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Abstract

A central topic in condensed matter research during the last decades has been the
study and classification of topological phases of matter. Topological insulators in
particular, a subset of symmetry protected topological phases, have been investi-
gated for over a decade. In recent years, several extensions to this formalism have
been proposed to study more unconventional systems. In this thesis we explore
two of these extensions, where key assumptions in the original formalism are re-
moved. The first case is critical systems, which have no energy gap. Conventional
topological invariants are discontinuous at topological transitions, and therefore
not well-defined for critical systems. We propose a method for generalizing con-
ventional topological invariants to critical systems and show robustness to disorder
that preserves criticality. The second case involves non-Hermitian systems, which
appear in effective descriptions of dissipation, where we study the entanglement
spectrum and its connection to topological invariants. Furthermore, by introduc-
ing non-Hermiticity to critical systems we show how the winding numbers that
characterize some topological phases of the non-Hermitian system, as well as topo-
logical signatures in the entanglement spectrum, can be obtained from the related
critical model.
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Svensk sammanfattning

Klassificering av topologiska materiefaser har under de senaste decennierna varit
ett centralt tema i forskningen om kondenserad materia. I synnerhet topologiska
isolatorer, en undergrupp av symmetriskyddade topologiska faser, har studerats i
över ett decennium. Under senare år har flera utvidgningar av denna formalism
föreslagits för att studera mer okonventionella system.

I denna avhandling utforskar vi tvåav dessa utvidgningar, där antaganden som
är viktiga i den ursprungliga teorin tagits bort. Det första fallet vi studerar är
kritiska system utan energigap. Konventionella topologiska invarianter är diskon-
tinuerliga vid topologiska övergångar och är därför inte väldefinierade för kritiska
system. Vi föreslår en metod för att generalisera konventionella topologiska in-
varianter till kritiska system och visar att dessa är robusta mot störningar som
bevarar kritikalitet. Det andra fallet vi studerar handlar om icke-Hermitiska sys-
tem, som beskriver dissipation, där vi undersöker sammanflätningsspektrumet och
dess koppling till topologiska invarianter. Dessutom visar vi, genom att intro-
ducera icke-Hermiticitet till kritiska system, hur de omloppstal som kännetecknar
vissa topologiska faser av det icke-Hermitiska systemet, samt topologiska signaturer
i sammanflätningsspektrumet, kan erhållas från den relaterade kritiska modellen.
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Chapter 1

Introduction

A recurrent problem in physics is that of classifying phases of matter. For the
most part of last century, Landau’s theory of phase transitions [2] was thought to
provide a complete description of continuous phase transitions. In this formalism,
phases are described by a local order parameter associated with a symmetry that
is broken. This is the case, for example, with ferromagnets where a non-zero
magnetization emerges below the Curie temperature, associated with a broken
rotational symmetry of the spins [3].

The discovery of the integer quantum Hall effect [4–6] challenged this paradigm.
A two dimensional electron gas under a strong perpendicular magnetic field was
shown to have a transverse conductance quantized to integers of e2/h, carried by
gapless edge states. However, no local order parameter or symmetry breaking can
be assigned to the different phases. The quantized conductance in these systems
was found to be related to a topological quantity [7–9], the Chern number. Another
important step towards understanding phases like the integer quantum Hall was
taken by Haldane in 1988 [10]. He showed that the physics of the quantum Hall
effect is not due to the Landau levels, but due to time-reversal symmetry being
broken. He showed that a lattice model of free electrons with intrinsically broken
time-reversal symmetry presented the same features as the integer quantum Hall
effect, i.e. gapless edge states and quantization of the transverse conductance. Such
systems are nowadays referred to as Chern insulators.

In the following decades many lattice models of free fermions were shown to have
similar features. Systems such as the Su-Schrieffer-Heeger (SSH) chain [11, 12], or
the quantum spin Hall (QSH) liquid [13,14] cannot be described by Landau’s the-
ory. They host gapless edge modes and quantized observables which are character-
ized by topological invariants — objects computed from the bulk that characterize
the topological phase. In particular the topological invariants give the number
of topological gapless edge states found by imposing open boundary conditions.
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CHAPTER 1. INTRODUCTION

This relation was coined the bulk-boundary correspondence. Unlike Chern insula-
tors, however, these systems are not inherently robust and require the presence
of symmetries. These phases are known as symmetry protected topological phases
(SPT) [15]. A particular subset of these, known as topological insulators and su-
perconductors, have been widely studied. The classification of these is now fully
understood with the framework of the ten-fold way [16, 17], based on the classi-
fication of random matrices developed by Altland and Zirnbauer [18–21]. This
formalism classifies Hamiltonians into different classes depending on their symme-
tries, and for each class and dimension tells us how many non-trivial topological
phases are allowed, if any.

There are many different signatures of non-trivial topology that can be studied.
Two important ones are the existence of gapless edge states and quantized ob-
servables which can be measured in transport experiments, such as the transverse
conductance described above. The observable which we focus on in this thesis is the
bulk polarization, which is a topological invariant in one dimension under certain
symmetries. The polarization is a very simple physical observable when consider-
ing finite systems, where it is related to the accumulated surface charge. However,
things become challenging when periodic boundary conditions are considered. A
coherent description of the bulk polarization was not obtained until the develop-
ment of the modern theory of polarization in the early 90’s [22–27]. This theory has
two important consequences. First, it was able to express the polarization as the
geometric phase of the ground state. Furthermore, the resulting bulk polarization
is only defined mod e. An important remark is that the bulk polarization cannot be
understood as an absolute quantity. Only changes in the polarization, which gener-
ate measurable currents, are a physical quantity. However, three decades after the
development of the modern theory of polarization the bulk polarization remains a
source of confusion. It was only recently that an exhaustive study was done looking
at the physical significance of different definitions of the bulk polarization that can
be found in the literature, and the relations between them [28].

Another physical property that has been useful in the study of topology has been
entanglement. It played an important role in understanding strongly correlated
topological phases of matter [29]. In particular the entanglement entropy [30, 31]
was shown to have a universal term that depends on the topology of the system, al-
though it does not fully characterize the topological phase. Later on, the spectrum
of the reduced density matrix, the entanglement spectrum, was shown to provide
more information about the topology of the ground state in some cases [32,33]. For
non-interacting topological insulators the entanglement spectrum is also known to
provide knowledge about the edge spectrum [34], which in turn provides informa-
tion about the topology of the system. It was shown by Peschel [35–37] that in
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non-interacting systems the entanglement spectrum could be obtained from the
spectrum of the subsystem correlation matrix, the entanglement occupancy spec-
trum. The entanglement occupancy spectrum has been used as a topological sig-
nature [38–40], however, it is still not fully understood how much information it
encodes. In Chapter 2 we show an explicit connection to the bulk polarization.

One of the hallmarks of symmetry protected topological phases is that they are
robust against perturbations unless they drive the system into a phase transition
or they break the symmetries protecting the phase [15]. However, the fate of topo-
logical features becomes less clear as soon as one removes some of the prerequisites
used to define conventional topological insulators. Examples include studies of
amorphous systems [41,42], topological crystalline insulators [43,44], systems with
criticality [45–50] or systems described by a non-Hermitian Hamiltonian [51–53].
In Chapters 3 and 4 we focus on the latter two, respectively.

For a long time critical systems were thought to be topologically trivial, in the
sense that they could not hosts topological gapless edge modes. At the critical
point, the correlation length diverges, thus allowing the topological edge states of
the two edges to hybridize with each other and split from zero energy. This question
was revisited recently [45,46], showing that this is not correct and that systems at
a critical point can indeed host topological edge states. Such systems, however, lie
outside those studied by the ten-fold way, which explicitly assumes the existence
of a gap. Furthermore, conventional topological invariants are not well-defined at
critical points, as they must change by an integer value between two topological
phases at both sides of the critical point. Therefore it seems that one needs new
topological invariants to characterize these phases, as well as a new classification
scheme. In Chapter 3 we explore how one can generalize conventional topological
invariants to critical systems.

Non-Hermitian Hamiltonians have been used in physics to describe systems in-
teracting with an environment [54–62]. Processes of dissipation and gain as the
system exchanges energy or particles with the environment can be described effec-
tively with non-Hermitian Hamiltonians, once the details about the environment
are forgotten. Some examples are classical mechanical systems [62], photonic lat-
tices [54–56] or quantum optics setups [61]. The study of topology in non-Hermitian
systems has been a very active field in recent years [53,63–74], and a complete clas-
sification of topological phases was recently achieved [52]. However, the field is still
somewhat new and many feautres known from Hermitian systems are not yet un-
derstood in the presence of Hermiticity. The two objects we focus on in this thesis,
the entanglement occupancy spectrum and the bulk polarization have not yet been
studied in depth. In this thesis we studied the entanglement occupancy spectrum
of non-Hermitian systems and how it relates to their bulk topology, as discussed in
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CHAPTER 1. INTRODUCTION

Chapter 4. We showed how the relation to the polarization we previously obtained
for Hermitian systems, discussed in Chapter 1, still applies for some non-Hermitian
phases. In addition, we showed that topological signatures are present for certain
non-Hermitian phases which were previously overlooked [75, 76]. Furthermore, we
show how some non-Hermitian phases and critical systems, which seem initially
totally unrelated, share certain topological features. We showed how to obtain
features of the non-Hermitian system from the critical system and vice versa. This
might improve our understanding of topology in critical systems by using notions
of non-Hermitian topology. Finally, in Chapter 5 we discuss the results in this
thesis and comment on possible future directions.
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Chapter 2

Topological insulators

As mentioned in the introduction, this thesis focuses on the study of symmetry
protected topological (SPT) phases [15, 20, 77]. In particular, this chapter focuses
on a subset of these, topological insulators of non-interacting fermions. The bulk
of topological insulators is described by a gapped Hamiltonian. That is, it has
a gap in its energy spectrum separating the occupied and empty bands where
there are no states present. In the mathematical field of topology two objects,
e.g. a sphere and a torus, are topologically distinct if they cannot be deformed
into one another without tearing and gluing. These objects are characterized by
a topological invariant, the genus, which counts the number of "holes" (0 for the
sphere and 1 for the torus). Similarly, in the context of condensed matter and SPT
phases, two gapped Hamiltonians are said to be topologically distinct if they cannot
be adiabatically deformed into each other unless the symmetries of the system are
broken or the bulk gap closes, such that the system undergoes a quantum phase
transition. Topological invariants are also defined for the Hamiltonians. These are
objects computed from the bulk that take discrete values for distinct topological
phases and thus identify the topology of the system.

One characteristic property of topological insulating phases is that their bound-
ary is gapless [15]. In 1D this translates to zero-energy edge modes, while in 2D the
edge-modes connect the occupied and empty bands. Due to the symmetries these
edge-modes are robust, i.e. they are not sensitive to symmetry-conserving disorder
unless the disorder closes the bulk gap. In some exceptional cases, the boundary of
a SPT phase can also be gapped, in which case it must have topological order [15],
or it spontaneously breaks the symmetry that protects the topological phase. The
classification of non-interacting topological insulators protected by non-unitarily
realized symmetries is fully understood with the ten-fold way framework [15, 20],
which we discuss in section 2.2.

After the discovery of the integer quantum Hall effect, Haldane took an impor-
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CHAPTER 2. TOPOLOGICAL INSULATORS

tant step towards understanding topological insulators [10]. He showed that the
topological properties of the integer quantum Hall effect do not require Landau lev-
els by constructing a lattice model with intrinsically broken time reversal symmetry
and similar topological properties. Two decades later, Kane and Mele [13] proposed
a similar phase, the quantum spin hall effect. They predicted this phase to appear
in graphene with spin-orbit coupling, a model similar to the one considered by
Haldane. However, spin-orbit coupling in graphene turned out to be too small for
this phase to be observable. Bernevig, Hughes and Zhang [78] predicted the exis-
tence of the quantum spin Hall effect in 2D HgCdTe quantum well heterostructures
under a strain. Transport experiments were later shown to be consistent with this
prediction [79], having a quantized conductance as expected for a bulk insulator
with gapless edge states. Other candidates for 2D topological insulators have also
been confirmed experimentally, such as InAs/GaSb quantum wells [80], mono and
bi-layer Bismuth [81,82] or layered transition metal dichalcogenides [83,84].

Soon after the discovery of the quantum spin Hall effect in 2D, generalizations
to 3D were proposed [85–87] and the term "topological insulator" was coined [87].
This was followed by the experimental confirmation of a topological phase in the
3D semiconducting alloy Bi1−xSbx [88]. In 3D materials transport experiments
are more difficult to realize. However, by using angle resolved photoemission spec-
troscopy (ARPES) the surface of the material could be studied and gapless edge
states were shown occur. Several other materials followed, such as Bi2Se3 [89],
BiTe3 [90, 91] and many others [92]. However, as opposed to Bi1−xSbx, most of
the other materials are not strictly insulators. They are metals or semimetals that
can host topological gapless edge states in parts of their Brillouin zone which are
gapped.

There are other materials which are also not topological insulators but share some
of their topological properties. This is the case of topological superconductors [93],
which are not insulators but present a gap in the spectrum. Topological supercon-
ductors are classified with the same ten-fold way that classifies topological insu-
lators. Of particular importance are 1D topological superconductors, introduced
first by Kitaev [94]. Signatures consistent with a topological superconducting phase
were later found in hybrid superconductor-semiconductor nanowires [95]. Another
relevant class of materials are Weyl semimetals [96–98]. These are 3D materials
with topologically protected band crossings, known as Weyl points. Cuts through
the Brillouin zone avoiding these points can be interpreted as Chern insulators.
The Chern number of the two-dimensional cuts can only change when crossing a
Weyl point. As a whole, Weyl semimetals are topologically trivial. However, the
non-trivial topology of the lower dimensional cuts leads to the existence of gapless
edge states, known as Fermi arcs, which connect pairs of Weyl points.
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2.1. TIGHT-BINDING HAMILTONIAN AND BLOCH STATES

In 1D one of the prototypical examples of a topological insulator, and one of the
most studied due to its simplicity, is the Su-Schrieffer-Hegger (SSH) chain [11, 12]
— a model inspired by polyacetylene that describes spinless electrons in a chain
of one orbital sites with staggered hopping. It has two topological phases that
can be distinguished by the bulk polarization, which is quantized and takes only
two values. Both the topological edge states and a quantized topological invariant
have been observed experimentally [99,100]. Throughout this thesis we employ an
extension of this model, which we introduce in Section 2.1.1.

2.1 Tight-binding Hamiltonian and Bloch states

In this thesis we employ tight-binding Hamiltonians to describe the systems we
study. In this section we introduce the tight-binding Hamiltonian and set the
notation we will use throughout the rest of the thesis. We will also present the
Bloch Hamiltonian for systems with translational invariance with the same purpose.

Consider the general second-quantized quadratic Hamiltonian

H =

L∑
ij=1

M∑
αβ=1

c†iαHiα,jβcjβ , (2.1)

where unless we say otherwise, we use latin indices for the position of the L sites and
greek indices to label the M orbitals at each site. Writing the fermionic operators
as vector c = (c11, ...c1M , ..., cL1, ..., cLM )T the Hamiltonian is H = c†Hc, which
can be diagonalized by a transformation c = Uγ, where U is a unitary matrix
such that U †HU = Ê is diagonal. The matrix H is called the first-quantized
Hamiltonian or single-particle Hamiltonian. Defining the unitary matrix elements
as (U)pµ,iα = ψpµiα the transformation between the different fermionic operators is

γ†pµ =
∑
iα

c†iαψ
iα
pµ , γpµ =

∑
iα

ψiα ∗
pµ ciα

c†iα =
∑
pµ

γ†pµψ
∗ iα
pµ , ciα =

∑
pµ

ψiαpµγpµ. (2.2)

We can define now the single-particle eigenstates

|ψpµ⟩ =γ†pµ |0⟩

=
∑
iα

c†iαψ
iα
pµ |0⟩ , (2.3)

7



CHAPTER 2. TOPOLOGICAL INSULATORS

that have the components ⟨iα|ψpµ⟩ = ψiαpµ. The condition that U †HU is diagonal
gives the eigenvalue equation∑

Hiα,jβψ
jβ
pµ = Epµψ

iα
pµ (2.4)

or H |ψpµ⟩ = Epµ |ψpµ⟩.
Assuming now that the Hamiltonian H is translational invariant, the single-

particle eigenstates |ψkµ⟩ are labeled by their momentum k = n2π/L, with the
integer n = [1, L], and their components can be written as ψjαkµ = eikjuαkµ.

The eigenvalue equation for the single-particle eigenstates then becomes∑
jβ

Hlj,αβe
ikjuβkµ = Ekµe

ikluαkµ∑
β

Hk,αβu
β
kµ = Ekµu

α
kµ, (2.5)

where the Fourier transformed Hk is the Bloch Hamiltonian. Our single particle
eigenstates |ψkµ⟩ are the Bloch waves and the states |ukµ⟩ are their periodic part.
In the following we will consider a model with a single-site unit cell, this makes
these states periodic in momentum as well, |uk+2π,µ⟩ = |uk,µ⟩.

