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Abstract: 

In 1948, Casimir predicted a net attractive force between two perfectly conducting parallel plates due 
to electromagnetic vacuum fluctuations. By analogy, the interaction of two ships on a wavy sea has 
been named Maritime Casimir effect. This is an example of force generation in non-equilibrium 
systems. Lee, Vella and Wettlaufer showed it to be oscillatory as it is induced by the sharply peaked 
energy spectrum measured in the sixties by Pierson and Moskowitz for a fully developed sea; a sea 
whose state is independent of the distance over which the wind blows and the time for which it has 
been blowing. The aim of this project is to construct a theory for that spectrum and understand how 
the Maritime Casimir effect emerges from wind-wave interaction. Waves in the absence of wind, so-
called water waves, are mainly characterized by dispersion and weak non-linearity. The coupling of 
both results in the instability of a wave packet to side-band perturbations in deep water. The growth 
rate can be calculated thanks to a non-linear Schrödinger equation, which is a universal model for 
weakly non-linear waves in a dispersive medium. Furthermore, this instability can be understood in 
the even more general framework of resonant wave-wave interaction. The evolution of deep water 
gravity waves is actually a sum of four-wave interaction processes and triadic interactions should be 
added for capillary waves. That evolution is strongly affected by the presence of turbulent wind 
because it transfers energy to the waves. The growth rate of wind waves was calculated by Miles in 
1957 on the basis of the weak air-water coupling. His formula involves the solution of the 
hydrodynamic Rayleigh equation at the critical level, which is the height at which the phase speed of 
the wave is equal to the wind speed. We develop an efficient numerical scheme to compute it and then 
compare the theory with the observational data compiled by Plant. We eventually propose asymptotic 
solutions of the Rayleigh equation for a generic wind profile, which will be useful to get a better 
understanding of the experimental results.   
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Chapter 1

Motivation: the oscillatory Casimir
e�ect

1.1 Introduction

Figure 1.1: A) Original Casimir e�ect, adapted from Wikipedia.
B) Maritime Casimir e�ect, adapted from L’Album du Marin (1836) by P. C. Caussée.
C) Force generation between plates in active matter, adapted from [2].

The motivation for this project is the understanding of force generation in non-equilibrium systems, which is
a signi�cant challenge in statistical and biological physics, as well as a stumbling block in the development of
active materials. A key to force generation in non-equilibrium systems is encoded in their energy �uctuation
spectra Gpkq de�ned from the mean energy E as

E “

ż `8

0
Gpkqdk, (1.1)

for one-dimensional systems. A non-equipartition of energy, which is only possible in active or driven systems,
can lead to a non-monotonic �uctuation spectrum. Lee et. al [1] have recently shown that for a narrow, uni-
modal spectrum, the force exerted by a non-equilibrium system on two walls embedded in a system with such
a spectrum depends solely on the width and the position of the peak in the �uctuation spectrum, and oscillates
between repulsion and attraction as a function of wall separation. This is reminiscent of the Casimir e�ect in
electrodynamics, except that the latter is always attractive. The theory developed in [1] predicts an oscillatory
interaction between two ships on a wavy sea, and hence an oscillatory Maritime Casimir e�ect. Furthermore, it
is consistent with recent simulations of active Brownian particles [2].
In section 1.2, we reproduce the original calculation of the Casimir force in electrodynamics. Then, we show
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in section 1.3 how to generalize it to plates immersed in a non-equilibrium system thanks to a radiation stress
tensor, before applying it to a simple model of ships on a wavy sea.

1.2 Casimir’s original calculation

Let us consider two perfectly conducting parallel plates of identical area A, at temperature T “ 0, separated by
a distance L. The x-axis is taken orthogonal to the plates; one plate is located at x “ 0, the other at x “ L. In
this section, c denotes the speed of light in vacuum.
The Casimir force can be inferred up to a numerical factor thanks to an elementary analysis:

Fcas 9 A ~c
L4 , (1.2)

where ~ is the reduced Planck constant. We now outline the original calculation of Casimir [3].
Let us introduce the vector potential Apr, tq; there is no electric potential in the absence of source charge. In
the Coulomb gauge, de�ned by ∇ ¨A “ 0, the electromagnetic �eld is then E “ ´ 1

cBtA andB “ ∇ˆA.
In the case of free �elds, Maxwell’s equations are equivalent to the homogeneous D’Alembert equation for the
vector potential. Considering monochromatic waves,Apr, tq “ Ãprq e´iωt and D’Alembert equation is reduced
to the Helmholtz equation in the amplitudes:

∇2Ã`

„

ω

c

2
Ã “ 0. (1.3)

The electromagnetic �eld can also be regarded as a quantum harmonic oscillator whose energy levels are

Em “ ~ω
ˆ

m`
1
2

˙

, m P N. (1.4)

Between the plates, modes are quantized in the x-direction as a result of the con�nement, like standing waves
on a string. More precisely, since the tangential component of the electric �eld has to vanish at the boundary of
a perfect conductor, we have

Ã‖px “ 0, y, zq “ 0 and Ã‖px “ L, y, zq “ 0, @ y, z. (1.5)

In this section, the symbol ‖ means parallel to the plates. The normal component of the electric �eld should be
�nite at the boundary of a perfect conductor as it sets up a super�cial density of charges. Separating x from
other variables in Helmholtz equation (1.3) and imposing (arti�cial) periodic boundary conditions in the y and
z-directions, we readily �nd

Ã‖ 9 eik
‖
¨r‖

sin
ˆ

nπ

L
x

˙

eλ and Ãx 9 eik
‖
¨r‖

cos
ˆ

nπ

L
x

˙

, n P N, (1.6)

where eλ is a unit vector parallel to the plates de�ning the polarization and

k‖ “ ny
2π
Ly

ey ` nz
2π
Lz
ez, ny, nz P Z, (1.7)

where Ly and Lz are the sizes of the plates. Therefore, the energy inside the cavity is equal to

E0 “
1
2
ÿ

n,k‖

~ωn
`

k‖˘ with ωn
`

k‖˘ “ c

c

n2π2

L2 ` |k‖|2. (1.8)

A few points still have to be emphasized.
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1. The gauge condition ∇ ¨ Ã “ 0 determines the polarization:

nπ

L
Ãx ` k

‖ ¨ Ã‖ “ 0. (1.9)

When n ‰ 0, there exists two unit vectors e1 and e2 such that this condition is satis�ed together with

e1 ¨ e2 “ 0 and eλ ¨ ex “ 0, λ “ 1, 2. (1.10)

There are two independent states of polarization. However, when n “ 0 we should necessarily have eλ in
the direction of k‖, implying a single state of polarization. To take this into account, we hence introduce
a factor 2 but denote the sum with a prime to specify that it has to be removed when n “ 0.

2. For su�cientlty large plates, ny andnz can be treated as continuous variables and the sum overk‖ replaced
by the integral LyLz

p2πq2
ş

R2 dkxdky .

3. The sum over n is divergent. However, the assumption of a perfect conductor breaks down at short wave-
lengths, say smaller than the Bohr radius. High frequencies are then cut o� from a large value ωc with the
help of a regularizing function χ such that

χp0q “ 1 and χ

ˆ

ωnpk
‖q

ωc

˙

ÝÝÝÝÝÝÑ
ωc Ñ `8

1. (1.11)

Equation (1.8) eventually becomes

E0 “
A
p2πq2

`8
ÿ

n“0
1

ż

R2
dkxdky ~ωn

`

k‖˘χ

ˆ

ωnpk
‖q

ωc

˙

. (1.12)

Assuming isotropy, dkxdky “ 2π
c2 ωdω. Then, we obtain the energy of interaction of the plates due to the modes

between them as

E0 “ A ~
2πc2

`8
ÿ

n“0
1

ż `8

ωnp0q
dω ω2χ

ˆ

ω

ωc

˙

, (1.13)

whose only dependence on L is through ωnp0q “ nπc
L . The corresponding force is

Fin “ ´
BE0

BL
“ ´A~cπ2

2L4

`8
ÿ

n“0
1n3χ

ˆ

ωnp0q
ωc

˙

. (1.14)

The force due to outside modes, which are not con�ned, is just the opposite of this one with the sum being
replaced by an integral. The net force is then

Fcas “ Fin ` Fout “ ´A~cπ2

2L4

#

`8
ÿ

n“0
1n3χ

ˆ

ωnp0q
ωc

˙

´

ż 8

0
n3χ

ˆ

ωnp0q
ωc

˙

dn

+

. (1.15)

Finally, using the Euler-MacLaurin formula

`8
ÿ

n“0
1 gpnq ´

ż 8

0
gpnqdn “ ´

1
12g

1p0q ` 1
6!g

3p0q `O
´

gp5qp0q
¯

, (1.16)

yields the attractive force

Fcas “ ´A ~cπ2

240L4 . (1.17)

We note that his result has also been derived by Milonni et al. using a radiation pressure [4].
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1.3 Oscillatory force generation from peaked energy spectrum

This section is based on the paper [1] by Lee, Vella and Wettlaufer.
We consider now out-of-equilibrium systems where the �uctuations are manifested as one-dimensional waves
with wavenumber vector k. Assuming no dispersion, the corresponding radiation stress tensor is

Π “ Gpkq k̂ b k̂, k̂ “
k

|k|
. (1.18)

To be consistent with the de�nition (1.1), we have taken the point of view that the waves propagate only forwards
so that k “ |k|.
Let us embed two walls separated by a distance L within such a system. The �uctuations due to the out-of-
equilibrium state will play the same role as the vacuum �uctuations in the original Casimir e�ect. From (1.18), a
wave having a wavelength 2π

k and an angle of incidence θ induces a radiation pressure Gpkq cos2pθq. Thus, the
radiation force per unit angle due to waves with a wavenumber between k and k ` δk and re�ecting with an
angle between θ and θ ` δθ is 1

δF “ Gpkqδk cos2pθq
δθ

2π . (1.19)

As in the previous section, there are standing waves between the plates which imposes mode quantization while
there is a continuum acting on the exterior of the plates. For isotropic �uctuations, we integrate θ from ´π

2 to
π
2 and eventually get the net disjoining force

FfluctpLq “
1
4

8
ÿ

n“1

π

L
G

ˆ

nπ

L

˙

´
1
4

ż 8

0
Gpkqdk. (1.20)

Note that
dG

dk
ž 0, @k ñ FfluctpLq ž 0, @L. (1.21)

Therefore, a non-monotonic force implies a non-monotonic spectrum. This is important for systems whose
spectrum is not known theoretically but for which one can observe an oscillatory force due non-equilibrium
interactions. The reason is that the latter are indeed encoded within the �uctuation spectrum. ‘In this sense, the
noise becomes the signal’.

Figure 1.2: Oscillatory force induced by a unimodal spectrum modeled by equation (1.22). It depends only on
the width and the position of the peak.

1δF is actually a force per unit length as G has the dimension of a force in this e�ectively one-dimensional system.
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Furthermore, it can be shown that unimodal spectra have a universal phenomenology, and can be represented
by a Taylor expansion about their maximum at k “ k0:

Gpkq »

#

G0

”

1´ ν´2pk ´ k0q
2
ı

, |k ´ k0| ă ν

0 otherwise,
(1.22)

where G0 “ Gpk0q, G2 “ G2pk0q and ν “
b

´2G0
G2

is the peak width. The following asymptotic scalings are
derived in [1]:

1. For L ! π
ν and in the narrow-peak limit ν ! k0, the force has successive repulsive peaks scaling as 1

L ,
with linearily increasing width (proportional to their index n) as the distance L gets larger and larger. See
�gure 1.2.

2. For L " π
ν , one can show with the help of the Euler-MacLaurin formula (1.16) that the force scales as 1

L2 .
This actually holds for a spectrum that is not necessarily unimodal.

Application to the Maritime Casimir e�ect

Figure 1.3: A) Pierson&Moskowitz spectrum; the data points (red circles) are �tted with a cubic spline.
B) Force induced by that spectrum on two “ships”; the dashed red line corresponds to the asymptotic scaling 1

L2 .
Figures adapted from [1].

These results shed light on the old riddle of the Maritime Casimir e�ect. Indeed, the framework we have just
described can be taken as a simple model for two ships on the sea with the wind blowing in a direction per-
pendicular to them. The ocean wave spectrum was measured in 1964 by Pierson and Moskowitz [5] for a fully
developed sea, which corresponds to an out-of-equilibrium steady state where the wave-wave interactions are
balanced by the wind input and dissipation through wave breaking. The force between the two ships calculated
from formula (1.20) using that spectrum oscillates between attraction and repulsion depending on the distance
separating them.
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Chapter 2

The physics and mathematics of waves
and how they grow under the wind
blowing

In this chapter is introduced some background about ocean waves. In section 2.1, we review the water wave
problem by taking a historical perspective and show that dispersion and weak non-linearity are nicely treated in
the framework of wave-wave interactions. Ocean waves are water waves coupled with the wind. We provide in
section 2.2 a brief history of the proposed mechanisms for wind waves’ generation before focusing on the Miles’
theory, as it is the core of our research presented in chapter 3.

2.1 Water waves: dispersive and weakly non-linear waves

2.1.1 Cauchy-Poisson problem and Airy linear theory

Figure 2.1: Schematic of the water wave problem in 2 dimensions where η is the surface displacement �eld about
the equilibrium position z “ 0; ρa and ρw are the densities of air and water, and h the water depth.

