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Abstract

Materials informatics is the field of study where materials science is com-
bined with modern data science. This data-driven approach is powered by
the growing availability of computational power and storage capability. The
development and application of these methods accelerates materials science
and represents an effective way to study and model material properties. This
thesis is a compilation of theoretical and computational works that can be
divided into three key areas: materials databases, machine learning for ma-
terials, and homology for materials.

Machine learning and data mining rely on the availability of materials
databases to test methods and models. The Organic Materials Database
(OMDB), for example, contains a large number of organic crystals and their
corresponding electronic structures. The electronic properties of the organic
crystals are computed using atomic scale materials modelling, which is com-
putationally expensive because organic crystals typically contain many atoms
in the unit cell. However, the resulting data can be used in a variety of mate-
rials informatics applications. We demonstrate data mining for dark matter
sensors as an example application.

Accurate machine learning models can capture the structure-property re-
lationship of materials and accelerate the discovery of new materials with
desired properties. This is explored by investigating the properties of the
organic crystals in the OMDB. For example, we employ supervised learning
on the electronic band gap, an important material property for technological
applications. Unsupervised learning is used to construct a dimensionality-
reduced chemical space that reveals interesting clusters of materials.

Finally, persistent homology is a relatively new method from the field
of algebraic topology that studies the shapes that are present in data at
different length scales. In this thesis, the method is used to study magnetic
materials and their phase transitions. More specifically, in the case of classical
models, we use persistent homology to detect the phase transition directly
from sampled spin configurations. For quantum spin models, the shapes in the
entanglement structure are captured and a sudden change reveals a quantum
phase transition.

In summary, these three topics provide an overview on how to study ma-
terial properties with modern data science methods. The tools can be used in
combination with the traditional methods in materials science and accelerate
materials design.
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Sammanfattning

Materialinformatik är ett forskningsområde där materialvetenskap kom-
bineras med modern datavetenskap. Detta datadrivna tillvägagångssätt drivs
av den växande tillgängligheten av beräkningskraft och lagringskapacitet. Ut-
vecklingen och tillämpningen av dessa metoder accelererar materialvetenska-
pen och utgör ett effektivt sätt att studera och modellera materialegenskaper.
Denna avhandling är en sammanställning av teoretiska och beräkningsteknis-
ka arbeten som kan delas in i tre nyckelområden: materialdatabaser, maski-
ninlärning för material och homologi för material.

Maskininlärning och datautvinning är beroende av tillgången på materi-
aldatabaser för att testa metoder och modeller. Organic Materials Database
(OMDB) innehåller data för kristallin struktur och elektroniska egenskaper
för ett stort antal organiska kristaller. De elektroniska egenskaperna hos de
organiska kristallerna beräknas med hjälp av materialmodellering i atomska-
la, vilket är beräkningsmässigt dyrt då organiska kristaller vanligtvis inne-
håller många atomer i enhetscellen. Emellertid kan den resulterande datan
användas i en mängd olika materialinformatikapplikationer. Vi demonstre-
rar datautvinning för att söka material till sensor för mörk materia som ett
exempel på applikation.

Maskininlärningsmetoder kan fånga förhållanden mellan struktur och egen-
skap hos material, och därmed påskynda upptäckten av nya material med öns-
kade egenskaper. Detta utforskas genom att undersöka egenskaperna hos de
organiska kristallerna i OMDB. Till exempel använder vi övervakat lärande på
elektroniska bandgap, en viktig materiell egenskap för tekniska tillämpning-
ar. Oövervakat lärande används för att konstruera en dimensionsreducerad
kemisk rymd som avslöjar intressanta kluster av material.

Slutligen är ihållande homologi en relativt ny metod från området alge-
braisk topologi som studerar de former som finns i data i olika längdskalor. I
denna avhandling används metoden för att studera magnetiska material och
deras fasövergångar. Mer specifikt, när det gäller klassiska modeller, använ-
der vi ihållande homologi för att detektera fasövergången direkt från samplade
spin-konfigurationer. För kvantspinnmodeller fångas faserna i strukturen hos
den kvantmekaniska sammanflätningen och en plötslig förändring avslöjar en
kvantfasövergång.

Sammantaget utgör dessa tre ämnen ett bra exempel på hur materiale-
genskaper kan studeras med moderna datavetenskapliga metoder. Verktygen
kan användas i kombination med traditionella metoder inom materialveten-
skap och påskynda materialdesign.
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Chapter 1

Introduction

Materials and their properties are of fundamental importance to human civilization.
Their technological significance even leads to the naming of historic periods after
materials, e.g. the silicon age. The importance of new materials is also highlighted
in the Sustainable Development Goals (SDGs), adopted by the United Nations
in 20151. For example, SDG 12 aims to reduce our reliance on toxic chemicals,
while SDG 9 aims to promote environmentally sound technologies in the industrial
sectors. Given their importance, it is interesting to note that materials with useful
properties are usually discovered serendipitously, even though the fundamental laws
describing the interactions between atoms are known. This is because solving a
quantum mechanical system of more than a few atoms is a very difficult task.

It turns out that a microscopic description (e.g. interaction between atomic
nuclei and electrons) cannot always provide understanding of the phenomena of
macroscopic system. For example, the behaviour of living organisms is captured by
a minimal theoretical framework that does not depend on the quantum mechanical
behavior of the atom. This is an interesting fact about nature that P. W. Anderson
presented in the “More is Different” 1972 paper [3]. The emergent behaviour of
the system can be complex and warrant its own fundamental description. For
example, in hydrodynamics, the Navier-Stokes equations describe how mass density,
momentum and energy of a fluid behave, without keeping track of all its microscopic
constituents. Inspired by this concept, one could imagine having an effective theory
of material properties that would guide design choices.

This thesis is a compilation of works that aim to model and understand material
properties with computational methods from the field of data science. This pro-
vides new ways to understand and predict properties, and search for new materials.
For example, we have used machine learning models to search the vast chemical
compound space of organic chemistry and identify semimetals – a rare electronic
property for organic materials. The new methods are sometimes fast but approx-

1For a full list of the 17 Sustainable Development Goals, see https://sdgs.un.org.
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4 CHAPTER 1. INTRODUCTION

imate (i.e. cost-accuracy tradeoff) and are complemented by traditional ab initio
quantum chemistry computation.

The main topic of the works can be divided into three key areas, and are repre-
sented by three corresponding chapters in this thesis. Firstly, the development of the
Organic Materials Database (OMDB), a large database containing electronic band
structures and magnetic properties. This includes new search tools, such as pat-
tern search, and an application with sensors for dark matter is discussed. Secondly,
the application of machine learning methods to quantum chemistry. The models
that capture the structure-property relationship of materials have been particularly
successful. Thirdly, the relatively new field of topological data analysis (TDA) is
used to study material properties. In particular, both classical and quantum phase
transitions are discussed. In the following introduction sections, the overarching
concepts are briefly presented, and these are relevant in multiple chapters.

1.1 Materials Informatics

The growing availability of computational power and data science methods has
resulted in a new field called materials informatics. As the name implies, its prac-
titioners apply methods from computer science and statistics to model and study
materials. This is done to gain new insight into their properties and to accelerate
the design of new materials. The importance of this is recognized globally and
signified by, for example, the Materials Genome Initiative in the United States [53],
which aims to accelerate materials development. Materials data is also of key im-
portance when it comes to commercial companies in various industries. To maintain
their competitive edge, this materials research (often experimental data) is often
kept internal, and it has also lead to commercial materials data platforms such as
Citrine [18] and Mat3ra (formerly Exabyte.io) [52].

However, data-driven materials science relies on the availability of theoretical
and experimental data to test methods and models. There are many publicly
available databases, with some well-known examples being the Materials Project
[41], AFLOW [22], NOMAD Repository [60]. These databases also have an API
(application programming interface), providing an interface to retrieve data with
scripts. A more detailed discussion on materials databases is presented in Chapter 2.
The growth of popularity materials informatics as a field also leads to more available
data.

Materials science is a rich field with many different types of measurements and
data. For example, a measurement might depend on strain, doping, magnetic field,
temperature, synthesis conditions and so on. The result is a loosely structured
set of heterogeneous data. In other words, it is challenging to find data that is
formatted in a systematic way. This challenge is present in all scientific fields, and
in 2016 the FAIR (Findable, Accessible, Interoperable and Reusable) guiding prin-
ciples were introduced, setting out to improve the data infrastructure. Regarding
interoperability and reusability, the development of a materials ontology is crucial.
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Natoms

100 101 102 103 104 105 106 107

DMFT, GW, . . .

DFT Artificial Intelligence

Figure 1.1: Conventional ab initio calculations scale up to 103 number of atoms,
whereas ab initio calculations with strong correlations scale to smaller unit cells.
More complex unit cells and large compounds. This is Fig. 1(a) in Paper 2.

This sets the terminology and framework for the materials informatics community.
This is still an active effort within the community, with promising steps being made
to establish a standardized ontology [6, 31].

One of the main goals within materials informatics is machine-learning guided
design of materials. This is an interdisciplinary endeavor that combines data sci-
ence, physics and chemistry knowledge. For example, the machine learning models
that are introduced in this thesis are specifically designed to incorporate the known
symmetries of the physical problem. The trained model has the potential to dra-
matically speed up the exploration of chemical space. A conventional ab initio
quantum chemistry calculation scales with O(N2 logN) to O(N3) in the number
of atoms N , and can take many hours to complete on a supercomputer. In con-
trast, a neural network, once trained, can make a prediction in under a second,
providing a speedup of over a million times. Moreover, depending on the machine
learning model, it is possible to have linear scaling in the number of atoms, making
more complex crystals and large biological systems within computational reach (see
Fig. 1.1).

All works included in this thesis are connected to the field of materials infor-
matics (except for Paper 5, which is analytical work on impurities).