2.1.1 SSH and Shockley models

At the beginning of this chapter we mentioned the SSH chain, describing spinless
electrons in a chain of one orbital sites with staggered hopping, see Fig.2.1.(a).
This is one of the most widely studied models for topological insulators, given by
the Hamiltonian

H =
∑
j

(t+ (−1)jδ)c†j+1cj . (2.6)

Throughout this thesis and in the accompanying papers we use a similar model
where instead of having one orbital per site and two sites per unit cell, we have two
orbitals per site and one site per unit cell. This is known as the Shockley model
[101, 102], a model describing electrons in a one dimensional chain of atoms with
orbitals s and px, see Fig.2.1.(b). The two models have equivalent Hamiltonians
except for the spacial distribution of their eigenstates. This, however, makes a key
difference when considering the polarization, which we study in Section 2.3.2. We
nevertheless refer to the models used as SSH, as it is more widely known in the
community. In order to realize a larger variety of topological phases we employ

8



2.1. TIGHT-BINDING HAMILTONIAN AND BLOCH STATES

1 2 3 4 5 6

(a) SSH model

1 2 3 4 5 6

(b) Shockley model

Figure 2.1: Diagram of the (a) SSH model and (b) Shockley model . Circles represent
different orbitals with the staggered hopping represented by single and double lines. The
numbers represent the position of each site in real space. While the SSH chain consists
of single orbital sites, the Shockley model corresponds to two states per site. Apart from
their spatial distribution the models are otherwise equivalent.

an extension to the model by adding a second neighbour hopping, see Fig. 2.2. We
refer to this as long-range SSH model, given by the Hamiltonian

H =
∑
iα,jβ

c†iαHij,αβcjβ . (2.7)

The elements of the single-particle Hamiltonian, Hij , are

Hij =(t0σx + κσz)δij +
1

2i
κ′σz(δi−j,1 − δi−j,−1)

+
1

2
t1 [(σx + iσy)δi,j+1 + (σx − iσy)δi,j−1]

+
1

2
t2 [(σx + iσy)δi,j+2 + (σx − iσy)δi,j−2] , (2.8)

where σα are the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.9)

The corresponding Bloch Hamiltonian is

H(k) =

(
κ+ κ′ sin(k) t0 + t1e

ik + t2e
2ik

t0 + t1e
−ik + t2e

−2ik −κ− κ′ sin(k)

)
=(t0 + t1 cos(k) + t2 cos(2k))σx

+ (−t1 sin(k)− t2 sin(2k))σy + (κ+ κ′ sin(k))σz. (2.10)

We will employ this model to illustrate the concepts we introduce in the two fol-
lowing chapters.

9
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1 2 3 4 5 6

Figure 2.2: Diagram of the model used throughout this thesis, consisting of two orbitals
per site, with hopping between orbitals of the same site t0 (double line), hopping between
adjacent sites (continuous line) and hopping between next to nearest neighbors (dashed
line)

2.2 Symmetries and the classification of topological
insulators and superconductors, the ten-fold way

The framework of the ten-fold way [15,20], based on the random matrix classifica-
tion developed by Altland and Zirnbauer [18,19], aims to give a most fundamental
classification of topological insulator and superconductor phases, for systems where
no unitarily realized symmetry on the first quantized Hamiltonian is required to
protect the topological phase. Ordinary symmetries, e.g. inversion symmetry or
spin-rotation symmetries, are unitary, commute with the Hamiltonian and are typ-
ically easily broken.

If a certain first quantized Hamiltonian is invariant under a unitarily realized
symmetry, one can always define a basis for which the Hamiltonian is block-diagonal
and these blocks do not have any constraint imposed by the unitarily realized sym-
metry [15]. Since the topological phase is not protected by this unitarily realized
symmetry the topology of the Hamiltonian must come from the topology of these
general block Hamiltonians. The ten-fold way deals with classifying these general
blocks.

There are three symmetries that do not act as the ordinary symmetries described
above, those are time-reversal, charge conjugation (or particle-hole), and chiral (or
sublattice) symmetries. The first two act on the first quantized Hamiltonian as
anti-unitary operators. The latter is a unitary operator but it does not commute
the Hamiltonian, it anti-commutes. In the literature, these symmetries are defined
in several different ways, we will use the convention found in reference [15], which
is one of the most accessible reviews on the topic.

Time-reversal symmetry is defined acting on the second-quantized operators as

T ciT −1 =
∑
j

(U †
T )ijcj , T c†iT

−1 =
∑
j

c†j(UT )ji, (2.11)

where the indices i, j can label lattice sites, orbitals, spins, momentum, or any

10



2.2. SYMMETRIES AND THE TEN-FOLD WAY

combination of them. The time-reversal operator is anti-unitary, T iT −1 = −i.
Defining the time-reversal operator acting on the first quantized Hamiltonian as
T = UTK, where K is the complex conjugation operator, time-reversal symmetry
is imposed by

THT−1 = H, TH(k)T−1 = H(−k), (2.12)

for position and momentum space. Due to unitarity we have UTU
∗
T = eiγI.

Considering (UTU
∗
T )UT = UT (U

∗
TUT ), so that eiγUT = UT e

−iγ , it implies that
T 2 = UTU

∗
T = ±1. There are therefore three ways a general Hamiltonian can

respond to time-reversal symmetry. It can be not time-reversal invariant or it can
be time-reversal invariant with either T 2 = 1 or T 2 = −1.

The same analysis can be done with charge conjugation. This is defined as

CciC−1 =
∑
j

(U∗ †
C )ijc

†
j , Cc†iC

−1 =
∑
j

cj(U
∗
C)ji, (2.13)

where C is a unitary operator. Defining the first-quantized charge conjugation
operator as C = UCK, it acts as

CHC−1 = −H, CH(k)C−1 = −H(−k). (2.14)

Similar to time-reversal symmetry, C2 = ±1. So far these lead to 9 different ways a
Hamiltonian can respond to both time-reversal and charge conjugation symmetries.

The last symmetry to consider, chiral symmetry, is a combination of the previous
two, S = T · C. It acts on the second-quantized operators as

SciS−1 =
∑
j

(U∗ †
S )ijc

†
j , Sc†iS

−1 =
∑
j

cj(U
∗
S)ji. (2.15)

We can write the first-quantized chiral symmetry operator as S = US = UTU
∗
C =

TC, which anticommutes with the Hamiltonian,

SHS−1 = −H, SH(k)S−1 = −H(k). (2.16)

Since the phases of UC and UT are completely arbitrary, one can change them so
that S2 = +1. There are therefore only two ways a Hamiltonian can respond to
chiral symmetry, it is either invariant under it, or it is not. Furthermore, the way
a Hamiltonian responds to chiral symmetry is constrained by how it responds to
time-reversal and charge-conjugation. A Hamiltonian cannot be invariant under
chiral symmetry unless it is invariant to either both, time-reversal and charge
conjugation, or none of them. This leads to a total of ten ways a Hamiltonian can
respond to these symmetries. These correspond to the ten different Cartan classes.

11



CHAPTER 2. TOPOLOGICAL INSULATORS

Symmetries Spatial dimension
Class T C S 1 2 3 ...

A 0 0 0 0 Z 0 ...

AIII 0 0 1 Z 0 Z ...

AI 1 0 0 0 0 0 ...

BDI 1 1 1 Z 0 0 ...

D 0 1 0 Z2 Z 0 ...

DIII -1 1 1 Z2 Z2 Z ...

AII -1 0 0 0 Z2 Z2 ...

CII -1 -1 1 Z 0 Z2 ...

C 0 -1 0 0 Z 0 ...

CI 1 -1 1 0 0 Z ...

Table 2.1: Cartan-Altland-Zimbauer (CAZ) table that shows the classification of
non-interacting topological insulator and superconductor phases pro-
tected by not unitarily realized symmetries.

The ten-fold way formalism aims at answering the questions: what non-trivial
topology, if any, can be found in each of these classes for different spatial dimensions
and what kind of topological invariant characterizes these topological phases? The
results of the ten-fold way [15, 20] are summarized in the periodic table of topo-
logical insulators and superconductors found in Table 2.1. It can also be found
referred to as the Cartan-Altland-Zimbauer (CAZ) table. For each of the Cartan
classes defined by the symmetries of the Hamiltonian, and for each possible spa-
tial dimension, there are three possible outcomes. Either the class is trivial (0),
there can be two topologically distinct phases (Z2), or there can be infinite distinct
topological phases (Z).

Unitary symmetries can lead to additional topological classes. Although, as
mentioned before, in practice they are more fragile. One particularly interesting
case is that of spatial symmetries [103]. In the following we will also briefly consider
one of these symmetries, namely inversion symmetry, defined by

UP x̂UP = −x̂. (2.17)
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2.3. TOPOLOGICAL INVARIANTS

A system is inversion symmetric if it holds that

UPHUP = H, UPH(k)UP = H(−k). (2.18)

Symmetries of the model Hamiltonian: We can now test the symmetries of
the model Hamiltonian, Eq.(2.8). Time-reversal is given by T = K, where K is the
conjugation operator. Acting on the Bloch Hamiltonian of the model, Eq. (2.10),
we have

TH(k)T−1 −H(−k) =
(
2κ′ sin(k) 0

0 −2κ′ sin(k)

)
, (2.19)

and time-reversal is broken by the κ′ term. Particle-hole is given by C = σzK,

CH(k)C−1 +H(−k) =
(
2κ 0
0 −2κ

)
, (2.20)

and is broken by the κ term. As for the chiral symmetry, S = TC = σz gives

SH(k)S−1 +H(k) =

(
2(κ+ κ′ sin(k)) 0

0 −2(κ+ κ′ sin(k))

)
, (2.21)

broken by either κ or κ′. Finally, let us consider inversion symmetry, given by
UP = σx. Acting on the Bloch Hamiltonian,

UPH(k)U−1
P −H(−k) =

(
−2κ 0
0 2κ

)
, (2.22)

shows that inversion symmetry is also broken by κ. To summarize, without the
symmetry breaking terms, κ and κ′, the Hamiltonian has time-reversal, particle-
hole, chiral and inversion symmetries. It is therefore in the BDI class, with a Z
topological invariant in one dimension, which we will introduce below. The κ′ term
breaks time-reversal and chiral symmetries, leaving the system in the D class, with a
Z2 invariant in one dimension. The κ term breaks particle-hole, chiral and inversion
symmetries, leaving the system in the AI class, which is topologically trivial in one
dimension. The same holds for class A (a class without any symmetries), obtained
when both κ, κ′ terms are non-zero.

2.3 Topological invariants

As mentioned in the begining of this chapter, topological invariants are bulk quan-
tities that characterize the topology of the system. There are many ways the
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CHAPTER 2. TOPOLOGICAL INSULATORS

information about the topology is encoded on the system and, therefore, there are
multiple ways these topological invariants are defined. These can be quantized
observables, such as the bulk polarization or the transverse conductance, or math-
ematical objects borrowed from topology, such as the winding number or the Chern
number.

For topological insulators and superconductors one must consider two different
types of invariants. Z2 invariants can only take two values and therefore distinguish
between two phases, a trivial one and a non-trivial one. The trivial phase is defined
as the one that can be adiabatically connected to the atomic insulator phase, where
there is no hopping or hybridization between different sites. A Z invariant can take
any integer value and therefore distinguishes between a trivial phase and multiple
distinct non-trivial phases. In a class characterized by a Z invariant it might still
be useful to consider Z2 invariants that distinguish between two sets of phases.

In the following we introduce the topological invariants that are relevant for
this thesis. First we introduce a useful concept, the geometric phase [26,104–106].
Then we introduce the bulk polarization and the Zak phase [107], two equivalent Z2

topological invariants in 1D [23,26,28]. Next we introduce the winding number [15],
a Z invariant defined in odd dimensions and the Chern number [15], which is also a
Z topological invariant, most relevant in 2D systems although it has applications in
1D systems that we will discuss. We will also discuss how the winding and Chern
numbers are related to the polarization.

2.3.1 Geometric phases for adiabatic evolution

Consider a Hamiltonian H(R) and a particular eigenstate |n(R)⟩ with a set of
parameters R(t) that are varied adiabatically over a closed path C in parameter
space. After this evolution is completed at time T the final eigenstate might differ
from the original one by a phase factor, |n(R(T ))⟩ = eiγC |n(R(0))⟩. Consider
first that the path CN is discretized into N different points, where N can be later
taken to infinity to ensure adiabaticity. The phase between the eigenstate at two
adjacent points will be

γj,j+1 = −Im ln[⟨n(Rj)|n(Rj+1)⟩]. (2.23)

Therefore the total phase acquired by the eigenstate is given by

γCN
= −Im ln

 N∏
j=1

⟨n(Rj)|n(Rj+1)⟩

 , (2.24)
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where RN+1 = R1. For a continuous path the phase acquired by the eigenstates
results in

exp[iγC ] = exp

[
i

∫
C
dR i ⟨n(R)| ∇R |n(R)⟩

]
, (2.25)

where the Berry connection

A(R) = i ⟨n(R)| ∇R |n(R)⟩ , (2.26)

is always real. While the Berry connection depends on the choice of gauge, the
geometric phase is gauge invariant.

One might be interested in expressing the geometric phase as a surface integral
instead. To do that, we must introduce the Berry curvature, Ω = ∇×A, or

Ωµν =∂µAν(µ, ν)− ∂νAµ(µ, ν)

=− 2 Im ⟨∂µn(µ, ν)|∂νn(µ, ν)⟩ . (2.27)

In general one finds the relation [26]

exp

[
−i

∮
∂S

A · dR
]
= exp

[
−i

∫
S
ΩµνdSµν

]
. (2.28)

In the case where the Berry connection is smooth over the whole surface one can
directly invoke Stoke’s theorem to show that∮

∂S

A · dR =

∫
S
ΩµνdSµν . (2.29)

If the Berry connection is instead piecewise smooth one has to divide the surface of
integration into different smooth parts and apply Stoke’s theorem independently in
each surface. The discussion above describes the evolution of an isolated eigenstate.
The extension to multiple states is straight-forward [26].

2.3.2 Polarization

Attempts to adapt the formulation of polarization from finite systems to bulk
systems proved elusive until the development of the modern theory of polarization
[22–27]. A crucial characteristic of the bulk polarization is that it is not itself
a physical observable. Only changes in the bulk polarization can be measured,
in the form of currents. An important step in this direction was taken by King-
Smith and Vanderbilt [27]. Using perturbation theory they computed the change
of polarization when a parameter (λ) is changed adiabatically. They found that

15



CHAPTER 2. TOPOLOGICAL INSULATORS

the derivative of the polarization is given by the integral of a Berry curvature in
the (λ, k) space,

∂λPBloch = −
∑
µ∈occ

∫ 2π

0

dk

2π
2Im ⟨∂λukµ|∂kukµ⟩ , (2.30)

where |ukµ⟩ are the eigenstates of the Bloch Hamiltonian. The polarization ob-
tained using these eigenstates is denoted as PBloch, following the notation in refer-
ence [28].

The total change in the bulk polarization by the adiabatic evolution of λ is
therefore given by the Berry flux inside the region {λ ∈ [λi, λf ], k ∈ [0, 2π)}.
Using the fact that the Berry curvature is gauge-invariant we can find the path-
independent expression for the change of the bulk polarization between two states
λi and λf as

∆PBloch
λi,λf

=
1

2π

∑
µ∈occ

[γµ(λf )− γµ(λi)], (2.31)

where

γµ(λ) =

∫ 2π

0
dk Aµ(k, λ) (2.32)

is known as the Zak phase [26,107] for band µ and Aµ(k, λ) = i ⟨ukµ(λ)|∂kukµ(λ)⟩
is the Berry connection. We can therefore identify the polarization with the total
Zak phase,

PBloch =
1

2π

∑
µ∈occ

γµ. (2.33)

Note that, unless one knows the complete evolution of the phase along the path,
the total change in the phase can only be known up to a 2π factor, and the change
of the polarization can only be defined modulo 1.

