See photos from Nordita


Current Events

Particle Physics with Neutrons at the ESS


10—14 December 2018


Presently under construction, the European Spallation Source (ESS) will be the world's most powerful neutron source. The ESS can provide a unique program of experimental particle physics at the intensity and precision frontiers. Experiments at the ESS can address central open questions in modern physics such as the mechanism of baryogenesis, the strong CP problem, and the nature of dark matter. Sensitivity to particles and processes beyond the Standard Model at mass scales beyond that available at colliders. This workshop explores the potential of the ESS, focusing on the optimization of signatures and experimental search strategies, the development of the phenomenology needed to interpret ESS results, and the complementarity with the collider program. A number of topics are covered, including the implications of precision measurements neutron decay, searches for neutron electric dipole moment and for the baryon number violating (BNV) processes.

Dynamic Quantum Matter


10—14 December 2018

Coordinators: Alexander Balatsky, Jens Bardarson, Annica Black-Schaffer, Jason Haraldsen, Johan Hellsvik, Philip Hofmann, Jonas Weissenrieder

The conventional approaches for treating condensed matter, based on Fermi liquid theory and the associated Landau-Ginzburg-Wilson approach to phase transitions, have been challenged recently, as we see a growing library of states that do not display this behaviorm and also witness discoveries of many materials that exist on the verge of transitions to different types of ordered states. These developments are encapsulated within the new category of condensed matter known as “quantum materials”, which has stimulated a host of new ideas based on unconventional correlated, entangled, and topological orders. Attendant with the developments on theory and modeling we see a rapid rise of new probes of matter, most prominently, MAX IV and ESS that are capable of revealing a new and exciting behavior of quantum matter at the short time scale with high spatial resolution.

QCD Meets Gravity IV


10—14 December 2018

Coordinators: Agnese Bissi, John Joseph Carrasco, Marco Chiodaroli, Henrik Johansson

Gauge theory and general relativity are the two modern frameworks that describe the interactions of fundamental spin-1 (gluon) and spin-2 (graviton) particles, respectively. Despite significant historical differences in how these theories were developed, recent results show that these frameworks are intimately connected. The goal of this workshop is to bring together in a collaborative environment world experts on ideas and methods relevant to the double-copy dictionary between gauge and gravity perturbative predictions. Topics expected to be covered by the workshop include: amplitudes in supersymmetric gauge theory and gravity, classical solutions and perturbation theory in gravity, effective potentials and gravitational waves, higher-loop QCD, supergravity UV divergences, gravitational symmetries, string amplitudes, on-shell diagrams and the amplituhedron, twistor strings, polylogarithms, color-kinematics duality and the double copy, and more.

Show:  All events  Programs  Workshops, Conferences, Meetings  Schools
Info: Full Medium Brief
Period: All Current & Future

Future Events


Nordita Winter School 2019 on Theoretical Particle Physics


21—31 January 2019

Coordinators: Paolo Di Vecchia, Henrik Johansson, Olof Ohlsson Sax, Dmytro Volin, Konstantin Zarembo

The purpose of this winter school is to provide PhD students and young postdocs in the Nordic countries with introductory courses in a range of the most important topics in the field of theoretical particle physics. The school will provide a way to bring together students and young postdocs across different fields, research institutions and countries.

Solar Helicities in Theory and Observations: Implications for Space Weather and Dynamo Theory


4—29 March 2019

Coordinators: Maarit Käpylä, Yokoi Nobumitsu, Alexei Pevtsov, Ilpo Virtanen

Magnetic helicity is a conserved quantity in ideal MHD and is also a topological invariant. Due to these properties, it plays special roles for the operation of the global solar dynamo, and in the release of solar eruptive events, but both of these related processes remain poorly understood. On both themes, theoretical models would benefit from being validated and constrained with observational data, and the increasing amounts of observational data could be more efficiently used as basis to improve the models. The abundant observational data pouring in from various sources poses its own challenges and sometimes cross-calibrations are lacking. This program will bring together solar observers and dynamo theorists to work on these topics. We aim to obtain crucial new knowledge on the operation of the global solar dynamo itself, but also how it drives eruptive events which then are observed as space weather.

Mathematical physics of anyons and topological states of matter


11—16 March 2019

Coordinators: Michele Correggi, Douglas Lundholm, Nicolas Rougiere

For quantum systems confined to lower-dimensional geometries there is a possibility to create states of matter that display very non-trivial topological behavior. The most famous example is the fractional quantum Hall effect and its associated effective particles with unusual statistics, called anyons. Despite such models having been studied intensively by physicists for a long time, there has been very little progress on the rigorous mathematical side. The aim of the workshop is therefore to bring together leading experts in the field, both mathematicians and physicists, to summarize the state of the art and to exchange ideas on future directions. In view of the serious theoretical intricacies of the field, particular emphasis will be put on the possible use of recent rigorous mathematics in physical applications.