1.2 Topology

Topology is the study of shapes and their properties under continuous deforma-
tions. Three common types of topological equivalence are homeomorphism, homo-
topy equivalence and isomorphic homology groups. Homeomorphism means that
there exists a continuous bijective map f and continuous inverse f−1 between the
two spaces. For example, a coffee mug and donut (filled torus) are famously homeo-
morphic. Using this concept, objects are classified by properties that stay the same
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under homeomorphisms: topological invariants. Homeomorphism is a stronger case
of the more general homotopy equivalence. This construction is based around the
notion of contracting loops to points and is often easier to compute. Homeomorphic
spaces are always homotopy equivalent but the opposite is not true. For example,
the continuous deformation of a line into a point is not a homeomorphism, since it
is not bijective (the line contains an infinite number of points). However, the line
and the point are homotopy equivalent. Another example is that the cylinder and
Möbius strip are homotopy equivalent but not homeomorphic. A related theory is
homology, which assigns homology groups corresponding to a space. This aims to
capture the number of k-dimensional holes in a space, and the topological invari-
ant called the Betti number βk counts the number of k-dimensional holes. Having
isomorphic homology groups is a weaker condition than homotopy equivalence, but
it is easier to compute. In summary, homeomorphism is a stronger condition than
homotopy equivalence, which is stronger than isomorphic homology groups (see
Fig. 1.2). In some special cases there are connections between the different levels
of theory, such as the Hurewicz theorem providing a map from homotopy to ho-
mology [35]. In this compilation thesis, the focus is mainly on simplicial homology
groups, since they represent a computationally simple choice that is based on linear
algebra. Chapter 4 provides the definitions of this elegant theory from the field of
algebraic topology, and a number of example computations.

Topological invariants also appear in many places in condensed matter physics.
For example, the quantized conductance in the quantum Hall effect is a topologi-
cal invariant that is independent of the sample geometry. Another example is the
one-dimensional Su-Schrieffer-Heeger (SSH) model that has a integer topological
invariant called the winding number that changes depending on the model param-
eters. This invariant describes the homotopy equivalence within the topological
phase. However, in this compilation thesis the focus is on constructing completely

Homeomorphism Homotopy equivalence Isomorphic homology groups

Point � Line

Cylinder � Möbius strip

Coffee cup ∼= Donut

Point ∼= Line

Cylinder ∼= Möbius strip

Coffee cup ∼= Donut

Point ∼= Line

Cylinder ∼= Möbius strip

Coffee cup ∼= Donut

Figure 1.2: Three types of topological equivalence arranged in order of their dif-
ferentiating power, from stronger (left) to weaker (right). The ∼= symbol indicates
topological equivalence at the level of theory shown in the box. For example, homeo-
morphism distinguishes a cylinder from a Möbius strip, whereas this is not detected
at the other two levels of topological equivalence. Examples of non-homotopic
spaces with isomorphic homology groups are more complicated, one such example
being the Poincaré homology spheres [89]. The focus of the works presented in this
thesis is at the level of homology groups.
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new topological invariants using persistent homology. These invariants are then
primarily used to detect phases in materials, but they may also prove useful in
understanding materials within a new computational perspective.

1.3 Dirac materials

The Schrödinger equation governs the motions of electrons moving in a periodic
lattice of nuclei. Solving this equation provides quantized energy levels as a function
of momentum that can be plotted as a band structure (e.g. Fig. 2.2). This reveals
the electronic properties of a materials, for example, whether a material is a metal,
semiconductor or insulator. The band structure is often complicated, as is clear
from its colloquial name: spaghetti diagrams. However, most of the behaviour of
the system is governed by low-energy excitations. For this reason, this diagram is
often replaced by an effective Hamiltonian with a small number of conductance and
valence bands.

Dirac materials are a class of materials that are effectively modelled by the Dirac
Hamiltonian, which in two dimensions takes the form

H = vF (σxpx + σypy) +Mσz, (1.1)

where σi are the Pauli matrices and vF the Fermi velocity that controls the slope of
the dispersion [90]. Materials in this class include graphene, topological insulators
and honeycomb ferromagnets. Figure 1.3 shows the characteristic linear, rather
than quadratic, band structure of Dirac materials. The introduction of the σz
term causes a band gap in the dispersion that can be controlled by the size of M .
Therefore, these materials are proposed as sensors for light particles, in particular
for the hypothetical dark matter particle (see Section 1.4 and 2.3) [30,37].

Dirac materials are relevant to a number of the works presented in this the-
sis. Two of the papers focus on finding new Dirac materials in the domain of the

MM = 0 M fluctuations

Figure 1.3: The characteristic linear dispersion of the Dirac fermions at zero mass
M , and the opening of a gap introduced by the σz term. At the Dirac point
(crossing point) the density of states ν(E) vanishes. In general, the d-dimensional
Dirac material has a density of states following ν(E) ∼ |E|d−1. This is Fig. 1 in
Paper 5.
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organics. Paper 8 implements a graphical pattern search to efficiently find the char-
acteristic band crossing in electronic structure databases. Paper 4 identifies the first
three-dimensional organic Dirac material. Beyond the search of Dirac materials,
we have also studied their utility as a dark matter sensor. Paper 7 outlines the
potential of Dirac materials as dark matter sensors. The crucial advantage of Dirac
materials is that the band gap can be of the order of meV. The small gap supresses
thermal excitations, while also fitting the requirements of candidate dark matter
particles as presented in more detail in the next section. Paper 5 details the effects
of impurities in gapped Dirac materials on their utility as a dark matter sensor.
The impurities introduce so-called Lifshitz tails [49], which extend far into the gap
of the sensor material.

1.4 Dark matter

The nature of most of the matter in the universe is unknown, representing one of
the biggest puzzles in modern science. This elusive matter is only observed through
gravitational effects, and it is therefore called dark matter. The total amount of
dark matter is constrained by modern cosmological models, and it is estimated to
be roughly 85% of all matter in the universe.

Historically, many astronomers in the early 20th century have searched for non-
luminous astronomical objects. In the early days, dynamical mass measurements
of orbiting stars lead to an estimate of the total non-luminous matter in our own
galaxy, the Milky Way. In 1930, the Swedish astronomer Knut Lundmark discov-
ered dark matter in five galaxies, including the Milky Way and Andromeda, by
measuring its rotational velocities. Lundmark also pointed out that the galaxies
required the presence of dark matter to be stable. Three years later, the Swiss
astronomer Fritz Zwicky studied the Coma cluster, a structure of over a thousand
galaxies, and found that the orbits of the galaxies at the edge provided evidence
for dark matter. This is because the gravitational effect of the visible galaxies was
too small to account for the fast orbits. In 1960s and 70s, a number of astronomers
performed detailed observations of the rotational velocities of spiral galaxies. Con-
sidering all the baryonic matter present, it was expected that the velocities near the
edge of the galaxy would decrease. This was not observed however, and the veloc-
ity rotation curves were in fact approximately constant far away from the galactic
center, which ultimately lead to the modern understanding of galaxies embedded
in a large spherical dark matter halo. More recently, dark matter has also been
detected through gravitational lensing, where light is bent as described by general
relativity. All the evidence combined implies a universe that is dominated by dark
matter.

The Standard Model describes the particles and the known forces (except grav-
ity) that exist in the universe. Gravity is not mediated by a particle and is instead
explained with Einstein’s general theory of relativity. None of the particles in the
Standard Model fit the observational evidence for dark matter, which motivates the
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Fi g u r e 1. 4: D a r k m att e r c a n di d at e s c o v e r a wi d e r a n g e of m a s s m a g nit u d e s. A xi o n s
a n d a xi o nli k e p a rti cl e s ( A L P s) c o n stit ut e t h e li g ht e st c a n di d at e s. St e ril e n e ut ri n o s
ν a r e a n ot h e r li g ht c a n di d at e. T h e WI M P s a r e t h e f o c u s of t hi s t h e si s a n d t h e
l o w- m a s s r e gi o n (≤ 5 G e V / c 2 ) i s s h o w n b y t h e d a s h e d b a r s. B e y o n d p a rti cl e s,
p ri m o r di al bl a c k h ol e s ( P B H) a r e p r o p o s e d t o h a v e b e e n p r o d u c e d i n t h e v e r y e a rl y
U ni v e r s e a n d a r e r ef e r r e d t o a s a t y p e of m a s si v e c o m p a ct h al o o bj e ct ( M A C H O).
Fi g u r e r e p r o d u c e d f r o m [ 7 7] wit h p e r mi s si o n f r o m I O P P u bli s hi n g.

s e a r c h f o r n e w p a rti cl e s ( s e e Fi g. 1. 4). T h e crit e ri a f o r t hi s d a r k m att e r p a rti cl e
a r e t h at it i s w e a kl y i nt e r a cti n g, st a bl e a n d c ol d (l o w ki n eti c e n e r g y). T hi s l a st
c o n st r ai nt i s gi v e n b y t h e c o s mi c mi c r o w a v e b a c k g r o u n d ( C M B) a n d t h e l a r g e- s c al e
st r u ct u r e i n t h e u ni v e r s e.

A p o p ul a r d a r k m att e r c a n di d at e i s t h e We a kl y I nt e r a cti n g M a s si v e P a rti cl e
( WI M P). It i s a h y p ot h eti c al p a rti cl e t h at i nt e r a ct s wit h ot h e r p a rti cl e s i n t h e
St a n d a r d M o d el o nl y t h r o u g h t h e w e a k n u cl e a r f o r c e ( o r vi a a n u n di s c o v e r e d w e a k e r
f o r c e) a n d t h r o u g h g r a vit y. T h e r e i s a n o n g oi n g gl o b al e ff o rt t o d et e ct s u c h p a rti cl e s
n o n- g r a vit ati o n all y, t h r o u g h di r e ct o r i n di r e ct d et e cti o n m et h o d s. Di r e ct d et e cti o n
r e q ui r e s t h e d a r k m att e r p a rti cl e t o t r a n sf e r e n e r g y t o t h e d et e ct o r t h at c a n t h e n b e
m e a s u r e d a s li g ht, c h a r g e, o r h e at. F o r e x a m pl e, t h e X E N O N n T e x p e ri m e nt u s e s
al m o st 6 0 0 0 kil o g r a m s of li q ui d x e n o n t o s e a r c h f o r WI M P s p a rti cl e s i n t h e r a n g e of
a b o ut 1 0 t o 1 0 4 G e V [ 2, 5]. T h e d et e ct o r m e a s u r e s li g ht a n d c h a r g e si g n al s c a u s e d b y
t h e e x cit ati o n o r i o ni s ati o n of t h e x e n o n b y d a r k m att e r p a rti cl e s. I n di r e ct d et e cti o n
m et h o d s c o n si d e r t h e p o s si bilit y of d a r k m att e r a n ni hil ati o n o r d e c a y a n d s e a r c h
f o r o b s e r v a bl e m att e r p a rti cl e s f r o m t h e St a n d a r d M o d el t h at a r e p r o d u c e d i n t hi s
p r o c e s s. F o r e x a m pl e, a n u m b e r of t el e s c o p e s a r e s e a r c hi n g f o r g a m m a r a y s a n d
c o s mi c r a y s t h at a r e c o n si st e nt wit h WI M P a n ni hil ati o n o r d e c a y [ 2 9].