One of the challenges that appears when trying to adapt the formulation from
finite systems to periodic systems is that the position operator is not periodic itself.
Resta [24] proposed that when dealing with bulk systems, the position should
be treated as an angle instead, defining a meaningful average of the many-body
position operator as 〈

X̂
〉
Ψ
≡ L

2π
Im ln ⟨Ψ| e−i

2π
L
X̂ |Ψ⟩ , (2.34)

for any general state |Ψ⟩, where the many-body position operator can be computed
from the single-particle ones by X̂ =

∑
i x̂in̂i. Based on this position average, one
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can define a bulk polarization as

P = lim
L→∞

1

L

〈
X̂
〉
0
, (2.35)

which is now naturally defined modulo 1.
The definition of polarizations PBloch, Eq. (2.33), and P, Eq. (2.35), have dif-

ferent motivation, but we now show that they are in fact equivalent. Consider
the many-body ground state, a Slater determinant of the occupied single particle
eigenstates

|Ψ0⟩ = A
∏
µ=1

|ψµ⟩ , (2.36)

whereA stands for antisymmetrized. We can now define the state |Ψ′
0⟩ = e−i

2π
L
X̂ |Ψ0⟩,

or equivalently
∣∣ψ′
pµ

〉
= e−i

2π
L
x̂ |ψpµ⟩, so that the expectation value of the position

is given by 〈
X̂
〉
0
=

L

2π
Im ln

〈
Ψ0

∣∣Ψ′
0

〉
. (2.37)

A well-known theorem states that the overlap of two determinants is equal to the
determinant of the overlap matrix among the orbitals [108,109], so that〈

X̂
〉
0
=

L

2π
Im ln detS, (2.38)

where the matrix S is given by

Sµν =
∑
jα

⟨ψµ| e−i
2π
L
x̂ |ψν⟩ , (2.39)

with the indices µ, ν going only over the occupied subspace. The polarization can
then be computed as

P = lim
L→∞

1

2π
Im ln detS. (2.40)

In order to simplify the calculation above, consider the operator, Pocce−i
2π
L
x̂,

where Pocc =
∑

µ∈occ |ψµ⟩ ⟨ψµ| is the projector onto the occupied subspace. It can
be written in block form using the basis {|ψocc⟩ , |ψemp⟩} as

Pocce
−i 2π

L
x̂ =

(
S 0
M 0

)
, (2.41)

where S is the matrix defined above and M is some other matrix. The determinant
of this operator vanishes because it vanishes for the empty subspace. Instead, we
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consider the operator

I − Pocc + Pocce
−i 2π

L
x̂ =

(
S 0
M I

)
, (2.42)

such that the polarization can now be expressed as

P = lim
L→∞

1

2π
Im ln det[I − Pocc + Pocce

−i 2π
L
x̂]. (2.43)

This expression simplifies numerical computations as well as certain analytical
calculations. In the translationally invariant case, using the Bloch states one arrives
to

P = lim
L→∞

1

2π
Im ln

{
(−1)ν(L−1)

∏
k

det′[Sk,k+2π/L]

}

= lim
L→∞

1

2π
Im ln

{∏
k

det′[Sk,k+2π/L]

}
+ ν

L− 1

2
. (2.44)

Taking the continuous limit, the first term results in the Zak phase, defined in
Eq. (2.32). Therefore, in the thermodynamic limit the polarization is given by

P =
1

2π
γZ + ν

L− 1

2
. (2.45)

Indeed, the polarization introduced by Resta can be regarded as a generalization of
the Zak phase to position space. Note that, since only changes in the polarization
are physical, the constant term is irrelevant.

Using the expression in Eq. (2.43) we can now show how symmetries quantize
the polarization. Consider first particle-hole symmetry, see Eq. (2.14). Acting on
the projector gives

UCP
∗
occU

−1
C = 1− Pocc, (2.46)

so that

det
[
I − Pocc + Pocce

−i 2π
L
x̂
]
=det

[
I − UCPoccU

−1
C + UCPocce

−i 2π
L
x̂U−1

C

]
=det

[
P ∗
occ + (I − P ∗

occ)e
−i 2π

L
x̂
]
, (2.47)

where we assume that the symmetry does not affect the position operator, UC x̂U−1
C =

x̂. Taking the exponential out we have

det
[
P ∗
occ + (I − P ∗

occ)e
−i 2π

L
x̂
]
=det

[
P ∗
occe

i 2π
L
x̂ + (I − P ∗

occ)
]
det

[
e−i

2π
L
x̂
]

=det
[
I − Pocc + Pocce

−i 2π
L
x̂
]∗

(2.48)
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where we used that det
[
ei

2π
L
x̂
]
= 1. This implies that the polarization fulfills

P = −P . Since it is defined modulo 1, this leads to only two possible values,
P = 0, 1/2. A similar calculation can be done for the chiral symmetry,

SPoccS = 1− Pocc, (2.49)

and

det
[
I − Pocc + Pocce

−i 2π
L
x̂
]
=det

[
I − SPoccS + SPocce

−i 2π
L
x̂S

]
=det

[
Pocc + (I − Pocc)e

−i 2π
L
x̂
]
, (2.50)

where once again we assume that the position operator commutes with the sym-
metry, [S, x̂] = 0. We again take the exponential out,

det
[
Pocc + (I − Pocc)e

−i 2π
L
x̂
]
=det

[
Pocce

i 2π
L
x̂ + (I − Pocc)

]
det

[
e−i

2π
L
x̂
]

=det
[
I − Pocc + Pocce

i 2π
L
x̂
]

=det
[
I + (−I + e−i

2π
L
x̂)Pocc

]∗
, (2.51)

where in the last step we have used det[A] = det
[
A†]∗ and the fact that the

projector is Hermitian. This is almost the same result as for particle-hole, with the
exception that the exponential and the projector are commuted. To get the same
form we make use of Sylvester’s identity, det[I +AB] = det[I +BA], such that

det
[
I − Pocc + Pocce

−i 2π
L
x̂
]
=det

[
I + Pocc(−I + e−i

2π
L
x̂)
]∗

=det
[
I − Pocc + Pocce

−i 2π
L
x̂
]∗
, (2.52)

recovering the same quantization of the polarization. Finally we consider the case
of inversion symmetry. Consider the projector matrix in position space, P occ,

UPP occU
−1
P = P

T

occ, (2.53)

det
[
I − P occ + P occe

−i 2π
L
x
]
=det

[
I − UPP occU

−1
P + UPP occe

−i 2π
L
xU−1

P

]
=det

[
I − P

∗
occ + P

∗
occe

i 2π
L
x
]

=det
[
I − P occ + P occe

−i 2π
L
x
]∗
, (2.54)
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where we used that P occ is Hermitian. We recover quantization as well. Note
that as opposed to particle-hole and chiral symmetry, there is no assumption other
than the existence of the symmetry. In both particle-hole and chiral symmetry,
quantization is conditional to the commutation of the symmetry with the position
operator. This, however, is a relatively common situation in simple models and it
applies to the model used throughout this thesis, see Eq. (2.20).

Another way of defining a polarization that does not rely on translational in-
variance is by computing the geometric phase for U(1) flux insertion for a periodic
system [28]. If the flux is introduced homogeneously, through a vector potential
Ax = Φ/L along the chain, a polarization can be defined as

P =

∫ 2π

0

dΦ

2π
i
〈
ΨΦ

∣∣ ∂Φ ∣∣ΨΦ
〉
+

1

2π
Im ln

〈
Ψ0

∣∣ e2πiP̂ ∣∣Ψ2π
〉
, (2.55)

where
∣∣ΨΦ

〉
is the ground state in the presence of a flux Φ and P̂ = 1

L

∑
jα jn̂jα is

the polarization operator. The second term is needed since the ground state is not
periodic in Φ, consequence of Ax(Φ+2π) ̸= Ax(Φ). This polarization is equivalent
in the thermodynamic limit to the one introduced by Resta in Eq. (2.44) [28].

Instead of introducing the flux homogeneously one can also introduce it by im-
posing a twisted boundary condition between sites i = 1 and i = L. This is
equivalent to performing the gauge transformation∣∣∣Ψ̃Φ

〉
= eiΦP̂

∣∣ΨΦ
〉
, (2.56)

which makes
∣∣∣Ψ̃Φ

0

〉
fully periodic in Φ. We can now define the bulk polarization

P̃ =

∫ 2π

0

dΦ

2π
i
〈
Ψ̃Φ

∣∣∣ ∂Φ ∣∣∣Ψ̃Φ
〉
. (2.57)

Changes in this bulk polarization are related to charge transported across the
twisted boundary [28], while changes in P give the total charge transported through
the system. This bulk polarization is related to the homogeneous bulk polarization
[28] by

P = P̃ + P̃0, (2.58)

where

P̃0 =

∫ 2π

0

dΦ

2π

〈
Ψ̃Φ

∣∣∣ P̂ ∣∣∣Ψ̃Φ
〉
. (2.59)
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2.3.3 Winding number

The winding number is a Z topological invariant defined for systems with chiral
symmetry [20] in odd dimensions. In the diagonal basis of the chiral symmetry
operator the chiral symmetric Bloch Hamiltonian can be written in block form as

H(k) =

(
0 h(k)

h†(k) 0

)
, (2.60)

where h(k) can be a matrix. It is more useful to work with the flat-band Hamilto-
nian, defined as

Q(k) =H(k)(H(k)2)−1/2

=

(
0 q(k)

q†(k) 0

)
. (2.61)

Note that since Q only has eigenvalues ±1, Q2 = I and therefore q† = q−1 is a
unitary matrix. The determinant of the off-diagonal block, q(k), is a phase. The
winding number is the number of times that this phase winds along the Brillouin
zone,

ν =

∫ π

−π

dk

2π
∂kIm log det[q(k)], (2.62)

which is by definition an integer, as opposed to the polarization. Alternatively,
using that log detM = Tr logM , it can also be written as

ν =

∫ π

−π

dk

2πi
Tr[q(k)†∂kq(k)], (2.63)

which is another form typically used. There are also generalizations of the winding
number for systems without translational invariance [51, 110, 111] which will be
discussed in section 3.4.

In particular, for a two-band system with chiral symmetry, S = σz, the Bloch
Hamiltonian is given by H(k) = h(k) · σ, with hz(k) = 0. The winding number is
then given by

ν =

∫ π

−π

dk

2π
∂kIm log

[
hx(k)− ihy(k)√
hx(k)2 + hy(k)2

]

=

∫ π

−π

dk

2π
∂kIm log[hx(k)− ihy(k)] (2.64)
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i.e. the winding number is the number of times the complex number hx(k)− ihy(k)
winds around the origin on the complex plane, which is the same as the number
of times h(k) winds around the origin in the x− y plane. The winding number is
also found in the literature expressed as

ν =
1

2π

∮
dk

(∂khx(k))hy(k)− hx(k)∂khy(k)

hx(k)2 + hy(k)2
. (2.65)

All the different expressions for the polarization given here, which are equivalent
to each other for gapped systems, will be used in the accompanying papers.

The winding number is also related to the Zak phase. In the case of the two-band
model introduced above, this is easy to show. The eigenstates of a chiral-symmetric
two-band system can be expressed as

|uk±⟩ =
1√
2

(
±q(k)

1

)
. (2.66)

Using these eigenstates, the Zak phase can be now computed as

γZ =

∫ π

−π
dk i ⟨uk−| ∂k |uk−⟩

=
1

2

∫ π

−π
dk iq∗(k)∂kq(k)

=πνmod 2π. (2.67)

Winding number of the model Hamiltonian
For κ = κ′ = 0 the system has time-reversal, particle-hole and chiral symmetries.

It is therefore in the BDI class, and has the phase diagram shown in Fig. 2.3,
presenting phases with winding number ν = 0, 1 and 2, the latter being fundamental
to showcase our results. The κ term breaks particle-hole and chiral symmetries,
while the κ′ term breaks time-reversal and chiral symmetries.

In Fig.2.3(b-e) we show the energy spectrum of the corresponding open system
(surface spectrum) for the dashed line in the phase diagram for different values
of the symmetry breaking terms, κ, κ′. The edge states are plotted in red and
blue, to show their degeneracy. For the case with κ = κ′ = 0 (a) we see that the
winding number is equal to the number of zero-energy modes in each phase. For
κ = 0, κ′ ̸= 0 (b) the system is in the D class, with only a Z2 invariant. All the
phases with an even winding number in the BDI class now become indistinguishable
from the trivial phase. Accordingly, the κ term allows the former two zero-energy
modes to hybridize and split from zero energy. For κ ̸= 0, κ′ = 0 ( ̸= 0)the system
is in the AI (A) class, which is trivial for 1D, and no zero-energy states are found
anywhere.
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Figure 2.3: (a) Phase diagram for the model we use (see Eq. (2.8)) in the BDI class (for
κ = κ′ = 0) showing the winding number of each region. (b-e) Edge spectrum along the
dashed line in the phase diagram (i.e. t2 = −2t1) for different values of κ and κ′. The
edge states are plotted in blue and red, to show their degeneracy.

2.3.4 Chern number

In 2D the relevant Z invariant is the Chern number. The Chern number is defined
as the total geometric flux piercing a closed surface. In translationally invariant
systems in 2D, this surface corresponds to the torus defined by the two momentum
variables,

C =
1

2π

∫
Sk2

Ω · dk2, (2.68)

where Ω is the Berry curvature defined in equation (2.27). The Chern number is
equal to the number of vortices in the surface. As mentioned in section 2.3.1, using
Stoke’s theorem this computation can be simplified to

C =
1

2π

∮
∂Sk2

A · dk, (2.69)

given that the Berry connection is smooth over the whole surface. If not, one has
to divide it into several surfaces where it is smooth, which is always possible but
might not be a trivial task.

Although not as a topological invariant in the sense described in this chapter, the
Chern number is also of interest in the adiabatic evolution of 1D systems, where
it is computed over the torus defined by the momentum and another variable, λ,
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Figure 2.4: γZ/2π calculated for the model in Eq. (2.8) with t2 = κ′ = 0. Obtained
in the smooth gauge where the second element of the occupied eigenstate of the Bloch
Hamiltonian is kept real. Other gauge choices simply move the branch cut around. The
Zak phase winds once as we go around the gapless point at t0 = t1 and κ = 0. Figure
equivalent to Fig.9 from paper I.

which the system cycles over,

C =

∫ π

−π

dk

2π

∮
λ
dλΩkλ. (2.70)

Chern number on the model Hamiltonian: Using the model (see Eq.(2.10))
we can now give an example of the appearance of Chern numbers in 1D systems.
Consider the SSH model with the on-site potential κ, (t2 = κ′ = 0), known as
the Rice-Mele model [12, 112]. We will consider the Chern numbers of loops in
the parameter space (t0, κ) parametrized by θ. Using Stoke’s theorem the total
geometric flux in a cylinder defined by (k : −π → π, θ : θi → θf ) is given by

Φ =

∫ θf

θi

dθ ∂θγZ(θ). (2.71)

We show the Zak phase in the (t0, κ) parameter space in Fig. 2.4, where we
computed it using a gauge where the second element of |uk⟩ is real. For κ = 0
this gauge is equal to the one used in Eq.(2.66). There is a degenerate point at
(t0 = t1, κ = 0) that is reflected in the geometric phase as the origin of a branch
cut. We can see that there are two types of loops one can consider. A (counter-
clockwise) loop around the degenerate point will give C = 1 while a loop that does
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not enclose the degenerate point will give C = 0. The Chern number gives the
change in the Zak phase, or Polarization, along the loop, and therefore after a loop
is completed C electrons are pumped through the chain. This effect is known as
topological charge pumping [7, 113] .

2.3.5 Wannier states

A more intuitive way of understanding the bulk polarization and its relation to
the winding and Chern numbers is given in terms of Wannier states [26]. Consider
again a system with translational invariance. Wannier states are defined as Fourier
transform of Bloch states,

|wjµ⟩ =
1√
L

∑
k

e−ikj |ψkµ⟩ , (2.72)

where µ is the corresponding energy band. However, since there is a gauge freedom
in how we choose Bloch states, Wannier states are not unique, and in general they
are given by

|wjµ⟩ =
1√
L

∑
k

e−ikjeiβµ(k) |ψkµ⟩ , (2.73)

where β(k) ∈ R is a periodic function of the momentum. Independently of β(k),
Wannier states are orthogonal and related by translation,

wjµ(lα) =
1√
L

∑
k

e−ik(j−l)eiβµ(k)uαkµ

=w0µ(l − j, α), (2.74)

where wjµ(lα) = ⟨lα|wjµ⟩, with l labelling position and α the internal degrees of
freedom. All the Wannier states have the same shape but are shifted an integer
site from each other. Because of this we can measure their total spreading as

Ω =
∑
µ

[⟨w0µ|x2 |w0µ⟩ − (⟨w0µ|x |w0µ⟩)2]. (2.75)

Their spreading depends on the choice of β(k), but they are always found to be
localized. The spread can further be decomposed into Ω = ΩI + Ω̃ [114] where

ΩI =
∑
µ

[⟨w0µ|x2 |w0µ⟩ −
∑
jν

| ⟨wjν |x |w0µ⟩ |2]

Ω̃ =
∑
µ

∑
j,ν ̸=0,µ

| ⟨wjν |x |w0µ⟩ |2. (2.76)
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The first term ΩI is found to be gauge invariant so in order to obtain maximally
localized Wannier states one has to choose a β(k) that makes Ω̃ vanish. The eigen-
states of CX̂C, where C is the full correlation matrix (the projector onto the occu-
pied bands) and X̂ is the many-body position operator, are Wannier states [115].
Since the eigenstates of CX̂C fulfill ⟨wjν |x |w0µ⟩ = 0 for j ̸= 0, Ω̃ vanishes and
they are maximally localized. Consider now the average position of the Wannier
states, also known as the Wannier centers,

⟨w0µ|x |w0µ⟩ =
∫ L

0

dx

L

∫ 2π

0

dk

2π

∫ 2π

0

dp

2π
⟨ukµ| e−iβµ(k)e−ikxxeipxeiβµ(p) |upµ⟩

=

∫ L

0

dx

L

∫ 2π

0

dk

2π

∫ 2π

0

dp

2π
⟨ukµ| e−iβµ(k)e−ikx

(
−i∂peipx

)
eiβµ(p) |upµ⟩

=

∫ L

0

dx

L

∫ 2π

0

dk

2π
⟨ukµ| e−iβµ(k)e−ikxeipxeiβµ(p) |upµ⟩

∣∣∣p=2π

p=0

−
∫ L

0

dx

L

∫ 2π

0

dk

2π

∫ 2π

0

dp

2π
⟨ukµ| e−iβµ(k)e−ikxeipx

(
−i∂peiβµ(p)

)
|upµ⟩

−
∫ L

0

dx

L

∫ 2π

0

dk

2π

∫ 2π

0

dp

2π
⟨ukµ| e−iβµ(k)e−ikxeipxeiβµ(p) (−i∂p |upµ⟩) .