10th Nordic Workshop on Statistical Physics: Biological, Complex and Non-Equilibrium Systems


20—22 March 2019

Coordinators: Ralf Eichhorn, Alberto Imparato

This workshop series provides a forum where scientists in the Nordic countries working in the area of Statistical Physics can meet regularly. Topics covered include diffusion problems, physics of DNA and bio-molecules, population dynamics, pattern formation, non-equilibrium transport, bacterial motility, single-molecule kinetics, dynamics and structure of networks, statistical inference, Monte-Carlo simulation techniques, self-assembly, soft condensed matter (colloids, liquid crystals etc.), work relations and fluctuation theorems, and many more.

New Directions in Quantum Information


1—26 April 2019

Coordinators: Janet Anders, Erik Aurell, Mohamed Bourennane, Pawel Horodecki, Mikael Skoglund

Quantum Information Science is a major frontier of modern science and technology, exploring physical situations that are classically impossible. An important technological application, already available today, is secure quantum key distribution realized by spatially separated entangled quantum states. This program will be centered around new fundamental physical questions that will emerge from successful current and future quantum technologies. The focus will be on effects and phenomena that appear already in low-dimensional quantum systems, and which are (or may soon be) experimentally realized.

Effective Theories of Quantum Phases of Matter


6—31 May 2019

Coordinators: Tomáš Brauner, Carlos Hoyos, Sergej Moroz, Dam Thanh Son

Physical systems look different when observed at different resolutions: what appears as a continuum liquid to the naked eye becomes a cluster of jiggling atoms when observed at the resolution of an electron microscope. Effective field theory provides a description of physics in terms of degrees of freedom appropriate to a given resolution. Over the last couple of decades, physicists have developed effective field theory tools which, to a large extent, unify fields as diverse as atomic and condensed-matter physics, particle and nuclear physics, and cosmology. The ensuing interaction between different branches of physics has never been as fruitful as it is now. The aim of this program is to give a new impulse to a further development of this exciting interdisciplinary field. We bring together leading practitioners working on effective theories of quantum phases of matter across several branches of physics. Our goal is to map out important open problems with broad relevance and look for new directions towards their solution, to reinvigorate existing collaborations and foster new connections.

Statistical Physics of Complex Systems


7—11 May 2019

Coordinators: Christian Beck, Guido Caldarelli, Letitia Cugliandolo, Ewa Gudowska-Nowak, Holger Kantz, Paul Manneville, Stefano Ruffo, Raúl Toral

Statistical mechanics provides a universal formalism to understand the behavior of a variety of complex systems on a variety of spatio-temporal scales. This conference will deal with a selection of the most recent developments and cutting edge scientific research topics within the general area of nonequilibrium statistical physics, stochastic modelling, complex networks, nonlinear dynamical systems, chaos and turbulence, disordered quantum systems and spin glasses, phase transitions and critical phenomena, and interdisciplinary applications in physics, biology, economics, and the social sciences. There will be ample opportunity for informal discussions and interdisciplinary interaction between people from different scientific backgrounds within the broad area of statistical and nonlinear physics. This will be the 2nd conference of the EPS Statistical and Nonlinear Physics Division, connected with the award of the EPS Statistical and Nonlinear Physics Prize.

Zoom-In and Out: From the Interstellar Medium to the Large Scale Structure of the Universe


3—28 June 2019

Coordinators: Angela ADAMO, Andrea FERRARA, Matthew HAYES, Michael RUTKOWSKI, Livia Vallini

This Nordita Program is devoted to theoretical and observational studies of the interstellar medium of galaxies across cosmic time, and to their implications in shaping future line-intensity mapping experiments which have recently generated a tremendous interest in the Community of astrophysicists and cosmologists. The program is particularly timely because the advent of new facilities, such as ALMA full array, JWST (launch spring 2019), and E-ELT (2024), will provide a wealth of high resolution multi-wavelength spectroscopic data on the ISM of galaxies across cosmic time. Moreover, the program will bring together experts from different areas as we aim gathering astrophysicists, working on galactic and extragalactic observation, theoreticians devising simulations, astrochemists, and cosmologists interested in the large scale structure of the Universe. The program has been conceived with a bottom-up structure that, from ~pc scales, relevant for star formation, will zoom-out up to ~Mpc scales relevant for intensity mapping experiments.