Water waves are as fascinating as they are ubiquitous. One can observe them by a windy day on the surface
of ponds, lakes, rivers, oceans. . . Their ever-changing pattern, endless succession of humps and hollows, has
attracted the attention of scientists and sailers for centuries. Their mathematical study started in France with
the prize competition on “The theory of the propagation of Waves, at the surface of a heavy �uid, of inde�nite
depth” proposed by the French Academy of Sciences in December 1813 [6]. Cauchy won the prize but Poisson,
who was one of the examiners, also published his own work on the topic. They determined the waves created
by a sudden disturbance η at the air/water interface z “ 0, what became the so-called Cauchy-Poisson problem.
They considered an inviscid irrotational and incompressible �ow so that they had to solve the Laplace equation
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with a deformable boundary1 z “ ηpx, y, tq. Assuming an in�nitesimal 2-dimensional disturbance, the boundary
conditions were linearized about the unperturbed water surface ηpx, y, tq “ 0. However, they still had to face
the major issue of dispersion: waves with di�erent wavelengths propagate at di�erent speeds. Indeed, if one
tries to follow one of the ripples created when throwing a stone into water, one shortly looses it because it is
caught up by others. Cauchy and Poisson independently derived the dispersion relation of deep water gravity
waves: ω “

a

g|k| where ω is the angular frequency, g the gravitational acceleration and k the wavenumber
vector. In a modern view, they decomposed the initial disturbance ηpx, y, t “ 0q into Fourier modes, imposed a
linear evolution and obtained its shape at later times through an inverse Fourier tranform:

ηpx, y, tq “
1

p2πq2

ĳ

R2

η̂pk, lq eirkx`ly´ωpk,lqts dkdl with η̂pk, lq “

ĳ

R2

ηpx, y, t “ 0q e´ipkx`lyq dxdy. (2.1)

Although their results on the interference of Fourier modes in a dispersive medium are one the greatest scienti�c
achievements of their time, they were regarded as a mathematical curiosity. In fact, the physical theory of linear
water waves was provided by Airy in 1841 [8]. Waves are perturbations of the water surface and they propagate
due to a restoring force: gravity and/or surface tension, denoted σ. Moreover, one can classify them in terms of
the water depth h. For the sake of simplicity, we will focus on a 2-dimensional problem (1-dimensional waves,
see �gure 2.1). The general dispersion of capillary-gravity waves in a layer of �nite depth is then [9]

ω2 “ gk tanhpkhq
ˆ

1` σk2

ρwg

˙

, k “ |k|, (2.2)

where ρw is the density of water. The capillary wave length is de�ned as λc “ 2π
b

σ
ρwg

» 1.7 cm. For
wavelengths much smaller than λc, surface tension is the only restoring force. Conversely, for wavelengths
much greater than λc only gravity matters. Shallow water waves are de�ned by kh ! 1 and, given λc, such
waves cannot be capillary. Furthermore, their phase velocity c “ ω

k is constant equal to
?
gh, so they are not

dispersive. We will not be concerned with shallow water waves in this work. We will actually focus on the other
limiting case, kh " 1, corresponding to the so-called deep water waves. Their phase velocity is minimal at the
capillary wavenumber kc “

a

ρwg
σ and can be expressed as

c “
cmin
?

2

c

k

kc
`
kc
k
, with cmin “

ˆ

4σg
ρw

˙
1
4

. (2.3)

The neglect of surface tension gives back the result of Cauchy and Poisson, c “
a

g
k , which is subsequently

correct for k ! kc.

2.1.2 Stokes’ non-linear step

Much of the zoology of water waves and how they propagate is therefore well understood. However, the frame-
work we have just described holds under the assumption that waves have an in�nitesimal amplitude, whatever
their origin. In this work, we will be concerned with wind-generated waves. But when a strong wind is blow-
ing, it creates big waves sometimes so big that they break, for the greatest pleasure of surfers, because the local
downward acceleration of �uid particles exceeds the value of g; a phenomenon reported for the �rst time in a
scienti�c journal by Phillips in 1958 [10]. Therefore, non-linear e�ects should de�nitely be taken into account.
Their �rst study is due to Stokes for deep water gravity waves. In a seminal paper published in 1847 [11], he
showed that, in addition to their oscillatory motion, �uid particles are also advected by the �ow in the direction
of wave propagation, so that they do not exactly have closed trajectories. This phenomenon is known to people
who practice tackle �shing in the ocean; they indeed experience a drift of their �shing �oat and even of their
boat, if they forgot to anchor it. This is referred to as Stokes drift, which mathematically corresponds to the
di�erence between the mean Lagrangian and Eulerian velocities:

uSpr0q “

B

Bξpr0, tq

Bt

F

´ xupr0, tqy “

B„
ż t

t0

upr0, t
1qdt1 ¨∇r0



upr0, tq

F

, (2.4)

1Laplace was contemporary of Cauchy and Poisson, but the eponymous equation was �rst introduced in hydrodynamics by Euler in
1761 [7].
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where ξpr0, tq denotes the position at time t of a �uid particle located in r0 at the initial time t0. For a plane
wave ηpx, tq “ a cospkx´ ωtq, Stokes obtained

uSpr0q “ pkaq
2
c

g

k
e2kz0 ex for ka ! 1, (2.5)

where ka ” s is called the wave steepness. This dimensionless parameter, also known as the wave slope,
characterizes the non-linearity of the waves. As Stokes masterfully noticed, s ! 1 most of the time, so water
waves are actually weakly non-linear. Note that the Stokes drift is nevertheless a key process in the transport of
marine debris such as driftwood.
In the same article [11], Stokes used what is now called the Poincaré-Lindstedt method to derive a non-linear
dispersion relation for deep water gravity waves of small steepness, now known as the Stokes waves:

ω2
S “ gk

`

1` s2˘, s ! 1. (2.6)

Thus, Airy linear theory for deep water waves is valid2 in the limit sÑ 0.

2.1.3 Modulational instability of a wave packet: NLS model

Stokes made a �rst step by deriving a dispersion relation that depends on the wave amplitude, but the evolution
of that amplitude was still unknown. The existence of Stokes waves was rigorously proved by Levi-Civita in
1925 [12], however such non-linear periodic wave trains are rarely observed in nature. In fact, Benjamin and
Feir showed in 1967 [13], both experimentally and analytically, that they are unstable to side-band perturbations:
a Stokes wave of wavenumber k0 is usually accompanied by residual perturbations of wavenumber, say k˘ “
k0˘∆kwith ∆k ! k0, and it turns out that those perturbations grow exponentionally, causing the disintegration
of the Stokes wave. From this observation naturally arises the question of how the interaction between dispersion
and weak non-linearity a�ects the propagation of a narrow wave packet centered around k0. The simplest answer
is given by an envelope equation. The wave packet is represented by a surface displacement of the form [14]

ηpx, tq “ <
"

Apx, tq eipk0x´ω0tq

*

, with ω0 “
a

gk0. (2.7)

The condition of narrow spectral band-width, δ “ ∆k
k0
! 1, is equivalent to the complex wave amplitude being

slowly varying in space. Then, the latter is the solution of

i

ˆ

At `
ω0

2k0
Ax

˙

“
ω0

8k2
0
Axx `

1
2ω0k

2
0 |A|

2A. (2.8)

This is a non-linear Schrödinger equation (NLS), which can be obtained using the method of multiple scale on
the water wave equations. We are going to highlight the general physical processes it describes. First, let us
remark that ω0

2k0
“ ω1pk0q ” cg0 is the group velocity of the waves evaluated at k0; the propagation of the

envelope of a wave packet at the group velocity is a well-known result. So if we write equation (2.8) in a moving
frame de�ned as ξ “ x´ cg0t and τ “ t, the second term on the left-hand side disappears. Furthermore, let us
temporarily ignore the spatial dependence in the new frame. Hence,

iAτ “
1
2ω0k

2
0 |A|

2A. (2.9)

Because the modulus of the solution |A| is constant in time, one readily �nds Apτq “ A0 e
´iΩτ , where Ω “

1
2ω0

`

k0|A0|
˘2 is simply the Stokes’ correction. Since Stokes considered a plane wave, he was indeed right to pre-

suppose a constant wave amplitude. The condition of weak non-linearity can be imposed by the transformation
AÑ sA. Then, the non-linear e�ects clearly occur on a time scale of order s´2.
Let us now give a heuristic derivation of the linear part of equation (2.8) for an arbitrary dispersion relation. The
initial condition must be a slow function of x, meaning that Apx, 0q “ fpδxq. After expanding it in a Fourier
integral, the linear evolution of the wave packet is given by

ηpx, tq “ <
"

1
2π

ż ∆k

´∆k
Âpkq eirpk0`kqx´ωpk0`kqts dk

*

. (2.10)

2For waves in �nite depth, Airy linear theory is valid if in addition a ! h. Futhermore, for shallow water waves the Ursell number
Ur “ a

k2h3 must also be very small.
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Because δ ! 1, we have k ! k0 and hence we can Taylor-expand the dispersion relation about k0. After
comparison with (2.7), we �nd

Apx, tq “
1

2π

ż ∆k

´∆k
Âpkq ei

“

kx´
`

ω1pk0qk`ω
2
pk0q

k2
2 `. . .

˘

t
‰

dk, (2.11)

which obeys
i
`

At ` ω
1pk0q Ax

˘

“ ´
1
2ω

2pk0q Axx. (2.12)

For deep water gravity waves, we e�ectively have ω2pk0q “ ´
ω0
4k2

0
ă 0. We will see that the concavity of the

function ωpkq is of primary importance. Let us emphasize that to have a balance between the di�erent terms, the
complex amplitude must be a slow function of t. There are actually two time scales. The envelope propagates
on a time scale of order δ´1 and gets distorted on a time scale of order δ´2.
To summarize, let us combine the conclusions by rewriting the wave packet as

ηpx, tq “ <
"

sApξ, τq eipk0x´ω0tq

*

, with

#

ξ “ δpx´ cg0tq

τ “ δ2t
. (2.13)

This way, the scale separation is properly accounted for and the balance between dispersion and weak non-
linearity becomes transparent:

iδ2Aτ “ ´
δ2

2 ω
2pk0q Axx `

s2

2 ω0k
2
0 |A|

2A. (2.14)

When δ ! s ! 1 non-linearity dominates dispersion and the wave-packet behaves like a uniform wave train
whose phase velocity depends on its amplitude. On the contrary, for s ! δ ! 1 the propagation of the wave
packet is perfectly linear but fully dispersive, treated in a general manner. We will see that the form of the non-
linear term is not speci�c to water waves. Thus, the NLS is a general model for waves displaying δ „ s ! 1. Let
us show that it explains the Benjamin-Feir instability, which is why it is often called the modulational instability
[15]. Still working in the moving frame, we perturb the Stokes’ solution as follows:

Apξ, τq “
“

A0 `Bpξ, τq
‰

e´iΩτ , with B ! A0. (2.15)

Since we are interested in side-band perturbations, we write Bpξ, τq “ B` e
i∆kξ`γτ `B´ e

´i∆kξ`γ˚τ where
γ is the possibly complex growth rate to be determined and pB`, B´q P C2. The algebra, detailed in reference
[16], results in

γ2 “ ´
∆k2

4

"

2ω2pk0q
`

k0|A0|
˘2
`
“

ω2pk0q
‰2∆k2

*

. (2.16)

We immediately notice that this square is non-negative only if ω2pk0q ă 0, thereby revealing that concavity of
the dispersion relation is a necessary condition for side-band instability. However, this is not su�cient because
it also has a threshold. For deep water gravity waves, the dimensionless growth rate can be written as

γ

ω0
“

1
8δ

a

8s2 ´ δ2, (2.17)

so that δ ă 2
?

2s is required for growth, which is maximal at δ “ 2s.