(2.77)

The first term vanishes because the integrand is periodic in p. The second one,
after integrating x and k gives

−
∫ 2π

0

dp

2π
⟨upµ| e−iβµ(p)

(
−i∂peiβµ(p)

)
|upµ⟩

=−
∫ 2π

0

dp

2π
∂pβµ(p)

=0, (2.78)

which also vanishes since βµ(p) is also periodic. Finally the Wannier center gives

〈
w0µ

∣∣x ∣∣w0µ
〉
=

∫ 2π

0

dk

2π
⟨ukµ| i∂k |ukµ⟩ . (2.79)

which we can identify with the bulk polarization associated with the band µ, see
Eq. (2.33). Note that the result is independent of the gauge choice of βµ(k). In the
context of Wannier states the bulk polarization recovers its original interpretation
if one thinks of the Wannier states as describing point particles situated at the
Wannier center.
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Since all Wannier states are related by translation of one lattice site, the Wan-
nier centers ⟨x⟩0µ and ⟨x⟩0µ̃ = ⟨x⟩0µ + n, with n being an integer, describe two
indistinguishable states. This is related to the fact, mentioned above, that the
bulk polarization can be only determined modulo 1. However, if we can follow the
adiabatic evolution between the two states, we would then be able to differentiate
between a case with ∆PBloch = 0, where the Wannier states would come back to
the same point, to a case with ∆PBloch = n, where the Wannier states would shift
n lattice sites. For a closed path, this is precisely the quantized charge transport
discussed at the end of last section in relation to the Chern number.

2.4 Entanglement spectrum

2.4.1 Entanglement and topology

Quantum entanglement has played an important role in the characterization of
topological phases, in particular describing topological order [29], in systems like
the fractional quantum Hall liquid [6, 116–118] or quantum spin liquids [119, 120].
These are strongly-correlated systems which are described in the low-energy and
long-distance limit by an effective topological quantum field theory (TQFT). These
phases cannot be reproduced in non-interacting systems, as interactions play an
essential role in topological order. Like SPT phases, topologically ordered phases
have features which are very robust against perturbations and do not depend on
details of the system. Topologically ordered phases, however, are more fundamental
than SPT phases, as they do not require symmetries to protect the phase. The first
measure of entanglement used to characterize these phases was the entanglement
entropy [30,31,121], which we introduce now.

The Hilbert space of a system, H, can be partitioned into two different subspaces,
HA and HB. The two most common are spatial partitions [31], which we consider
in this chapter, and particle-number partitions [121]. The ground state of the
system can then be decomposed, using a Schmidt decomposition, as

|Ψ0⟩ =
∑
i

ci |ψi⟩A ⊗ |ψi⟩B , (2.80)

where |ψi⟩A/B form a basis of the corresponding Hilbert subspace. The coefficients
ci have information on the entanglement of the ground state between the two
subspaces. The reduced density matrix of the system can be expressed as

ρA =
∑
i

c2i |ψi⟩A ⟨ψi|A , (2.81)
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and the entanglement entropy is then defined as the von Neumann entropy of the
reduced density matrix,

S =− Tr[ρAlogρA]

=
∑
i

c2i log[c
2
i ]. (2.82)

The coefficients c2i are also eigenvalues of ρB, so the entanglement entropy can be
computed from the reduced density matrix of either block. It was found [30, 31]
that the entanglement entropy for the ground state of a gapped 2D system has the
general form

S = αL− γ +O(1/L) + ..., (2.83)

where L is the size of the boundary of the subsystem and γ is the so-called topo-
logical entanglement entropy, as γ ̸= 0 implies non-trivial topological order. This
quantity is related to the total quantum dimension of the corresponding topological
quantum field theory (TQFT) describing the phase, γ = logD, which is a measure
of topological order. However, different TQFTs can have the same total quantum
dimension and therefore the topological entanglement entropy is not, in general,
sufficient to fully characterize the topology of the system.

In general, the reduced density matrix can be expressed as

ρA = e−ĤE , (2.84)

where ĤE is known as the entanglement Hamiltonian, and its spectrum is known
as the entanglement spectrum, which is equivalent to the spectrum of the reduced
density matrix. The entanglement entropy is therefore equivalent to the ther-
modynamic entropy of the system described by the entanglement Hamiltonian at
temperature T = 1/kB. Li and Haldane proposed to use the entanglement spec-
trum [32] to characterize topologically ordered states, as it can provide much more
information than the topological entanglement entropy. This was shown for Ki-
taev spin liquids [122] as well as for fractional quantum Hall [33]. For certain
systems the low-lying spectrum of the entanglement Hamiltonian was found to be
a fingerprint of the conformal field theory (CFT) that characterizes the topological
order [32,123].

The entanglement spectrum also proved to be a valuable tool in the study of
non-interacting topological insulator and superconductor phases, where the topo-
logical entanglement entropy vanishes. In these systems the entanglement spec-
trum was shown to provide information about the edge spectrum. In particular
it is equivalent to the spectrum of the flat-band Hamiltonian of the system with
open boundaries. This was shown both for gapped systems [124] as well as gapless

28



2.4. ENTANGLEMENT SPECTRUM

systems [98] in higher dimensions. Even for non-interacting systems the reduced
density matrix, and the entanglement spectrum, is difficult to compute. However,
as noted by Peschel [36], for non-interacting systems the reduced density matrix
can formally be expressed as

ρA = N e−ĤA , (2.85)

where N is a normalization and ĤA is now is a quadratic Hamiltonian, i.e. it
describes free fermions. The entanglement spectrum can therefore be obtained
from single-particle quantities, making it much easier to compute, see next section
for more details.

As mentioned above the entanglement spectrum is a valuable tool in the study
of topological order, but it is unclear what other information might be encoded
in it beyond signatures of edge states, or how to extract it. This is also an open
question for non-interacting systems, which are much easier to deal with. Our
motivation in this part of the thesis is to study the entanglement spectrum of non-
interacting systems as a stepping stone towards improving our understanding of
the entanglement spectrum of strongly correlated systems.

2.4.2 Correlation matrix spectrum

In the case of non-interacting systems, such as the ones we focus on in this thesis,
calculating the ES can be greatly simplified by using the correlation matrix, as
shown by Peschel [36]. The entanglement Hamiltonian can be written as

ĤA =
∑
ij∈A

c†iHA,ijcj , (2.86)

where i, j can be any combination of numbers labelling the fermions in subsystem
A. The entanglement Hamiltonian can be diagonalized as

ĤA =
∑
µ

εµγ
†
µγµ, (2.87)

where the new fermions are defined by ci =
∑

µ ψ
i
µγµ, with (U)µi = ψµi being the

matrix that diagonalizes the single-particle entanglement Hamiltonian. In the fol-
lowing we will denote the spectrum of the single-particle entanglement Hamiltonian
HA, as single-particle entanglement spectrum.

We are now interested in computing the correlation matrix, Cij =
〈
c†icj

〉
. In

order to do so, let us first consider the expectation value〈
γ†µγν

〉
=Tr[ρAγ

†
µγν ]

=NTr[e−
∑

λ ελγ
†
λγλγ†µγν ]. (2.88)
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Notice first that

e−
∑

λ ελγ
†
λγλγ†µ |nµ = 0⟩ = γ†µe

−εµe−
∑

λ ελγ
†
λγλ |nµ = 0⟩

e−
∑

λ ελγ
†
λγλγ†µ |nµ = 1⟩ = γ†µe

−εµe−
∑

λ ελγ
†
λγλ |nµ = 1⟩ = 0. (2.89)

Using this we can rewrite the expectation value as〈
γ†µγν

〉
=e−εµNTr[γ†µe

−
∑

λ ελγ
†
λγλγν ]

=e−εµ
〈
γνγ

†
µ

〉
=e−εµ(δµν −

〈
γ†µγν

〉
), (2.90)

and therefore 〈
γ†µγν

〉
=

1

1 + eεµ
δµν . (2.91)

We can now compute the elements of the subsystem correlation matrix as

CA,ij =
〈
c†icj

〉
=
∑
µν

〈
(γ†µψ

∗ i
µ )(ψjνγν)

〉
=
∑
µ

ψ∗ i
µ ψ

j
µ

1

1 + eεµ
, (2.92)

where i, j ∈ A. The eigenvalues of the subsystem correlation matrix, which we
will denote by ξµ, are related to the single-particle eigenvalues of the entanglement
Hamiltonian as

ξµ = (1 + e−εµ)−1

εµ = log[(1− ξµ)/ξµ], (2.93)

with the eigenstates being equal. The full correlation matrix is nothing else than
the projector onto the occupied bands, and therefore for a gapped system at zero
temperature it has eigenvalues 0 and 1. The eigenvalues of the subsystem corre-
lation matrix, however, may lay anywhere in between, ξµ ∈ [0, 1]. The spectrum
of the subsystem correlation matrix is denoted, following reference [39], as the
entanglement occupancy spectrum (EOS).

Once the relation between the EOS and the single-particle ES has been estab-
lished, it is also easy to relate the ES to the EOS [125]. Using the diagonal form
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of the entanglement Hamiltonian the reduced density matrix can be obtained as

ρA =
∏
µ

e−εµγ
†
µγµ

1 + e−εµ
. (2.94)

The eigenstates of the reduced density operator are then obtained by occupying
different numbers of the single-particle eigenstates of CA, according to a set of
occupation numbers {ni}. In terms of the EOS, the eigenvalues in the ES are then
given by

λ[{ni}] =
∏
µ∈occ

ξµ
∏

µ∈emp
(1− ξµ)

=
∏
µ

(1− ξµ)

(
ξµ

1− ξµ

)nµ
i

. (2.95)

Since the information of the ES is already contained in the EOS, and it is con-
siderably easier to work with the latter, we will focus on the EOS in this thesis.

2.4.3 Properties of the Entanglement Occupancy Spectrum

In the introduction of this chapter we mentioned that the ES has information
about the edge-spectrum of the corresponding system with open boundaries [32,
98,124]. For a gapped system at zero temperature the correlation matrix can also
be expressed in terms of the flat-band Hamiltonian, Q = H · (H−2)1/2, as

C =
1

2
(I −Q). (2.96)

A Hamiltonian invariant under, for example, a local chiral symmetry S, SHS−1 =
−H, will result in

SCS−1 =
1

2
(I − SHS−1 · [(SHS−1)2]1/2).

=
1

2
(I +H · (H2)1/2)

=I − C. (2.97)

The same applies to the subsystem correlation matrix, SCAS−1 = IA − CA.
Consider an eigenstate |ψ⟩ of CA that is also an eigenstate of the symmetry
S |ψ⟩ = ± |ψ⟩. Applying the chiral symmetry on CA and acting on the eigenstate
with the transformed matrix gives

SCAS |ψ⟩ =(IA − CA) |ψ⟩
=(1− ξ) |ψ⟩ . (2.98)
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On the other hand, using that the eigenstate is also an eigenstate of the symmetry,
we have

SCAS |ψ⟩ =± SCA |ψ⟩
=± ξS |ψ⟩
=ξ |ψ⟩ . (2.99)

The symmetric eigenstate must have a corresponding eigenvalue ξ = 1/2. These
are the virtual topological edge states. A similar consideration can be made for
other symmetries, such as particle-hole symmetry.

In Fig. 2.5 we show the EOS and the surface spectrum for the dashed line in
the phase diagram in Fig. 2.3 (t2 = −2t1, κ = κ′ = 0). In Fig. 2.5(a) and (b)
we show the result for a large system (L = 200). As we saw before, the surface
spectrum presents a number of zero-energy states per edge equal to the winding
number of the system, and gapless points where the topological transitions happen.
These zero-energy topological edge states are reflected in the EOS as 1/2 virtual
topological edge states. The transition points are marked by a discontinuity where
the edge states leave ξ = 1/2 and meet with the bulk. In Fig. 2.5(c) and (d) we
look at the same plots for a very small system (L = 12), where the situation is very
different. In the surface spectrum there is a finite size effect where the edge states
hybridize and split from zero energy. As a result, it is not so obvious looking at
the surface spectrum in which topological phase the system is in or even where the
transitions are. In the EOS, however, the finite size effect is generically weaker,
given that it is computed for PBC. Most remarkably, in the ν = 1 phase there is
no hybridization of the 1/2 states even though they sit on top of each other. This
behaviour of the EOS has been observed for certain systems [126]. This is no longer
true for the ν = 2 phase but the gap between the virtual topological edge modes
and the bulk is still large. Furthermore, the transition points can still be easily
identified by discontinuities in the EOS. The properties of the edge are therefore
often easier to interpret using the EOS rather than the surface energy spectrum.

It is interesting to note that for the EOS shown here all states are doubly degen-
erate. This is in fact a consequence of translational invariance. Consider the full
correlation function expressed as

C =

(
CA CAB
C†
AB CB

)
. (2.100)
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Figure 2.5: Edge spectrum and EOS along the dashed path (i.e. t2 = −2t1) of Fig. 2.3
for parameters κ = κ′ = 0. (a) and (b) are computed for L = 200 sites. (c) and (d) are
computed for a small system of L = 12 sites. In the energy spectrum of the small system
it is difficult to tell where the phase transition happens due to a finite size effect. This
finite size effect is much smaller in the EOS where, even for a small system, discontinuities
in the spectrum signal phase transitions.

Using the projector property, C2 = C, we obtain the following identities

CA(1− CA) = CABC
†
AB

CB(1− CB) = C†
ABCAB

CACAB + CABCB = CAB

C†
ABCA + CBC

†
AB = C†

AB. (2.101)

If |ψ⟩ is an eigenstate of CA with eigenvalue ξ, we have

CB(C
†
AB |ψ⟩) =(C†

AB − C†
ABCA) |ψ⟩

=(1− ξ)(C†
AB |ψ⟩), (2.102)
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i.e. C†
AB |ψ⟩ is an eigenstate of CB with eigenvalue 1− ξ. This in turn implies that

the spectra of CA and CB are symmetric with respect of each other. If the system
furthermore posses translational invariance, such that CB = CA, we have

CA(C
†
AB |ψ⟩) =(1− ξ)(C†

AB |ψ⟩), (2.103)

and the EOS is itself symmetric. This implies that if the ES has an eigenvalue ε,
−ε must also be an eigenvalue of the ES. This in combination with an additional
symmetry such as chiral symmetry makes the EOS two-fold degenerate.

As it is implied, the 1/2 virtual topological edge states localize on the virtual
edges, but there is a more general relation between the eigenvalues of the EOS and
localization. It was found by Peschel that all low-lying states in the ES are localized
at the boundaries [37] for large enough systems such that the two virtual cuts are
independent of each other. In Fig. 2.6(a) and (b) we show the first few low-lying
eigenstates in the surface spectrum and EOS, respectively, in the ν = 1 phase. In
the surface spectrum there are only two states that localize on the boundaries of
the system while the rest are bulk states. In the EOS, however, all low-lying states
localize in the virtual edges.

In Fig. 2.6.(c) we show the average position of all the eigenstates of the EOS,
⟨x⟩µ = ⟨ψµ| x̂ |ψµ⟩, ordered by their eigenvalue. We find, apparently, two different
sets of eigenstates. We refer as bulk states those exponentially close to ξ = 0, 1 and
as edge states the states away from ξ = 0, 1 that localize near the virtual edges.
Note that typically the closer an eigenstate is to ξ = 1/2 the more localized it is on
the virtual edge, with the virtual topological edge state being the most localized
on the edge. The reason the bulk states do not follow the trend of the edge states
is purely due to numerical reasons since they are all almost degenerate at ξ ≈ 0, 1.
Note that, since the bulk states are, to a good approximation, also eigenstates of
C they can be expressed as Wannier states [115], which are maximally localized.
This makes the distinction between bulk and edge states somewhat artificial, but we
will keep the nomenclature for practical purposes. Sometimes the low-lying states
around ξ = 1/2 are also found in the literature referred to as ’midgap states’.

