4.17) and (4.21) which contribute
to ZCF (σ0) cancel between bosons and fermions. For the bulk terms we have
that the integrand is proportional to[

2

3
φ∂2

σφ− φ

(
3

2
E1 +

3

2
E2 + E3±

)]
+ 4

[
1

12
φ∂2

σφ+ φ
(
a2± − v2±

)]
= 0.

Consequently, we obtain

lnZCF(θ0) = 0. (6.26)

This result is to be expected as conformal anomaly cancelations are important
in string theory, making this a consistency check of our calculation.

6.3 Putting everything together
Collecting the classical contributions (6.6) and the semiclassical contributions
(6.23), (6.25), (6.26), we obtain the following result for the ratio of latitude
and circular Wilson loops

ln
〈W (σ0)〉
〈W (∞)〉 =

√
λ (tanhσ0 − 1)− 3

2
ln (tanhσ0) +O

(
λ−1/2

)
, (6.27)

obtaining perfect agreement with the localization prediction (6.4).

58



7. Conclusions and open problems

In the present thesis we present recent developments in the computation of
Wilson loops in string theory. Wilson loops play an important role in gauge
theories and particularly in the gauge-string duality as a physical description
exists at both sides. The later makes these observables an ideal probe for the
duality as they can in principle be computed both in field theory and string
theory. In field theory, localization has lead to the computation of several
Wilson loop configurations at all orders in the coupling. In the string theory
side the picture is much less clear as only leading order contributions at strong
coupling are fully understood. The present thesis focuses on next to leading
order contributions by computing the semiclassical string partition function of
two Wilson loop configurations.

In paper I we computed the semiclassical string partition function for a
straight line in the Pilch-Warner background, obtaining perfect agreement with
localization predictions for N = 2∗. This 1-loop computation is first of its kind
for nonconformal theories and provides a quantitative test of N = 2∗ holog-
raphy. Additionally, this calculation shades light on the role played by the
Fradkin-Tseytlin term in the Green-Schwarz action as its contribution was nec-
essary to reproduce the field theory result. Due to the complicated expressions
involved, it was necessary to resort to numerics for the final answer. However,
the simplicity of the final answer suggests that an analytical calculation may
be possible. The techniques developed for this calculation can also be applied
to other Wilson loop configurations, as done in paper I, where the straight line
result for AdS5×S5 was obtained analytically in a simple and elegant manner.

Paper II concerns the holographic calculation of the ratio of latitude and
circular Wilson loops in AdS5 × S5 at strong coupling. An anomaly related to
the conformal transformation from the disk to the cylinder was shown to be
responsible for the previously found discrepancies with the field theory result
at 1-loop [12, 13]. The successful matching with the localization prediction in
paper II suggests that the assumptions of ghost/longitudinal mode cancelations
between the two loops are correct, as well as there being no conformal anomaly
contributions or additional parameter dependent measure contributions.

Despite progress in the understanding of these calculations, many problems
remain unsolved. Wilson loops are well defined finite quantities in field theory,
thus, calculation of individual Wilson loops in string theory should be well
defined. A long standing problem along these lines is the string theory 1-loop
computation of the 1/2 BPS circular Wilson loop. A first piece of the puzzle
would consist of a proper understanding of the boundary conditions for the
spectral problems at hand, in particular for longitudinal modes and ghosts.
Explicit calculation shows that the second order elliptic operators involved can
be written in terms of integrable potentials like the Pöschl-Teller or the Rosen-
Morse potential. Thus, using techniques from integrable systems it might be
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possible to study the spectrum of these differential operators and to track large
parts of the calculation. A full solution to the problem would additionally
require to “tame” the divergences present in the calculation, as the physical
problem in question must have a finite solution.

For 1-loop string Wilson loop computations in general, the role played by
zero-modes in the ghost determinant must also be carefully considered. This
issue has been largely ignored in the present thesis and in previous computa-
tions but must be eventually addressed. A possible approach to the problem
comes from the use of collective coordinates. More mathematically powerful
tools could be explored, in particular index theorems which allow to connect
the spectral properties of differential operators with topology.

Finally, an even more complicated question is the development of techniques
that would allow for the calculation of Wilson loops beyond 1-loop order in
string theory. Despite the difficult challenges that this implies, exact results
at all orders from localization and the gauge-string duality suggest that in
string theory a similar mathematical mechanism may exist, of which our current
perturbative techniques are the tip of the iceberg.