2.1.4 Wave-wave interaction

The mechanism of the Benjamin-Feir instability is well understood in the general framework of wave-wave
interactions [17]. In fact, the carrier wave is interacting with the side-bands in a resonant process characterized
by

#

k0 ` k0 “ k0 `∆k ` k0 ´∆k
ωpk0q ` ωpk0q “ ωpk0 `∆kq ` ωpk0 ´∆kq

. (2.18)

The condition on frequencies is clearly not full�lled when using the linear dispersion relation ωLpkq “
?
gk. But

since we are dealing with waves of small but �nite steepness, we should use a non-linear dispersion relation. For
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the carrier wave, we directly apply Stokes’ result: ωpk0q “ ω0
`

1` s2

2
˘

. The side-bands su�er from non-linearity
in a di�erent way. Indeed, they are in�nitesimal (B ! A0) but they are riding on the carrier wave, which sets
up a Stokes drift. Evaluated here at the water surface, z0 “ 0, the latter is uS “ c0s

2 where c0 “ ω0
k0

. Due to
this wave-induced current, the side-bands are Doppler-shifted:

ωpk0 ˘∆kq “ ωLpk0 ˘∆kq ` pk0 ˘∆kquS . (2.19)

A Taylor expansion of ωL at second order about k0 shows that the condition on frequencies is full�lled exactly
for the side-bands yielding the maximum growth rate of the Benjamin-Feir instability. This is probably the
best observational evidence of four-wave interactions. Such interactions are the consequence of dispersion and
non-linearity. They are mathematically described by the Zakharov equation [18]

Ba1

Bt
` iω1a1 “ ´is

2
¡

R3

T1234 a
˚
2a3a4 δpk1 ` k2 ´ k3 ´ k4q dk2dk3dk4, (2.20)

where kj denotes an algebraic wavenumber, ωj “ ωLp|kj |q, T1234 “ T pk1, k2, k3, k4q is a real scattering
coe�cient and aj “ apkj , tq is a spectral amplitude related to the surface displacement by

ηpx, tq “
1

2π

ż

R

„

|k|

4ρwg


1
4
 

apk, tq ` a˚p´k, tq
(

eikxdk. (2.21)

Zakharov derived equation (2.20) using a perturbative Hamiltonian formalism based on the assumption of weak
non-linearity of water waves. Since then, equations of the same form have been found for other systems of
weakly non-linear waves. It displays a clear time scale separation: waves have a fast oscillatory dynamics while
their amplitude is slowly varying because of wave-wave interaction. So if we de�ne a ‘slow’ time t2 “ s2t and
bpk, tq “ apk, tqe´iωLpkqt, we get

Bb1
Bt2

“ ´i

¡

R3

T1234 b
˚
2 b3b4 e

ipω1`ω2´ω3´ω4qtδpk1 ` k2 ´ k3 ´ k4q dk2dk3dk4. (2.22)

First of all, the non-linear term of NLS straightforwardly emerges from this equation when considering a single
mode which is basically interacting with itself. Secondly, it now appears obvious that the key processes are
resonant four-wave interactions:

#

k1 ` k2 “ k3 ` k4

ω1 ` ω2 “ ω3 ` ω4
. (2.23)

Phillips, who is actually the �rst to come up with the idea of wave-wave interaction, proved in 1960 [19] with

Figure 2.2: There is no resonant triadic interactions between deep water gravity waves because they cannot
satisfy both k1 ` k2 “ k3 and ω1 ` ω2 “ ω3. Figure adapted from [17].

his famous �gure of eight that this system has solutions. Resonant triadic interactions are not possible because
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ωL is a concave functions, as can be graphically seen on �gure 2.2; however, they are present when the surface
tension is taken into account.
Finally, it is worth noticing that the originally cumbersome expression of T1234 has undergone numerous simpli-
cations over the last half-century, especially after the release of Wolfram. For 2-dimensional deep water gravity
waves, its �nal expression is [20]

T1234 “ θpk1k2k3k4q

?
k1k2k3k4

4π

ˆc

ω1ω2

ω3ω4
`

c

ω3ω4

ω1ω2

˙

minp|k1|, |k2|, |k3|, |k4|q, (2.24)

where θ is the Heavide step function. Furthermore, the resonant manifold can very interestingly be decomposed
into two branches:

$

’

&

’

%

k1 “ k3 and k2 “ k4

or
k1 “ k4 and k2 “ k3

and

$

’

’

’

&

’

’

’

%

k1 “ αp1` ζq2

k2 “ αζ2p1` ζq2

k3 “ ´αζ
2

k4 “ αp1` ζ ` ζ2q2

, α P R and ζ Ps0, 1r. (2.25)

Then one can check with expression (2.24) that T1234 is identically zero on the second branch. So we come to
the astonishing conclusion that there are only trivial resonant interactions in that case.
We close this broad introduction to the water wave problem with the emphasis that weak non-linearity is a
key feature in its mathematical treatment. Stokes’ expansion and the more general framework of wave-wave
interaction make sense only because the steepness of the waves is small. The reason for it is the existence of a
natural small parameter in the system: the air-water density ratio ε “ ρa

ρw
. Water waves are strictly speaking

interfacial waves, however the water surface has been treated as a free surface because ε ! 1. Indeed, it ensures
a weak coupling between air and water layers, and subsequentlty s ! 1. This is an essential fact for the study
of wind-wave interaction.

2.2 Wind waves

2.2.1 Brief history of the generation of waves by the wind

The �rst mechanism for the generation of waves by the wind was proposed by Kelvin and Helmholtz around
1870. It was based on the instability of two layers of �uid having each a di�erent velocity and now known as the
vortex sheet instability. However, the minimum wind speed for this instability to occur is too large. So it cannot
account for wind wave generation. Still the Kelvin-Helmholtz instability is ever-present in nature and of great
importance in astrophysics.
It is only in 1925 that another mechanism was suggested by Je�reys. He considered harmonic waves having
a phase velocity c together with a constant wind speed U and noticed that the pressure on the windward face
of a crest was greater than the pressure on the leeward face of that crest. Then he assumed that this pressure
di�erence should be proportional to the wave slope. This is the so-called sheltering hypothesis:

∆P “ s ρapU ´ cq
2 ηx, (2.26)

where s is named ‘sheltering coe�cient’ and should be experimentally determined. The pressure asymmetry is
supposed to be due to �ow separation: the air �owing over a wave separates somewhere on the downwind side
and reattaches on the upwind side of the next crest. Unfortunately, this mechanism turned out to be ine�cient.
Moreover, Banner and Melville showed in 1976 that waves do not separate unless they break [21].
In 1956, Ursell wrote a very in�uencial review on the topic of wind wave generation where he concluded that
its current stage at that time was unsatisfactory [22]. As a consequence, a year later Phillips [23] and Miles [24]
proposed two independent mechanisms. The latter actually explains the growth of in�nitesimal perturbations
under the wind blowing while the former details the generation of a spectrum of waves by a turbulent wind.
Thus, those mechanisms appear to complete each other rather than being in competition. In this work, we will
focus on the theory of Miles.
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2.2.2 A focus on Miles’ theory

Background: Instability of a parallel shear �ow

Let us consider a parallel shear �ow U “ Upzq ex over a �at boundary of in�nite extension located at z “ 0.
Assuming this �ow inviscid and the absence of gravity, it is a trivial solution of the incompressible Euler equation,
together with a constant pressure P . For the sake of simplicity, we take the density of the �uid constant. The
equilibrium state is now perturbed in�nitesimally:

u “ U ` u1, |u1| ! |U |, (2.27)
p “ P ` p1, p1 ! P. (2.28)

A normal mode analysis consists in looking for solutions of the perturbed state in the form

p1pr, tq “ p̂pzq eipkx`ly´ctq and u1pr, tq “

¨

˝

ûpzq
v̂pzq
ŵpzq

˛

‚ eipkx`ly´ctq. (2.29)

After Squire theorem [25], to each 3-dimensional disturbance corresponds a more unstable one in 2 dimension.
Therefore, one can take l “ 0 and v̂ “ 0. Then it can be shown that the perturbed vertical velocity is solution
of the so-called Rayleigh equation:

pU ´ cqpŵzz ´ k
2ŵq ´ Uzz ŵ “ 0. (2.30)

Since the �ow cannot penetrate the boundary, ŵp0q “ 0. Furthermore, the disturbance should vanish at in�nity.
This is an eigenvalue problem: one has to �nd for each mode k the complex phase velocity cpkq such that these
boundary conditions are satis�ed.

Instability of a logarithmic pro�le over a layer of �uid

Miles addressed the problem of how the wind makes a deep water water gravity wave of in�nitesimal steepness
grow. His idea was to look at that wave as a perturbation of the air �ow and then study the stability of the latter.
The issue is of course that the wind is turbulent while all results of the theory of hydrodynamic stability are for
laminar �ows [25]. Miles worked around the problem by averaging the turbulent �ow.
A turbulent shear �ow over a rough boundary located at z “ 0 can be represented by the law of the wall [26]:

ūpzq “
u‹
κ

ln
ˆ

z

z0

˙

, for z " z0. (2.31)

The overbar stands for time averaging, κ “ 0.4 is the von Karman constant, u‹ the friction velocity de�ned
from the constant shear stress τ0 “ ρau

2
‹ and z0 the roughness length, that is nothing but the height at which ū

would vanish if equation (2.31) was applicable down to this height. Indeed, it is not valid close to the boundary
because of the e�ect of viscosity. When the time scale of turbulent �uctuations is much smaller than the period
of the wave, it is still valid to use equation (2.31) as a wind pro�le. Moreover, so as to mimic a viscous sublayer
it is extended down to the water surface in the form

Upzq “
u‹
κ

ln
ˆ

1` z

z0

˙

. (2.32)

Assuming that there is no wind-drift, Upzq “ 0 for z ă 0. Note that this pro�le is continuous at z “ 0 so that
there is no Kelvin-Helmholtz instability. Since the perturbation is coming from the interface, one should solve
the Rayleigh equation both in air and water. Furthermore, at the moving boundary z “ ηpx, tq one should have

wa “ ww “
dη

dt
and pa “ pw, (2.33)

where d
dt is the material derivative and, as previously, w is the vertical velocity, p the pressure. Nonetheless,

there is now gravity so that it is the hydrostatic pressure P0 ´ ρgz which is perturbed in each layer of �uid,
P0 “ ppz “ 0q being an arbitrary constant. One introduces a perturbed stream function ψ1 such that

u1 “ ´ψ1z and w1 “ ψ1x, (2.34)

15



and look for the normal modesψ1pr, tq “ ψ̂pzq eipkx´ctq. It is straightforward that ψ̂ obeys the Rayleigh equation
(2.30). Along the same line, the wave is represented by ηpx, tq “ a eipkx´ctq but the dispersion relation cpkq is
now unknown. In fact, the whole point is to calculate it and show that it has a non-zero imaginary part. Since
ka ! 1, the boundary conditions (2.33) can be linearized:

ψ̂a “ ψ̂w “ ´ac and p̂a ´ p̂w “ pρa ´ ρwqga at z “ 0. (2.35)

In the establishment of equation (2.30), the pressure has been eliminated through an expression in terms of ψ̂
and U . It used to rewrite the second conditions as

„

ρ
!

ψ̂zpU ´ cq
2 ´ ψ̂

`

UzpU ´ cq ` g
˘

)

a

w

“ 0 at z “ 0. (2.36)

In water, the solution of Rayleigh equation is fairly simple since there is no basic �ow: ψ̂apzq “ ´ac e´kz .
Nevertheless, this eigenvalue problem is still analytically very hard to solve. Young and Wolfe [27] made it for
a double exponential pro�le. Otherwise, it has been numerically solved by Morland and Sa�man [28]. But since
the coupling between wind and waves is small due to the natural small parameter ε “ ρa

ρw
, Miles could solve it

perturbatively with the expansions

c “ c0 ` εc1 ` ε
2c2 ` . . . and ψ̂ “ ψ̂0 ` εψ̂1 ` ε

2ψ̂2 ` . . . , ε ! 1. (2.37)

with c0 “
a

g
k . He eventually obtained the following expression for the growth rate:

γ “ ´πεc0
Uzzpzcq

|Uzpzcq|
|χpzcq|

2, where Upzcq “ c0 (2.38)

de�nes a critical layer (see �gure 2.3) and χ “ ŵ
ŵp0q is solution of

pU ´ c0qpχzz ´ k
2χq ´ Uzz χ “ 0, χp0q “ 1, χpzq 9

`8
e´kz. (2.39)

Figure 2.3: Schematic of a critical layer, de�ned as the level where the wind velocity matches the phase speed of
the wave.
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Chapter 3

A numerical and asymptotic study of
the growth rate of wind waves

We present in this chapter our research’s results.

3.1 Mathematical statement of the problem

In this section, the dimensional variables are denoted with a star.

Let us consider a deep water gravity wave with wavenumber k˚ on the water surface, over which blows a wind
represented by the pro�le U˚pz˚q. The calculation of the growth rate given by Miles’ formula (2.38) involves the
solution of

χ2pz˚q “

#

k2
˚ `

U2˚pz˚q

U˚pz˚q ´
b

g
k˚

+

χpz˚q, χp0q “ 1, χpz˚q 9
`8

e´k˚z˚ . (3.1)

Let U0 be the characteristic velocity of the wind and L a characteristic vertical length scale. Dimensionless
variables are then de�ned as follows:

k “ k˚L, U “
U˚
U0
, z “

z˚
L
. (3.2)

Hence, the dimensionless form of (3.1) is

χ2pzq “

#

k2 `
U2pzq

Upzq ´ 1
Fr
?
k

+

χpzq, χp0q “ 1, χpzq 9
`8

e´kz. (3.3)

We have introduced the Froude number Fr “ U0?
gL

whose denominator is the phase velocity of gravity mode
of wave length L. In hydraulics, this number characterizes the �ow in a canal where L corresponds to its depth:
it is said subcritical when Fr ă 1 and supercritical when Fr ą 1. We could keep those denominations for the
wind.
We denote c “ 1

Fr
?
k

the dimensionless phase velocity of surface gravity waves. k is the ratio of the vertical
and horizontal length scales, so k " 1 and k ! 1 correspond to short and long waves respectively.
We require the following properties for the wind pro�le:

1. Up0q “ 0 due to the no-slip condition at the water surface.

2. U 1 ą 0 so that there is only one critical layer.

3. U2 ă 0 to ensure the growth of waves.
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4. lim
zÑ`8

U2pzq “ 0 for the desired asymptotic behaviour of χ to make sense.

We will mostly focus on the standard pro�les U1pzq “ 1´e´z and U2pzq “ lnp1`zq. Note that the exponential
pro�le is bounded, so L is the thickness of the air boundary layer in that case. As a consequence, it restricts the
range of values of k and Fr which have to be such that c ă 1. The logarithmic pro�le is more relevant from a
physics perspective because it comes from the theory of turbulent boundary layers; L is then interpreted as the
roughness of the waves.
The exact analytical solution of the boundary value problem (3.3) for an arbitrary wind pro�le is out of reach. In
section 3.2, we develop an e�cient scheme for solving it numerically, then compute the growth rate and compare
it with experimental data; meanwhile, we show that our scheme is applicable to a wide class of problems. In
section 3.3, we derive asymptotic solutions of (3.3) in the short and long wave approximations.