A n ot h e r w ell- e st a bli s h e d d a r k m att e r p a rti cl e c a n di d at e i s t h e a xi o n. T hi s i s a
b o s o n wit h v e r y l o w m a s s ( m e V o r li g ht e r). Fi n all y, d a r k m att e r c o ul d al s o b e a mi x
of m ulti pl e c o m p o n e nt s. M at e ri al s ci e n c e pl a y s a p r o mi si n g r ol e i n t h e d et e cti o n of
h y p ot h eti c al d a r k m att e r p a rti cl e s. T h e c a s e of di r e ctl y d et e cti n g li g ht e r ( s u b- M e V)
p a rti cl e s i s di s c u s s e d i n S e cti o n 2. 3.





Chapter 2

Materials databases

The properties of crystalline materials are primarily governed by their electronic
structure. Understanding and predicting the functional properties is of importance
to create materials with useful technological applications. Even though the quan-
tum mechanical nature and the fundamental laws of the electrons and nuclei are
known, the computation is known to be challenging and demands large computa-
tional resources. Moreover, the possible chemical compound space to search for
target properties is enormous. The growth in computational power has made high-
throughput calculation of material properties more and more prominent within
material science. This task is accelerated further by machine learning, which is the
focus of Chapter 3.

Table 2.1 lists a number of well-known databases. In this chapter, we describe
the computational tools that are relevant to the Organic Materials Database in
more detail. We also discuss an example technological application of the OMDB,
namely of dark matter sensors. The Papers 5, 7 and 8 are within this scope of this
chapter.

2.1 Organic Materials Database

Motivated by the high demand for materials data and the potential for technological
applications, the Organic Materials Database (OMDB) was launched in 2016 [13].
The database is open-access for academic users and available at http://omdb.
mathub.io. It is an online platform that contains over 40,000 electronic structures,
magnetic properties and search tools. The computation of the electronic properties
are performed in the framework of density functional theory (DFT) with the Vienna
Ab initio Simulation Package (VASP) [45]. The website itself is programmed using
the PHP language and the Laravel web framework. Data processing and analysis
is performed in Python.

The focus of this database is on organic and organometallic materials, which
represent an understudied class compared to inorganic crystals. The main challenge

11
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Database Brief description Ref.
AFLOW General-purpose materials database [22]
COD Crystal structure information [33]
Materials Project General-purpose materials/molecules database [41]
MatNavi Collection of databases [59]
Polymer Genome Computational and experimental data on polymers [43]
OMDB Electronic/magnetic properties of organic crystals [13]
OQMD Computational materials database [74]
QM Datasets for machine learning [65]
NoMaD General-purpose materials/molecules database [60]

Table 2.1: Selection of a few well-known materials databases with a brief descrip-
tion. These include computational data, experimental data, and molecules or ma-
terials data.

is that organic crystal structures typically contain hundreds of atoms in their unit
cell. The time complexity of ab initio quantum chemistry codes typically scale with
O(N2 logN) to O(N3) in the number of atoms N . This means that organic mate-
rials require a lot of computational resources. However, the choice of organics also
has its advantages. For example, the main constituents of carbon, hydrogen, nitro-
gen and oxygen are abundent and inexpensive. Inorganic crystals are typically hard
and brittle (e.g. gemstones), whereas crystals constructed from organic molecules
can be flexible, making flexible electronics an interesting application domain [50].

The Organic Materials Database includes a number of material properties and
search capabilities. Crucially, each material is processed systematically in the same
way to arrive at the electronic properties, see Fig 2.1. Therefore, even though the
individual calculations are approximate (inherent to the quantum chemistry simu-
lation), nevertheless the trends in the data are due to the different input materials
and worth studying. There are two database functionalities that are particularly
relevant to this thesis, and they are outlined below.

Figure 2.1: Process used for each material within the OMDB. The crystal struc-
ture is imported as a CIF file from the Crystallographic Open Database (COD).
Pymatgen is used to convert these files into input files for the VASP DFT package.
The electronic structure is stored in the OMDB as band structures. Figure adapted
from [13] (CC BY 4.0).
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Figure 2.2: Example of a material page (TSeF-TCNQ) on the Organic Materi-
als Database (OMDB) showing the crystallographic information, electronic band
structure and density of states.

Material properties
Figure 2.2 shows a screenshot of the material page for the compound TSeF-TCNQ.
At the top of the page, we display the crystallographic information as collected from
the Crystallographic Open Database (COD) and the symmetry information (e.g.
space group). The computed Kohn-Sham band structure and density of states are
displayed in interactive plots below. At the bottom of the page, similar materials
based on crystal structure (see Section 3.1 on descriptors) and density of states are
listed.

The electronic calculations are performed within the density functional theory
(DFT) framework that is presented in more detail in Section 2.2. More specifi-
cally, the projector augmented wave method is used as implemented in the VASP
code, and the exchange-correlation functional was approximated by the generalized
gradient approximation (GGA) according to PBE [63].

Graphical pattern search
The functionality of a material can often be characterized by its electronic band
structure and density of states. Metals have finite density of states and Dirac
materials are characterized by a linear crossing at the Fermi level. More complicated
examples are topological insulators, that show a Mexican-hat structure.
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Figure 2.3: Sliding window of two electronic bands along a high symmetry path in
the Brillouin zone of width w (a). The window can be represented by two vectors
of each 3 points each (b) that is concatenated to a single vector (c). This is Fig. 1
in Paper 8.

The OMDB contains pattern search options for the Kohn-Sham band structures
and density of states. This means that either a preset pattern or a user-specified
drawing can be chosen to search for materials. First, a searchable index is created
by sliding a window through the band structures and storing the resulting vectors,
see Fig. 2.3. Next, the problem becomes a nearest neighbor search task for a given
input query pattern. In order to do this online in a fast and efficient way, we use
the approximate nearest neighbor algorithm called ANNOY, as implemented in the
open-source library by Spotify [4]. Figure 2.3 shows how the algorithm works for
a two-dimensional example, but it generalizes to high-dimensional data. In order
to make the functionality of searching for electronic band pattern more broadly
available, we have open-sourced the code along with the publication (see Paper 8).

2.2 Atomic scale materials modelling

The microscopic description of atomic nuclei and electrons is well known, as men-
tioned earlier in the introduction. For example, the Hamiltonian of a many-body
system N electrons in the Born-Oppenheimer approximation can be written as

H(r1, . . . , rN ) = T + Vext +W

=
N∑
i

∇2
i

2︸ ︷︷ ︸
electron kinetric energy

+
N∑
i

Vext(ri)︸ ︷︷ ︸
electron-nuclei interaction

+
∑

i,j=1;i<j

1
|ri − rj |︸ ︷︷ ︸

electron-electron interaction

when using Hartree atomic units (e = ~ = m = 1). The solutions are given by
the time-independent Schrödinger equation Hψi(r1, . . . , rN ) = Eiψi(r1, . . . , rN ).
However, even a single eigenstate of H already quickly exceeds the storage space of
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Figure 2.4: The approximate nearest neighbor algorithm ANNOY demonstrated for
100 random points in a 2D Euclidean space. (a) The algorithm starts by splitting
the data into two subspaces using the equidistant hyperplane of two randomly
selected points. This is done recursively until the number of points in the subspaces
is below a certain threshold. (b) The recursive subspaces form a binary tree where
nearest neighbors are accessible in logarithmic time. This is Fig. 2 in Paper 8.

a computer. The many-body wavefunction ψk maps the input (R3)N to a complex
number. Therefore, even for a simple 10× 10× 10 grid and only N = 6 electrons,
the wavefunction comprises 1018 numbers, requiring roughly 4 exabytes of storage
capacity. However, it turns out that it is possible to sidestep this problem through
a theoretical framework that relies on the electron density n(r), mapping R3 to a
real number. The theory is based on the variational principle.

The variational principle is an approach where solutions to a problem are found
by minimizing or maximizing certain quantities. This approach is used in quantum
mechanics where it can be shown that the ground state energy E0 is always less or
equal than the expectation value given any wavefunction,

E0 ≤
〈ψ|H|ψ〉
〈ψ|ψ〉

.

This is an essential ingredient for many methods in quantum chemistry, including
variational Monte Carlo and density functional theory (DFT).
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For the variational quantum Monte Carlo method it means an arbitrary ansatz
wavefunction |Ψ(. . . )〉 with many parameters can be used in a minimization scheme.
For example, by calculating the derivative of the expectation value 〈H〉 relative to
the parameters, one can iteratively tweak the parameters to minimize 〈H〉 towards
E0 (this is gradient descent).

The foundations of density-functional theory are two theorems by Hohenberg
and Kohn [38]. The proof of both theorems relies on the variational method. For
the first theorem it starts by taking two systems HA and HB and using variational
method. We know that,

EA < 〈ΨB |HA|ΨB〉 and EB < 〈ΨA|HB |ΨA〉 ,

where EA is the ground state energy of system A and ΨB the ground state of B
(and the other way around). It turns out that by comparing these expressions it
is impossible to have the same ground state density n0 for two different system
A and B. This means there is a 1-to-1 mapping between a system H and the
ground state density n0, which is used in the second Hohenberg and Kohn theorem.
The variational principle is used here again. Given a trial density ntrial and its
corresponding ground state energy E0, it must be greater or equal than the true
ground state energy,

E0[ntrial] ≥ E0[n0].
A scheme for choosing ntrial was introduced by Kohn and Sham [44].

The main idea is to turn the problem into a system of N non-interacting elec-
trons that has the same ground state electron density as the interacting system.
This non-interacting system is solved through the Kohn-Sham equation,[

∇2

2 + VKS[n](r)
]
φi = εiφi,

which follows a self-consistent method using multiple iterations, as shown in Fig. 2.5.
The iteration starts with calculating the Kohn–Sham potential VKS given an initial
guess density nstart,

VKS[n](r) = Vext(r) + VHartree[n](r) + Vxc[n](r). (2.1)

Each of these terms is calculated separately. The external potential Vext is the sum
of nuclear potentials,

Vext(r) =
sites∑
i

Vi(r −Ri), (2.2)

where i runs over the sites in the molecule or crystal structure. The potential Vα
is chosen to be the Coulomb attraction −Zα/r or a pseudopotential. The Hartree
potential is computed using the electron density,

VHartree[n](r) =
∫
d3r′

n(r′)
|r − r′|

. (2.3)



2.3. SENSORS FOR DARK MATTER 17

nstart(r)

VKS(r)

HKSφi(r) = εiφi(r)

n(r) =
∑N

i=1 |φi(r)|2

converged?

end

yes
no

Figure 2.5: Procedure of a Kohn-Sham density functional theory calculation. Figure
adapted from [28] with permission from Springer Nature.