60



Acknowledgements

First and foremost, I would like to thank my parents and my sister for their
never ending love, support, enthusiasm and encouragement. To you I dedicate
this thesis and the work of the last few years.

I thank Prof. Zarembo for the opportunity of doing this PhD, for coming
up with challenging problems, his patience when sharing his physical intuition
and his efforts in supporting my scientific career. Special gratitude to Prof.
Arutyunov for interesting discussions from which I always learnt something
new, his support, collaboration, time and his always contagious enthusiasm for
science.

This work is also the result of the hard work, dedication and perseverance
of my collaborators. To you I am very thankful for.

I would like to wholeheartedly thank my friends for their moral support and
encouragement. You have always put a smile on my face and brought joy to
my life.

Finally, I would like to thank the scientific and administrative personnel at
Nordita during my studies.

61



Svensk sammanfattning

Gauge-strängteori-korrespondensen har varit en av de mest spännande omr̊adena
inom teoretisk fysik och hävdar att vissa kvantfältteorier har en strängteorid-
ual. Den överraskande naturen hos denna dualitet är s̊adan att ena sidan
av korrespondensen är starkt växelverkande medan den andra teorin är svagt
växelverkande. P̊a s̊a sätt kan vi f̊a nya insikter om starkt kopplade fältte-
orier genom att studera svagt kopplad strängteori. Detta har stor betydelse
d̊a kvantfältteorier är grunden för v̊ar nuvarande först̊aelse av universum sam-
tidigt som att många av deras egenskaper vid stark växelverkan inte är kända,
d̊a störningsräkning inte längre är tillämpbart i detta parameteromr̊ade.

Wilsonloopar är observabler som dyker upp i många omr̊aden inom teo-
retisk fysik och spelar en viktig roll i studiet av starkt växelverkande fält-
teorier, i egenskap av en orderparameter för confinement. Inom gauge-sträng-
korrepsondensens ramverk spelar dessa observabler en betydande roll d̊a de har
en känd fysikalisk beskrivning p̊a b̊ada sidor om dualiteten. Detta gör Wilson-
loopar till ett unikt testverktyg för dualiteten eftersom att samma storhet
kan räknas ut p̊a b̊ada sidor. Därutöver kan vidgad först̊aelse av strängte-
oriräkningarna ge oss nya insikter inom den duala fältteorin vid stark växelverkan.

D̊a strängteorin är svagt växelverkande kan vi i princip använda störn-
ingsräkning som metod i beräkningarna av Wilsonloopar. V̊ar nuvarande
först̊aelse av strängteori i krökta rumtider och v̊ara beräkningstekniker har
emellertid bara varit framg̊angsrika till ledande ordningen och, i n̊agra speciella
fall, andra ordningen i störningsräkning. Till andra ordningen i störningsräknin-
gen reduceras beräkningen av Wilsonloopar till ett antal determinanter av an-
dra ordningens differentialoperatorer. Många problem har träffats p̊a i den här
typen av uträkningar: motstridiga resultat jämfört med fältteorin, divergenser,
oklara randvillkor, etc. Forskningen som presenteras i denna avhandling syftar
till en bättre först̊aelse av dessa problem och att utveckla tekniker för sträng-
teoriräkningen av dessa storheter bortom ledande ordningen.

Tack vare uppseendeväckande framsteg fr̊an supersymmetrisk lokalisering
inom fältteori s̊a finns det exakta förutsägelser till alla ordningar för vissa
Wilsonloopkonfigurationer. Dessa konfigurationer utgör en perfekt testbana för
att utveckla nya beräkningstekniker för Wilsonloopar i strängteori. Förhopp-
ningen är att lärdomarna dragna fr̊an dessa beräkningar kommer att leda till
nya förutsägelser om starkt växelverkande fältteorier.

Den första beräkningen som presenteras i denna avhandling behandlar Wilson-
linjen i N = 2∗. Denna teori är en massiv deformation av N = 4 SYM och
har därför ingen konform symmetri. Den strängteoretiska dualen till N = 2∗

är typ IIB Pilch-Warner-bakgrunden. I artikel I beräknade vi 1-loopsbidraget
till den räta Wilsonlinjen genom nya tekniker för beräkningen av funktionalde-
terminanter och fann perfekt överensstämmelse med lokaliseringsförutsägelsen
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vilket visade dess divergensfria natur. Detta framg̊angsrika 1-looptest av gauge-
sträng-dualiteten var det första av sitt slag för icke-konforma teorier och öppnar
dörren för beräkningar i mer realistiska teorier.