3.2 Numerics

In 1959, Conte and Miles [29] developed an algorithm based on the Frobenius’ series to compute the coe�cient
β but it works only for the logarithmic pro�le. Almost �fty years later, Beji and Nadaoka [30] proposed a
method for solving (3.3) for an arbitrary wind pro�le. We considerably improved its e�ciency by separating the
integration of real and imaginary parts and de�ning a simpler criterion of convergence at in�nity. Moreover,
we noticed that their sophisticated local solutions can be readily replaced by the leading order terms of the
Frobenius’ series. This way, we obtained a general procedure for solving linear boundary value problems having
one or more regular singularities. Accuracy of our scheme has been checked by recovering the results of [29].
We realized during the writing of this work that ten years after the publication of [29], Hughes and Reid [31]
had developed a scheme based on the same ideas, though with a di�erent treatment at in�nity, in their study of
the exponential pro�le which is not cited in [30].
In this section, we �rst summarize the results on the Frobenius’ series for this problem. Then, we re�ne the local
analysis of [30] and detail our improvement of their numerical method. We eventually expose the generalization
of the scheme.

3.2.1 Frobenius’ series

There is a singularity at z “ zc, de�ned as Upzcq “ c, that makes the resolution of (3.3) challenging. Let us
expand U in a Taylor series about zc, denoting the derivatives at this point with a subscript c :

Upzq “
`8
ÿ

n“0
U pnqc

pz ´ zcq
n

n! , (3.4)

U2pzq “
`8
ÿ

n“2
U pnqc

pz ´ zcq
n´2

pn´ 2q! , (3.5)

U2pzq

Upzq ´ c
“

ř`8

n“0 U
pn`2q
c

pz´zcq
n

n!
ř`8

n“1 U
pnq
c

pz´zcqn

n!

„
zc

U2c
U 1cpz ´ zcq

. (3.6)

We assume that both U 1c and U2c are non-zero. Therefore, the singularity at z “ zc is regular and we can look
for solutions of the form [32]

χpzq “
`8
ÿ

j“0
ajpz ´ zcq

j`s, with a0 ‰ 0. (3.7)

Using the expansions (3.4) and (3.5), we �nd the indicial exponents s1 “ 1 and s2 “ 0, di�ering by an integer.
Thus, two linearly independent solutions of the Rayleigh equation are

χ1pzq “
`8
ÿ

j“0
ajpz ´ zcq

j`1, (3.8)

χ2pzq “
`8
ÿ

j“0
bjpz ´ zcq

j ` C χ1pzq Logpz ´ zcq, (3.9)
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where

Logpz ´ zcq “
#

lnpz ´ zcq if z ą zc

ln |z ´ zc| ` iπ if z ă zc
(3.10)

denotes the principal determination of the complex logarithm, with a branch cut just below the negative real axis.
According to Fuchs’ theorem, those series are converging. As usual, we set a0 “ 1 and b0 “ 1; the coe�cient
bs1´s2 “ b1 is undetermined, so we can choose b1 “ 0. After some algebra, we �nd a1 “

U2c
2U 1c

and C “
U2c
U 1c

.
Furthermore, for n ě 2 and @pj,mq P Nˆ N‹,

ÿ

pm,jq{
n“m`j`1

„

pj ` 2qpj ` 3qU
pmq
c

m! aj`2 ´
U
pm`1q
c

pm´ 1q!aj`1 ´ k
2U

pmq
c

m! aj



“
U
pn`1q
c

pn´ 1q! ´
U2c
U 1c

U
pnq
c

n! , (3.11)

ÿ

pm,jq{
n“m`j`1

„

pj ` 1qpj ` 2qU
pmq
c

m! bj`2 ´
U
pm`1q
c

pm´ 1q!bj`1 ´ k
2U

pmq
c

m! bj ` p2j ` 3qU
2
c

U 1c

U
pmq
c

m! aj`1



“
U
pn`1q
c

pn´ 1q! ´
U2c
U 1c

U
pnq
c

n! .

Thanks to these recursion relations, we are able to calculate one by one all coe�cients aj and bj . The �rst terms
are

χ1pzq “ z ´ zc `
U2c
2U 1c

pz ´ zcq
2 `

1
6

ˆ

k2 `
U3c
U 1c

˙

pz ´ zcq
3 `Opz ´ zcq4, (3.12)

χ2pzq “
U2c
U 1c

χk,1pzq Logpz ´ zcq ` 1`
„

k2

2 `
U3c
2U 1c

´

ˆ

U2c
U 1c

˙2 

pz ´ zcq
2 `Opz ´ zcq3. (3.13)

They are the so-called Tollmien inviscid solutions [25], in terms of which the boundary value problem (3.3) can
be theoretically solved:

χpzq “ A1 χ1pzq `A2 χ2pzq, pA1, A2q P C
2. (3.14)

However in practice, the calculation of the coe�cients A1 and A2 is a very di�cult task. We readily notice that
χpzcq “ A2 and that all derivatives diverge at zc.

3.2.2 A local (modi�ed) Bessel equation

Following [30], in order to study the behaviour of the solutions of the Rayleigh equation around the singularity,
we keep only the �rst term in the Taylor series (3.4) and (3.5):

χ2pzq “

ˆ

k2 `
U2c

U 1cpz ´ zcq

˙

χpzq. (3.15)

pz´zcq
´1 becomes very large near zc so that we can discard the term proportional to k2. Moreover, we perform

the change of variable z “ ´
U2c
U 1c
pz ´ zcq and obtain

z X 2pzq ` X pzq “ 0. (3.16)

This ODE looks very simple, however the coe�cient of the second derivative can change sign so that we expect
a di�erent behaviour on each side of the singularity. Performing the transformation

X pzq “

#

ξ
2 Ψ`pξq, ξ “ 2?z if z ą 0
ξ
2 Ψ´pξq, ξ “ 2

?
´z if z ă 0

, (3.17)

it is mapped to a Bessel equation above the singularity and a modi�ed Bessel equation below:

ξ2 d
2Ψ`

dξ2 ` ξ
dΨ`

dξ
` pξ2 ´ 1q Ψ`pξq “ 0, (3.18)

ξ2 d
2Ψ´

dξ2 ` ξ
dΨ´

dξ
´ pξ2 ` 1q Ψ´pξq “ 0. (3.19)
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Hence, the general solution of equation (3.16) is

X pzq “

#?
z
“

A J1p2
?
zq `B Y1p2

?
zq
‰

if z ą 0
?
´z

“

C I1p2
?
´zq `D K1p2

?
´zq

‰

if z ă 0
, (3.20)

where A,B,C,D are complex constants. However, they are not independent because the two expressions in
(3.20) should have the same analytic continuation on their Riemann surface. In addition, X should be continuous
at the singularity since both Frobenius’ exponents are positive. For z ď 0, ?z “ ˘i

?
´z is multivalued because

of the algebraic branch point z “ 0. We choose to work on the principal sheet, de�ned by the polar angle
θ Ps ´ π, πs. In so doing, we select ` and then invoke the functional relations

@x ą 0, J1pixq “ i I1pxq and Y1pixq “
2i
π
K1pxq ´ I1pxq. (3.21)

Note that the origin is a concomitant logarithmic branch point due to the (modi�ed) Bessel functions of second
kind. One can match the two expressions of χ given in (3.20) and get the conditions

#

C “ ´pA` iBq

D “ ´ 2B
π

, (3.22)

which are dependent on our choice of Riemann’s sheet.
The advantage of the form of the solution (3.20) is that it is a linear combination of real functions on each
interval. Therefore, we can conveniently split real and imaginary parts, which will be very helpful for the
numerical integration. Since J1p0q “ 0 and Y1pxq „0

´ 2
πx , we readily �nd χkpzcq “ ´B

π .

3.2.3 Improvement of Beji and Nadaoka’s method

For the sake of convenience, let us introduce some notations:

X1pzq “
?
z J1p2

?
zq, X2pzq “

?
z Y1p2

?
zq, (3.23)

X3pzq “
?
´z I1p2

?
´zq, X4pzq “

?
´zK1p2

?
´zq. (3.24)

With A “ a` ib and B “ c` id, the real and imaginary parts of the solution (3.20) are

<tX`u “ a X1 ` c X2, (3.25)
=tX`u “ b X1 ` d X2, (3.26)

<tX´u “ pd´ aq X3 ´
2c
π

X4, (3.27)

=tX´u “ ´pb` cq X3 ´
2d
π

X4. (3.28)

Let us rewrite the boundary conditions in (3.3) as well:
$

’

’

’

’

&

’

’

’

’

%

<tχup0q “ 1
=tχup0q “ 0
<tχ1upzq ` k <tχupzq Ñ

`8
0

=tχ1upzq ` k =tχupzq Ñ
`8

0

. (3.29)

We insist on the fact that the solutions (3.25) to (3.28) are not valid where those boundary conditions apply. Thus,
we are going to develop a variant of a shooting method. The idea is to use our local solutions to generate initial
conditions near the singularity and numerically integrate the Rayleigh equation up and down until “in�nity” (to
be speci�ed) and zero respectively. Let us denote r “ ´U2c

U 1c
ą 0 and make a jump of amplitude δ “ 10´6 on each

side of the singularity. Basically, X`prδq and X´p´rδq serve as initial conditions for the numerical integration
and we have to �nd the proper coe�cients a, b, c, d so that the boundary conditions (3.29) are satis�ed.
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So as to integrate the Rayleigh equation, we express it as a 2-dimensional �rst order ODE:

u1 “ Au, with u “

ˆ

χ
χ1

˙

and Apzq “

˜

0 1
k2 `

U2pzq
Upzq´cq 0

¸

. (3.30)

Then, for an initial condition u0 at z0 a formal solution of that equation is

upzq “ Lpz, z0q u0, with Lpz, z0q ” T e
şz
z0

Apz1qdz1
. (3.31)

T is the time ordering operator. De�ning uj fl pXj ,X 1
jq
t @j P rr1, 4ss, the local solutions (3.25) to (3.28) yield a

set of initial conditions at zc ˘ δ:

u`r “ a u1prδq ` c u2prδq, (3.32)
u`i “ b u1prδq ` d u2prδq, (3.33)

u´r “ pd´ aq u3p´rδq ´
2c
π
u4p´rδq, (3.34)

u´i “ ´pb` cq u3p´rδq ´
2d
π
u4p´rδq. (3.35)

At this stage, we use the essential fact that Lpz, z0q is a linear operator.

<
 

upzq
(

“

#

Lpz, zc ` δq u`r “ a Lpz, zc ` δq u1prδq ` c Lpz, zc ` δq u2prδq if z ą zc

Lpz, zc ´ δq u´r “ pd´ aq Lpz, zc ´ δq u3p´rδq ´
2c
π Lpz, zc ´ δq u4p´rδq if z ă zc

,

=
 

upzq
(

“

#

Lpz, zc ` δq u`i “ b Lpz, zc ` δq u1prδq ` d Lpz, zc ` δq u2prδq if z ą zc

Lpz, zc ´ δq u´i “ ´pb` cq Lpz, zc ´ δq u3p´rδq ´
2d
π Lpz, zc ´ δq u4p´rδq if z ă zc

.

Now, Lpz, zc˘ δq ujp˘rδq ”
`

χjpzq, χ
1
jpzq

˘t is nothing but the solution of equation (3.30) at z ż zc satisfying
the initial condition ujp˘rδq at zc ˘ δ. We are clearly not able to analytically calculate the time ordered expo-
nential operator but we can numerically compute this solution for any z. We de�ne the upper limit of integration
as z8 “ ´ 1

k lnpχminq with for instance χmin “ 10´3. The boundary conditions (3.29) are eventually reduced
to the simple algebraic system
¨

˚

˚

˝

´χ3p0q 0 ´ 2
π χ4p0q χ3p0q

0 ´χ3p0q ´χ3p0q ´ 2
π χ4p0q

χ11pz8q ` k χ1pz8q 0 χ12pz8q ` k χ2pz8q 0
0 χ11pz8q ` k χ1pz8q 0 χ12pz8q ` k χ2pz8q

˛

‹

‹

‚

¨

˚

˚

˝

a
b
c
d

˛

‹

‹

‚

“

¨

˚

˚

˝

1
0
0
0

˛

‹

‹

‚

,

which can be solved analytically. The trick we have used in the above derivation can be formally stated as
follows:

Lemma 1. Let pEq be a n-dimensional linear �rst order ODE on a �eld K, whose independant variable will be
denoted t. Let α,β P Kn. If fα and fβ are solutions of pEq satisfying the initial conditions pt0,αq and pt0,βq
respectively, then λ fα ` µ fβ is the solution of pEq satisfying the initial condition pt0, λ α` µ βq for any λ and
µ in K.