Elliptic integrable systems, special functions and quantum field theory


16—20 June 2019

Coordinators: Martin Hallnäs, Edwin Langmann, Hjalmar Rosengren

In recent years there have been exciting new developments at the interface between elliptic integrable systems, special functions and quantum field theory. The aim of this workshop is to obtain a better understanding of the emerging links between these topics and to help bring out further unexpected connections in the future. This will be achieved by bringing together researchers from diverse areas in mathematics and physics, for a week of lectures and informal discussions. The workshop is the continuation of a series (Kyoto 2004, Bonn 2008, Leiden 2013, Vienna 2017). It is a satellite meeting of String Math 2019, which takes place on Uppsala 1-5 July. The main themes of the meeting are: Elliptic integrable systems, Elliptic hypergeometric functions, Elliptic and classical Painlevé equations, and New special functions emerging from quantum field theory

From Molecular Basis to Predictability and Control of Evolution


1—26 July 2019

Coordinators: Marta Luksza, Armita Nourmouhammad, Fernanda Pinheiro

Growing amount of molecular biological data combined with current advances in modeling of complex systems provide unprecedented opportunities to understand biological evolution in a quantitative way. A quantitative description of an evolving system is the first step towards prediction and control, and it opens new exciting directions for highly interdisciplinary research. The central questions are: (i) to what degree we can predict the outcome of biological evolution, (ii) what features of the system are predictable and (iii) which features confer predictive value for a quantitative description of the system. This program brings together theoretical and experimental physicists, experimental biologists with an interest in quantitative modelling and mathematicians with interest in biological systems. We aim to create a dialog between researchers of different fields and to inspire future collaborations. In addition, further developments in this field would have significant translational impacts, e.g., by optimizing vaccines against evolving viruses, designing strategies for personalized cancer therapy and by providing insights to the problem of antibiotic resistance.

Integrability in Gauge and String Theories 2019


15—19 July 2019

Coordinators: Valentina Giangreco Marotta Puletti, Monica Guica, Henrik Johansson, Joseph Minahan, Olof Ohlsson Sax, Dmytro Volin, Konstantin Zarembo

The conference will cover cutting-edge non-perturbative methods in quantum field theory, as well as mathematical aspects of integrability and its more traditional applications in condensed-matter physics and statistical mechanics. Solvable models play a valuable a role in theoretical physics, as they illustrate general concepts in a simpler setting and provide insights into the qualitative features of more complex phenomena.

Holographic QCD


22—26 July 2019

Coordinators: Elias Kiritsis, Jacob Sonnenschein, Ismail Zahed, Konstantin Zarembo

In the last few years there has been renewed interest in QCD and hadronic dynamics using holographic gauge/gravity duality, resurge of the large N methods, progress in string models, integrability, unitarity and bootstrap and more. Also, many new experimental results were reported by ALICE at LHC regarding collectivization in pp and pA collisions, by LHCb at CERN and the B- and C-factories regarding the existence of exotics and the spectroscopy of heavy-light systems, and more recently the reporting of 2 neutron star mergers by the LIGO collaboration and its constraint on the nuclear dense equation of state. The conference will bring together practitioners of these interdisciplinary fields to discuss these exciting new developments, and explore the relevance of the holographic framework for addressing these observations.

Topological Quantum Matter: From Low-Temperature Physics to Non-Equilibrium Dynamics


29 July — 23 August 2019

Coordinators: Jens H. Bardason, Emil J. Bargholtz, Annica Black-Schaffer, Jan Budich, Roni Ilan

Recent advances in the band theory of crystalline materials have singled out topology as a key ingredient in the modern classification of matter, with major impact on measurable electronic properties. Topological band theory has also grown into an emerging paradigm in many areas of physics, and is now used to characterize metamaterials, including photonic, atomic, acoustic, and elastic systems, in both the quantum and classical regimes. As our understanding of topology in physics widens, the incorporation of out-of-equilibrium phenomena is gaining in importance.

Gravitational Waves from the Early Universe


26 August — 20 September 2019

Coordinators: Axel Brandenburg, Mark Hindmarsh, Tina Kahniashvili

Gravitational waves promise a new window into the highest-energy events in the evolution of the universe. The recent LIGO/Virgo detections of gravitational waves from the mergers of binary black holes and binary neutron stars and have ignited interest in the future direction of gravitational wave astronomy. A space-based laser interferometer, pioneered by NASA's LISA concept and the European Space Agency's eLISA program and ESA's recent spectacularly successful LISA Pathfinder mission, would enable direct detection of gravitational waves in the milliHertz range. A lower frequency range would allow detection of supermassive black hole mergers, tracing the galaxy merger history and serving as cosmic sirens to probe the universe's expansion history, as well as precursors for the LIGO sources. A space-based detector would also be sensitive to stochastic gravitational wave backgrounds produced by unknown physics operating in the very early universe, including an electroweak phase transition. This Nordita program will bring scientists together to engage in an effort to characterize and detect sources contributing to the gravitational wave background from the early universe, and the implications for new physics at the TeV scale and beyond.

Challenges in Theoretical High-Energy Physics


23—27 September 2019

Coordinators: Agnese Bissi, Valentina Giangreco Puletti, Magdalena Larfors, Marta Orselli


nw-4.6 (780)
10 Dec 2018

This page was printed on 2018-12-11 from