Den andra beräkningen som presenteras här är kvoten mellan en latitud-
Wilsonloop och en cirkulär Wilsonloop i N = 4 SYM. Strängteoriberäkningen
av denna storhet i AdS5 × S5 har tidigare inte lyckats stämma med lokaliser-
ingsresultat. I artikel II löste en noggrann studie av IR-anomalin relaterad till
divergensen i den konforma faktorn detta problem.

Trots framstegen i först̊aelsen av Wilsonloopar i strängteori återst̊ar många
öppna fr̊agor och problem. Bland dem finns 1-loopberäkningar av den cirkulära
och en k-lindad Wilsonloop i AdS5×S5. Andra olösta tekniska fr̊agor relaterar
till spökpartiklars/longitudinella moders inverkan, likväl som siktet p̊a högre
ordningar i störningsräkningar. Exakta resultat fr̊an lokalisering tillsammans
med gauge-sträng-dualiteten pekar p̊a att v̊ara nuvarande tekniker kanske bara
är tippen av isberget.

63



References

[1] J. M. Maldacena, “The Large N limit of superconformal field theories
and supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133,
hep-th/9711200. [Adv. Theor. Math. Phys.2,231(1998)].

[2] V. Pestun, “Localization of gauge theory on a four-sphere and
supersymmetric Wilson loops,” Commun. Math. Phys. 313 (2012)
71–129, 0712.2824.

[3] N. Drukker, D. J. Gross, and A. A. Tseytlin, “Green-Schwarz string in
AdS(5) x S**5: Semiclassical partition function,” JHEP 04 (2000) 021,
hep-th/0001204.

[4] K. Pilch and N. P. Warner, “N=2 supersymmetric RG flows and the IIB
dilaton,” Nucl. Phys. B594 (2001) 209–228, hep-th/0004063.

[5] K. Pilch and N. P. Warner, “Generalizing the N=2 supersymmetric RG
flow solution of IIB supergravity,” Nucl. Phys. B675 (2003) 99–121,
hep-th/0306098.

[6] X. Chen-Lin, J. Gordon, and K. Zarembo, “N = 2∗ super-Yang-Mills
theory at strong coupling,” JHEP 11 (2014) 057, 1408.6040.

[7] E. I. Buchbinder and A. A. Tseytlin, “1/N correction in the D3-brane
description of a circular Wilson loop at strong coupling,” Phys. Rev. D89
(2014), no. 12 126008, 1404.4952.

[8] J. K. Erickson, G. W. Semenoff, and K. Zarembo, “Wilson loops in N=4
supersymmetric Yang-Mills theory,” Nucl. Phys. B582 (2000) 155–175,
hep-th/0003055.

[9] M. Kruczenski and A. Tirziu, “Matching the circular Wilson loop with
dual open string solution at 1-loop in strong coupling,” JHEP 05 (2008)
064, 0803.0315.

[10] C. Kristjansen and Y. Makeenko, “More about One-Loop Effective
Action of Open Superstring in AdS5 × S5,” JHEP 09 (2012) 053,
1206.5660.

[11] R. Bergamin and A. A. Tseytlin, “Heat kernels on cone of AdS2 and
k-wound circular Wilson loop in AdS5 × S5 superstring,” J. Phys. A49
(2016), no. 14 14LT01, 1510.06894.

[12] V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara, and
E. Vescovi, “Precision calculation of 1/4-BPS Wilson loops in
AdS5 × S5,” JHEP 02 (2016) 105, 1512.00841.

[13] A. Faraggi, L. A. Pando Zayas, G. A. Silva, and D. Trancanelli, “Toward
precision holography with supersymmetric Wilson loops,” JHEP 04
(2016) 053, 1601.04708.

[14] V. Forini, A. A. Tseytlin, and E. Vescovi, “Perturbative computation of
string one-loop corrections to Wilson loop minimal surfaces in AdS5×
S5,” JHEP 03 (2017) 003, 1702.02164.

64



[15] J. Aguilera-Damia, A. Faraggi, L. A. Pando Zayas, V. Rathee, and G. A.
Silva, “Zeta-function Regularization of Holographic Wilson Loops,”
1802.03016.