This numerical scheme depends on which Riemann’s sheet we choose to work on, through the relations (3.22).
For example, if we instead opt for the sheet de�ned by the polar angle θ Ps ´ 3π,´πs, then for z ď 0, ?z “
´i
?
´z and we now shall use

@x ą 0, J1p´ixq “ ´i I1pxq and Y1p´ixq “ ´
2i
π
K1pxq ´ I1pxq. (3.36)

It yields C “ ´pA´ iBq and D “ ´ 2B
π . Nonetheless, one can check that it leads to the complex conjugate of

the present solution. This is �ne because we are interested only in its modulus.
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3.2.4 General Frobenius-based scheme for linear singular boundary value problems

The local solutions we have used in the previous section come from an analysis speci�c to the Rayleigh equation.
Nonetheless, the leading order terms of the Tollmien inviscid solutions (3.12) and (3.13) provide us another set
of local solutions:

χlocpzq “ A1pz ´ zcq `A2

"

1` U2c
U 1c
pz ´ zcqLogpz ´ zcq

*

. (3.37)

There is no need to include more terms in the expansion because this local solution will be evaluated extremely
close to the singularity (z ´ zc “ 10´6). In fact, if we Taylor-expand (3.20) about z “ 0 we get back (3.37); that
makes sense since one way of de�ning the (modi�ed) Bessel functions is by their Frobenius’ series.
Now, we can repeat the procedure we have just described. With A1 “ a1 ` ib1 and A2 “ a2 ` ib2, we �nd

<tχ`locu “ a1 χloc,1 ` a2 χloc,2, (3.38)
=tχ`locu “ b1 χloc,1 ` b2 χloc,2, (3.39)

<tχ´locu “
ˆ

a1 ´ πb2
U2c
U 1c

˙

χloc,1 ` a2 χloc,2, (3.40)

=tχ´locu “
ˆ

b1 ` πa2
U2c
U 1c

˙

χloc,1 ` b2 χloc,2, (3.41)

where χloc,1pzq “ z ´ zc and χloc,2pzq “ 1 ` U2c
U 1c
pz ´ zcq ln |z ´ zc|. After integration from zc ˘ δ and

application of the boundary conditions (3.29), we get another algebraic system for the coe�cients a1, a2, b1, b2
whose analytical solution is also known.
Note that if we had taken the branch cut just above the negative real axis (instead of below), then we would
have got ´iπ in the complex logarithm (3.10), which impacts (3.37). But from the analytical expression of the
coe�cients a1, a2, b1, b2 in terms the integrated local solutions, we can show that the transformation π Ñ ´π
implies a1 Ñ a1, a2 Ñ a2, b1 Ñ ´b1 and b2 Ñ ´b2. We conclude that moving the branch cut from the lower
to the upper part of the complex plane is equivalent to take the complex conjugate of the solution. This is the
counterpart of our discussion about Riemann’s sheets in the end of the previous section. The reason for such a
phenomenon is that when integrating a function with a singularity on the real axis, one has to make a detour
either in upper or the lower part of the complex plane.
Since the Frobenius’ series always exists for linear ODEs and are converging about any regular singular point,
our scheme could be used to solve other problems. The most general one we can think of is of the form y1 “ Ay
together withn boundary conditions, and A an-dimensional complex matrix function onR having one or several
regular singularities. In addition, if some boundary conditions are at in�nity, the corresponding asymptotic
behaviour of the solution should be known so that one can de�ne the limits of integration, as we did for z8.
We propose to deal with the case of two (or more) singularities as follows. One has got a linear combination of
n local solutions around each singularity. There is no reason for the coe�cients of those linear combinations
to be the same. Thus, one is left with 2n coe�cients to compute but still only n boundary conditions. One
shall choose n points between the singularities and impose the integrated linear combinations to be equal at
these points. Note however that in dimension n ą 2, the question of well-posedness of the problem should be
addressed before any numerical attempt to solve it.

3.2.5 Comparison of Miles’ theory with Plant’s experimental data

In 1982, Plant gathered four data sets of measurements of initial growth rates [33]. He plotted the growth rate
normalized by the frequency, which represents the strength of wind-wave interaction, as a function of the wind-
forcing of waves u‹

c . Thanks to our numerical scheme, we compute the growth rate given by Miles’ formula
(2.38) and confront it to this experimental data in �gure 3.1 with Fr “ u‹

κ
?
gz0

“ 18.25. There is a pretty good
agreement for u‹

c ă 2, although the data points are pretty scattered. Note that Mitsuyasu and Honda [34]
produced the same year as Plant a similar �gure with their own experimental data, unfortunately as scattered
as his. There is an ongoing work together with the asymptotics developed in section 3.3 to understand the
discrepancy between Miles’ theory and experiments for u‹

c ą 2. In addition, we seek to rationalize the power
law that seems to appear in �gure 3.1.
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Figure 3.1: Comparison of Miles’ theory with Plant’s experimental data.

3.3 Asymptotics

An exact analytical solution of the Rayleigh equation in terms of hypergeometric functions was obtained for
the exponential pro�le by Hughes and Reid in their paper [31] published in 1965. It was then used by Miles
himself to solve the boundary-value problem (3.3) for this pro�le, in the appendix of a paper by Morland and
Sa�man published in 1993 [28]. Moreover, since hypergeometric functions provide very little intuition of the
actual behaviour of the solution, he also calculated approximate expressions for small and large wavenumbers.
The same year, when he revisited his theory, Miles included other e�ects from turbulence and proposed an
approximate formula his growth rate [35]. In this section, we also study long and short waves but working
directly on Rayleigh equation in order to draw general asymptotic features for a wind pro�le having the minimal
properties given in section 3.1.

3.3.1 Short waves

Let us consider short waves, which means that k " 1. Therefore, we can introduce the small parameter ε “ 1
k

and get to solve

ε2 χ2pzq “

#

1` ε2 U2pzq

Upzq ´
?
ε

Fr

+

χpzq, χp0q “ 1, lim
zÑ`8

χpzq “ 0. (3.42)

The Froude number a�ects only the position of the singularity. Since U is monotonic, we can de�ne its inverse
function U´1 which has the same monotonicity. Then zc “ U´1`

?
ε

Fr

˘

and so for a �xed ε, the smaller Fr the
larger zc.
The small parameter multiplies the highest derivative so we shall perform a singular perturbation analysis.
However, this equation does not have a form appearing in the standard textbooks on asymptotic methods ; it
is a Schrödinger-like equation whose potential depends on the small parameter. Thus, the WKB method is not
applicable. We are going to use instead the boundary layer theory. We indeed expect a boundary layer at the
singularity, since the second derivative becomes in�nite at this point, but its structure should not be the same
for the real and the imaginary parts because they satisfy di�erent boundary conditions. Note that the position
of this internal boundary depends on the small parameter, in addition to Fr, which is unusual.
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We seek an outer solution in the form of a perturbation series in power of ε:

χoutpzq “ χ0pzq ` εχ1pzq ` ε
2χ2pzq ` . . . , εÑ 0`, (3.43)

which immediately leads to χ0 “ 0. In words, the outer solution at leading order is identically zero.
Let us de�ne an inner variable Z “ z´zc

δ , where δ ą 0 is the thickness of the boundary layer, and an inner
solution XinpZq. To determine δpεq, we rewrite the local equation (3.15) in terms of the new variable and look
for a dominant balance:

ˆ

ε

δ

˙2
X2inpZq “

#

1` ε2

δ

U2c
U 1cZ

+

XinpZq, Z “ Op1q. (3.44)

The ratio U2c
U 1c

a priori depends on ε because zc does. Nonetheless, for physically relevant pro�les
ˇ

ˇ

U2c
U 1c

ˇ

ˇ ď 1 so
that we readily get the distinguished limit δ “ ε. The appropriate perturbation expansion of the inner solution
is

XinpZq “ X0pZq ` εX1pZq ` ε
2X2pzq ` . . . , εÑ 0`, (3.45)

which leads to
X20 pZq “ X0pZq. (3.46)

The general solution of this ODE isX0pZq “ C1 e
´Z`C2 e

Z with pC1, C2q P C2. Very unexpectedly, the inner
solution at leading order has no singularity.
Now that the thickness of the boundary layer is known, we come back on the key fact that its position depends
on ε and Fr. If zc “ Opεq or even zc ! ε, then the boundary layer actually touches the lower boundary.
Subsequently, there is only one outer region. We �rst accomplish the matching between inner and outer solutions
in this case. The constants C1 and C2 are determined by the matching principle

lim
zÑzc`

χ0pzq “ lim
ZÑ`8

X0pZq. (3.47)

To preclude divergence, we have to choose C2 “ 0. We are in the case where the inner solution is in fact valid
at z “ 0, so C1 is found by enforcing the boundary condition at this point:

X0

ˆ

´
zc
ε

˙

“ 1 ñ C1 “ e´
zc
ε . (3.48)

Hence, X0pZq “ e´Z´
zc
ε . A composite solution is constructed using the additive rule of Van Dyke, hence

χunif,0pzq “ inner ` outer ´ common part “ e´
z
ε . (3.49)

Finally, let us deal with the case where zc " ε meaning there is an outer region between the lower boundary
and the critical layer. Note that for a given ε, it is the value of the Froude number which makes the distinction
between the two cases. Basically, this one occurs when Fr ă 1 and the previous one when Fr ą 1. The solution
at leading order is the same in both outer regions, so we still have C2 “ 0. And from the matching principle

lim
zÑzc´

χ0pzq “ lim
ZÑ´8

X0pZq, (3.50)

we infer C2 “ 0. However the calculation is not over. Indeed, the imaginary part of χ0 trivially obeys the
boundary condition at z “ 0 but its real part does not. Thus, the real part of the solution at leading order must
have another boundary layer at z “ 0. Let us examine its structure: it is standard to regard the coe�cients of a
linear ODE as constant within a boundary layer. Since Up0q “ 0, we get

ε2 χ2pzq “
!

1´ ε 3
2 Fr U2p0q

)

χpzq, around z “ 0. (3.51)

We are in the case where Fr ă 1 and U2p0q “ Op1q for physically relevant pro�les. Then, one readily shows
that this boundary layer also has a thickness ε. De�ning a new inner variable Z “ z

ε and the corresponding
inner solution XinpZq, the above equation becomes at leading order

X20pZq “ X0pZq. (3.52)
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The solution in the internal boundary layer being identically zero, this is actually a situation identical to the case
Fr ą 1. Therefore, we infer X0pZq “ e´Z and the same composite solution as previously.
We conclude that in the limit of large k and for any value of Fr, the leading order solution of the boundary value
problem is real, equal to the free-stream solution e´kz . This result is independent of the form of the wind pro�le.
Furthermore, we have showed that it holds for any value of zc, or equivalently, of

?
ε

Fr . Hence, it is not a�ected
by dispersion and is subsequently also valid for capillary waves. The comparison between the exact numerical
solution obtained with our scheme and those general asymptotic results is very good even for ε “ 0.1, especially
for large values of Fr; see �gures 6.1 to 6.6 in the appendix.

3.3.2 Long waves

Let us consider long waves meaning that k ! 1, that we can use a small parameter in (3.3). Still, we denote it ε
to respect the tradition in asymptotics:

χ2pzq “

#

ε2 `
U2pzq

Upzq ´ 1
Fr
?
ε

+

χpzq, χp0q “ 1, lim
zÑ`8

χpzq “ 0. (3.53)

We are going to solve this problem with the method of matched asymptotic expansions. At �rst, we could be
tempted to simply discard the term ε2 however lim

zÑ`8

U2pzq

Upzq´ 1
Fr
?
ε

“ 0´, so not only the term ε2 is the dominant
one for large z but, after the intermediate value theorem, there is a point zs ą zc where

ε2 `
U2pzsq

Upzsq ´
1

Fr
?
ε

“ 0. (3.54)

The solution χpzq has an in�exion point at z “ zs; its uniqueness can be ensured by requiring U3 ą 0. We
de�ne a lower region z ! zs and a higher region z " zs, look for solutions within each of them and eventually
match those solutions in the intermediate region around z “ zs. The equation to solve in the lower region is

χ2Lpzq “
U2pzq

Upzq ´ 1
Fr
?
ε

χLpzq. (3.55)

Let us study wether it is valid to extend the lower region until z “ 0. Since Up0q “ 0,
ˇ

ˇ

ˇ

ˇ

ˇ

U2pzq

Upzq ´ 1
Fr
?
ε

ˇ

ˇ

ˇ

ˇ

ˇ

„
0
Fr
?
ε|U2p0q|. (3.56)

For physically relevant pro�les, U2p0q “ Op1q so we can neglect the term ε2 at the lower boundary provided
that Fr " ε

3
2 . Then, denoting c “ 1

Fr
?
ε
, an obvious solution of equation (3.55) is U ´ c from which one can

readily construct another one, linearly independent. So the solutions in the lower region are

χL1pzq “ Upzq ´ c, (3.57)

χL2pzq “ χL1pzq

ż z dz1

χL1pz1q2
. (3.58)

Up to now, we have been able to get solutions in the higher region only for the exponential pro�leU1, that we ex-
pose below. We are currently seeking solutions for the logarithmic pro�leU2 but its unbounded character makes
it challenging. Unlike the solution in the short wave approximation, the one in the long wave approximation
strongly depends on the form of the wind pro�le.
Solution for the pro�le U1

For this pro�le, de�ned in section 3.1, it is very convenient to rewrite the problem in terms of the variable
z ” z ´ zc introduced in section 3.2.2:

X 2pzq “

#

ε2 ´
e´z

1´ e´z

+

X pzq, X p´zcq “ 1, lim
zÑ`8

X pzq “ 0. (3.59)
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The general solution in the lower region is XLpzq “ E XL1pzq ` F XL2pzq, with pE,F q P C2 and

XL1pzq “ 1´ e´z, (3.60)

XL2pzq “
`

1´ e´z
˘

"

1
1´ ez ` Log

`

ez ´ 1
˘

*

. (3.61)