2.4.4 Extracting the bulk polarization from the entanglement
occupancy spectrum

In paper I we study how the bulk polarization P̃, defined in Eq (2.57), is encoded
in the EOS and how can it be extracted. First we study the case of systems with
an equispaced ES, which is a typical feature of integrable systems [35]. Equispaced
means that the entanglement energies associated to each virtual edge are given, in
the thermodynamic limit, by εnα = εα+ nδα, where α = L,R labels the two edges
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Figure 2.6: (a) and (b) Low-lying eigenstates of the Hamiltonian with open boundary
conditions and the EOS, respectively. Computed for L = 200 at t0 = 0.9t1, t2 = 0.
(c) Average position of the eigenstates of the EOS (obtained for the same parameters),
⟨x⟩µ = ⟨ψµ| x̂ |ψµ⟩, ordered by their eigenvalue. Generically the closer the eigenvalue is to
1/2, the more localized to the edge a state is. The band around ⟨x⟩µ = 50 corresponds to
near-degenerate bulk states at ξ = 0, 1.

of region A and n is an integer labelling all states. In this type of systems we found
that if we order the eigenvalues of the EOS by their value and we sum up every
other one,

χ =
∑
j

ξ2j−1 mod 1, (2.104)

we could obtain the bulk polarization P̃ in the thermodynamic limit up to a sign,

lim
L→∞

∣∣∣P̃∣∣∣ = lim
L→∞

χmod 1. (2.105)

This means that the bulk polarization could be P̃ = χ or P̃ = 1−χ. This expression
explains previous observations found in the literature about similarities between
the Zak phase and the edge states in the EOS [38, 39]. The two become identical
when there is only one pair of midgap states, away from ξ = 0, 1 [40].
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In the special case of chiral symmetric systems, the relation between the Zak
phase and the virtual topological states becomes especially simple. For each eigen-
value ξ included in χ there is another eigenvalue 1 − ξ in the sum and therefore
their contribution vanishes when taken modulo 1. The only eigenvalues whose
contribution do not vanish are the ones from the virtual topological edge states,
ξ = 1/2. Therefore P̃ = 0 for phases with an even number of virtual topological
edge states while P̃ = 1/2 corresponds to phases with an odd number of them.
This is a well-known consequence of the bulk-boundary correspondence which is
shown here in a new way.

For general non-interacting gapped system in 1D, the formula in Eq. (2.104)
needs to be adapted. Instead of summing up every other eigenvalue, we sum up all
eigenvalues related to the left virtual edge,

χ =
∑
j∈L

ξj mod 1. (2.106)

One can obtain P̃ in the thermodynamic limit as

lim
L→∞

P̃ = lim
L→∞

χmod 1. (2.107)

In practice, see the discussion at the end of section 2.4.3, we define the subspace
L as the one including all eigenstates with ⟨x⟩ < L/4, where L/4 is the center
of region A. How exactly we choose the eigenvalues included in the sum is not
important as long as we include all the edge states from the left virtual edge that
are far from ξ = 0, 1, and none of the ones from the right virtual edge.

The expression above reduces to Eq.(2.105) for systems with an equispaced ES,
and the sign ambiguity comes from summing either over the left virtual edge states
or over the right ones. This result is a consequence of a known correspondence
between the ES and the bulk polarization [127] which is now greatly simplified in
terms of the EOS. In paper I we also show numerical results comparing our method
with the polarization obtained using Resta’s expression (see Eq.(2.40)), using the
long-range SSH model both in the clean limit and in presence of disorder.

2.4.5 Alternative bulk polarization and Chern numbers from the
entanglement occupancy spectrum

In Eq. (2.106) we have to take the modulo 1 because there is an ambiguity in how
many ξ = 1 bulk modes are included into the sum. If we found a way of treating the
bulk modes in a consistent way we could construct an equivalent bulk polarization
defined in R. By opening the system at the bond between j = L/2 and j = L/2+1
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all eigenvalues in the EOS that are not related to the left virtual cut are pushed to
ξ = 0, 1. We then define the alternative bulk polarization P̃o as the one obtained
when we introduce a flux as ∣∣∣Ψ̃Φ

o

〉
= e−iΦN̂A

∣∣∣Ψ̃0
o

〉
(2.108)

to the ground state of the open chain,
∣∣∣Ψ̃0

o

〉
. Note that Φ is not actually a magnetic

flux, as the chain is open, but just a parameter. P̃o is therefore not the actual
polarization of the open chain. This alternative bulk polarization can be obtained
simply as

P̃o = Tr[CA,o], (2.109)

where CA,o is the subsystem correlation matrix for the open chain. Comparing with
Eq.(2.107) we see that P̃o includes all the left edge eigenvalues of the EOS and as
long as the Hamiltonian of the open chain remains gapped, i.e. no states crossing
the Fermi energy, the bulk modes give a continuous contribution to P̃o. This means
that for any two points in parameter space connected by a gapped path, Cλ, the
total change in the bulk polarization over such a path can be obtained as

∆P̃Cλ
= P̃o(λf )− P̃o(λi), ∆P̃Cλ

∈ R, (2.110)

where this change is defined in R, unlike the one introduced in Eq. (2.31).
There is, however, one caveat to using P̃o. For topological phases there will be

zero-energy modes in the open chain and its Hamiltonian is therefore not gapped.
The ground state of the open chain is degenerate and therefore P̃o is not well de-
fined. We can, however, break the symmetries, by using κ ̸= 0 in the model (see
Eq 2.8), and study the bulk polarization in the parameter space (t0, κ), where t0
drives the phase transition. We find that P̃o presents discontinuities at the sym-
metric limit that signal the presence of topological edge states. This was observed
previously in Tr[CA,o] [125].

As mentioned in section 2.3.4 the change in the bulk polarization over a loop is
equal to the correspondent Chern number. In our specific case, the change in the
bulk polarization over a loop in (t0, κ) parametrized by θ gives the Chern number
over the torus defined by (θ,Φ), where Φ is the parameter introduced in Eq. (2.108).
Using P̃, it is given by

C =

∫ 2π

0
dθ ∂θP̃(θ). (2.111)

However, since P̃ is defined modulo 1 one has to be careful when computing the
derivative, as the jumps need to be properly accounted for. If we use P̃o,

C =

∫ 2π

0
dθ ∂θP̃o(θ), (2.112)
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the only contribution to the integral comes from the discontinuities, which only
happen at the symmetric limit κ = 0. Consider a loop that crosses κ = 0 at two
points (t0, 0) and (t′0, 0). If we place t′0 somewhere in the trivial phase there will
be no discontinuities at this point, and the Chern number of this loop can then be
obtained as

C = P̃o(t0, κ = 0+)− P̃o(t0, κ = 0−), (2.113)

see Fig.6 in paper I.
Next we focus on 2D systems and study the bulk polarization for an inversion

symmetric Chern insulator described by the Hamiltonian

H =
∑
iα,jβ

∑
k

c†iα(k)Hiα,jβ(k)cjβ(k),

Hiα,jβ(k) =
1

2
(iσx − σz)δi,j+1 +

1

2
(−iσx − σz)δi,j−1

+(sin(k)σy + [2−m− cos(k)]σz)δij . (2.114)

Considering the torus defined by the two momenta, we can make a virtual cut along
one of the directions and obtain two cylinders. The momentum of the periodic
direction can be regarded as a parameter and the system can be treated effectively
as 1D for each momentum k, such that the discussion above also applies. P̃o(k)
has discontinuities when the gapless modes cross the Fermi energy, which in the
model used can only happen at k = 0, π. We can then use this to compute the
Chern number of the occupied bands as

C = [P̃o(k = 0−)− P̃o(k = −π+)] + [P̃o(k = π−)− P̃o(k = 0+)]. (2.115)

In the context of 2D Chern insulators it was shown that the presence of gapless
modes was encoded in the discontinuities of Tr[CA,o] [125]. The sum of the changes
in the trace at every discontinuity was referred to as the trace index, which was
shown to be equal to the Chern number by relating it to the Hall current. Our
results show this connection in another way by framing Tr[CA,o] as a geometric
quantity.

2.4.6 Wannier states and the entanglement occupancy spectrum

In Section 2.4.4 we discussed a relation between the EOS and the bulk polarization.
The latter is equivalent to the Wannier center, as discussed in Section 2.3.5. How-
ever, the relation between the entanglement spectrum and Wannier states is not
restricted to that quantity. It has been pointed out in the literature [38, 39, 128]
that the subsystem correlation matrix, CA = RAPRA, has the same spectrum
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as PRAP , where P is the occupied band projector and RA is the projector onto
subsystem A. This is due to the fact that both P and RA are projectors. The
form of the operator PRAP has a resemblance to PXP , whose eigenvectors are
the Wannier states and eigenvalues are the Wannier spectrum. By interpolating
between X and RA it has been shown that the EOS and the Wannier spectrum
share some properties, like the spectral flow. It has also been used to estimate
the spacing between entanglement eigenvalues in terms of the Wannier center and
localization properties of the Wannier states [128]. In this section we give a ap-
proximate interpretation of the EOS in terms of Wannier states. The aim is to give
some qualitative understanding of the EOS rather than rigorous relations.

Since they are constructed from the occupied band, Wannier states are eigen-
states of the correlation matrix,

C |wj⟩ = |wj⟩ . (2.116)

This implies that Wannier states that fully localize in subsystem A will also be
eigenstates of CA, with eigenvalue 1. A similar argument can be made with the
empty band Wannier states, which will result in a 0 eigenvalue. These states
correspond to the bulk of the EOS. Wannier states that have weight in both A and
B, will no longer be exact eigenstates of CA, and will contribute to the part of the
spectrum with 0 < ξ < 1.

We consider an ansatz based on truncated Wannier states to approximate the
eigenvectors of CA. A Wannier state can be expressed in terms of subsystem A
and B as

|wj⟩ =
(
|wjA⟩
|wjB⟩

)
. (2.117)

The subsystem correlation matrix is then given by

CA =
∑
j

|wjA⟩ ⟨wjA| . (2.118)

Acting now with |wjA⟩ we have

CA |wjA⟩ = ⟨wjA|wjA⟩ |wjA⟩+
∑
l ̸=j

⟨wlA|wjA⟩ |wlA⟩ . (2.119)

This is an approximate eigenvalue equation, Ax = λxx+ r. From the Bauer-Fike
theorem, CA has an eigenvalue λ such that

|λ− λx| ≤
∥r∥
∥x∥

. (2.120)
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Figure 2.7: (a) and (b) EOS (black dots) and approximation in Eq.(2.121) (blue dots)
for the model in Eq.(2.8) with parameters t2 = −2t1 and system size of L = 120. For
the topological case in (a), with κ = 0 and the trivial case (b) with κ = 0.3t1. In (c) we
show the overlap between the truncated Wannier state |wA⟩ closest to 1/2 and the rest of
Wannier states. Even for the truncated case the overlaps are small, which leads to a small
error in the approximation, see below Eq.(2.121).

The eigenvalues of CA are then approximated by

ξj = ⟨wjA|wjA⟩ , (2.121)

and the error is estimated by

∥r∥
∥x∥

≤
∑
l ̸=j

|⟨wlA|wjA⟩| ×
∥|wlA⟩∥
∥|wjA⟩∥

. (2.122)

The overlap between different Wannier states vanishes in the full system, ⟨wl|wj⟩ =
δjl. We observe numerically that this overlap is small even when the Wannier
states are truncated, see Fig.2.7.(c). To minimize the error further we consider the
Wannier states with highest weight on subsystem A. A similar argument can be
done using the empty band Wannier states, however the corresponding eigenvalues
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can be obtained by using the chiral symmetry of the EOS. There are two sanity
checks we can do to see that the approximation is not bad. A Wannier state
that fully localizes in subsystem A will have ξj = ⟨wjA|wjA⟩ ≈ 1. Secondly, for
a system with chiral or inversion symmetry, the Wannier center is located at a
bond, therefore there must be one Wannier state such that ξj = ⟨wjA|wjA⟩ = 1/2,
corresponding to a topological virtual edge state of the EOS. In Fig.2.7.(a) and
(b) we compare the exact EOS (in black) with the approximate values obtained
using Eq. (2.121) (in blue), for (a) a topological and (b) non-topological case. The
approximation reproduces the EOS qualitatively.

Another interesting thing to note is that this approximation reproduces the result
from paper I, discussed in Section 2.4.4. We want to consider the eigenvalues related
to the right boundary of A. This implies that the Wannier states we must use in
the approximation are those that localize near the right boundary of A. Since the
Wannier states are related by a one-site translation, the eigenvalues related to the
right boundary of A can be obtained as the cumulative weights of a Wannier state.
These can be obtained as

ξµ =

µ∑
x=1

w2(x). (2.123)

The resulting spectrum is the same regardless of the choice of the Wannier state
|w⟩ as long as it has not been truncated by the left boundary. Summing all the
right eigenvalues we have ∑

µ

ξµ =
L∑
µ=1

µ∑
x=1

w2(x)

=
∑
x≤µ

w2(x). (2.124)

The latter double sum can be rewritten into∑
µ

ξµ =

L∑
x=1

L∑
µ=x

w2(x)

=

L∑
x=1

(L+ 1− x)w2(x), (2.125)

Noting than the last term is minus the Wannier center, which is equal to the bulk
polarization, we have ∑

µ

ξµ =− PBloch + (L+ 1), (2.126)
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and we recover the result from paper I, discussed in Section 2.4.4.
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Chapter 3

Topology in critical systems

In the last chapter we discussed the classification of topological insulators and
superconductors, see Section 2.2, where one key assumption is the existence of a
bulk gap. At the critical point between two different topological phases, where there
is no bulk gap, the topological invariants introduced for gapped systems are not
well-defined, as they have to change between different integer values. Furthermore,
when considering topological systems with open boundary conditions (OBC), it
was thought that at the phase transition all edge modes hybridize with the bulk,
as the correlation length diverges. Recently this question was revisited [45–49] and
it was shown that critical systems can indeed host topological zero-energy edge
modes. However, it seems that one needs to introduce new topological invariants
to characterize the topological modes.

Let us consider as an example the winding number defined for two-band gapped
systems with chiral symmetry, defined in Eq. (2.64). There are several expressions
used in the literature that are equivalent to each other when a gap is present, e.g.

ν =
1

2π

∮
dk ∂k Im log[hx(k)− ihy(k)]

=
1

2π

∮
dk

(∂khx(k))hy(k)− hx(k)∂khy(k)

hx(k)2 + hy(k)2
. (3.1)

When computing this winding number at a critical point, at the momenta where
the bands cross each other (hx(kc) = hy(kc) = 0), the two expressions are not
necessarily identical any longer. The first expression is not well defined while the
second one can be well defined in some specific cases, but not in general. To gain
more intuition, we can rewrite the winding number into an expression that depends
explicitly on the eigenstates [110,111] ,

ν =
2i

π

∮
dk Tr[PBPocc(k)PA∂kPocc], (3.2)
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where PA/B = (I ± S)/2 are the projectors onto the two sublattices defined by
the chiral symmetry S, and Pocc(k) is the projector onto the occupied band. Since
the system is gapless, the occupied band is not uniquely defined. Furthermore, in
some critical points, the bands cross each other at some momenta kc. Since there
is a crossing, the occupied band is continuous at this point, but not differentiable,
which makes the winding number ill-defined.

Since the topic only started to attract attention recently, the description of topo-
logical phases in gapless systems is far from being complete. In this chapter we
will give an overview of the different ways that have been proposed for regulariz-
ing the topological invariants at critical points, and discuss their advantages and
shortcomings. We will also discuss the regularization procedure we proposed in
paper III.

3.1 Existence of topological edge modes

Before jumping into the discussion about topological invariants, it is a good exercise
to show that an interphase between a critical and a gapped phase can host a state
exponentially localized at the boundary. Consider again the Bloch Hamiltonian of
the extended SSH chain (see Eq. (2.10)),

H(k) =

(
0 t0 + t1e

ik + t2e
2ik

t0 + t1e
−ik + t2e

−2ik 0

)
=

(
0 f(k)

f(k)∗ 0

)
. (3.3)

The model has a gapless point at k = 0 for t0+ t1+ t2 = 0. Near this point we can
expand into

f(k) = (t0 + t1 + t2) + ik(t1 + 2t2)− k2(t1/2 + 2t2), (3.4)

where we ignore higher order terms. We consider first the case t2 = 0, which
corresponds to the usual SSH chain. We can then transform the Hamiltonian into
real space by making the substitution ik → ∂x,

H(x) =

(
0 (t0 + t1) + t1∂x

(t0 + t1) + t1∂
†
x 0

)
. (3.5)

In this Hamiltonian we can identify the mass term m = t0 + t1, which now we
promote to a position dependent parameter m(x). We use the ansatz Ψ(x) =
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(0, ψ(x)), so that

H(x)Ψ(x) =

(
∂xψ(x) +m(x)ψ(x)

0

)
=0, (3.6)

which is fulfilled by

ψ(x) = Ne−
∫ x
0 dym(y). (3.7)

Before considering critical points, we examine first an interphase between two
gapped phases with

m(x) =

{
+|m0| x > 0.

−|m0| x < 0.
, ψ(x) =

{
Ne−|m0|x x > 0

Ne|m0|x x < 0,
(3.8)

which indeed describes a state localized at the interphase where the mass term
changes sign, as depicted in Fig.3.1.(a). This effect is commonly known as mass
inversion [129] and it is at the source of the bulk-boundary correspondence in
gapped systems.