The potential Vxc captures all the remaining exchange and correlation effects for the
electron, which is, in general, a functional derivative, i.e. δExc/δn(r). There are
many choices available for the exchange-correlation energy Exc, that can be either
empirical or non-empirical. For example, in the OMDB we use the non-empirical
Perdew-Burke-Ernzerhof (PBE) functional that belongs to the generalized gradient
approximations (GGA). In general, the exchange-correlation methods can be ranked
in accuracy following Jacob’s ladder [64]. Finally, the iteration proceeds as listed
in Fig. 2.5. Once the electron density has converged, the total energy (or other
quantities of interest) can be calculated from it.

2.3 Sensors for dark matter

The observational evidence of dark matter suggests the existence of a particle be-
yond the Standard Model, as mentioned in the introduction. The search for this
particle is ongoing, but the absence of the WIMP particle with a typical mass rang-
ing from GeV to TeV, motivates to extend the search to lower mass (sub-GeV). The
goal is to detect the dark matter particle non-gravitationally, and in our work we
focus on the path of direct direction. This means detecting the recoil of the particle
in a sensor material by an observable such as light, charge or heat/phonons. This
requires ultrasensitive photon detectors or bolometers. For an suitable low-mass
detector there are many constraints, including:
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1. Small energy gap – A small energy band gap ensures that low-temperature
background noise is excluded from the signal.

2. Shallow Slope – The slope of the Dirac cone is controlled by the Fermi velocity
vF (see Equation 1.1). A shallow slope is necessary for scattering to be allowed
and it was found that the optimal slope is 10−4c to 10−3c where c is the speed
of light [37].

3. Anistropic / directional sensitivity – The rotation of the Earth combined
with an anistropic material leads to characteristic daily modulation of the
signal [30].

4. Practical – A sensor material must be chemically stable, free of impurities
that affect the signal, and economically viable.

Given these constraints, we searched for suitable sensor materials in the realm
of organic materials (see Paper 7) in the Organic Materials Database and identified
a number of candidates. A subsequent detailed study showed that one of those can-
didates is especially suitable, the quasi-two-dimensional organic molecular crystal
bis(naphthoquinone)-tetrathiafulvalene (BNQ-TTF), which contains Dirac nodes
that could potentially be gapped by applying strain [30].

Another important factor to consider is the effect of impurities on the signal.
We have modeled this using both a discrete and a continuous random mass-term in
the Dirac material (see Paper 5). In the case of the discrete mass-term, the presence
of rare regions introduces Lifshitz tails [49] inside the band gap. The density of
states of the Lifshitz tail decays exponentially, but remains finite throughout the
gap. This is captured by the impurity concentration c, that we assume to be a few
percent (consistent with metallurgical-grade silicon). For a normally-distributed
mass-term, the density of states decays quadratically. Both of these cases lead to
unwanted states within the gap, that is now sensitive to background noise. These
models provide a theoretical framework to set even more constraints on potential
Dirac sensors. This is still an active field of research and a full detection scheme
based on Dirac materials remains to be realized.



Chapter 3

Machine learning for materials

The aim of machine learning (ML) is to detect patterns in data and to perform tasks
using the uncovered patterns. A more precise definition of learning is provided by
Tom Mitchell in 1997 [56]:

Definition. A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at tasks in
T , as measured by P , improves with experience E.

For example, a regression algorithm is tasked to predict the total energy of
a molecule (T ) through experience obtained from traditional ab initio quantum
chemistry calculations (E), and it is improving as measured by its mean absolute
error (P ) in its predictions.

Successful domains of application of machine learning methods include image
processing, speech recognition, and robotics. For example, DeepMind’s AlphaFold
models predict the structure of proteins given an amino acid sequence [42,81]. An-
other example is the OpenAI’s DALL-E model that generates a realistic image given
an input text1 [68]. As mentioned in the introduction, these type of methods have
also been used to study materials. Accurate machine learning models can improve
and accelerate the discovery of new materials. The exponential increase in compu-
tational power and storage capacity has lead to the creation of materials databases,
such as the Organic Materials Database (OMDB) described in the previous chapter.
Methodology adapted from computer science, and in particular machine learning,
is a natural choice to take advantage of these newly emerged data.

Machine learning methods can be divided into three main categories. The su-
pervised learning (or predictive) methods are given labeled data (i.e. input x and
corresponding output y) and construct a mapping between the two. Examples in-
clude linear regression and the more sophisticated regression models used in this
thesis. The unsupervised learning (or descriptive) methods are only given a set

1The cover image of this thesis is the result of giving DALL-E 2 the input “Molecule in the
style of Hilma af Klint".

19
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of inputs x and have the objective to find patterns. For example, clustering data
points without knowing beforehand the desired cluster each point belongs to. Fi-
nally, reinforcement learning is the approach where a model is simply trying to
maximize reward (or minimize punishments) while interacting with an environ-
ment. The model (or agent) aims to find a suitable action model based on the state
of the environment. Here there is a exploration-exploitation trade-off , where ran-
dom (and often poor) actions are necessary to explore new strategies, that prevent
(in the short-term at least) the quick accumulation of more reward. In this thesis,
the focus is on supervised and unsupervised learning techniques.

3.1 Supervised learning

Supervised learning is the category of machine learning where inputs (or features)
are mapped to outputs (or labels). In materials science, it is particularly challenging
to form appropriate inputs, sometimes called feature vectors or descriptors. There
are many requirements for a suitable descriptor:

1. Bijective – one unique descriptor corresponds to one material

2. Invariant with respect to rotations and translations.

3. Invariant with respect to permutations of the atoms

4. Efficient – computationally cheap

For extensive properties such as total energy, there should be no invariance with
respect to multiples of the unit cell. The representation of molecules and crystals
is still an active field of research, but it also has a long history. Simply using the
Euclidean coordinates of the atomic sites is not a good representation because it
breaks all the required invariance rules. Internal coordinate space (referred to as
Z-matrix) that describes a structure through bond lengths, bond angles, and so on,
removes degrees of freedom, but still breaks the permutation symmetry and is not
unique. Already in the 1980s the SMILES (Simplified molecular-input line-entry
system) strings were introduced to encode molecules. This makes it possible to
describe the structure of a molecule using a short combination of characters and
parenthesis. However, this descriptor is also not unique (multiple SMILES strings
encode the same molecule) and it does not capture the exact positions of the atoms2.
However, there have been many seminal works that introduce descriptors for ma-
chine learning that do fit some, or even all the requirements above. These include
the Coulomb matrix [72], Bag-of-Bonds [34], Sine Matrix [26], many-body tensor
representation (MBTR) [39], and Atom-centered Symmetry Functions (ACSF) [9].
Combining these descriptors with a machine learning model makes it possible to
capture the structure-property relationship.

2For example, the molecule ethanol can be written as C(O)C, CCO, or OCC.
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In this thesis, the regression models that are used are kernel ridge regres-
sion (KRR) and a deep neural network specifically designed for atomistic systems
(SchNet). These models are unique in that they do not require explicitly convert-
ing the molecule or crystal structure to a fixed-size input vector. KRR only relies
on a pairwise similarity function (i.e. the kernel) that quantifies how similar two
input structures are. SchNet uses fixed-size input vectors, but these are part of
the learning scheme and not analytically computed. The next sections introduce
these models in more detail and discuss their performance using the example of the
structure-band gap relationship of materials in the OMDB.

3.2 Kernel Ridge Regression

Kernel Ridge regression (KRR) is a relatively simple, yet powerful method that
combines linear regression, regularization and the kernel trick. The kernel trick
refers to the use of a kernel function that computes the similarity between two
inputs. This makes the regression non-linear, in a computationally efficient way, as
will be shown in this section.

Ridge regression in d dimensions is a supervised method that makes predictions,

f(x) = wTx, (3.1)

where x is a d-dimensional input vector. The coefficients w minimize the squared
error for a given set of labeled data points,

arg min
w∈Rd

N∑
i=1

(
f(xi)− yi

)2
+ λ‖w‖2

2, (3.2)

where yi is the label and f(xi) the model prediction. The normalization coefficient
λ controls the model complexity, introducing a bias-variance trade-off . This is a
hyperparameter , meaning that it is not part of the model fitting but has to be set
outside of the learning procedure. A higher value of λ favors smaller w coefficients,
which decreases the variance and increases the bias of the model (underfitting).
A low value of λ leads to a model with high variance and low bias, potentially
overfitting the data. A generalizable and accurate model aims for a balance between
bias and variance. The solution of minimizing Equation 3.2 is

w =
(
XTX + λId

)−1
XTy, (3.3)

where X is the input matrix of size N × d, containing the N data points [57].
In order to make the ridge regression non-linear, the input vectors in vector space

X are mapped to a higher-dimensional vector space Z using a function φ : X → Z.
However, the kernel trick makes it possible to perform regression without explicitly
converting each data point to the higher-dimensional space [1, 57]. Instead, the
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regression uses the kernel function k, that is defined as the inner product in the
space Z

k(x,x) = φ(x)Tφ(x′) = zTz, (3.4)

where z and z′ represent the transformed points x and x′. Taking Equation 3.3,
we define Φ as the matrix where φ is applied to each row of X,

w =
(
ΦTΦ + λIz

)−1 ΦTy. (3.5)

This can be rewritten using the push-through matrix identity3

w = ΦT
(
ΦΦT + λIN

)−1
y (3.6)

from which we can define the kernel ridge regression coefficients α,

α = (K + λIn)−1
y, (3.7)

where K = ΦΦT is the kernel matrix with elements Kij = k(xi,xj). Finally, the
prediction can also be expressed in terms of the kernel function,

f(x′) = wTφ(x′) (3.8)
= φ(x′)TΦTα (3.9)

=
N∑
i

φ(x′)φ(xi)αi (3.10)

=
N∑
i

αik(x′,xi). (3.11)

In summary, KRR involves computing the kernel matrix K, the regression coeffi-
cients α, and the kernel similarities k between the training data xi and a new input
point x. The use of the kernel function sidesteps the explicit conversion of each data
point to the higher-dimensional space Z. Due to the large kernel matrix and the
computationally expensive matrix inversion, this method does not scale to large
datasets. However, given a accurate kernel for the problem at hand (i.e. kernel
engineering), it can provide state-of-the-art results, especially for smaller datasets,
see Paper 6.