In the higher region, the equation to solve is

X 2
Hpzq “

`

ε2 ´ e´z
˘

XHpzq, pG,Hq P C2. (3.62)

which can be mapped to a Bessel equation of order 2ε by a smart change of variable. We infer its general solution:

XHpzq “ G J2ε
`

2e´
z
2
˘

`H J´2ε
`

2e´
z
2
˘

, (3.63)

We have to take H “ 0 for non-diverging solutions since Jνpxq „0
`

x
2
˘ν . Note that we get the asymptotic

exponential behaviour imposed in our numerical scheme. Since matching the two pieces of solution in the
intermediate region is di�cult, we try to connect them in a somewhat simpler manner. With the help of the
numerics, we notice that there is an extremum in the intermediate region and choose to do patching at this
point. We proceed as follows: we look for the position of the extremum in the higher region, then impose the
solution in lower region to be extremal at this point and have the same value.
One can check that the equation J 12ε

`

2e´
z
2
˘

“ 0 has a unique solution on R` for ε ! 1, which we denote z‹.
For the moment, this equation is solved numerically but we are also seeking possible approximate solutions.
By imposing X 1

Lpz‹q “ 0, we get the relation

E `
!

ez‹ ` 1` ln
`

ez‹ ´ 1
˘

)

F “ 0. (3.64)

Then the continuity of the solution at z “ z‹,

E XL1pz‹q ` F XL2pz‹q “ G J2ε
`

2e´
z‹
2
˘

, (3.65)

yields

E “ e´z‹J2ε
`

2e´
z‹
2
˘

!

ez‹ ` 1` ln
`

ez‹ ´ 1
˘

)

G, (3.66)

F “ ´e´z‹J2ε
`

2e´
z‹
2
˘

G. (3.67)

Note that all these relations are independent of zc, which appears only when we eventually impose the lower
boundary condition:

`

1´ ezc
˘

«

E ` F

"

1
1´ e´zc ` ln

`

1´ e´zc
˘

` iπ

*

ff

“ 1. (3.68)

After plugging (4.4) and (4.5) into it, we obtain the �nal expression

G “
1

e´z‹J2ε
`

2e´ z‹
2
˘`

1´ ezc
˘

K ` iπ

K2 ` π2 , K “ ez‹ ` 1´ 1
1´ e´zc ` ln

ˆ

ez‹ ´ 1
1´ e´zc

˙

. (3.69)

This calculation shows an excellent agreement with the numerical solution obtained with our scheme when
zc “ Op1q or larger, even for ε “ 0.1. For small values of zc, there is a discrepancy which can however be
compensated by taking a tiny ε; see �gures 6.7 to 6.11 in the appendix.
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Chapter 4

Complementary information on waves
in the ocean

In section 2.1, we have discarded several e�ects in the water wave problem so as to make the presentation of
wave-wave interaction more accessible. We now show how to take them into account. In particular, we calculate
the wave energy from which the ocean wave spectrum is de�ned in equation 1.1.

4.1 Water wave problem

We summarize here the water wave problem in its whole generality. It is a boundary value problem whose
boundary conditions depend on the solution. We consider a 3-dimensional problem (2-dimensional waves) with
the following notations: r “ px, y, zqt, x “ px, yqt and u “ u‖ ` w ez .
We take a horizontal domain of �nite extension D “ ∆xˆ∆ywith periodic boundary conditions. The projection
of the gradient on D is denoted ∇‖. We include both gravity and surface tension. In addition, the bottom
topography is represented by a function hpxq.
We have to solve the Laplace equation ∇2φ “ 0. The kinematic boundary conditions at the water surface and
the uneven bottom are

Btη `∇‖ φ ¨∇‖ η “ Bzφ at z “ ηpx, tq, (4.1)

Bzφ`∇‖ φ ¨∇‖ h “ 0 at z “ hpxq. (4.2)

Furthermore, the dynamical boundary condition at the water surface is

Btφ`
1
2 |∇φ|2 ` gη `

p

ρw
“ ´

σ

ρw
∇‖

¨

˜

∇‖ η
b

1` |∇‖ η|2

¸

at z “ ηpx, tq. (4.3)

4.2 Wave energetics

The wave energy is the mean energy per unit area: E “ T ` V where T and V are the kinetic and potential
energy parts respectively. Similarly, the wave momentum M is the mean momentum per unit area. Ocean
waves are random so one has to use an ensemble averaging, which should obey Reynolds averaging rules. For
random functions f , g and a “ cst, they are the following [26]:

xf ` gy “ xfy ` xgy , (4.4)
xafy “ a xfy , (4.5)
xay “ a, (4.6)

xBsfy “ Bs xfy for s “ x, y, t, (4.7)
xxfy gy “ xfy xgy . (4.8)
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The combination of (4.6) and (4.8) leads to
xxfyy “ xfy . (4.9)

In this section, we consider progressive periodic waves of small steepness so that results of the linear theory can
be applied. Moreover, the averaging is then easy to de�ne and can be related to the experimental point of view.
Nonetheless, all results can be generalized to statistically homogeneous random wave �elds provided that the
water depth if constant. We assume it so; the kinematic boundary condition (4.2) is then reduced to

Bzφ “ 0 at z “ 0. (4.10)

Most of the results of this section can be found in the book by Phillips [36]. Nonetheless, our energetic inter-
pretation of the ratio of group and phase velocities and its application making the calculation of the radiation
stress tensor straightforward seems to be new.

4.2.1 Average de�nition(s) and reduction to a one-dimensional plane wave

Let us consider a surface displacement ηpx, tqwhich has the form of a 2-dimensional progressive periodic wave.
Then it is characterized by its period T together with its wavelengths Lx and Ly . Moreover, under some rea-
sonable assumptions of regularity, it can be expanded in a Fourier series:

ηpx, tq “
`8
ÿ

n“1

!

an cospn k ¨ x´ ωntq ` bn sinpn k ¨ x´ ωntq
)

, (4.11)

where k “
` 2π
Lx
, 2π
Ly

˘t
, ω1 “

2π
T and @n P N˚, ωn “ ωpnkq with ω a function characterizing the dispersion.

an “
4

LxLy

ż

Lx
2

´
Lx

2

ż

Ly
2

´
Ly

2

ηpx, t “ 0q cospn k ¨ xq dxdy, (4.12)

bn “
4

LxLy

ż

Lx
2

´
Lx

2

ż

Ly
2

´
Ly

2

ηpx, t “ 0q sinpn k ¨ xq dxdy. (4.13)

It will be proved in section 4.2.5 that, in the absence of currents, the mean water level is equal to zero; reason
why we took a0 “ 0.
We have adopted here the approach of Cauchy and Poisson to de�ne the Fourier coe�cients from the initial
disturbance because the wavenumber spectrum is more convenient than the frequency spectrum for theoretical
purposes. However, their de�nition with a time integration at an arbitrary point of D is also �ne. In fact, in
practice experimentalists take averages over one period. This operation trivially commutes with ∇ but does not
with Bt. Conversely, an average over the wavelengths commutes with Bt but certainly not with ∇‖. There is
actually no issue because we are dealing with functions which are periodic both in x and t, generically denoted
f , so that whatever the de�nition of the average x. . . y is we will have1

xBtfy “ 0 and
A

∇‖ f
E

“ 0. (4.14)

However, we are considering a progressive wave so η actually depends only on the phase ϕ “ k ¨x´ω1t. There
exists non-linear progressive waves which are not periodic, like solitons and cnoidal waves, but we will not be
concerned with them here. Thus, we conveniently take an average over the phase:

xfy “
1

2π

ż π

´π

fdϕ. (4.15)

It has the advantage of formally obeying Reynolds averaging rules, especially (4.7).
The condition of small steepness apply to each harmonics: @n P N˚, n|kan| ! 1 and n|kbn| ! 1. Along this
line, let us mention an interesting result about the Fourier coe�cients.

1It would not be the case if we had taken the bottom topography into account.
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Lemma 2. (Riemann-Lebesgue)
If ηpx, t “ 0q is bounded and integrable over Lx ˆ Ly , then lim

nÑ`8
an “ 0 and lim

nÑ`8
bn “ 0.

Stricto sensu, it does not ensure the small steepness of higher harmonics. Nonetheless, it gives hopes about the
existence of a class of functions whose Fourier sequence is absolutely decreasing faster than n. For instance, it
is the case for the 2π-periodic function de�ned to be equal to x2 on the interval s ´ π, πs. For such functions, it
would be enough to impose |ka1| ! 1 and |kb1| ! 1 to make sure that all harmonics have a small steepness.
The condition of small steepness allows us to linearize the boundary conditions (4.1) and (4.3). Hence, we can
restrict our attention to a plane wave ηpx, tq “ a cospk ¨ x ´ ωtq and apply the superposition principle in the
end. This wave propagates in the direction of k and is invariant by translation in the orthogonal direction. Thus,
by setting up the direction of propagation along the x-axis one can simply consider a perturbation of the form
ηpx, tq “ a cospkx´ ωtq invariant by translation in the y direction, which is in e�ect one-dimensional.
In that case, the velocity potential and subsequently the velocity �eld are known explicitly at the �rst order in
ka. The phase velocity is denoted c “ ω

k2 k. One can show that the group velocity cg “ ∇k ω is nicely related
to c as

cg “
1
2

˜

2kh
sinhp2khq `

1` 3
`

k
kc

˘2

1`
`

k
kc

˘2

¸

c. (4.16)

4.2.2 Wave energy

We treat separately the kinetic part and the contributions from gravity and surface tension.

1. The wave kinetic energy is

T “

B
ż η

´h

1
2ρw|u|

2 dz

F

»

ż 0

´h

1
2ρw

@

|u|2
D

dz “
1
4ρwga

2
ˆ

1` σk2

ρwg

˙

. (4.17)

The integration from troughs to crests has been discarded because it would yield terms of third order in
ka. The �nal expression was obtained thanks to the �rst order velocity �eld. Still, the following form
(proved in section 4.2.9) will be useful:

T “
1
2ρw xφ|z“ηBtηy »

1
2ρw xφ|z“0Btηy . (4.18)

The approximation is for waves of small steepness; it gives back the �nal result of (4.17) when using the
�rst order velocity potential.

2. The contribution of gravity to the wave potential energy is the di�erence between the gravitational energy
of the water surface with and without waves:

Vg “

B
ż η

´h

ρwgz dz

F

´

B
ż 0

´h

ρwgz dz

F

“
1
2ρwg

@

η2D “
1
4ρwga

2. (4.19)

Note that this result holds for waves of arbitrary steepness.

3. Surface tension is by de�nition an energy per unit area. Thus, to get its contribution to the wave potential
energy one has to multiply it by the mean relative change of area. In the absence of waves, the water
surface is �at and its area is simply ∆x∆y. The wavy surface is represented by the Cartesian equation
z “ ηpx, tq. Hence,

Vσ “ σ

Cť

D

b

1` |∇‖ η|2 dxdy ´∆x∆y
∆x∆y

G

» σ

C

ť

D
`

1` 1
2 |∇

‖ η|2
˘

dxdy ´∆x∆y
∆x∆y

G

(4.20)

“
σ

2
1

∆x∆y

ĳ

D

A

ˇ

ˇ∇‖ η
ˇ

ˇ

2
E

dxdy “
1
4σpkaq

2. (4.21)

The Taylor expansion in equation (4.20) holds for waves of small steepness.
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From equations (4.17), (4.19) and (4.21), we see that T “ V and so

E “
1
2ρwga

2
ˆ

1` σk2

ρwg

˙

. (4.22)

The equipartition of energy into its kinetic and potential components is true for any system undergoing small
oscillations, as a consequence of the virial theorem for a harmonic potential.
Formula (4.22) can be written in a simple closed form inspired from (4.19) and (4.21):

E “ ρwg
@

η2D` σ
A

ˇ

ˇ∇‖ η
ˇ

ˇ

2
E

. (4.23)

The reason why we skipped the horizontal integration in the second term is the following. Since we are consid-
ering perfectly periodic solutions of the water wave problem, we can restrict the horizontal domain to LxˆLy .
Thus we recognize a spatial averaging of

A

|∇‖ η|2
E

. But as discussed in section 4.2.1, the spatial average is
equivalent to x. . . y. The conclusion then follows from the complementary Reynolds averaging rule (4.9).
Note that this closed form is consistent with Parseval theorem:

@

η2D “
1
2

`8
ÿ

n“1

`

a2
n ` b

2
n

˘

and
A

|∇‖ η|2
E

“
1
2

`8
ÿ

n“1

!

|kan|
2 ` |kbn|

2
)

. (4.24)

4.2.3 Wave momentum

By de�nition, the wave momentum is

M “

B
ż η

´h

ρwu dz

F

“

B
ż η

0
ρwu dz

F

`

ż 0

´h

ρw xuy dz. (4.25)

The average commutes with the integration only in the second term because η is function of time, unlike h. Due
to the irrotationality, one has xuy “ x∇φy “ 0 for progressive periodic waves of arbitrary steepness. Therefore,
the region below wave troughs does not contribute to the wave momentum. Then,

M “

B
ż η

0
ρwu dz

F

»

B
ż η

0
ρwu|z“0 dz

F

“ ρw
@

η∇φ
ˇ

ˇ

z“0

D

“ ρw
@

∇pηφq
ˇ

ˇ

z“0 ´ φ|z“0 ∇ η
D

. (4.26)