We can consider now an interphase between the critical phase of the SSH chain
and one of the gapped phases [46], depicted in Fig. 3.1.(b),

m =

{
+|m0| x > 0.

0 x < 0.
, ψ(x) =

{
Ne−|m0|x x > 0

N x < 0.
(3.9)

This solution corresponds to an extended state in the critical phase that decays
into the gapped phase, but no localized topological states are found in this case.
Next, consider again the Hamiltonian obtained by expanding around the gapless
point, Eq. (3.4). We set −(t1/2 + 2t2) = 1 and identify again m = (t0 + t1 + t2)
as a mass term, and κ = −t1 − 2t2 as a kinetic term. We can now express the
Hamiltonian in position space as

H(x) =

(
0 m− κ∂x − ∂2x

m− κ∂†x − ∂† 2x 0

)
. (3.10)

We, again, promote the mass and kinetic term to position dependent quantities,
and use the same ansatz as before, obtaining

H(x)Ψ(x) =

(
m(x)ψ(x)− κ(x)∂xψ(x)− ∂2xψ(x)

0

)
=0, (3.11)
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m(x) < 0 m(x) > 0 m(x) = 0 m(x) > 0

Figure 3.1: Diagram of the interphase between two phases (red and blue) with the
correspondent mass term that characterizes each phase. Zero energy solutions are shown
in black. (a) Interphase between trivial and non-trivial gapped phase. (b) Interphase
between trivial gapless and gapped phases.

Consider now an interphase between a gapless phase and a gapped phase, depicted
in Fig.3.2, where the kinetic term changes sign,

m(x) =

{
+|m0| x > 0.

0 x < 0.
, κ(x) =

{
+|κ0| x > 0

−|κ0| x < 0.
(3.12)

We can now look at a piece-wise solution. In the left, x < 0, we have

0 =∂2xψ(x)− |κ0|∂xψ(x)
=∂x(∂xψ(x)− |κ0|ψ(x)), (3.13)

for which there are two types of solutions. ψ(x) can be a constant as in the case
above with t2 = 0, which corresponds to a gapless extended state. However, now
we have an additional solution where

∂xψ(x)− |κ0|ψ(x) = 0, (3.14)

which is fulfilled by an exponentially decaying state

ψ(x) = Ne|κ0|x x < 0. (3.15)

Consider now the right side of the interphase, x > 0, we have

|m0|ψ(x)− |κ0|∂xψ(x)− ∂2xψ(x) = 0, (3.16)

which is solved by

ψ(x) = N exp

{
−|κ0|x

(
1±

√
1 + 4|m0|/|κ0|2

)
/2

}
x > 0, (3.17)

where both zero-energy solutions decay exponentially in the gapped phase. Thus,
one of the solutions describes a state that is localized at the boundary, despite the
lack of a bulk gap on the left side of the boundary [46]. This seems to indicate that,
just as for gapped phases, there are critical points that have non-trivial topological
phases that host zero-energy edge modes, and trivial critical points that do not.
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m(x) = 0

κ(x) < 0

m(x) > 0

κ(x) > 0

Figure 3.2: Diagram of the interphase between a non-trivial gapless phase (red) and
a trivial gapped phase (blue). Two zero energy solutions are found, an extended state
(black) and a topological boundary mode (red).

fr(k)

fi(k) Cϵ(a)

fr(k)

fi(k) C+(b)

fr(k)

fi(k) C−(c)

Figure 3.3: Representation of the different paths considered in the integrals of (a) νϵ,
(b) ν+ and (c) ν−, where fr(k), fi(k) stand for the real and imaginary parts of f(k),
respectively. For a simple case with only a single zero.

3.2 Half-integer topological invariants

The simplest way one can regularize the winding number in Eq. (2.64) is by re-
moving the problematic points from the integral [46],

νϵ =

∫
|k−kc|>ϵ

dk

2π
∂k Im log[hx(k)− ihy(k)] (3.18)

for any number of crossing points, kc. Consider the function f(k) = hx(k)− ihy(k)
in the complex plane. The integrating path, which we also denote by Cϵ, is sketched
in Fig. 3.3.(a) for a simple example with a single zero. We introduce now a small
perturbation that gaps the system, i.e. moves f(k) away from the zero. This can
be done in two ways, paths C+ and C− as shown in Fig. 3.3.(b) and (c), and the
resulting winding numbers ν+ and ν− correspond to the winding numbers of the
two adjacent gapped phases.

It is now interesting to consider path C+−Cϵ. In this path the function f(k) has
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a constant norm, f(k) = ρ0e
iϕ(k), and the integral can be approximated as

lim
ϵ→0

ν+ − νϵ = lim
ϵ→0

∫
C+−Cϵ

dk

2π
∂k Im log

(
ρ0e

iϕ(k)
)

=

∫ π/2

3π/2

dϕ

2π
∂ϕ Im log

(
ρ0e

iϕ
)

=− 1

2
. (3.19)

Similarly, for the path C− − Cϵ one obtains

lim
ϵ→0

ν− − νϵ =
1

2
. (3.20)

Combining both we obtain that

lim
ϵ→0

νϵ =
ν+ + ν−

2
. (3.21)

This implies that the regularized winding number νϵ, in the infinitesimal limit,
is the average of the winding numbers of the gapped phases that surround the
gapless point [46]. It can take half-integer values whenever the transition changes
the winding number of the gapped phases by an odd integer. This argument can
be generalized to other examples with higher winding or a higher number of zeros
with the same result.

This regularization procedure is not unique to the winding number. It can be
generalized to any topological invariant defined in momentum space, as long as
the system only has isolated gapless points. In particular, this regularization was
also applied to the Chern number [46], resulting in a Chern number at the critical
point that is also the average of the Chern numbers of the adjacent gapped phases.
Even though this winding number is quantized and it serves to distinguish certain
topological phases, it has no direct connection to edge modes, as different critical
points (between phases with ν = 0 and 3, or between phases with ν = 1 and 2)
can have the same winding number (ν = 3/2) but different number of edge modes.
This will be explored in the next section.

There is evidence in the literature that seems to indicate a connection to trans-
port phenomena. In gapped systems there is a direct relation between the existence
of edge modes and quantized transport. This is more clear in the case of Chern
insulators, where each gapless topological edge modes contributes a quantum of
conductance, while the bulk is gapped and insulating. In the case for critical
system this one-to-one correspondence is no longer present. In the case of quan-
tum Hall it has been known for a long time that at criticality the system has
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an unstable fixed point resulting in a quantized conductance that can also take
half-integers [130–134] and seems to coincide with this regularized Chern number.
Recently, synthetic Hall phases have been engineered by using periodic drives [135],
resulting in a half-integer energy current at the transition between two topological
phases. Furthermore, charge pumping in a Thouless pump setup going through
the critical point has also been recently investigated [136], which also results in a
half-integer charge pumping.

3.3 Integer winding number

An alternative formulation of the winding number with a direct connection to
edge modes has also been proposed. Consider again the function f(k), defined in
Eq. (3.3), that characterizes a chiral-symmetric two-band Hamiltonian. It can be
expressed as

f(k) =

M∑
n=−M

tne
ikn, (3.22)

where tn are all the hoppings present and M is a cutoff to the range of the hop-
pings, since we assume the Hamiltonian must be local. Consider the analytical
continuation of the function into the complex plane,

f(z) =
M∑

n=−M
tnz

n, (3.23)

with z = eik being now a general complex number. The winding number can now
be expressed as

ν =
1

2π
Im

∮
|z|=1

dz ∂z log(f(z))

=
1

2π
Im

∮
|z|=1

dz
f(z)′

f(z)
, (3.24)

where the integral is performed over the unit circle, |z| = 1, equivalent to the
Brillouin zone. For gapped systems, where f(z) has no zeros in the unit circle,
using the residue theorem the integral results in∮

|z|=1
dz

f(z)′

f(z)
= 2πi(Z − P ), (3.25)
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Figure 3.4: Zeros (red crosses) and poles (black crosses) of the function f(z) in the
complex plane, where zr and zi correspond to the real and imaginary pars of z, respectively.
The Brillouin zone corresponds to the unit circle, shown as a blue line. (a) Example of a
transition between phases with winding number ν = 0 to ν = 1, where one zero of f(z)
moves inside the unit circle. (b) Example of a gapless phase, with a zero on the unit circle.
With additional three zeros and one pole inside the unit circle, which give it a winding
number of ν = 2.

where Z and P are the zeros and poles inside the closed integration curve. This
equivalence is not valid in the gapless case because the integrand diverges along
the path, however one can still define a winding number as

ν = Z − P, (3.26)

where Z and P are still the zeros and poles strictly inside the unit circle [45, 49],
excluding the zeros on the unit circle that make the system gapless.

As opposed to the half-integer invariants introduced last section, this invariant
has a direct relation to topological edge modes [45, 49], which we will show now
for a simple system with no poles inside the unit circle. This implies that the
Hamiltonian is defined by the function

f(k) =

M∑
n=0

tne
ikn. (3.27)

Consider the Hamiltonian of a semi-infinite chain with chiral symmetry and a
boundary on the left,

H =
∑
n≥0

∑
j≥1

tn |j, A⟩ ⟨j + n,B|+ h.c. (3.28)

and the ansatz

|ψµ⟩ =
∑
j≥1

bµ,j |j, B⟩ . (3.29)
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For the ansatz to be a zero energy eigenstate, we have

H |ψµ⟩ =
∑
n≥0

∑
j,l≥1

tnbµ,l |j, A⟩ ⟨j + n,B|l, B⟩

=
∑
n≥0

∑
j≥1

tnbµ,j+n |j, A⟩

=0. (3.30)

This lead to, ∑
n≥0

tnbµ,j+n = 0. (3.31)

Consider now bµ,j = zj−1
µ ,

∑
n≥0

tnz
n+j−1
µ =zj−1

µ

∑
n≥0

tnz
n
µ


=zj−1

µ f(zµ). (3.32)

If zµ is the zero of function f(zµ) = 0, the equation above vanishes for all j, and
the state given by

|ψµ⟩ =
∑
j≥1

zj−1
µ |j, B⟩ , (3.33)

is indeed a zero-energy state. We can now compute the norm of the state,

⟨ψµ|ψµ⟩ =
∑
j≥1

(
|zµ|2

)j−1

=
1

1− |zµ|2
. (3.34)

As long as |zµ| < 1, the sum converges and the state is normalizable. Furthermore,
the weight of the state at each site decays for larger positions, it corresponds to
states exponentially localized at the boundary. The case |zµ| = 1 corresponds to a
gapless mode constant in space and the solutions with |zµ| > 1 are not normalizable
and therefore unphysical. Therefore, each zero of the function f(z) inside the unit
circle corresponds to a pair (for full OBC) of topological zero-energy edge states,
and the integer winding number in Eq. (3.26) corresponds to the total number of
pairs of zero-energy edge states. This is always true, independently of the existence
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Figure 3.5: Path considered to show the relation between the half-integer and integer
winding numbers. In blue it is shown the path over the unit circle excluding the envi-
ronment of the zeros present on the unit circle, shown in red. In black we consider an
additional path such that both form a closed loop that encircles all zeros on the unit circle.

or not of other gapless bulk states. Since these states are localized at the boundary,
considering instead a chain with full OBC is expected have very little effect on them.

We can also consider the half-integer winding number in this picture in order to
explore its relation to the edge modes. In a similar way to how we obtained the
quantization to half-integers in Eq. (3.21) we consider a path, now in the complex
plane of z that includes the zeros at the unit circle. We know that the resulting
winding number is Z+ZBZ where Z is the number of zeros strictly inside the unit
circle and ZBZ is the number of zeros on the unit circle. We can now compute
the difference between this closed path and the open path in the Brillouin zone
excluding an infinitesimal surrounding of the zeros, the resulting path is depicted
in Fig. 3.5 in black. Near the zero the function f(z) can be approximated by
f(z) = fµ(z− zµ)nµ, where n is the multiplicity of the zero. Performing the integral
over this path gives ∫

C
dz

f(z)′

f(z)
=

∫
Cµ
dz nµ

1

z − zµ

=
nµ
2
, (3.35)

for each zero. In total
∑

µ nµ = ZBZ . Finally, the half-integer winding number can
also be expressed as

ν =Z + ZBZ − ZBZ
2

=Z +
ZBZ
2

. (3.36)
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3.4 Topological invariants at finite low temperature

So far we have discussed two examples of topological invariants from gapped sys-
tems being generalized to critical systems. However, these examples have some
shortcomings. The integer winding number correctly describes the edge modes but
there has not been any similar generalizations for other topological invariants, like
a Chern number. The method for obtaining the half-integer invariants, on the
other hand, is not directly related to edge modes but it is easily generalizable to
other invariants. In both cases the topological invariants proposed rely heavily on
the momentum space formulation, and are therefore only valid for translationally
invariant systems. Furthermore, they require careful attention to the crossings.
Last, but not least, the invariants for the critical systems are distinct from those
of the gapped systems.

In view of these two shortcomings, we propose in paper III a method for gener-
alizing gapped topological invariants to critical systems that can be computed in
momentum or position space and treats gapped and gapless systems on the same
footing. This method relies on using a finite low temperature to deal with the de-
generacy and the discontinuity of the ground state for critical systems (see below
Eq.(3.2) for a discussion on both issues).

We distinguish between two types of invariants. First, we express invariants
for gapped systems in terms of projectors onto an occupied subspace. We then
promote the projectors correlation functions at finite temperature,

Pocc =
∑
µ∈occ

|ψµ⟩ ⟨ψµ| → C =
∑
µ

nf (Eµ) |ψµ⟩ ⟨ψµ| . (3.37)

where nf is the Fermi distribution. Even when computed in momentum space, the
correlation function C(k) is always continuous and differentiable, unlike Pocc(k).
We illustrate this procedure with the winding number, which can be computed in
position space [110,111] as

ν = −4T {PBPoccPA[X,Pocc]}, (3.38)

where T is the bulk trace per volume. This is the generalization of Eq. (3.2) to
position space. We then define a winding number at finite temperature as

ν̃ = −4T {PBCPA[X,C]}, (3.39)

and extract its T → 0 limit. This winding number, computed for translation-
ally invariant systems, gives the same result as the winding number obtained by
excluding the gapless points (see Eq. (3.18)).
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Figure 3.6: Sketch of a phase diagram with critical lines (black) between three topological
phases characterized by winding numbers να, νβ and νγ . At a critical point, (a) Random
disorder allows parameters within the red circle and thus places the system locally into
different gapped phases. (b) A disordering perturbation forces the system locally to have
gapless excitations (local parameters are fixed to lie on the red line), albeit being globally
uncorrelated.

The second type of invariants considered are topological invariants given by
expectation values, which can then be computed at finite temperatures. This is
exemplified by the polarization, which at finite temperature can be obtained [137]
as

P =
1

L

〈
X̂
〉
T

=
1

2π
Im ln det

[
I − C + Ce−i

2π
L
x̂
]
, (3.40)

where the average of the many-body position operator was defined in Eq. (2.34) .
One might expect this polarization to reproduce the result for the winding number,
being quantized to 1/4 and 3/4. However, the polarization is still quantized to
0, 1/2 for gapless systems. An analysis of the model system suggests that this
polarization reproduces the parity of the number of edge modes, just as for gapped
systems. A disadvantage of this method is that it is only well defined for finite
systems, as the polarization is given by the phase of a number that tends to zero in
the thermodynamic limit. Furthermore, while for gapped systems the information
of the polarization is contained in the winding number, this is no longer the case
for critical systems. Instead, the two topological invariants provide complementary
information about the system.

The formulations introduced here provide two main advantages. They treat
gapped and gapless phases on the same footing, and they do not rely on mo-
mentum calculations. The former allows us to study the behavior of topological
invariants when going through a phase transition. The latter allows us to study the
effect of disorder on the topological invariants. We studied two types of disorder,
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depicted in Fig.3.6. For random disorder, shown in Fig.3.6.(a), the local param-
eters can take any value within the red circle. Thus it puts the system locally
into either of the gapped phases that surround the critical point. The disorder
averaged invariants therefore results in the average of the two gapped phases, but
the value for each disorder configuration varies substantially. We then considered
a disordering perturbation that keeps the system locally on the same critical line,
e.g., the red line sketched in Fig.3.6.(b), while being globally uncorrelated. We
were able to show that the invariants are robust to the disordering perturbation,
even for individual disorder configurations, up to a point where the perturbation
is strong enough to probe neighbouring multi-critical points.

3.4.1 Entanglement in critical systems

Like the surface spectrum, the EOS of a critical system at finite temperature hosts
virtual topological edge states. In Fig.3.7.(a) and (b) we show the EOS computed
for the trivial and non-trivial critical points of the long-range SSH model, with
the non-trivial critical point showing two exact 1/2 eigenvalues. Looking at the
eigenstates, in Fig.3.7.(c) and (d), we confirm that the eigenstates with ξ = 1/2
are exponentially localized at the edges.