Kernel for crystal structures: SOAP
The SOAP (Smooth Overlap of Atomic Positions) kernel provides a systematic way
to compare two atomic structures [7, 8]. As depicted in Fig. 3.1, it is first defined
for two atomic neighborhoods, which are subsequently aggregated into a final scalar
similarity value.

3Push-through identity: (UV + I)−1U = U(V U + I)−1 with U = ΦT and V = Φ.
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Figure 3.1: The Smooth Overlap of Atomic Positions (SOAP) kernel K(A,B) be-
tween two molecules A and B is an aggregate result of local environments compar-
isons k(Xi,Xj). A Gaussian is placed at each atomic position and two environments
are compared by integrating the overlap of the two environments. Figure reproduced
from [7] (CC BY-NC 4.0).

A neighborhood is modelled by placing Gaussians at each atomic site,

ρX (r) =
∑
i∈X

exp
(

(xi − r)2

2σ2

)
, (3.12)

where σ is typically 0.5Å. Next, the similarity between the two environments Xi
and Xj is computed by integrating over all 3D rotations,

k(Xi,Xj) =
∫
dR̂

∣∣∣∣∫ ρXi
(r)ρXj

(R̂r) dr
∣∣∣∣2 . (3.13)

All these pairwise local kernels are collected in the similarity matrix,

Cij(A,B) = k(Xi,Xj). (3.14)

There are a number of options for how to combine this matrix into a single scalar
kernel that can be used to model a structure-property relationship with kernel ridge
regression. The simplest scheme is the average kernel,

K(A,B) = 1
N2

∑
ij

Cij(A,B), (3.15)

which takes the average of all the matrix elements. Another popular option is the
regularlized-entropy match (RE-Match) kernel that aims to find the best pairwise
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Figure 3.2: Benchmark of kernel ridge regression (KRR) with the Smooth Overlap
of Atomic Positions (SOAP) kernel and the SchNet atomistic deep neural network
predicting the OMDB band gap for increasing number of training examples. See
Paper 6 for more detailed information on the model parameters. This is Fig. 3 in
Paper 6.

match (between A and B) for each atomic environment. The different chemical
elements can be implemented in several ways, e.g. computing the kernel separately
for each element and average the result.

Paper 6 uses the SOAP kernel to predict the band gap for organic crystals.
Figure 3.2 shows that given 10 000 training examples, the model has a mean absolute
error (MAE) of 0.430 eV on 2500 unseen materials (test set). In constrast, the deep
neural network model (SchNet, see Section 3.3) has a MAE of 0.415 eV. However, for
smaller number of training examples, the KRR model outperforms SchNet. This
model is used to identify candidate solar cells with a band gap of (1.34 ± 0.05)
eV. This band gap corresponds to the Shockley-Queisser (SQ) limit, the maximum
efficiency of a single p-n junction [70].

3.3 Neural networks

Neural networks, as the name suggests, are models that combine artificial neurons in
a network architecture. In the 1950s, perceptrons were implemented as an artificial
neuron [69]. The perceptron computes a single binary output y based on a weighted
sum of its inputs, plus a bias term, i.e. y = w · x + b. If the result is larger
than a threshold value, the neuron outputs one, otherwise zero. A combination of
connected perceptrons can model any function, similar to how a combination of
NAND logic gates represent universal computation [58]. However, the challenge is
to find the weights w and biases b that solve a problem. The key is to promote
perceptrons to sigmoid neurons [71], where the output y is no longer binary, but
instead just the weighted sum passed through the sigmoid function,

y = S(w · x+ b) where S(z) = 1
1 + e−z

, (3.16)
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where S is also called the activation function. In comparison to the step func-
tion behaviour of perceptrons, the sigmoid neuron is essentially a smoothed step
function. The benefit is that the sigmoid neuron is differentiable, allowing us to
nudge the weights and biases to a desired output value. More recently, the rectifier
linear unit (ReLU) is often used as an activation function to avoid the numerical
problems with sigmoid functions (e.g. vanishing gradients at large inputs). In the
fully connected neural networks, each neuron is connected to all the neurons in the
next layer. The trainable parameters in a combination of neurons are the weights
and biases. Given a loss function on the output, each individual parameter can
be updated in a way that reduces the output loss, following the chain rule. The
algorithm for updating the weights and biases efficiently is called backpropagation,
because it involves computing the gradients iteratively from the output back to the
input layer. Furthermore, the operations boil down to matrix multiplication, which
is GPU-accelerated.

Vanilla neural networks, where all neurons in a layer are fully connected to the
next layer, are unconstrained and have a large parameter space of possible weights
and biases. However, when solving a real-world problem, we can expect a smaller
subset of parameters that are sensible, reflecting the symmetries of the problem.
Nature appears to favour symmetry, as is clear from the abundance of symmetric
structures in biology. The reason is that symmetries represent an efficient way to
encode a structure, requiring less information. This concept can also be applied to
neural networks.

Convolutional neural networks (CNNs) are a neural network architecture where
a kernel slides along a the input values and outputs a feature map [46]. This is
an example of weight sharing, because the kernel has a relatively small number of

(a) (b)

Figure 3.3: Schematic of two different neural network architectures. (a) Fully
connected neural network with three inputs, two hidden layers and two outputs.
(b) Convolutional neural network turning a 8× 8 input image into a 7× 7 feature
map by sliding a 3× 3 kernel across the image.
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weights that are utilized repeatedly along the input. The smaller number of total
parameters leads to a reduction in computational cost. Additionally, the architec-
ture guarantees that an input shift causes a shift in the activations, which is called
translational equivariance. This leverages the fact that computer vision problems
typically demand translational symmetry. For example, detecting whether an ob-
ject is present in an image it does not matter exactly where it is located. There
is typically a pooling layer to make the output layer invariant. Some problems ex-
plicitly require equivariance, where a shift in input must also shift the output in a
certain controlled way. An example of such a problem is the prediction of non-scalar
values (e.g. force/velocity of particles). An example of an invariant problem is the
prediction of a scalar property of a molecule. Crystal structures and molecules have
many symmetries that can be incorporated in a neural network, as discussed in the
next subsections.

A common approach to address invariance in neural networks is to perform data
augmentation. The idea is to artificially increase the size of the training dataset by
applying random transformations. However, data augmentation is computationally
expensive and the model does not guarantee equivariance (a more detailed discus-
sion in Section 3.3). The unconstrained model has to learn both the symmetries of
the data and solve the user-defined task at the same time. A small perturbation to
the input could lead to wildly different results.

In the next section, a neural network architecture that is effective for molecules
and materials is introduced.

SchNet Atomistic Deep Neural Network

SchNet is a continuous-filter convolutional neural network with competitive ac-
curacy that works both on molecules and crystal structures. For example, when
predicting the total energy for the organic molecules in the QM9 dataset, SchNet
achieves 0.31 kcal/mol with 110 000 training examples [78]. This is well below what
is generally considered to be chemical accuracy of 1 kcal/mol. For the Organic
Materials Database, the model reaches a mean-absolute error (MAE) of 0.415 eV
(see Fig. 3.2).

Figure 3.4 shows the architecture of the model. The neural network is evaluated
for each site in the atomic structure separately, and the atom-wise contributions
are summed or averaged, depending on whether the output is an extensive or in-
tensive property, respectively. This kind of weight-sharing achieves permutation
equivariance (that becomes invariance after the sum/avg pooling). The use of lo-
cal environments also makes the model translationally invariant. Finally, the way
neighboring sites are introduced in the model achieves rotational invariance.

The N atoms are each represented by a vector xli ∈ RF where F is the number
of feature maps in the model and l denotes the layer in the model. Initially, the
vector is set to an embedding that is dependent on the atomic number Zi,

x0
i = aZi

. (3.17)
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The embedding is a F -dimensional vector that is initialized randomly and optimized
during the training with backpropagation. This is a popular technique that is used
in many machine learning applications when the input consists of discrete objects.
For example, in the word2vec model in natural language processing, unique words
are converted into embedding vectors [55]. This is denoted by the embedding block
in Fig. 3.4.

Next, the interaction blocks introduce neighboring sites into the model

xl+1
i =

N∑
j=0

xlj �W l(dij) (3.18)

where � represents element-wise multiplication, dij is the distance between site i
and j, and W l is a filter that maps R → RF . The interaction blocks update the
vector xi that now incorporates the information of the interactions. There are a
number of options for the filter W l that weights the neighboring atoms, but the
original SchNet model proposed a filter-generating neural network (cfconv block in
Fig 3.4). For more detail on this implementation see [79].

The atom-wise layers layers are simply fully-connected layers that are applied
to each atom i,

xl+1
i = W lxli + bl (3.19)

Figure 3.4: The architecture of SchNet predicts a single contribution for each atom,
which is either averaged or summed in the end. Here we show the (extensive) to-
tal energy that is the sum of all atom-wise contributions. Starting from chemical
embeddings (vector representations) where interaction layers with continuous-filter
convolutions capture how different atoms interact with each other. The model
parameters are trained by backpropagation. Figure reproduced from [78] with per-
mission from ACM.
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where W and b are shared across all atoms i. This weight sharing makes the model
efficient and permutation invariant.

In short, SchNet takes atom embeddings and update them at each layer to in-
corporate information about the interactions. SchNet is also differentiable. This
allows for training using both forces and energies, since these are usually also avail-
able in the quantum chemistry codes. It also allows for inverse design by tuning
the atomic positions to tune the functional property of the material. Moreover, the
differentiability can be used to compute the forces on the N atoms,

Fi(r1, . . . , rN ) = −∂E
∂ri

(r1, . . . , rN ), (3.20)

to find the equilibrium conformation of a molecule or material.
In the following section we show how the concept of equivariance constraints

can be implemented in general, going beyond translations and rotations. This is
also referred to as introducing an inductive bias to the model. By the choice of a
suitable architecture, we reduce the search space of all possible neural networks to
a realistic subset.

Group equivariant neural networks

Group theory provides the necessary framework to implement symmetries in neural
networks. Typical examples of groups of interest are the Euclidean group E(n)
(translations, rotations and reflections), the rotation group SO(n) (rotations in n
dimensions) and cyclic group Zn (discrete translations). Different groups can also
be combined to fit the symmetries of the problem at hand. A group element g is
abstract, but in practice described by a group representation: an invertible matrix
ρ(g) that represents the group element. Performing a group action to an input
vector is then simply matrix multiplication.