The approximation is for waves of small steepness. Besides,
@

∇pηφq
ˇ

ˇ

z“0

D

“ 0 for progressive periodic waves
so that

M “ ´ρw

A

φ|z“0 ∇‖ η
E

“
1
2ρwωa

2 cotanhpkhq ex. (4.27)

We have replaced the gradient by its horizontal projection as Bzη “ 0. This way, it makes clear that the wave
momentum has no vertical component. The �nal expression was obtained thanks to the �rst order velocity
potential.
A comparison between the explicit expressions (4.22) and (4.27) leads to the oustanding conclusion that

E “M ¨ c. (4.28)

It is worth to remark that the explicit calculation of E andM is not necessary to infer this relation. Indeed, for
a plane wave

Btη ` c ¨∇‖ η “ 0. (4.29)

So one can get it directly from (4.18) and the �rst equality of (4.27).
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4.2.4 Wave energy �ux

The wave energy �ux Φ �ux is in the direction of k. So, let us compute the energy �ux ∆y||Φ|| ” ΦS through
a cross-sectional area S orthogonal to the direction of propagation. It is nothing but the mean rate of work on
S of the excess pressure pe due the presence of waves:

ΦS “
C

ĳ

S

peu ¨ dS

G

“ ∆y
B
ż η

´h

peBxφ dz

F

. (4.30)

As for the kinetic energy, the integration from troughs to crests is discarded.
Bernoulli theorem together with Young-Laplace law yields2:

Btφ`
1
2 |∇φ|2 ` gz `

p

ρw
“ ´

σ

ρw
∇‖

¨

˜

∇‖ η
b

1` |∇‖ η|2

¸

. (4.31)

After linearization we get pe “ ´ρw Btφ´σ ∇‖2η ” ρw c Bxφ´σ B
2
xη. Then, a direct calculation with the �rst

order horizontal velocity leads to

Φ “
E

2

˜

2kh
sinhp2khq `

1` 3
`

k
kc

˘2

1`
`

k
kc

˘2

¸

c. (4.32)

With the help of (4.16), we straightforwardly identify

Φ “ E cg, (4.33)

and conclude that wave energy is transported at the group velocity. This is not a surprise. We have indeed
shown on general grounds in section 2.1.3 that the envelope of a wave packet, whose energy is proportional to
the square of its amplitude, propagates at the group velocity.
This calculation yields further information on the partition and transport of energy.

1. For pure gravity waves, we readily see that the wave energy �ux is reduced to

Φg “

ż 0

´h

ρw

A

|u‖|2
E

dz c. (4.34)

The integral is nothing but twice the horizontal wave kinetic energy, denoted T ‖. Since E “ 2T , we get
after comparison with (4.33)

cg
c
“
T ‖

T
ď 1 for gravity waves. (4.35)

For deep water gravity waves, cg “ c
2 meaning that horizontal and vertical wave kinetic energies are equal.

This equipartition is due to the absence of vertical length scale and not to the nature of the restoring force3.
So we can generally state that

T ‖ “
T

2 ô

A

|u‖|2
E

“
@

w2D in deep water. (4.36)

2. With the e�ect of surface tension, there is a supplementary term on the right-hand side of (4.35). In the
deep water approximation, we can use (4.36) and �nd

cg
c
“

1
2 ´

σ

2cT

ż 0

´h

@

Bxφ B
2
xη
D

dz. (4.37)

2According to Bernoulli theorem, there is also a function of time on the left-hand side of equation (4.31). Because of the gauge freedom
on the velocity potential, this function could be set to zero as was done in the boundary condition (4.3).

3It is con�rmed by a direct calculation with the �rst order velocity �eld.
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For deep water capillary waves, cg “ 3
2c but in that case T “ Vσ . We subsequently infer

´σ

ż 0

´h

@

Bxφ B
2
xη
D

dz “ 2 c Vσ. (4.38)

So the mean rate of work of the capillary forces is unexpectedly equal to twice the product of the capillary
wave energy by the the phase velocity. It is proved in section 4.2.9 that this result is an intrinsic property
of the surface. Consequently, we can use it to express the ratio of group and phase velocities in terms of
energetics:

cg
c
“
T ‖ ` Vσ

T
“ 2 T

‖ ` Vσ
E

. (4.39)

3. The above ratio can be readily expressed as

cg
c
“

ΦST
ELx∆y

, (4.40)

which is the ratio of the energy crossing S during one period by the energy surplus in the volume Lx∆yS
due the presence of waves. After (4.35), for gravity waves only a fraction of the energy content of a wave
train of length Lx passes through S during its period T . However, the inequality is reversed for pure for
capillary waves. Indeed, equation (4.39) with T “ Vσ yields

cg
c
“ 1` T ‖

T
ě 1 for capillary waves. (4.41)

It means that more energy passes through S than contained in the volume Lx∆yS ahead of it; a phe-
nomenon called anomalous dispersion.

4. From the explicit expression (4.16), we readily get

cg
c
“

kh

sinhp2khq `
1
2 for gravity waves. (4.42)

After comparison with (4.35), we infer

kh

sinhp2khq “
T ‖

T
´

1
2 , (4.43)

which is consistent with our conclusion (4.36) about the deep-water approximation. The form of (4.43)
is independent of the restoring force so that we expect it to hold as well when including surface tension.
This can be checked as follows. From (4.16), it comes

cg
c
“

kh

sinhp2khq `
3
2 for capillary waves, (4.44)

which after comparison with (4.41) indeed gives back (4.43).

4.2.5 Mean pressure and mean water level

The mean pressure xpy is obtained from the average vertical momentum equation:

ρw xBtwy `
A

∇‖
¨
`

ρwwu
‖˘
E

` Bz
@

p` ρww
2D` ρwg “ 0. (4.45)

After the properties (4.14) of progressive periodic waves only remain the two last terms in that equation. Then,
an integration from the bottom up to an arbitrary level below the mean water level xηy leads to

xpy ´ p0 ` ρw
@

w2D “ 0 on r´h, xηys, (4.46)

where p0pzq “ ρwgpxηy ´ zq is the hydrostatic pressure, the atmospheric pressure being set to zero. Hence at
any level below the water surface, the mean vertical �ux of vertical momentum balances the weight of water
above that level.

32



Besides, the average dynamical boundary condition (4.3) is

xBtφy `
1
2
@

|∇φ|2
D

` g xηy `
xpy

ρw
“ ´

σ

ρw

C

∇‖
¨

˜

∇‖ η
b

1` |∇‖ η|2

¸G

at z “ xηy . (4.47)

Invoking (4.14) once more, we get the following relation between mean pressure and mean water level:
1
2

A

|u‖|2 ` w2
E

` g xηy `
xpy

ρw
“ 0 at z “ xηy . (4.48)

So as to check its consistency with the natural balance expressed by (4.46), let us evaluate the latter at the mean
water level. It gives

xpy ` ρw
@

w2D “ 0 at z “ xηy . (4.49)
The only way to reconciliate (4.48) and (4.49) is to consider deep water waves. Then, after the key relation (4.36),
the quadratic terms in (4.48) equally contribute. Consequently, one has to take xηy “ 0 in deep water. Since
waves usually travel from the middle of the ocean to the coast, this condition extends to �nite depth. It implies

p0pzq “ ´ρwgz @z P r´h, 0s. (4.50)

4.2.6 Radiation stress tensor

For the sake of simplicity, the e�ect of surface tension is discarded in this section.
The wave momentum �ux S is called ‘radiation stress tensor’. We recall that the inviscid momentum �ux in an
incompressible �uid is ρubu` pp´ p0q1, with p0 given by (4.50). Thus, the excess momentum �ux due to the
presence of waves is purely horizontal and expressed in the canonical basis pex, eyq as

Sij “

B
ż η

´h

pρwuiuj ` pδijq dz

F

´

ż 0

´h

p0δij dz, i, j “ 1, 2. (4.51)

We have substracted the hydrostatic term which was already contributing before the surface got disturbed. As
previously, the integration of the quadratic term from troughs to crests can be discarded. Hence,

Sij »

ż 0

´h

ρw xuiujy dz `

ż 0

´h

pxpy ´ p0qδij dz `

B
ż η

0
p dz

F

δij . (4.52)

The �rst integral is evaluated using the �rst order velocity �eld. Since the direction of propagation has been set
up along the x-axis, it is just

ż 0

´h

ρw
@

pBxφq
2D dz δi1δj1 ” 2T ‖δi1δj1. (4.53)

With the help of formula (4.49), we �nd
ż 0

´h

pxpy ´ p0qdz “ ´ρw

ż 0

´h

@

w2D dz ” 2pT ‖ ´ T q “ 2T ‖ ´ E. (4.54)

To evaluate the last term in (4.52), we approximate the dynamical pressure near the disturbed surface by its
hydrostatic counterpart. Setting the atmospheric pressure to zero, it leads to

ppr, tq » ρwg
`

ηpx, tq ´ z
˘

ñ

B
ż η

0
p dz

F

“
E

2 . (4.55)

In the end, using the energetic interpretation (4.35) of the ratio of group and phase velocities, the radiation stress
tensor in the canonical basis is found to be

S “

ˆ

E
` 2cg
c ´ 1

2
˘

0
0 E

` cg
c ´

1
2
˘

˙

. (4.56)

Otherwise, an intrinsic expression is

Sij “
Ecg
c

kikj
|k|2

` E

ˆ

cg
c
´

1
2

˙

δij . (4.57)

For deep water gravity waves,

S “
E

2
k b k

|k|2
. (4.58)
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4.2.7 A heuristic note on tsunamis

Let us consider consider a long wave generated by an earthquake at a point A in the middle of the ocean and
propagating along the x-axis until a point B on the coast. Let ΠA and ΠB be parallel vertical planes containing
A andB respectively, and having the same lateral extension ∆y. Assuming neither further wave generation nor
dissipation, the energy that enters through ΠA in the volume of water delimited by those planes must be equal
to the energy that goes out through ΠB . In other words, the energy �ux is conserved:

ΦΠA “ ΦΠB ñ pcgEqA “ pcgEqB . (4.59)

The point A is located in deep water, thus cgA “ 1
2
a

g
k is large because the wave is long (k small). On the

contrary, the pointB is located in very shallow water (h tiny) so that cgB “
?
gh is very small. In both cases, the

energy is proportional to the square of the wave amplitude. Since the group velocity is considerably decreasing
from A to B, the conservation law (4.59) implies a huge increase of the wave amplitude. This phenomenon is
called wave shoaling. It provides a qualitative explanation for tsunamis’ formation. A more quantitative one
requires to take non-linear e�ects into account. From the point of view of wave-wave interaction, they are
expected to be very strong in shallow water; as there is no dispersion, waves will interact on a short time scale.
Note that the wave amplitude would grow even more from A to B if the lateral extension of ΠB was smaller
than the lateral extension of ΠA. Thus, the e�ect of wave shoaling is ampli�ed in narrow shores.

4.2.8 Key points

i) The kinetic energy and the potential energy equally contribute to the wave energy.
ii) The ratio of the wave energy and the wave momentum is equal to the phase velocity.
iii) The energy propagates at the group velocity.

4.2.9 Proofs

Proof of equation (4.18)

Equation (4.18) is proved for an unven bottom and a statistically homogeneous random wave �eld.

Proof. (Adapted from [37])
For convenience, let us de�ne I “

şη

´h
|∇φ|2dz. The identity ∇ ¨ pφ∇φq “ |∇φ|2 ` φ∇2φ together with

the Laplace equation leads to

I “

ż η

´h

∇ ¨ pφ∇φq dz “

ż η

´h

∇‖
¨ pφ∇‖ φq dz `

”

φBzφ
ıη

´h
. (4.60)

Since

∇‖
¨

ż η

´h

φ∇‖ φ dz “

ż η

´h

∇‖
¨ pφ∇‖ φq dz `∇‖ η ¨

´

φ∇‖ φ
¯
ˇ

ˇ

ˇ

z“η
`∇‖ h ¨

´

φ∇‖ φ
¯
ˇ

ˇ

ˇ

z“´h
, (4.61)

I “

"

φ
´

Bzφ´∇‖ φ ¨∇‖ η
¯

*
ˇ

ˇ

ˇ

ˇ

z“η

`

"

φ
´

Bzφ`∇‖ φ ¨∇‖ h
¯

*
ˇ

ˇ

ˇ

ˇ

z“´h

`∇‖
¨

ż η

´h

φ∇‖ φ dz. (4.62)

After invoking the kinematic boundary conditions (4.1) and (4.2), we eventually obtain

T “
1
2ρw xIy “

1
2ρw xφ|z“ηBtηy `

1
2ρw ∇‖

¨

B
ż η

´h

φ∇‖ φ dz

F

. (4.63)

As discussed in section 4.2.1, the second term vanishes for progressive periodic waves. It actually also does for
a statistically homogeneous random wave �eld because the average is then independent of x.
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Proof of equation (4.38)

Equation (4.38) is proved for a statistically homogeneous random wave �eld.

Proof.

´σ

ż 0

´h

@

Bxφ B
2
xη
D

dz “ ´σ

ż 0

´h

@

BxpBxφ Bxηq ´ B
2
xφ Bxη

D

dz ” ´σ

B

Bxη

ż 0

´h

B2
zφ dz

F

(4.64)

Indeed xBxpBxφ Bxηqy “ 0 with the same arguments as given in the end of section (4.2.9). Furthermore, we made
use of the 2-dimensional Laplace equation to introduce a vertical derivative. After integration and enforcing the
(linearized) kinematic boundary conditions (4.1) and (4.10), we obtain

´σ

ż 0

´h

@

Bxφ B
2
xη
D

dz “ ´σ xBxη Btηy “ σc
@

pBxηq
2D ” 2 c Vσ. (4.65)

4.3 Waves in a slowly varying medium

In this section based on the book by Bühler [38], we study the e�ect of bottom topography and currents. Since
the vertical coordinate is not involved, we skip the symbol ‖ from the horizontal projection of the gradient.