In Section 2.4.6 we discussed how the eigenstates of CA can be approximated
by Wannier states, which are localized. At finite temperature this is no longer
the case, since it required C to be a projector. We plot in Fig.3.7.(c) and (d) a
few of the eigenstates closest to ξ = 1/2, which are all extended states with the
exception of the virtual topological edge modes described above. Thus, the EOS,
when computed for a critical system at finite temperature, still correctly reproduces
the topological edge states of the corresponding open system.

Since the eigenstates of CA for gapped systems at zero temperature were found
to localized at the boundaries, the two boundaries could be treated as independent
of each other in the thermodynamic limit. This allowed us to relate the EOS to
the polarization in paper I, as discussed in Section2.4.4. This property of the EOS
is lost for critical systems at finite temperature, and the relation in Eq. (2.106)
cannot be generalized to this case in a straightforward way. Nonetheless, since
for critical systems the EOS also has the same topological modes as the surface
spectrum, the polarization still characterizes the parity of the number of virtual
topological edge modes in the EOS.

Entanglement can also be used to characterize critical points. The entanglement
entropy, defined in Eq. (2.82), is known to have a universal scaling for 1D systems
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Figure 3.7: (a) and (b) show the EOS computed at finite temperature, β = t1, for the
trivial critical point (t1 = t0, t2 = 0) and the non-trivial point (t1 = t0, t2 = −2t1), showing
that the non-trivial point hosts two 1/2 virtual topological edge modes. (c) and (d) show
the lowest lying eigenstates (closest to ξ = 1/2) for the trivial and non-trivial points,
respectively. As opposed that the gapped case, where all eigenstates of CA are found to
be localized, in the critical case only the topological virtual edge states are found to be
localized.

at critical points [138–140]. It is given by

SA =
c

3
log

[
LA
L

]
, (3.41)

where L is the total length of the system, LA the length of the subsystem considered
and c is a quantity that characterizes the critical point known as the central charge.
In paper III we also used the central charge to study the effect of disorder on the
critical point of the SSH (t2 = 0, t1 = t0), which has c = 1 without any disorder.
When random disorder is introduced, as disorder strength is increased the central
charge flows to c = log[2], characterizing a well known infinite-randomness fixed
point [141]. The situation when we apply the disordering perturbation shown in
Fig.3.6.(b), however, is quite different. The central charge is shown to be robust
for weak disorder up to a point where the disorder probes a nearby multi-critical
point, where the central charge jumps. This result suggests that the critical point
is indeed robust against the disordering perturbation.
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Chapter 4

Non-Hermitian Topological
phases

In this chapter we extend the study of symmetry protected topological phases
to systems described by Hamiltonians that are no longer Hermitian, H ̸= H†.
The Hermiticity of the Hamiltonian is a fundamental assumption in the physics of
isolated quantum systems that ensures unitary evolution. However, in open systems
interacting with an environment, effective Hamiltonians describing processes such
as dissipation, gain or finite-lifetime quasiparticles, are in general not Hermitian
[54–61]. This requires us to rethink quantum mechanics, where Hermiticity is
a fundamental assumption, and it opens up the possibility for new physics to
appear, even if just in an effective description. There are mainly three points
where non-Hermiticity breaks down the usual interpretation of quantum mechanics.
The first consequence one notices is that eigenenergies are in general no longer
real, they have an imaginary part that accounts for dissipation and gain in the
system. This, however, is not always the case for non-Hermitian systems as there
are certain symmetries, e.g., PT symmetry, that can ensure that the spectrum is
real [142–144]. Another fundamental difference with the Hermitian case is that
left and right eigenvectors are no longer related by conjugation, they are now
independent. This results in an arbitrariness when computing expectation values,
where different choices can be relevant in different contexts. Finally, there exists
sets of parameters, coined exceptional points, where the Hamiltonian is no longer
diagonalizable [65, 68, 145]. At these points different eigenstates coalesce into the
same one, such that the set of eigenstates no longer spans the whole Hilbert space.
The physics of exceptional points has attracted a lot of attention recently [146–148],
but it is something that goes beyond the scope of this thesis.

In the past years the focus on non-Hermitian systems has shifted, from it being a
mere practical effective description, to a more theoretical analysis where novel phe-
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nomena can be found. This is the case for topological phases, where the existence
of new symmetries results in numerous new topological classes being required for
a complete description [51–53, 149] . Most importantly, the bulk-boundary corre-
spondence principle, an important result for topological gapped Hermitian systems
is found to be broken for certain non-Hermitian systems due to the skin effect, see
Section 4.2.3 for a more detailed discussion.

In this chapter we describe the biorthogonal quantum mechanics used to treat
non-Hermitian systems in Section 4.1. In Section 4.2 we give a brief overview of the
topological classification in non-Hermitian systems, with a focus on more practical
aspects required to understand the accompanied papers. In Section 4.3 we describe
how the polarization and the entanglement spectrum, topological signatures used in
the previous chapters, are affected by the non-Hermiticity. Finally we summarize in
Section 4.4 how some features of a class of non-Hermitian systems are inherited from
related gapless Hermitian systems, rather than being intrinsically non-Hermitian.

4.1 Biorthogonal quantum mechanics

The methods of quantum mechanics were developed with the assumption that the
Hamiltonian is Hermitian. When this is no longer the case these methods need to be
adapted to obtain a coherent description. There are several approaches, considering
quasi-Hermitian Hamiltonians [150,151] or systems with PT symmetry [152,153].
In this chapter we describe another approach which has gained attention in recent
years, known as Biorthogonal quantum mechanics [154,155].

A general non-Hermitian matrix, in this case the Hamiltonian, has left and right
eigenvectors

H
∣∣ψRµ 〉 = Eµ

∣∣ψRµ 〉 , 〈
ψLµ

∣∣H =
〈
ψLµ

∣∣ Ēµ, (4.1)

where the eiengenergies Eµ, Ēµ are, in general, complex. We start with the assump-
tion that the two sets of energies are independent of each other. There are three
normalization conditions one could consider depending on if we take both states
to be left, right, or a combination of both. Consider first the case with right-right,
one has 〈

ψRµ
∣∣ (H −H†)

∣∣ψRν 〉 = (Eν − E∗
µ)

〈
ψRµ

∣∣ψRν 〉 . (4.2)

Considering a system with no degeneracies for simplicity,
〈
ψRµ

∣∣ψRν 〉 is in general
finite, since the left hand side of Eq. (4.2) does not vanish in general for non-
Hermitian systems. The eigenstates therefore can be chosen to have unit norm but
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the set of right (or left) eigenstates cannot be chosen to be orthogonal. However,
considering the left-right, we have〈

ψLµ
∣∣H ∣∣ψRν 〉 = Eν

〈
ψLµ

∣∣ψRν 〉 = Ēµ
〈
ψLµ

∣∣ψRν 〉 . (4.3)

There are only two types of solutions to the later equation. If Eν ̸= Ēµ, necessarily
we have that

〈
ψLµ

∣∣ψRν 〉 = 0, the two states are orthogonal to each other. Alterna-
tively, if Eν = Ēµ, then

〈
ψLµ

∣∣ψRν 〉 can be finite. In this thesis we assume always
that the system is not at a exceptional point. Given this assumption, each set of
states, left and right, is linearly independent and spans the whole Hilbert space.
Therefore we cannot have that

〈
ψLµ

∣∣ψRν 〉 = 0 for all µ, ν, necessarily there is one
state for which Ēµ = Eµ. Even though one could assume that the left and right
eigenspectrums are independent of each other, the eigenstates of the Hamiltonian
actually come in pairs of left and right eigenstates with the same energy. One can
therefore impose the biorthogonal normalization condition that〈

ψLµ
∣∣ψRν 〉 = δµν . (4.4)

In the Hermitian case, where
∣∣ψLµ 〉 =

∣∣ψRµ 〉, the normalization condition fixes the
eigenstates up to a phase. For non-Hermitian systems, however, the biorthogonal
normalization condition can only fix the left and right eigenstates up to a complex
constant. One can always define new states

∣∣ϕRµ 〉 = cµ
∣∣ψRµ 〉 and

∣∣ϕLµ〉 = c−1
µ

∣∣ψLµ 〉
which are also eigenstates and fulfill the biorthogonal normalization above.

Numerical diagonalization procedure: In the Hermitian case, there are
simple numerical methods for imposing orthonormalization on a set of vectors
that can be applied to the eigenstates of the Hamiltonian. For non-Hermitian
systems, however, the biorthogonalization procedure is more involved and needs to
be imposed manually.

Consider a Hamiltonian H. One can easily obtain the right and left eigenvectors
numerically,

HUR = URE ULH = EUL, (4.5)

where E is a diagonal matrix and UL, UR are matrices with the left and right
eigenstates. However, these are not properly normalized. In the following we
describe an efficient way to obtain the biorthonormal basis. We define the overlap
matrix as

Y = ULUR, (4.6)

and perform an LU decomposition,

PY = LU, (4.7)
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where L and U are lower and upper triangular matrices, and P is a permutation
matrix which needs to be included for systems with degeneracies. We then have

P−1LU = ULUR, (4.8)

or

I = (L−1PUL)(URU
−1) = U ′

LU
′
R, (4.9)

where the transformed matrices U ′
L, U

′
R are obtained by solving the linear equations

PLU ′
L = UL, UR = U ′

RU. (4.10)

We now show that these matrices also diagonalize the Hamiltonian. Using the
eigenvalue equation for the right eigenvectors we have

HU ′
RU = U ′

RUE. (4.11)

Now it is important to note that the overlap matrix Y is block diagonal, with the
dimension of the blocks being the multiplicity of the eigenvalues. This means that
in the subspace corresponding to non-degenerate eigenvalues both U and E are
diagonal. And in the case where the eigenvalues are degenerate, U is no longer
diagonal, but E acts as an identity. Therefore U and E always commute and we
recover

HU ′
R = U ′

RE. (4.12)

Similar arguments can be used for U ′
L. Therefore, the matrices U ′

L and U ′
R describe

left and right eigenvectors of the Hamiltonian which are biorthogonal to each other.
Projectors and expectation values: The biorthogonality condition allows us

to also define biorthogonal projectors as

Pµ =
∣∣ψRµ 〉 〈ψLµ ∣∣ , (4.13)

which has all the properties of a projector. It is idempotent,

P 2
µ =

∣∣ψRµ 〉 〈ψLµ ∣∣ψRµ 〉 〈ψLµ ∣∣ = ∣∣ψRµ 〉 1 〈ψLµ ∣∣ = Pµ. (4.14)

The sum of the projectors onto all eigenstates is also the identity. Consider a
general state |ϕ⟩ =

∑
ν cν

∣∣ψRν 〉,∑
µ

Pµ |ϕ⟩ =
∑
µν

Pµcν
∣∣ψRν 〉 =

∑
µν

cνδµν
∣∣ψRν 〉 = |ϕ⟩ , (4.15)
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therefore
∑

µ Pµ = I. Operators, such as the Hamiltonian, can also be decomposed
into a weighted sum of the projectors of the eigenstates,

H =
∑
µ

Eµ
∣∣ψRµ 〉 〈ψLµ ∣∣ . (4.16)

Regarding observables, the probabilistic interpretation of the wavefunction is lost,
and so is the usual interpretation of expectation values. The most common choice
for defining expectation values is the biorthogonal expectation value〈

Ô
〉
ψ
≡

〈
ψL

∣∣ Ô ∣∣ψR〉 , (4.17)

because the quantities obtained this way typically behave better, i.e. more similar
to their Hermitian counterpart, than when using left-left or right-right expecta-
tion values. However, there are situations when they are all equal, such as when
computing geometric phases and Chern numbers [156–158].

4.2 Topological phases of non-Hermitian systems

In this section we give an basic overview on how non-Hermiticity substantially
changes the classification of symmetry-protected topological phases. We will also
introduce topological invariants and other quantities relevant for the models most
commonly used in the field. To illustrate some of the concepts discussed here, we
will employ throughout this chapter a similar model from the one introduced in
Eq. (2.10), the SSH model with longer range hopping. The model is now made non-
Hermitian by adding unbalance to the hoppings to the left and right directions [159],
given by the Hamiltonian

H =
∑
iα,jβ

c†iαHij,αβcjβ , (4.18)

where Hij is

Hij =
1

2
[t0R(σx + iσy)δi,j + t0L(σx − iσy)δi,j−1]

+
1

2
[t1R(σx + iσy)δi,j+1 + t1L(σx − iσy)δi,j−1]

+
1

2
[t2R(σx + iσy)δi,j+2 + t2L(σx − iσy)δi,j−2] . (4.19)

All parameters are real, and the corresponding Bloch Hamiltonian is

H(k) =

(
0 t0R + t1Re

ik + t2Re
2ik

t0L + t1Le
−ik + t2Le

−2ik 0

)
.
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There are several ways the unbalanced hopping can be introduced. In paper II
we choose t0R/L = t0 ± γ, t1R = t1L and t2R = t2L, while in paper IV we choose
tnR/L = e±ngtn. This is done for convenience, but the two models result in the
same features.

4.2.1 Symmetries, gaps and classification

In the Hermitian case the conventional classification, discussed in Section 2.2, relies
on two fundamental properties of the system. The existence of a gap, and the
symmetries that constrain the Hamiltonian. Let us consider first the latter. In the
Hermitian case there are three ’fundamental’ symmetries: Time-reversal (TRS),
particle-hole (PHS) and chiral symmetry (CS),

TH∗(k)T−1 = H(−k), CH∗(k)C−1 = −H(−k), SH(k)S = −H(k), (4.20)

where T,C and S are unitary operators, see Section 2.2. When the Hamiltonian is
no longer Hermitian, additional fundamental symmetries arise which are variations
of these three ones [52]. Taking time-reversal, for example, it can also be defined
in terms of the transpose of the Hamiltonian,

THT (k)T−1 = H(−k). (4.21)

For a Hermitian system the two symmetry equations are equivalent, but that is
no longer the case for non-Hermitian matrices where H∗ ̸= HT . Similarly for the
PHS. The convention typically used in the literature [52] for these four symmetries
is

T±H
∗(k)T−1

± = ±H(−k), C±H
T (k)C−1

± = ±H(−k), (4.22)

where T+ and C− are the usual TRS and PHS symmetries, while T− and C+ are
called PHS† and TRS†, respectively 1. As for the extension of chiral symmetry, we
have

ΓH†(k)Γ = −H(k), SH(k)S = −H(k), (4.23)

where Γ is the usual CS, while S is CS†, also referred to as sublattice symmetry.
In non-Hermitian systems there is one additional internal symmetry called pseudo-
Hermiticity, given by

ηH†(k)η−1 = H(k), (4.24)
1Note that the naming convention is not a typo. The subscript sign marks if the symmetry

commutes or anticommutes con the Hamiltonian, which makes for a confusing nomenclature
of the symmetries.
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Figure 4.1: Representation of the different types of gap considered. (a) A Hermitian
system has a gap whenever there is an energy region between the bands without any
states. (b) Non-Hermitian systems have a line-gap between two bands whenever one can
draw a line separating the two bands in the complex plane without crossing any states. (c)
A non-Hermitian spectrum is point-gapped around a base point E0 whenever the bands
wind around such point.

where η is unitary and Hermitian so that it squares to the identity, η2 = I. This
symmetry is a similarity transformation relating the Hamiltonian to its Hermitian
conjugate. Pseudo-Hermiticity has a similar effect to PT symmetry, which under
certain circumstances makes the energy spectrum real. This symmetry is trivially
satisfied for Hermitian systems with η = I. The model in Eq. (4.20) has TRS,
T+ = I and CS†, S = σz. This places the system in class AI.

In the Hermitian case, the three fundamental symmetries result in ten different
classes. The seven different symmetries in the non-Hermitian case result in a classi-
fication with 38 different classes. As opposed to the Hermitian case, there is not an
intuitive way of obtaining the number of different topological classes. The problem
of classifying random non-Hermitian matrices was first addressed two decades ago,
known as the Bernard-LeClair symmetry classification [149] . However, it over-
counted some classes and overlooked other ones. A complete classification with the
38 different classes was obtained only recently [52].

Line and point gaps: Apart from the non-unitary symmetries, the existence
of a gap is fundamental in the conventional description of symmetry protected
topological phases, as one aims to study the topology of isolated bands. In non-
Hermitian systems, where the eigenenergies are complex, the concept of energy
bands is still present, but there are different types of gaps one needs to consider,
leading to additional topological classes.

Consider two bands in the complex plane. The bands are said to have a line
gap (LG) whenever one can draw a line between the bands that does not cross any
energy states, see Fig. 4.1.(b). Similarly to the flattening procedure for Hermitian
systems, some line gapped systems can be deformed into Hermitian ones without
closing the gap or breaking the symmetries [52]. These are said to have a real line
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gap and share the same topology with the equivalent Hermitian Hamiltonian. The
rest of line-gapped phases can be deformed into an anti-Hermitian Hamiltonian,
and then it is said to have an imaginary line gap. Anti-Hermitian Hamiltonians
have a topological classification equivalent to the Hermitian case. In addition to the
line gap between different bands, an isolated band is said to have a point gap (PG)
at some reference energy E0 whenever the energy band encloses such reference
point in the complex plane, see Fig. 4.1.(c). Note that multiple non-Hermitian
bands can effectively merge into a single point-gapped band.