Φ

Φ

ρx(g) ρy(g)

ρx(g)x Φ(ρx(g)x) = ρy(g)Φ(x)

x Φ(x)

Figure 3.5: An operator (e.g. neural network) Φ is equivariant if the input x that is
transformed by ρx(g) and mapped to an output Φ(ρx(g)x) is the same as mapping
the input x to an output Φ(x) and transforming the output ρy(g)Φ(x). In other
words, the operator Φ commutes with the group element g.
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Figure 3.5 illustrates the definition of equivariance. A neural network is equiv-
ariant under a group G if it commutes with the group elements g ∈ G. Note that
the input and output are transformed by the representation ρ, which is not nec-
essarily the same for the input and output space. Convolutional neural networks
are translation equivariant, typically with discrete grid translations, i.e. Zn × Zn.
However, ideally we want weight sharing and equivariance constraints that go be-
yond translations. For example, a CNN that detects people in an image might use
features such as edges. The person might be in a different pose or further away in
the image, indicating that rotation and scale equivariance are important.

In 2016, Cohen and Welling introduced group equivariant convolutional neural
networks G-CNNs that included translations, reflections and 90◦ rotations [19]. In
group theory notation, these G-CNNs have the symmetry group Z4 o (Zn × Zn).
This group preserves the grid structure of the pixels, and a group action is simply
a permutation of pixels. These representations allow the use of any element-wise
activation function and the implementation is efficient. G-CNNs have also been
shown to be robust to input noise and are more sample efficient [10]. In 2017 the
Steerable CNNs were introduced with the aim of going beyond discretized equiv-
ariance (for example, including infinite rotational group actions) [20,91]. Recently,
the escnn library was released that makes it easy to implement E(n)-equivariant
CNNs. The Euclidean group E(n) includes rotations, translations and inversion
in n dimensions, and is relevant for a wide range computer vision problems. This
library will be used in the next section to demonstrate a biological example.

Finzi et al. introduced a method in 2021 to construct equivariant neural net-
works for any given group [27], where the weights and biases are projected to an
equivariant subspace that is controlled by the group and the input and output
representations.

y = σ(PwW · x+ Pbb) (3.21)

Note that x and y are vectors of representing a fully connected layer, and Pw,W and
Pb are matrices. The projectors Pw and Pb are found by solving the constraints given
by the representations and group. This provides a unified, albeit computationally
expensive, framework to implement any group equivariance. The approach of using
projectors does not reduce the number of model parameters through explicit weight
sharing, but the space of possible weights and biases is reduced. It is also important
to implement the correct activation function σ (called gated nonlinearity) to not
break equivariance. Pooling layers are used to achieve invariance along chosen
group symmetries, similar to the case of translational equivariance in CNNs. For
example, when predicting a location in the image, it is useful to make it rotational
invariant.

3.4 Dimensionality-reduced chemical space

Dimensionality reduction aims to map high-dimensional data to a low-dimensional
representation that preserves characteristic features of the original data. The out-
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put data is often two or three-dimensional such that it can be plotted as a point
cloud. A basic example is principal component analysis (PCA), where each data
point is projected along axes that capture the most variance in the high-dimensional
data [82]. In general, dimensionality reduction can be useful in many machine
learning applications. For example, we can visualize high-dimensional vectors in
neural networks to gain insight into their inner workings. In this compilation the-
sis, dimensionality-reduction is used in Paper 3 and 6. In this section, the focus is
on the reduction of chemical space, which is used a number of times in the latter
publication.

PCA is a linear dimensionality reduction technique, and its principal compo-
nents are linear combinations of the input features. This may not be an effective
way to characterize the data distribution. The method can be extended into kernel
PCA, using the kernel trick as described for kernel ridge regression. Alternatively,
there are a number of stochastic algorithms that preserve the local (and sometimes
global) structures in the data. The t-distributed stochastic neighbor embedding
(t-SNE) algorithm is incredibly popular in the machine learning community and
it is used to make low-dimensional graphs where the local structure of very high
dimensional data is preserved [87]. More recently, the Uniform Manifold Approx-
imation and Projection (UMAP) algorithm is increasingly more popular because
of improved performance on large datasets and the ability to preserve a balance of
local and global structure of the data [54].

Dimensionality reduction is used in Paper 6 to understand chemical space based
on similarities between crystal structures. First, the SOAP kernel is used to com-
pute all pairwise distances between crystal structures. Next, this distance matrix
is converted into a two-dimensional scatter plot using the t-SNE algorithm. Fi-
nally, each point is color-coded by the band gap that was computed using density-
functional theory. Figure 3.6 shows the result of this analysis, and highlights a
few interesting materials in this map. Materials with very distinct structures form

Figure 3.6: Dimensionality-reduced chemical space with the t-SNE algorithm using
the average SOAP kernel (rc = 4Å, n = 8, l = 6) as a distance metric. This is
Fig. 4 in Paper 6.
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well-isolated islands, such as the Boron clusters in Fig. 3.6 (c) and (d). Remark-
ably, clusters of materials appear that have been reported in the literature with
certain applications. For example, chemical hydrogen storage devices appear in the
vicinity of Fig. 3.6 (a) and (b). Similarly, Fig. 3.6 (g) and (h) are in a zero band
gap region that contains organic metals and semiconductors. It is even possible
to find structures that form a line in this dimensionality-reduced picture, revealing
that these are a sequence of structures reported in pressure study. In short, the
dimensionality-reduced chemical space provides an intuitive way to navigate the
structure-property landscape of organic crystals.





Chapter 4

Homology for materials

The field of topological data analysis (TDA) uses techniques from topology to ex-
tract information about the shapes present in data. While it is easy to see trends in
two or three-dimensional data by eye, datasets are often high-dimensional. Cross-
sections or dimensionality reduction (see Section 3.4) can be used to visualize high-
dimensional data but usually loses some information. The main algorithm in TDA
is persistent homology, which focuses on finding the shapes in discrete data that
persist at different length scales. This is computed by first converting the data to
a simplicial complex and filtering this complex using a chosen length scale. Next,
homology groups describe the shapes present in the complex and this information
is visualized in the form of persistence diagrams or barcodes. These concepts are
introduced in detail in the sections below, along with examples.

Since persistent homology is relatively new, it has not seen much use in physics
yet. However, this is rapidly changing and a wide range of applications exists
with examples such as the filamentary structure present in the cosmic web [83]
and the shapes in nanoporous materials [47]. In the domain of condensed matter
physics, this method has been used to detect phase transitions in both classical
[21, 23, 75, 80, 86] and quantum [36, 84, 86] lattice systems. We have contributed to
this growing field by showing that persistent homology can fully capture a complex
phase diagram of a classical spin model, even so-called hidden orders that are
harder to characterize (see Paper 3). Beyond classical systems, we have also shown
that persistent homology captures entanglement structures and quantum phase
transitions in Paper 1.

4.1 Simplicial homology

The k-dimensional generalization of points, line segments and triangles are sim-
plices. Each simplex can be oriented in two ways. Figure 4.1 shows examples
of such simplices. The simplices can be glued together to form spaces, and their
combinatorial nature makes the computation of their topological properties easier.

33
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The definitions and concepts of simplicial homology are introduced here with
an example simplicial complex K,

K = { [012]︸︷︷︸
2-simplex

, [01], [12], [20], . . .︸ ︷︷ ︸
1-simplices

, [0], [1], . . . , [4]︸ ︷︷ ︸
0-simplices

}

∼=

0

1

2

3

4
(4.1)

which consists of a 2-simplex, five 1-simplices and five 0-simplices. To define ho-
mology, we first need to introduce what chains, boundaries and cycles are. A com-
bination of k-simplices (i.e. walking around on K) forms a k-chain. For example,
the set of 1-chains of K are,

C1(K) = {a[01] + b[12] + c[20] + d[13] + e[23]}, (4.2)

where the coefficients are typically integers Z or booleans Z2. Typically, shorthand
notation is used that makes the coefficients implicit,

C1(K) = 〈[01], [12], [20], [13], [23]〉 . (4.3)

All the k-chains together form a chain group, and c ∈ Ck denotes an element, a
specific k-chain, in this group. In other words, a k-chain group element ci =

∑
i αiσi

is a sum of simplices σi of the same dimension k. Adding two chains c1 and c2,
leads to another chain group element c3, i.e.

c3 = c1 + c2

=
∑
i

αiσi +
∑
i

βiσi

=
∑
i

(αi + βi)σi, (4.4)

(d)

C

A

B

D

(c)

C

A

BA B

(b)

A

(a)

Figure 4.1: Examples of oriented simplices: (a) 0-simplex (point), (b) 1-simplex
(line segment), (c) 2-simplex (filled triangle), (d) 3-simplex (filled tetrahedron).
This is Fig. 3 in Paper 1.
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where the addition αi + βi is based on the choice of coefficients, and could include
module 2 if Z2 coefficients are chosen. Homology will be defined on these chains by
looking for chains with specific properties.

The driving concept of homology is the boundary operator ∂. For a k-simplex,
this is defined as

∂S =
k∑
j=0

(−1)j [v0v1 . . . v̂j . . . vk] , (4.5)

where v̂j is removed from the sequence. For example, the 2-simplex in K becomes
the sum of its faces,

∂[012] = [12]− [02] + [01] (4.6)

where the sign captures the orientation of how to walk around the 2-simplex. Note
that applying the boundary operator once more gives zero. This is the Fundamental
Lemma of Homology, ∂∂S = 0, that underlies homology [25]. We can define the
boundary group Bk = Im ∂k+1, for example

B0 = Im ∂1 (4.7)
= ∂1C1(K) (4.8)
= {a([1]− [0]) + b([2]− [1]) + c([0]− [2]) + d([3]− [1]) + e([3]− [2])} (4.9)
= {(−a+ c)[0] + (a− b− d)[1] + (b− c− e)[2] + (d+ e)[3]}. (4.10)

This is a subgroup of all the possible 0-chains (combinations of points), i.e. B0 ⊂ C0.
Another important subgroup of the k-chain group is the cycle group of k-cycles,

usually denoted by Zk (from the German word Zyklus). This is the kernel of the
boundary operator (all the elements that are mapped to the identity element),

Zk = Ker(∂k) (4.11)
= {c ∈ Ck | ∂(c) = 0}. (4.12)

The ∂(c) = 0 constrains the coefficients of the k-chains. The 1-cycles Z1 for the
example K are given by solving for the coefficients in Equation 4.10. This is done
by forming a boundary matrix,

[01] [12] [20] [13] [23]


[0] −1 0 1 0 0
[1] 1 −1 0 −1 0
[2] 0 1 −1 0 −1
[3] 0 0 0 1 1

, (4.13)
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where the columns represent 1-simplices and the rows its faces. This is reduced to
row echelon form,

[01] [12] [20] [13] [23]


[0] 1 0 −1 0 0
[1] 0 1 −1 0 −1
[2] 0 0 0 1 1
[3] 0 0 0 0 0

α β

(4.14)

and identifying the space of solutions
[01]
[12]
[20]
[13]
[23]

 =


1
1
1
0
0

α+


0
1
0
−1
1

β (4.15)

Therefore the solutions are multiples of the cycles [01] + [12] + [20] and [12]− [13] +
[23], i.e.