[16] M. Cvetic, H. Lu, C. N. Pope, and K. S. Stelle, “T duality in the
Green-Schwarz formalism, and the massless / massive IIA duality map,”
Nucl. Phys. B573 (2000) 149–176, hep-th/9907202.

[17] L. Wulff, “The type II superstring to order θ4,” JHEP 07 (2013) 123,
1304.6422.

[18] A. A. Tseytlin, “Review of AdS/CFT Integrability, Chapter II.1:
Classical AdS5xS5 string solutions,” Lett. Math. Phys. 99 (2012)
103–125, 1012.3986.

[19] A. Buchel, A. W. Peet, and J. Polchinski, “Gauge dual and
noncommutative extension of an N=2 supergravity solution,” Phys. Rev.
D63 (2001) 044009, hep-th/0008076.

[20] K. G. Wilson, “Confinement of Quarks,” Phys. Rev. D10 (1974)
2445–2459. [,319(1974)].

[21] J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev.
Lett. 80 (1998) 4859–4862, hep-th/9803002.

[22] S.-J. Rey and J.-T. Yee, “Macroscopic strings as heavy quarks in large N
gauge theory and anti-de Sitter supergravity,” Eur. Phys. J. C22 (2001)
379–394, hep-th/9803001.

[23] N. Drukker and D. J. Gross, “An Exact prediction of N=4 SUSYM
theory for string theory,” J. Math. Phys. 42 (2001) 2896–2914,
hep-th/0010274.

[24] L. F. Alday and J. M. Maldacena, “Gluon scattering amplitudes at
strong coupling,” JHEP 06 (2007) 064, 0705.0303.

[25] A. Brandhuber, P. Heslop, and G. Travaglini, “MHV amplitudes in N=4
super Yang-Mills and Wilson loops,” Nucl. Phys. B794 (2008) 231–243,
0707.1153.

[26] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev,
“Hexagon Wilson loop = six-gluon MHV amplitude,” Nucl. Phys. B815
(2009) 142–173, 0803.1466.

[27] D. Mller, H. Mnkler, J. Plefka, J. Pollok, and K. Zarembo, “Yangian
Symmetry of smooth Wilson Loops in N = 4 super Yang-Mills Theory,”
JHEP 11 (2013) 081, 1309.1676.

[28] H. Mnkler, “Symmetries of Maldacena-Wilson Loops from Integrable
String Theory,” 1712.04684.

[29] T. Klose, F. Loebbert, and H. Munkler, “Master Symmetry for
Holographic Wilson Loops,” Phys. Rev. D94 (2016), no. 6 066006,
1606.04104.

[30] H. Munkler, “Bonus Symmetry for Super Wilson Loops,” J. Phys. A49
(2016), no. 18 185401, 1507.02474.

[31] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6
superconformal Chern-Simons-matter theories, M2-branes and their
gravity duals,” JHEP 10 (2008) 091, 0806.1218.

[32] M. Ammon and J. Erdmenger, Gauge/Gravity Duality. Cambridge
University Press, 2015.

65



[33] M. Rangamani, “Gravity and Hydrodynamics: Lectures on the
fluid-gravity correspondence,” Class. Quant. Grav. 26 (2009) 224003,
0905.4352.

[34] D. T. Son and A. O. Starinets, “Viscosity, Black Holes, and Quantum
Field Theory,” Ann. Rev. Nucl. Part. Sci. 57 (2007) 95–118, 0704.0240.

[35] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A.
Wiedemann, “Gauge/String Duality, Hot QCD and Heavy Ion
Collisions,” 1101.0618.

[36] S. A. Hartnoll, “Lectures on holographic methods for condensed matter
physics,” Class. Quant. Grav. 26 (2009) 224002, 0903.3246.

[37] J. McGreevy, “Holographic duality with a view toward many-body
physics,” Adv. High Energy Phys. 2010 (2010) 723105, 0909.0518.

[38] C. P. Herzog, “Lectures on Holographic Superfluidity and
Superconductivity,” J. Phys. A42 (2009) 343001, 0904.1975.

[39] R. Giles, “The Reconstruction of Gauge Potentials From Wilson Loops,”
Phys. Rev. D24 (1981) 2160.

[40] N. Drukker, D. J. Gross, and H. Ooguri, “Wilson loops and minimal
surfaces,” Phys. Rev. D60 (1999) 125006, hep-th/9904191.
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