The topological phases of point-gapped systems are said to be inherently non-
Hermitian, unlike in the line-gapped phase. The Hamiltonian in this case can
be deformed into a unitary matrix, but never into a Hermitian or anti-Hermitian
Hamiltonian, leading to a new classification [52]. A Hamiltonian H with a point-
gap phase shares the same topological classification as the auxiliary Hermitian
Hamiltonian

H ′ =

(
0 H
H† 0

)
, (4.25)

which has a new chiral symmetry Σ = σz ⊗ I. However, while the bulk topology
of the non-Hermitian PG phase can be found in terms of an analogue Hermitian
system, the bulk-boundary correspondence of the auxiliary Hermitian system does
not translate into the non-Hermitian Hamiltonian. This is due to the skin effect,
which will be discussed briefly in Section 4.2.3.

4.2.2 Topological invariants

The models most prevalent in the literature of non-Hermitian topological phases in
one dimensions fall in the AI class. For a system with CS† that commutes with TRS
(see Table VII in Ref. [52]), this class is characterized by a Z or Z × Z invariants
for line gapped and point-gapped phases, respectively. The real line gapped phase
can be deformed into a Hermitian one and therefore they share the same invariant,
the winding number. For a two band model given by H(k) = hx(k)σx + hy(k)σy,
where chiral symmetry imposes hz(k) = 0, this winding number is defined in the
literature as

ν =
1

2π

∮
dk

(∂khx(k))hy(k)− hx(k)∂khy(k)

hx(k)2 + hy(k)2
, (4.26)

just as in the Hermitian case, in Eq. (2.65). The same invariant characterizes
imaginary line gapped phases.

64



4.2. TOPOLOGICAL PHASES OF NON-HERMITIAN SYSTEMS

As mentioned before, the PG phase (around a reference point E) of a non-
Hermitian Hamiltonian H(k) shares the same topology as the Hermitian Hamilto-
nian

H ′(k) =

(
0 H(k)− E

H(k)† − E 0

)
. (4.27)

The winding number defined above can be used to characterized each block while
the emergent chiral symmetry can be used to define an additional winding number
[51,63,66,160],

ν ′ =
1

4π

∮
dk ∂k arg(det(H(k)− E)), (4.28)

which is equal to the winding of det(H(k)) around E in the complex plane. For
the two-band model introduced above, one can rewrite this winding number as

ν ′ =
1

2π

∮
dk ∂k arg(h(k)− E), (4.29)

where h(k) =
√
h2x(k) + h2y(k) is the energy of one of the bands. Note that for

Hermitian gapped systems the determinant is always real and E can be chosen
within the gap such that the determinant always has the same sign, therefore this
winding number vanishes. In the following we will consider only the case E = 0
and assume that h(k) ̸= 0.

The quantity ν ′, sometimes also referred to as energy vorticity, has a clear topo-
logical origin. The winding number ν in Eq. (4.26), however, does not have an
obvious topological or geometrical interpretation in the non-Hermitian case, in
contrast to the Hermitian case (See Section 2.3.3). Recently, an alternative for-
mulation of these winding numbers, with a nice geometrical interpretation, was
introduced [63]. Writing the Hamiltonian as

H(k) =

(
0 f1(k)

f2(k) 0

)
(4.30)

the winding number in Eq. (4.26) can be rewritten as

ν =
1

2π

∮
dk

f2(k)∂kf1(k)− f1(k)∂kf2(k)

2if1f2

=
1

2

(
1

2πi

∮
dk

∂kf1(k)

f1(k)
− 1

2πi

∮
dk

∂kf2(k)

f2(k)

)
=
1

2

(
1

2πi

∮
dk ∂k log f1(k)−

1

2πi

∮
dk ∂k log f2(k)

)
=
ν1 + ν2

2
, (4.31)
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where the new winding numbers are defined as

ν1 =
1

2πi

∮
dk ∂k log f1(k)

ν2 = − 1

2πi

∮
dk ∂k log f2(k). (4.32)

Note the similarity with the integral in Eq. (3.25). The integrals are purely imag-
inary and the resulting winding numbers are real and integers by definition. The
winding numbers ν1, ν2 were found to characterize the existence of topological
gapless edge-modes in semi-infinite chains (see next section for a more detailed
discussion). In the Hermitian case note that f2(k) = f1(k)

∗, and therefore ν1 = ν2.
Consider now the second non-Hermitian winding number around E = 0,

ν ′ =
1

4πi

∮
dk ∂k log det(H(k))

=
1

4πi

∮
dk ∂k log f1(k)f2(k)

=
1

4πi

∮
dk ∂k log f1(k) +

1

2πi

∮
dk ∂k log f2(k)

=
ν1 − ν2

2
, (4.33)

which as mentioned before vanishes in the Hermitian limit, as well as for line-
gapped phases.

4.2.3 Skin effect and edge modes

In this section we discuss what happens to non-Hermitian systems when OBC
are imposed. As we will see below this has more relevant consequences than in
the Hermitian case, and has therefore attracted a lot of attention in recent years
[51, 68, 70, 72, 74]. However, this problem escapes the scope of this thesis and
therefore we will only give a brief overview.

Consider one of the simplest non-Hermitian models, the Hatano-Nelson model
[161–163], a chain with non-reciprocal hopping,

H =
∑
j

(trc
†
j+1cj + tlc

†
jcj+1), (4.34)

where tr ̸= tl. For PBC, the unbalanced hopping will lead to a constant current
through the chain. When OBC are imposed, this current results in all charge
accumulating at the boundaries. This is known as the skin effect, and the states
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that localize at the boundaries are known as skin states. While for Hermitian
systems the boundary conditions play a minor role, for some non-Hermitian systems
even small perturbations of the boundary conditions can change the spectrum
substantially [70]. There have been several proposals to take advantage of this
sensitivity for quantum sensing [57,58,164].

A feature of Hermitian topological systems when OBC are imposed is the emer-
gence of topological gapless edge modes. The same is true for non-Hermitian
systems but there is a caveat. The bulk-boundary correspondence in Hermitian
systems relates the number of topological edge modes to a topological invariant
computed for PBC. However, when the skin effect is present the non-Hermitian
system with PBC and OBC have very different physics, and therefore the bulk-
boundary correspondence is broken. To reestablish this correspondence one needs
to consider semi-infinite chains [63], which do not present skin effect, or construct
topological invariants explicitly from OBC [66,67,69,71].

4.3 Entanglement Spectrum and polarization

In the Hermitian case it is known that the entanglement spectrum provides the
same topological information as the surface energy spectrum, as discussed in Sec-
tion 2.4.1. For non-Hermitian LG systems, the entanglement spectrum is known
to also provide the same topological information as the surface spectrum [75, 76],
with the number of topological 1/2 modes being given by the winding number ν.
For PG, however, the EOS and surface spectrum no longer give the same topolog-
ical information. Since it is computed for PBC, the EOS does not suffer from the
skin effect, as the surface spectrum does. The EOS of PG phases can have virtual
topological 1/2 modes which are characterized by the bulk invariants. This relation
however, is not as direct as for Hermitian or LG phases. For example, in the PG
phase of the non-Hermitian SSH model (ν = 1/2, ν ′ = 1/2), no topological modes
were found, and it was first believed that the EOS does not contain topological
information for the PG phases [75,76].

In paper II we revisited this question and studied the EOS of more general
point-gapped phases and found that the EOS does host a number of topological
1/2 modes equal to min(|ν1|, |ν2|). In the system used in paper II, where |ν| ≥ |ν ′|,
the number of virtual 1/2 modes are given by |ν| − |ν ′|. As both winding numbers
are 1/2 for the PG phase of the non-Hermitian SSH chain, the corresponding EOS
does not show any topological modes. Furthermore, we studied the polarization
and its relation to the EOS, generalizing our result for Hermitian systems from
paper I.

The bulk polarization was only recently studied for non-Hermitian systems.
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Originally, a many-body approach was used to compute it for both LG and PG
phases [165], and it was found that, computed for PBC, the bulk polarization of
the non-Hermitian SSH model reproduced the phase-diagram of the system with
OBC. Resta’s formulation was later adapted for these systems [66] and shown to
reproduce the many-body result for LG phases, where the polarization behaves
as in the Hermitian case, P = ν/2mod 1. In paper II we considered PG phases
and observed that Resta’s formulation, much easier to compute than the many-
body calculation, also reproduces the OBC phase-diagram. It is important to note
that the bulk polarization for PG phases is ill-defined in the thermodynamic limit,
as limL→∞

〈
ei

2π
L
X̂
〉

= 0, similarly to the case of Hermitian critical systems (see
discussion below Eq. (3.40)). Nonetheless, it is a well-defined quantity for finite
systems, even if its physical interpretation is still unclear.

Furthermore, we computed for non-Hermitian systems the bulk polarization ob-
tained from U(1) flux insertion, defined for Hermitian systems in Eq. (2.57). We
showed that its relation to Resta’s polarization and the Wilson loop still applies.
Using this form of the bulk polarization we showed that for LG phases one can
express the bulk polarization in therms of the EOS (see Eq. (2.106) for a discus-
sion in the Hermitian limit), with it being 0 when an even number of 1/2 modes is
present, and 1/2 when the number is odd. For PG phases, however, this relation
is no longer valid. This is because one important assumption used to proof the
relation is that both entanglement cuts are independent of each other, which is no
longer the case for PG phases.

It is also important to note that in the modern theory of polarization developed
for Hermitian systems only changes in the bulk polarization carry physical meaning,
were adiabaticity plays an important role. So far, the studies on bulk polarization
found in the literature for non-Hermitian system are restricted to static systems,
so its relation to actual physical observables is still unclear.

4.4 Point-gapped systems as generalized Hermitian
gapless systems

So far we have discussed several topological features that both critical systems
and non-Hermitian PG phases share. Both are described by half-integer winding
numbers, such that an additional quantity is needed to characterize the virtual
topological edge modes of the EOS. And in both cases the bulk polarization is
quantized to 0, 1/2, although it is ill-defined in the thermodynamic limit.

In paper IV we studied these similarities by introducing non-Hermiticity to crit-
ical systems. By introducing an imaginary shift to the momenta (equivalent to
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having an imaginary flux), we showed that critical systems evolve into PG phases.
We also showed that, for as long as the point-gap is open, the winding number ν
of the non-Hermitian system is equal to the half-integer winding number for the
critical system in Eq. (3.18), while the non-Hermitian winding number ν ′ is directly
related to the number of gapless points of the critical system in the Hermitian limit.

Furthermore, the EOS for the models studied does not change qualitatively when
the imaginary flux is introduced. This was proven for the critical point of the SSH
chain, but analytical and numerical results suggest that this feature is more general.
In particular, the non-Hermitian and the critical model have the same number of
topological modes. This relation provides further intuition into the EOS of PG
phases, since the relation between the EOS and bulk invariants for critical phases
is much better understood.

4.5 Physical realizations of effective non-Hermitian
systems

Non-Hermitian Hamiltonians have been used to effectively describe the process of
dissipation and gain for a system interacting with an environment, most promi-
nently in the fields of photonics [166, 167] and quantum optics [168, 169], where it
is easier to implement gain and loss onto the system.

There are mainly two ways one can derive effective non-Hermitian Hamiltonians.
The first one is obtained by using a Lindbland master equation approach [170].
Consider a system described by a Hermitian Hamiltonian H that interacts with an
environment. The evolution of a density operator can be obtained by

ρ̇ = −i[H, ρ] +
∑
m

Γm(LmρL
†
m − 1

2
{L†

mLm, ρ}), (4.35)

The master equation can be rewritten as

ρ̇ = −i
(
Heffρ− ρH†

eff

)
+
∑
m

ΓmLmρL
†
m, (4.36)

where the effective Hamiltonian is given by

Heff = H − i

2

∑
m

ΓmL
†
mLm. (4.37)

The constants Γm are defined positive, which leads to a negative imaginary energy
accounting for a finite lifetime of quasiparticles. The second term in Eq. (4.36)
accounts for quantum jumps. Dropping this term, a semiclassical approximation
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[170,171], one obtains that the evolution of the system is effectively given by Heff ,
which is in general non-Hermitian. Furthermore, quantum trajectories where no
quantum jumps occur are described exactly by the non-Hermitian Hamiltonian in
Eq. (4.37). This can be achieved experimentally when the environment is being
continuously monitored, known as post-selection [171,172] .

Another situation where effective non-Hermitian Hamiltonians appear, more
common in the field of solid state, is in the study of Green’s functions [59,60,73,173].
Consider again a system that interacts with an environment, H = H0 + V . The
(retarded) Green’s function is defined as

Gr(t) = −i
〈
{c†(t), c(0)}

〉
θ(t). (4.38)

For the isolated system, the Green’s function in frequency space is given by

gr−1(ω) = (ω + iτ)I −H0, (4.39)

where τ is a regularization constant that accounts for causality. The full Green’s
function results in

Gr−1(ω) = (ω + iτ)I −H0 − Σ(ω), (4.40)

where Σ(ω) is known as the self-energy and accounts for the interaction with the
environment. Taking the simple case of a constant self-energy, it is easy to see that
the resulting Green’s function could also be obtained using the effective Hamilto-
nian

Heff = H0 +Σ, (4.41)

where the self-energy is, in general, not Hermitian. In the case where the self-energy
is frequency dependent one can also obtain effective Hamiltonians, for example
using a low energy approximation [174]

Heff = H0 +Σ(0). (4.42)

The perturbation resulting in dissipation can come from interacting with an en-
vironment, but also from disorder or many-body interactions. The effective non-
Hermitian term can have a substantial effect in quantities related to the Green’s
function, such as the density of states, but it is unclear to what extent some non-
Hermitian features are still relevant, e.g. the skin effect [73].
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Conclusion

In this dissertation we explored topological states of matter in systems beyond
those described by the ten-fold way, when prerequisites used to described con-
ventional topological insulators are removed. In particular we focus on critical
systems, without an energy gap, and non-Hermitian systems. Throughout the
thesis the entanglement occupancy spectrum and the polarization are used as
topological signatures. In paper I, a relation between these two is revealed for
Hermitian gapped systems, showing that the correlation matrix spectrum encodes
information about the geometry of the eigenstates. The entanglement occupancy
spectrum is also studied in paper II, where we reproduce the relation to the po-
larization for non-Hermitian line-gapped systems. The entanglement spectrum for
point-gapped systems, previously overlooked, is shown to hold some topological
information about the bulk, carrying a number of virtual topological 1/2 states
related to the winding numbers. In paper III we turn to critical systems, which
were recently shown to support non-trivial topology. The understanding of topol-
ogy in these systems is still limited. We expand on it by proposing a method to
generalize topological invariants from gapped systems by using finite low temper-
atures. These systems are intrinsically fine-tuned, and therefore fragile to random
disorder. We showed, however, that the topology of the critical point is robust
against disorder that preserves criticality. The latter is shown by studying the
entanglement entropy and the central charged associated with the critical point,
which remains constant until the disorder is strong enough to probe other phases.
In paper IV we explore the apparent similar topological features between critical
systems and point-gapped systems. We interpolate between the two and show that
some topological features of the non-Hermitian system, such as the invariants and
the topology of the entanglement occupancy spectrum, can be understood from
the related critical model. This relation can be exploited to study the topology of
non-Hermitian systems using Hermitian quantum mechanics, as well as employing
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the more developed topological classification of non-Hermitian systems to improve
our understanding of topology on critical systems.

5.1 Outlook

There are several directions where the work in this thesis can be expanded upon.
Regarding the study of the entanglement occupancy spectrum in gapped Hermitian
systems, the literature is scarce in reference to the effects of interactions. In non-
interacting systems the subsystem correlation matrix has the same information as
the reduced density matrix. The spectrum of the reduced density matrix is known
to be useful in the study of topology in strongly correlated systems. However, it
is unclear how much information the correlation matrix retains when interactions
is introduced. This might be useful since the correlation matrix is much easier to
computed than the reduced density matrix even when interactions are introduced.

As for the study on critical systems, we provide a general method to extend
topological invariants to critical systems, but we only applied it to one dimensional
systems. Exploring which invariants one can introduce for two dimensional systems
using this method is also interesting, since so far no invariant that has been defined
gives the number of edge states directly.

Finally, regarding non-Hermitian systems, the physical interpretation of some of
the results in this thesis needs a more closer look. In particular, the polarization
studied in paper III is not well defined for point-gapped systems in the thermody-
namic limit, which signals it to not being a proper physical quantity. This problem
was, actually, shared with critical systems. In the latter case the polarization ob-
tained is not the physical polarization, i.e. its changes do not result in measurable
currents, but as discussed in paper III it is still measurable through interferome-
try experiments. So far, the bulk polarizations studied in non-Hermitian systems
have not been shown to have a direct relation to transport properties. This would
require to study the dynamics of non-Hermitian systems, which is a non-trivial
problem due to the non-unitary time evolution.
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