Z1 =
〈

[01] + [12] + [20] , [12]− [13] + [23]
〉

∼=

0

1

2

3

. (4.16)

Note that the larger cycle of 0−2−3−1−0 can be formed using a linear combination.
Because ∂∂S = 0, the boundary group elements are also cycles. In summary, the
boundary operator leads to a structure of chains, cycles and boundaries, Bk ⊂ Zk ⊂
Ck, see Fig. 4.2.

The aim of homology is to identify k-cycles that are not just simply boundaries
of (k+ 1)-simplices. These cycles describe the interesting topological features (e.g.
holes) of the simplicial complex. Therefore, the homology group Hk is defined as
the quotient (or “cycles mod boundaries”),

Hk = Zk
Bk

= Ker ∂k
Im ∂k+1

. (4.17)

For the example K, the 1-homology group is

H1(K) = 〈[01] + [12] + [20], [12]− [13] + [23]〉
〈[12]− [02] + [01]〉

∼= 〈[12]− [13] + [23]〉 ∼= Z, (4.18)
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Figure 4.2: Chain Ck, cycle Zk and boundary Bk groups and their connection to
the k − 1 groups through the boundary operator. This would be the structure for
a 3-simplex. This also shows that Bk ⊂ Zk ⊂ Ck. Figure reproduced from [24] with
permission from Springer Nature.

After a similar calculation for other homology groups, we can conclude that the
homology groups for K are H0 ∼= Z2, H1 ∼= Z and Hk = 0 for k > 1. The
simplicial complex is a topological space, and the zeroth homology group H0 cap-
tures the connected components in that space, similar to traditional clustering.
The first homology group H1 detects the one-dimensional holes in the space, con-
structed from edges (1-simplices). The second homology group H2 measures the
two-dimensional holes (voids) in the space. In general, the k-th homology group
describes k-dimensional holes. In other words, the homology groups capture the
topology of the topological space K. Often, we are only interested in the number of
connected components, holes, or voids, which is given by the Betti number , defined
as

βk = rank(Hk). (4.19)

In the case of our example K, the Betti numbers are β0 = 2, β1 = 1, βk = 0 for
k > 1. These are the topological invariants which can also be used to compare two
different (triangulated) spaces as described earlier in Section 1.2. Figure 4.3 shows
some example topological spaces and their homology.

Homology with different coefficients: torsion
The common practice of computing homology with Z2 is efficient, but the more
general case of homology with integer coefficients (i.e. integral homology) captures
more information. In other words, topological spaces A and B with different integral
homology groups (Hk(A,Z) 6= Hk(B,Z)) may have not be distinguished by the
homology groups with Z2, i.e. Hk(A,Z2) = Hk(B,Z2). This is connected to the
notion of torsion. In this section we introduce this concept and show some examples.

Torsion means that a group element has finite order and maps back to identity
after n times, i.e. gn = e for a positive integer n and identity e. It turns out that
non-orientable surfaces often have torsion in its integral homology. A surface is
orientable if there is a consistent notion of clockwise rotation while moving around.
Non-orientable surfaces, such as the Möbius strip or Klein bottle, turn clockwise
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Circle S1

0

1

2

∼= ∼= {[01], [12], [20], [0], [1], [2]} H1 = Z, H2 = 0

Disk D

0

1

2

∼= ∼= {[012], [01], [12], [20], . . . } H1 = 0, H2 = 0

Sphere S2

0

1

2

3∼= ∼= {[012], [123], [031], [023], . . . } H1 = 0, H2 = Z

Figure 4.3: A number of common topological spaces, their simplicial complex and
their homology groups Hk over the integers.

to counterclockwise. For example, the Möbius strip, a twisted band with only one
side, can be triangulated and represented by the complex,

M ∼= 3 3

4

5

6
8

7

2

1

1

2

. (4.20)

Here, there are 1-chains that are linear combinations of the simplices 3, 4, 5, and 6.
Computing its reduced boundary matrix, we find the 1-homology for both integer
and Z2 coefficients to be,

H1(M,Z) ∼= Z, H1(M,Z2) ∼= Z2. (4.21)

In particular, we note that the 1-homology over the integers is torsion-free, and it
is isomorphic to the group of integers Z. This is the same result we would get for a
cylinder, confirming that the Möbius strip is topologically equivalent (as listed in
Fig. 1.2).

However, taking the Möbius strip and glueing its sides together (which is possible
in R4 without intersecting itself), we obtain the real projective plane,

RP2 ∼= 3 3

4

4

6
8

7

2

1

1

2

. (4.22)
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Note that the bottom edge (1-simplex that is numbered 4) is now the same as the
top edge and that the arrow indicates the orientation of how these sides were glued
together. This space has the 1-homology of

H1(RP2,Z) ∼= Z2, H1(RP2,Z2) ∼= Z2. (4.23)

(For detailed computation of these homology groups, see the appendix of Paper 1.)
Importantly, the 1-homology with Z2 coefficients is not able to distinguish the
Möbius strip and the real projective plane. This highlights the importance of inte-
gral homology.

Note that both orientable and non-orientable manifolds may have torsion in
its integral homology. However, for closed connected non-orientable manifolds,
there is a theorem that states that if M is a n-manifold, the homology group
Hn−1 contains torsion [35, Corollary 3.28]. Furthermore, the universal coefficient
theorem provides a description of the integral homology groups change over different
coefficients. However, the effect of torsion and homology over different coefficients
for the applications in Paper 3 and Paper 1 has not been studied yet and is a topic
for future work.

4.2 Persistent homology

Persistent homology (PH) is a way to find qualitative features of data with complex
structure. This theoretical framework is flexible and the inputs that can be studied
include point clouds, digital images, level sets of functions and networks [61]. PH
provides a robust and compact description of the shapes that are present in the
data, with a common representation being barcodes.

Historically, the algorithm of persistent homology was first described in 1994
[73], but only became popular when it was rediscovered in 2000 [24]. In 2004 the
name barcode arose [17] and the algorithm was put on a mathematical footing and
for general coefficients [92]. The basic framework is still generalized and refined
in many ways. For example, algorithm for persistent homology finding integer
homology groups by running with different coefficients [12].

Mathematically, persistent homology is the homology of a filtration. We con-
struct a filtration by arranging a sequence of subcomplexes,

K0 ⊆ K1 ⊆ · · · ⊆ Kn = K, (4.24)

which corresponds to a sequence of nested topological spaces [25]. There are dif-
ferent commonly used choices for filtration. For example, the Čech complex refers
to a point cloud in a metric space and having the overlap of increasingly larger
disks (or balls in 3D) decide the appearance of simplices. Once two disks overlap, a
1-simplex (line segment) connects the two associated points at the center of disks.
Where three disks overlap, a 2-simplex (filled triangle) appears, and so on for higher
dimensional simplices. It turns out that the union of disks at scale r is homotopy
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equivalent to the simplicial complex at r, meaning that they share their topological
features (this is known as the Nerve Theorem [25]). Another common choice is the
Vietoris-Rips complex, where again, a simplex is formed as soon as disk overlap.
However, here a (k − 1)-simplex is formed as soon as k points are connected. This
subtle difference means that a complex of three simplices (like the circle in Fig 4.3)
does not appear, and it immediately forms a disk (also shown in Fig 4.3). This
is an approximation and the Nerve Theorem does not hold, but the Vietoris-Rips
complex is more computationally efficient.

The homology is computed at every level of the filtration sequence. Figure 4.4
shows an example Vietoris-Rips complex for a small point cloud in two-dimensional
Euclidean space. Homology elements appear (referred to a birth) and disappear
(referred to as death), and their span is indicated by a bar in the persistence
barcode. As the proximity parameter ε (in this case Euclidean distance) changes,
the simplicial complex grows. The zeroth homology group H0 tracks the number of
connected components, similar to a dendogram in traditional clustering algorithms.
Note that there is always one bar surviving until infinity, reflecting the situation
where all points are connected. The first homology group H1 detects the hole in
point cloud, and tells us at which length scale it appears (birth) and when it closes
again (death).

In summary, the barcode shows at what length scale topological features exist in
the discrete input data. Usually, the bars with a long lifetime (i.e. death - birth) are
considered important features, and the short bars are considered noise. However,
the short lifetime bars can capture the curvature of the point cloud, which could
be of interest depending on the application [15]. In practical applications, it is also
common to use the Betti numbers as defined in Equation 4.19. The Betti numbers
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1
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Figure 4.4: Vietoris-Rips (VR) complex of a point cloud in R2 with six data points
(a) at increasing proximity parameter ε (b-e). The barcode (f) shows the persistent
homology. This is Fig. 2 in Paper 1.
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Figure 4.5: (a)-(d) Persistence barcode for a single unit cell of the spin ice phase,
which has the spins pointing “two-in, two-out“ (color-coded blue and red) aligned
to the local z axis in each lattice tetrahedron. This is Fig. 2 in Paper 3.

can track when the topology of the point cloud changes. There are also distance
metrics that compute a scalar distance value between complete barcodes, such as
the Bottleneck and Wasserstein distance [14,88].

In the next two sections, we demonstrate two applications of persistent homology
for spin models. Starting with classical Heisenberg spins, where the spins are the
point cloud and a change in barcode indicates a phase transitions. Afterwards, the
intriguing case of quantum spins is studied.