4.3.1 Ray theory

We studied in section 2.1.3 the propagation of a weakly non-linear wave packet in a dispersive medium. We
required the wave packet to be spectrally narrow so that it could be represented by a plane wave whose amplitude
is slowly varying in space and subsequently in time. Here, we take a di�erent perspective and consider the linear
evolution of a plane wave in a slowly varying medium. Hence, not only its amplitude is a function of space and
time but also its wavenumber and angular frequency. It is represented by

ηpx, tq “ <
"

Apx, tq eiSpx,tq
*

, (4.66)

where Spx, tq is a phase function. The key assumption of a slowly varying medium entails that the wave train
looks like a plane wave at every px, tq so that one can de�ne a local wavenumber and a local angular frequency
as follows:

dS “ k ¨ dx´ ωdt ô kpx, tq “ ∇S and ωpx, tq “ ´St. (4.67)

The scale separation could be made explicit by writing S “ β´1S̃ with β ! 1. Then, one recognizes the leading
order of a WKB approximation. As it was �rst developed in geometric optics, this standard procedure is called
ray theory. Note that |k| and ω are of order ε´1 by construction, thus for consistency the dispersion relation
should be such that high angular frequencies are proportional to high wavenumbers. This is the case for water
waves.
It is useful to remark that ∇ˆ k “ 0, implying

Bki
Bxj

“
Bkj
Bxi

. (4.68)

A wave front is de�ned by Spx, tq “ cst or equivalently dS “ 0, thus it propagates at speed dx
dt “

ω
|k|2k which

is the local phase velocity. We get back to its original de�nition as speed of a wave crest. Indeed, the equation
`

Bt ∇´∇ Bt
˘

Spx, tq “ 0 ô Btk `∇ω “ 0 (4.69)

is often called ‘conservation law for wave crests’.
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Because of dispersion, there exists a function Ωpk,x, tq such that

ωpx, tq “ Ω
`

kpx, tq,x, t
˘

. (4.70)

We now have to write dynamical equations for k and ω. To do so, let us explicit the gradient in equation (4.69)
with the help of (4.68):

Bω

Bxi
“
BΩ
Bxi

`
Bω

Bkj

Bkj
Bxi

”
BΩ
Bxi

`
Bω

Bkj

Bki
Bxj

ñ Btk `
`

cg ¨∇
˘

k “ ´BxΩ, (4.71)

where cgpx, tq “ BkΩ is the local group velocity. The function Ω being known, we have got a quasi-linear PDE
for kpx, tq, which can be conveniently solved thanks to the method of characteristics. They are special lines
along which the PDE can be solved by integrating a system of ODEs. In our case, the characteristics curves are
parametrized by τ in the space px, t,kq and solutions of

$

’

&

’

%

dx
dτ “ cg
dt
dτ “ 1
dk
dτ “ ´BxΩ

ô

#

dx
dt “ BkΩ
dk
dt “ ´BxΩ

. (4.72)

In this special case, t is used as a parameter and is no more an independent variable. So we have moved to the
Lagrangian point of view. The connexion with the original Eulerian point of view is made by introducing a
directional derivative along the characteristics: d

dt “ Bt`cg ¨∇. In fact, it would be more correct to say that we
have moved to the ‘Hamiltonian’ point of view. The function Ωpk,x, tq can indeed be regarded as a Hamiltonian
function and px,kq as points in a phase space; the right-hand side of (4.72) are the corresponding Hamilton’s
equations of motion. Moreover,

BtS ` Ω
`

∇S,x, t
˘

“ 0 (4.73)

can be identi�ed as a Hamilton-Jacobi equation. Let us go further and make the substitution S Ñ ~S, with
~ the reduced Planck constant. First of all, ~S appears to be the least action (Hamilton’s principle). Secondly
after the Planck-Einstein formula, ~Ω can be interpreted as the energy of a corpuscule while ~k stands for its
momentum according to the de Broglie formula. Thus, we have a complete picture of the wave-particle duality.
Coming back to the original approach of geometric optics, we de�ne rays as the solution xptq in the physical
space. Finally, we calculate the time derivative of ω along a ray:

dω

dt
“ BtΩ` BkΩ dx

dt
` BxΩ dk

dt
” BtΩ. (4.74)

Hence, when the dispersion relation does not depend explicitly on time, the angular frequency is conserved
along a ray and transported at the group velocity. Then one ray corresponds to one angular frequency, like one
trajectory corresponds to one energy in conservative Hamiltonian mechanics. Similarly, when the dispersion
relation does not depend explicitly on the position, the wavenumber is conserved along a ray and transported
at the group velocity. These standard results could be directly inferred from the famous Noether’s theorem.
The variation of k along a ray, which is subsequently not straight, is a refraction. For water waves, it comes
from bottom variation and/or the presence of a non-uniform current.

4.3.2 Bottom refraction

In this section, we consider the e�ect of bottom variation through the function hpxq. Let Λ be a horizontal
length scale, then the variation looks slow to the waves if |k|Λ " 1. Besides, they e�ectively ‘feel’ that variation
if at most |k|h0 “ Op1q where h0 is a characteristic depth. Thus, the appropriate small parameter for the WKB
approximation is β “ h0

Λ ! 1. It can be shown [39] that the local dispersion relation keeps the same form as
when the depth is constant:

ω2px, tq “ g|kpx, tq| tanh
`

|kpx, tq|hpxq
˘

ˆ

1` σ|kpx, tq|2

ρwg

˙

. (4.75)
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Since Bth “ 0, we have BtΩ “ 0 and ω is conserved along a ray. In the standard case when Byh “ 0, we also have
ByΩ “ 0 which implies that the wavenumber l in the y-direction is conserved along a ray too. Let us introduce
the angle α “ pex,kq, then l “ |k| sinpαq. Combining the conservation of l and ω “ |k|c, we eventually get

sinpαq
c

“ cst, along a ray. (4.76)

This is nothing but the Snell-Descartes law for refraction. The Cartesian equation of rays can be obtained as
follows:

#

dx
dt “ BxΩ “ BΩ

B|k|
B|k|
Bx “

BΩ
B|k|

k
|k|

dy
dt “ ByΩ “ BΩ

B|k|
B|k|
By “

BΩ
B|k|

l
|k|

ñ
dy

dx
“
l

k
. (4.77)

l is a constant while kpx, yq should be extracted (maybe numerically) from the depth-dependent dispersion
relation for a given value of ω. One eventually gets a �rst order non-linear ODE whose resolution might be
challenging.

4.3.3 Current refraction

In the presence of a uniform current U , one should distinguish the intrinsic angular frequency ω̂, measured
in a frame moving with the current, from the absolute frequency ω, measured by a steady observer. They are
di�erent by a Doppler shift: ω “ ω̂`k¨U . It is obviously ω̂ that obeys the dispersion relation. The corresponding
absolute and intrinsic group velocities are cg and ĉg , such that cg “ ĉg `U .
In this section, we want to study the e�ect of a slowly varying currentUpx, tq. Vertical variations may result in
the growth of waves, but this is beyond the scope of this work. We add a local Doppler shift to the ray theory
through a rede�nition of the function Ω:

Ωpk,x, tq “ Ω̂pk,x, tq ` k ¨Upx, tq. (4.78)

As a direct consequence, the directional derivative along the characteristics becomes d
dt “ Bt ` pĉg ` Uq ¨∇

with ĉg “ BkΩ̂. The corresponding Hamilton’s equations are
#

dx
dt “ BkΩ̂`U
dk
dt “ ´BxΩ´ p∇Uqt ¨ k

. (4.79)

The supplementary term in the second equation is responsible for current refraction.
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Chapter 5

Summary and outlook

The scienti�c history of waves began about two centuries ago with the linear theory of water waves. Once
classi�ed in terms of their restoring force and water depth, non-linear e�ects started to be explored. For deep
water gravity waves of small steepness, Stokes calculated a dispersion relation which depends on the wave am-
plitude. He also showed the existence of a wave-induced current, the Stokes drift. However, Stokes waves are
not commonly observed and it is only in the late sixties that Benjamin and Feir showed that they are actually
unstable. This phenomenon, called modulational instability, was realized to be a consequence of the coupling
between dispersion and weak non-linearity, and can be universally described by a non-linear Schrödinger equa-
tion. It is also a paradigmatic example of a four-wave resonant interaction. Indeed, one can explain thanks to
Zakharov equation the time evolution of the spectral amplitude in terms of wave-wave interactions. For deep
water gravity waves, triadic resonant interactions are absent because the linear dispersion relation is a concave
function. Concavity also appears to be a necessary condition for side-band instability. The framework of wave-
wave interaction provides a general description of weakly non-linear waves. However, to study an ensemble of
waves or a system with random initial conditions, a statistical description is needed. The solution is the wave
turbulence theory, which basically gives the time evolution of the second moment. Nazarenko [40] de�nes it as
‘the out-of-equilibrium statistical mechanics of random non-linear waves’.
It was shown by Phillips in 1957 that a turbulent wind generates a continuous spectrum of waves. Therefore,
ocean waves seem to go into the class of systems addressed by wave turbulence. But there are other processes
to take into account prior to wave-wave interaction. One of them is wind-wave interaction, which we believe
to be the most important. So far, the two have been decoupled: a term yielding an exponential growth, based
on the theory of Miles (1957), is simply added in the equation of wave turbulence. Miles’ idea was to regard the
waves as perturbations of the air �ow and then use the theory of hydrodynamic stability to get the growth rate.
The wind being turbulent, it is averaged over a time scale much smaller than the period of the waves so that a
logarithmic pro�le can eventually be used and then treated as a parallel shear �ow. The subsequent eigenvalue
problem was too di�cult to solve but there is a natural small parameter in the wind-waves system, the air-water
density ratio, which allows a perturbative resolution. Note that this small parameter is at the origin of the weak
coupling between the air and water layers which entails the small steepness of the waves. Miles’ formula for
the growth rate of wind waves requires the solution of a linear singular boundary value problem. Since the
singularity is regular, we used the Frobenius’ series to develop a simple numerical scheme for solving problems
of that class. Then we computed Miles’ growth rate and confronted it to the existing observational data. Despite
of the scattering of the data, there is a good agreement between theory and experiments over almost two decades.
Furthermore, a power law seems to emerge in this range. Nonetheless, Miles’ theory predicts a maximum which
is not observed. So as to understand these facts, in addition to what characteristics the wind pro�le should
have to make the waves grow, an approximate analytical expression of the growth rate for a generic pro�le is
desirable. Therefore, we initiated the resolution of the boundary value problem for short and long waves. So far,
the calculations are complete for short waves: at leading order, the solution is equal to the free-stream solution
e´kz . Furthermore, we proved that this result, also supported by numerics, is independent of the wind pro�le
and of the dispersion relation. The latter lets us think about a generalization of Miles’ theory to capillary waves.
For long waves, the situation is trickier. Indeed, we have separated the domain into two regions but are so far
able to provide asymptotic solutions for a generic pro�le only in the region containing the singularity. Although
the behaviour of the solution should be anyway exponential at in�nity, in the overlapping region it strongly
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depends on the pro�le. The divergence of the logarithmic pro�le at in�nity is challenging, but progress could be
made with the exponential pro�le which is bounded. A patching method then yielded reasonably good results
when compared with the exact numerical solution. Hence, these asymptotic results are encouraging. They will
provide a better insight on Miles’ theory. Furthermore, they could be used to study the quasi-linear model of
Janssen [41] describing the feedback of growing ocean waves on the wind pro�le. Indeed, the wave spectrum
is continuous so that there is an interaction between the di�erent critical levels, which is a counterpart of wave
turbulence.
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Chapter 6

Appendix: Figures supporting the
asymptotic results of section 3.3

Here is a series of plots comparing the asymptotic solution of the boundary value problem (3.3) for short and
long waves and the solution computed with the help of our numerical scheme. We vary both the Froude number
Fr and the wavenumber k. In the case of short waves, we present solutions for the exponential pro�le U1 as
well as for logarithmic pro�le U2, de�ned in section 3.1.

Figure 6.1: Solution for the exponential pro�le and k “ 10, Fr “ 5.
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Figure 6.2: Solution for the exponential pro�le and k “ 100, Fr “ 5.

Figure 6.3: Solution for the exponential pro�le and k “ 10, Fr “ 50.
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Figure 6.4: Solution for the exponential pro�le and k “ 100, Fr “ 50.

Figure 6.5: Solution for the logarithmic pro�le and k “ 10 and Fr “ 5.
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Figure 6.6: Solution for the logarithmic pro�le and k “ 10 and Fr “ 50.

Figure 6.7: Solution for the exponential pro�le and k “ 0.1 and zc “ 1.5.
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Figure 6.8: Zoom on the minimum (where the patching is made) in �gure 6.7.

Figure 6.9: Solution for the exponential pro�le and k “ 0.1 and zc “ 0.1.
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Figure 6.10: Zoom on the minimum (where the patching is made) in �gure 6.9.

Figure 6.11: Solution for the exponential pro�le and k “ 0.01 and zc “ 0.1.
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