4.3 Classical spin structures

Traditionally, phase transitions are detected using a order parameter, such as the
total magnetization in the Ising model. However, finding the optimal order pa-
rameter can be challenging, which are usually constructed by hand. Especially in
the presence of frustration, complicated phases that lack long range ordering can
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appear. In Paper 3, we study the XXZ model,

HXXZ =
∑
〈i,j〉

JzzSi,zSj,z − J±
(
S+
i S
−
j − S

−
i S

+
j

)
, (4.25)

with S±i = Si,x ± iSi,y and ‖Si‖ = 1 on a pyrochlore lattice (see Fig. 4.5). This
model hosts six competing phases depending on the temperature T and the value
of the exchange interaction J±/Jzz [85].

In practice, one samples a small number (e.g. 32) spin configuration from a
classical Monte Carlo simulation. The spin configurations are converted into per-
sistence barcodes that show the presence of shapes at different length scales. For
example, Fig. 4.5 shows the characteristic barcode for the spin ice phase. Abrupt
changes in the barcode indicate a phase change, and the change in barcode is
measured by the Sliced-Wasserstein distance. Finally, the space of barcodes can be
dimensionality-reduced to produce a full phase diagram with any number of phases.
For more details on these results, see Paper 3.

4.4 Quantum entanglement structures

One of the most profound features of quantum mechanics is quantum entangle-
ment1. It means that two subsystems, such as spins, can be entangled with each
other. The simplest example is the Bell state,

|ψ〉 = 1√
2

(|00〉+ |11〉) , (4.26)

which considers a system of two quantum bits (also called qubits). A quantum bit
is a system which has two states that are labeled 0 and 1, for example a spin up
or spin down of a particle. The two qubits form a superposition, where if the first
qubit is measured to be in the 0 state, the second qubit is in the 0 state too.

This is remarkable, because the two subsytems can be very far apart, which
lead Einstein to refer to this seemingly impossible behavior as “spooky action at
a distance”. It has been experimentally verified, and in 2022 the Nobel Prize in
Physics was awarded to A. Aspect, J. F. Clauser and A. Zeilinger for pioneering
experiments with quantum entanglement. In 2017 this fact was used to perform
quantum key distribution across 7600 kilometers (Graz, Austria – Xinglong, China)
using the Chinese satellite Micius [48].

Quantum states do not always have entanglement, and can sometimes be sepa-
rated and written as a tensor product, e.g.

|ψ〉 = 1√
2

(|01〉+ |11〉) = 1√
2

(|0〉+ |1〉)⊗ |1〉 . (4.27)

1Erwin Schrödinger wrote this about quantum entanglement (in 1935): “I would not call that
one but rather the characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought.” [76].
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A generalization of the Bell state to many qubits leads to a highly entangled state
that is also referred to as the cat state (due to Schrödinger’s cat, the thought
experiment) or the Greenberger–Horne–Zeilinger (GHZ) state,

|ψ〉 = |1111 . . .〉+ |0000 . . .〉 . (4.28)

This macroscopic entanglement has been realized in quantum computers, but for a
large number of spins, any small perturbation to a single site will cause the state
to collapse to either all 1 or 0.

There are a number of ways to quantify entanglement between quantum sub-
systems. A more general way of describing a quantum state is the density matrix
ρ,

ρ =
∑
k

pk |ψk〉 〈ψk| , (4.29)

where |ψk〉 are pure states and pi are probabilities that a system is in |ψk〉. Splitting
the system in A and B, we can introduce the reduced density matrix associated to
a subsystem A,

ρA = −TrB ρ, (4.30)

where ρ is the density matrix of the full system, and TrB is the partial trace over
the basis of subsystem B. Now we can define entanglement entropy as the Von
Neumann entropy,

SA = −TrA (ρA log ρA) , (4.31)

which ranges from 0 to log (d) where d is the dimension of Hilbert space of A or B
(whichever is smaller).

Quantifying entanglement is a general tool that shows up in many applications
(e.g. quantum computing). In our case, we are especially interested in the case
where Hilbert space is split spatially in a region A and its complement B. For
most states in Hilbert space, the entanglement entropy scales with the volume of
the region of A. This is because any two distant subsystems could be entangled.
However, for the ground state of almost all Hamiltonian with local interactions, the
scaling obeys an area law,

SA ∝ Σ, (4.32)

where Σ is the boundary between subsystem A and its complement B [32]. This
is a theorem for one-dimensional gapped systems, but it is also usually true in
higher dimensions. Therefore, there is only a small corner of the Hilbert space (i.e.
where states follow the area law), that is relevant when searching for the ground
state. Additionally, these states have lower entanglement entropy, meaning that
the ground state wavefunction is encoded by fewer complex parameters.

Entanglement is also proposed to be the source of the geometry of spacetime [16,
66,67]. Analogous to the information in classical bits encoding the virtual 2D or 3D
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Figure 4.6: Persistence barcodes for the three phases in the transverse-field Ising
model. (a) The quantum ferromagnet has all the spins equally entangled. (b) At
the quantum critical point (QCP), neighboring spins have larger entanglement than
next-nearest neighbors, and so on. This leads to a 1-homology element, capturing
the hole in the center of the ring. (c) The quantum paramagnet does not have
entangled spins, and therefore all the spins remain disconnected. (d) The lifetime
(i.e. length) of the bars in H0 and H1 as a function of the transverse field h. This
is Fig. 6 in Paper 1.

world in a video game, the quantum entanglement carries the information that leads
to spacetime. This view is also consistent with the ER = EPR conjecture that states
that two entangled particles (like the Bell state in Equation 4.26) are connected
by Planck scale wormholes [51]. A connection between quantum entanglement and
spacetime can also be referred to as quantum gravity. There is a large-scale effort
to construct a theory of spacetime from quantum information, for example through
the Simon’s collaboration It from Qubit [40].

Paper 1 shows how persistent homology (PH) captures the geometry and topol-
ogy of entanglement structures in quantum spin models. In this application of PH,
the discrete data are the quantum subsystems and the distance metric is their de-
gree of entanglement. We demonstrate this on quantum spin models, where the
subsystems are the individual spins. The pairwise correlation is measured by the
quantum mutual information (MI),

0 ≤Mij = Si + Sj − Sij ≤ 2 ln 2. (4.33)

This is large if two subsystems are entangled, whereas we want to bring subsystems
that are strongly entangled close together. Therefore, the distance metric is the
inverse MI,

2 ln 2 ≥ Dij = 2 ln 2−Mij ≥ 0 (4.34)
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Another possible choice would be Dij = − ln (Mij/2 ln 2), which ranges from 0 to
∞. The result is that a quantum state is converted into a barcode (through the
Vietoris-Rips complex). We implemented this by exact diagonalization (ED) of
two different one-dimensional quantum spin systems. Figure 4.6 shows the result
for the ground state of the transverse-field Ising model. The ferromagnetic ground
state obeys the area law of entanglement. At the quantum critical point (QCP)
at h = 1, the entanglement entropy diverges logarithmically with the subsystem
size, i.e. volume law. The QCP is also captured by the formation of a hole in
the entanglement structure (see Fig 4.6 (b) and (d)). The entanglement structure
of this system is relatively simple due to the symmetries of the Hamiltonian, and
therefore the higher homology groups (H2, H3, and so forth) are not interesting.

In summary, the geometric and topological information of the quantum state
is summarized in a persistence barcode. These barcodes can be used as an order
parameter, since changes in the barcode indicate a phase transition. More funda-
mentally, since this approach constructs a geometrical object from entanglement, it
is natural to ask whether a connection can be made to general relativity. In 1972,
Roger Penrose has also stated: “My own view is that ultimately physical laws should
find their most natural expression in terms of essentially combinatorial principles,
[...]. Thus, in accordance with such a view, should emerge some form of discrete or
combinatorial spacetime.” [11, 62]. This is not studied further in this compilation
thesis, but it is the topic of recent work by Cao et al. [16]. It is still conjectural work
that relies on a number of assumptions, but the prospect of connecting quantum
entanglement and general relativity is exciting.





Chapter 5

Summary

This thesis provides an overview of how to study materials properties using materi-
als informatics. Our modern society needs new materials across many sectors, not
least considering the global energy budget. Discovering desired materials across
the vast chemical space is an extremely difficult task. The data-driven approaches
in this thesis aim to accelerate the search for new materials. Within this context,
three lines of research are presented.

Materials databases are at the heart of materials informatics and enable the
application of data mining and machine learning. We have developed the Organic
Materials Database (OMDB), a database containing about 40 000 organic crystals
and their electronic properties. This large dataset can be mined for functional
properties. For example, we search for materials with a tiny gap (order of meV)
for dark matter detection (see Paper 7). The effect of impurities on these gaps in
studied in detail in Paper 5. Another example is the graphical pattern search that
is able to find patterns in electronic band structures (see Paper 8).

Given the availability of materials databases, it is also possible to predict ma-
terials properties using machine learning. Conventional ab initio calculations scale
up to 103 number of atoms, whereas machine learning models can typically scale to
much larger compounds. This computational benefit opens the door towards large
organic compounds as described in Paper 2. Using a atomistic machine learning
model that predicts the electronic band gap given a crystal structure (see Paper 6),
we have identified the first three dimensional organic semimetal (see Paper 4).

Modern data science methods also provide new ways to study classical and quan-
tum materials directly. We have used persistent homology, a method that captures
shapes in discrete data, to identify phase transitions. This was first demonstrated
on a classical spin model with a complex phase diagram in Paper 3. Using a similar
approach, but this time considering structures in quantum entanglement, we can
detect quantum phase transitions (see Paper 1).

A common theme in this thesis is that problems in nature demand a certain
symmetry. Efficient machine learning models that construct structure-property

47
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maps should obey the symmetry relations of the problem (e.g. translational and
rotational symmetry). In the case of quantum mechanical systems, the symmetry
present in the quantum entanglement is used to look at a small corner of the
Hilbert space that is sensible (e.g. states that obey the area law). This leads to
the concept of studying the shape of entanglement structures to gain new insights.
Data-driven approaches that capture the relevant symmetries of the problem at
hand will continue to play an important role in materials informatics in the future.
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Errata & corrigenda

Below are the known errata and typos in the publications.

• Paper 3

1. Equation 4, the distance metric for the spins i and j should be:

D(i, j) =
∥∥∥ri − rj + a

2
√

2
(Si − Sj)

∥∥∥
It was however included correctly in the figure, text and open-source
Python code.

• Paper 5

1. Typesetting problem in the caption of Fig. 5,

〈R(ωth)〉〉 〈R(ωDM)〉

should be

〈R(ωth)〉 > 〈R(ωDM)〉

The same problem occurs in the main text. The version on the arXiv is
typeset correctly.
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